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ARTICLE

Order and stochasticity in the folding of individual
Drosophila genomes
Sergey V. Ulianov1,2,16, Vlada V. Zakharova1,2,3,16, Aleksandra A. Galitsyna 4,16, Pavel I. Kos5,16,

Kirill E. Polovnikov4,6, Ilya M. Flyamer 7, Elena A. Mikhaleva8, Ekaterina E. Khrameeva 4, Diego Germini3,

Mariya D. Logacheva4, Alexey A. Gavrilov1,9, Alexander S. Gorsky10,11, Sergey K. Nechaev12,13,

Mikhail S. Gelfand4,10, Yegor S. Vassetzky3,14, Alexander V. Chertovich5,15, Yuri Y. Shevelyov 8 &

Sergey V. Razin 1,2✉

Mammalian and Drosophila genomes are partitioned into topologically associating domains

(TADs). Although this partitioning has been reported to be functionally relevant, it is unclear

whether TADs represent true physical units located at the same genomic positions in each

cell nucleus or emerge as an average of numerous alternative chromatin folding patterns in a

cell population. Here, we use a single-nucleus Hi-C technique to construct high-resolution Hi-

C maps in individual Drosophila genomes. These maps demonstrate chromatin compart-

mentalization at the megabase scale and partitioning of the genome into non-hierarchical

TADs at the scale of 100 kb, which closely resembles the TAD profile in the bulk in situ Hi-C

data. Over 40% of TAD boundaries are conserved between individual nuclei and possess a

high level of active epigenetic marks. Polymer simulations demonstrate that chromatin

folding is best described by the random walk model within TADs and is most suitably

approximated by a crumpled globule build of Gaussian blobs at longer distances. We observe

prominent cell-to-cell variability in the long-range contacts between either active genome loci

or between Polycomb-bound regions, suggesting an important contribution of stochastic

processes to the formation of the Drosophila 3D genome.
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The principles of higher-order chromatin folding in the
eukaryotic cell nucleus have been disclosed thanks to the
development of chromosome conformation capture tech-

niques, or C-methods1,2. High-throughput chromosome
conformation capture (Hi-C) studies demonstrated that chro-
mosomal territories were partitioned into partially insulated
topologically associating domains (TADs)3–5. TADs likely coin-
cide with functional domains of the genome6–8, although the
results concerning the role of TADs in the transcriptional control
are still conflicting6,9–12. Analysis performed at low resolution
suggested that active and repressed TADs were spatially segre-
gated within A and B chromatin compartments13,14. However,
high-resolution studies demonstrated that the genome was par-
titioned into relatively small compartmental domains bearing
distinct chromatin marks and comparable in sizes with TADs15.
In mammals, the formation of TADs by active DNA loop
extrusion partially overrides the profile of compartmental
domains15,16. Of note, TADs identified in studies of cell popu-
lations are highly hierarchical (i.e., comprising smaller sub-
domains, some of which are represented by DNA loops5,17).

Partitioning of the genome into TADs is relatively stable across
cell types of the same species3,4. The recent data suggest that
mammalian TADs are formed by active DNA loop extrusion18,19.
The boundaries of mammalian TADs frequently contain con-
vergent binding sites for the insulator protein CTCF that are
thought to block the progression of loop extrusion19–21. Con-
tribution of DNA loop extrusion in the assembly of Drosophila
TADs has not been demonstrated yet22; thus, Drosophila TADs
might represent pure compartmental domains23. Large TADs in
the Drosophila genome are mostly inactive and are separated by
transcribed regions characterized by the presence of a set of active
histone marks, including hyperacetylated histones5,24. Some
insulator/architectural proteins are also overrepresented in Dro-
sophila TAD boundaries24–26, but their contribution to the for-
mation of these boundaries has not been directly tested. The
results of computer simulations suggest that Drosophila TADs are
assembled by the condensation of nucleosomes of inactive
chromatin24.

The current view of genome folding is based on the population
Hi-C data that present integrated interaction maps of millions of
individual cells. It is not clear, however, whether and to what
extent the 3D genome organization in individual cells differs from
this population average. Even the existence of TADs in individual
cells may be questioned. Indeed, the DNA loop extrusion model
considers TADs as a population average representing a super-
imposition of various extruded DNA loops in individual cells18.
Heterogeneity in patterns of epigenetic modifications and tran-
scriptomes in single cells of the same population was shown by
different single-cell techniques, such as single-cell RNA-seq27,
ATAC-seq28, and DNA-methylation analysis29. Studies per-
formed using FISH demonstrated that the relative positions of
individual genomic loci varied significantly in individual cells30.
The first single-cell Hi-C study captured a low number of unique
contacts per individual cell31 and allowed only the demonstration
of a significant variability of DNA path at the level of a chro-
mosome territory. Improved single-cell Hi-C protocols32,33

allowed to achieve single-cell Hi-C maps with a resolution of up
to 40 kb per individual cell32,34 and investigate local and global
chromatin spatial variability in mammalian cells, driven by var-
ious factors, including cell cycle progression33. Of note, TAD
profiles directly annotated in individual cells demonstrated pro-
minent variability in individual mouse cells32. The possible con-
tribution of stochastic fluctuations of captured contacts in sparse
single-cell Hi-C matrices into this apparent variability was not
analyzed32. More comprehensive observations were made when
super-resolution microscopy (Hi-M, 3D-SIM) coupled with high-

throughput hybridization was used to analyze chromatin folding
in individual cells at a kilobase-scale resolution. These studies
demonstrated chromosome partitioning into TADs in individual
mammalian cells and confirmed a trend for colocalization of
CTCF and cohesin at TAD boundaries, although the positions of
boundaries again demonstrated significant cell-to-cell varia-
bility35. Condensed chromatin domains coinciding with popula-
tion TADs were also observed in Drosophila cells36,37. In
accordance with previous observations made in cell population
Hi-C studies24, the obtained results suggested that partitioning of
the Drosophila genome into TADs was driven by the stochastic
contacts of chromosome regions with similar epigenetic states at
different folding levels38.

Although studies performed using FISH and multiplex hybri-
dization allowed to construct chromatin interaction maps with a
very high resolution35, they cannot provide genome-wide infor-
mation. Here, we present single-nucleus Hi-C (snHi-C) maps of
individual Drosophila cells with a 10-kb resolution. These maps
allow direct annotation of TADs that appear to be non-
hierarchical and are remarkably reproducible between indivi-
dual cells. TAD boundaries conserved in different cells of the
population bear a high level of active chromatin marks sup-
porting the idea that active chromatin might be among deter-
minants of TAD boundaries in Drosophila24.

Results
High-resolution single-nucleus Hi-C reveals distinct TADs in
Drosophila genome. To investigate the nature of TADs in single
cells and to characterize individual cell variability in Drosophila
3D genome organization, we performed single-nucleus Hi-C
(snHi-C)32 (Fig. 1a) in 88 asynchronously growing Drosophila
male Dm-BG3c2 (BG3) cells (Supplementary Fig. 1a) in parallel
with the bulk BG3 in situ Hi-C analysis and obtained 2–5 million
paired-end reads per single-cell library (for the data processing
workflow, see Supplementary Fig. 1b). To select the libraries for
deep sequencing, we subsampled the snHi-C data to estimate
the expected number of unique contacts that could be extracted
from the data (Supplementary Fig. 2a; also see “Methods”).
Twenty libraries were additionally sequenced with 16.7–36.5
million paired-end reads, and we extracted 8032–107,823 unique
contacts per cell (Supplementary Table 1). We developed a cus-
tom pairtools-based approach termed ORBITA (One Read-Based
Interaction Annotation) (Fig. 1b) to eliminate artificial contacts
generated by spontaneous template switches of the Phi29 DNA-
polymerase39,40 (Fig. 1c, d) during the whole-genome amplifica-
tion (WGA) step (see “Methods”). In contrast to the hiclib32,41

(see “Methods”) annotations showing up to 20 contacts per
restriction fragment (RF) in a single nucleus, ORBITA detects one
or two unique contacts per RF (Fig. 1d, Supplementary Fig. 2b, c).
We tested ORBITA by analyzing previously published snHi-C
data from murine oocytes32 and found that ORBITA allowed us
to filter out artificial junctions in this dataset (Supplementary
Fig. 3a). Notably, hiclib and ORBITA detect a similar number of
contacts per RF in single-cell Hi-C data obtained without the
usage of Phi29 DNA-polymerase33 (Supplementary Fig. 3b).
Thus, ORBITA efficiently filters out artificial Phi29 DNA-
polymerase-produced DNA chimeras from snHi-C libraries.

We then constructed snHi-C maps with a resolution of up to
10 kb (Fig. 1e). In single nuclei, the dependence of the contact
probability on the genomic distance, Pc(s), has a shape
comparable to that observed in the bulk BG3 in situ Hi-C
regardless of the number of captured contacts (Fig. 1f), indicating
that the key steps of the snHi-C protocol such as fixation, DNA
fragmentation, and in situ ligation were performed successfully.
To estimate the overall quality of the snHi-C libraries, we first
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calculated the number of captured contacts per cell. On average,
we extracted 33,291 unique contacts from individual nuclei that
represented 5% of the theoretical maximum number of contacts
and corresponded to four contacts per 10-kb genomic bin (see
“Methods”); in the best cell, 17% of contacts were recovered
(Fig. 2a, b, Supplementary Table 1). Relying on the number of
captured contacts, we then estimated the proportion of the
genome available for the downstream analysis. At 10-kb

resolution, ~82% of the genome on average was covered with
contacts in each individual cell, and 67% of genomic bins
established more than 1 contact (Fig. 2c). Notably, in the
previously published mouse snHi-C datasets, ~0.6% of theoreti-
cally possible contacts were detected on average (Fig. 2b). Because
the top-20 mouse snHi-C libraries from Flyamer et al.32

demonstrated a comparable genome coverage with contacts and
a number of contacts per 10-kb genomic bin (Fig. 2d), we could
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directly compare the Drosophila and mouse snHi-C maps (see
below). Next, to verify that these sparse snHi-C matrices were not
generated by random fluctuations of captured contacts, we
calculated the distributions of the contact numbers in sliding
non-intersecting windows of different fixed sizes. In contrast to
the shuffled maps, these distributions in the original data are
distinct from the Poisson shape typical for random matrices
(Fig. 2e, see “Methods” and Supplementary Fig. 4). We conclude
that the snHi-C maps obtained here are of acceptable quality and
indeed reflect specific patterns of spatial contacts in chromatin.

Visual inspection of snHi-C maps revealed distinct 50–200 kb
contact domains that closely recapitulated the TAD profile in the
bulk BG3 in situ Hi-C data (Fig. 3a). To call TADs in snHi-C data
systematically, we used the lavaburst Python package with the
modularity scoring function32. For each nucleus, we performed
TAD segmentation in snHi-C maps of 10-kb resolution at a broad
range of the gamma (γ) master parameter values (Fig. 3b, see
“Methods” and Supplementary Fig. 5). Of note, the majority of
the identified boundaries were resistant to the data down-
sampling, indicating that these boundaries did not result from
fluctuations of captured contacts in sparse snHi-C matrices
(Supplementary Fig. 6). In individual nuclei, we identified
554–1402 TADs with a median size of 60 kb covering 40–76%
of the genome at the γ value corresponding to the maximal
number of TADs called (γmax). At 10–20 kb resolution, the
median size of Drosophila TADs was previously estimated as
100–150 kb5,24,25. To obtain a robust TAD profile, we used γmax/2

corresponding to TADs with a median size equal to that for
TADs identified in the Drosophila cell population according to
the previously published data24. At γmax/2, we identified
510–1175 TADs with a median size ~90 kb covering up to 89%
of the genome in best snHi-C matrices (Supplementary Fig. 5).

To additionally validate the single-cell TAD segmentations, we
utilized a modification of the recently published42 spectral
clustering method based on the non-backtracking random walks
(NBT; see “Methods”). The non-backtracking operator is used to
resolve communities in sufficiently sparse networks42,43, thus
providing a useful tool for TAD annotation in single-cell Hi-C
matrices. The method performs dimensionality reduction of the
network using the leading eigenvectors of the non-backtracking
operator, which has a distinctive disc-shape complex spectrum
with a number of isolated eigenvalues on the real axis
(Supplementary Fig. 7d). The resulting average size of the
detected TADs was 110 kb, closely matching the typical TAD size
in the population-averaged data and in the single-cell modularity-
derived segmentations. The mean number of detected TADs per
cell (855 and 920 for the NBT and modularity, respectively) and
single-cell TAD segmentations were remarkably similar between
the two methods (Supplementary Fig. 7a) and demonstrated the
same epigenetic properties (Supplementary Fig. 7c, see below).
Moreover, the modularity-derived TAD boundaries were robust
to the data resolution changes. On average, 84.8% of modularity-
derived boundaries at the 20-kb resolution and 78.6% of
boundaries at the 40-kb resolution have a matching boundary
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at the 10-kb resolution. This is significantly higher than the 43
and 58% expected at random, respectively. Taken together, these
results indicate that TAD profiles are robust and, thus, acceptable
for the downstream analysis.

TADs are largely conserved in individual Drosophila nuclei,
and stable TAD boundaries are enriched with active chroma-
tin. We found that TADs tended to occupy similar positions in
different cells regardless of the number of captured contacts
(Fig. 3a, Supplementary Fig. 8). On average, 46.6% of population-
identified TAD boundaries were present in each of the single cells
analyzed (Fig. 3c), and 39.5% of boundaries were shared between
different cells in pairwise comparisons (Supplementary Fig. 8).
This is significantly higher than the percentage of shared
boundaries for shuffled control maps (32.9%) and the percentage
expected at random (33.1%, Fig. 3d). Notably, 44% of NBT-
identified single-cell TAD boundaries were conserved in pairwise
cell-to-cell comparisons (Supplementary Fig. 7b), supporting the
results obtained in the analysis of modularity-derived TAD
boundary profiles. In individual mammalian cells, TADs fre-
quently overpassed the boundaries identified in the cell popula-
tion, arguing for a substantial degree of stochasticity in genome
folding32,35,44. We used the ORBITA algorithm to reanalyze
previously published snHi-C data from murine oocytes32 and G2
zygote pronuclei34 and found that 31.2 and 21% of boundaries
were shared on average between any two cells, respectively
(Fig. 3e, Supplementary Fig. 9). This result is reproduced at 40-kb
resolution and persists for a broad range of snHi-C datasets’
quality (Supplementary Fig. 10). We conclude that, in Drosophila,
TADs have more stable boundaries as compared to mammals.
This corroborates recent observations of the Cavalli lab37 and
may reflect the differential impact of loop extrusion18,19,34 and
internucleosomal contacts24 on TAD formation16,23.

Population TADs in Drosophila identified at 10–20 kb resolu-
tion mostly correspond to inactive chromatin, whereas their
boundaries and inter-TAD regions correlate with highly acety-
lated active chromatin24,45. These are further partitioned into
much smaller domains with the size of about 9 kb25 and, thus,
unavailable for the analysis at the resolution of our Hi-C maps.
To examine the properties of TAD boundaries at the single-cell
level, we divided all TAD boundaries from snHi-C data into three
groups according to the proportion of cells where these
boundaries were present and analyzed them separately (number
of boundaries of each type and distances between neighboring
boundaries within each type are shown in Supplementary Fig. 13).
The boundaries present in a large fraction of cells (more than 50%
of cells) defined here as “stable” overlapped 73% of conserved
boundaries between BG3 and Kc167 cell lines46 and had high
levels of active chromatin marks (RNA polymerase II, H3K4me3;
Fig. 3f, Supplementary Figs. 11, 12). They were also slightly
enriched in some architectural proteins associated with active
promoters (BEAF-32, Chriz, CTCF, and GAF; Supplementary
Fig. 11, 12). In contrast, boundaries identified in less than 50% of
cells and defined here as “unstable” (as well as boundaries
identified in just one cell termed cell-specific boundaries) were
remarkably depleted of acetylated histones and features of
transcriptionally active chromatin while being enriched in histone
H1 and other proteins of repressed chromatin similarly to the
internal TAD bins (Fig. 3f, Supplementary Fig. 11, 12). The
epigenetic profiles of “unstable” boundaries may be due to the fact
that actual profiles of active chromatin in individual cells differ
from the bulk epigenetic profiles used in our analysis. However, it
may also reflect a certain degree of stochasticity in chromatin
fiber folding into contact domains35. Taking into consideration
the fact that active chromatin regions mostly colocalize with

stable boundaries, one would expect the “unstable” boundaries
tend to be located in the inactive parts of the chromosome.

TADs in individual Drosophila cells are not hierarchical.
Drosophila TADs are hierarchical in cell population-based Hi-C
maps45,47. It is, however, not clear whether the hierarchy exists in
individual cells or emerges in the bulk BG3 in situ Hi-C maps as a
result of averaging of alternative chromatin configurations over a
number of individual cells. To test this proposal, we focused on
two TAD segmentations: at γmax/2 (TADs) and γmax (smaller
domains referred to as sub-TADs located inside TADs, Fig. 4a).
We analyzed only the haploid X chromosome to avoid combined
folding patterns of diploid somatic chromosomes. We assumed
that if TADs in individual nuclei are truly hierarchical, then sub-
TADs belonging to the same TAD should be demarcated with
well-defined boundaries arising from specific folding of the
chromatin. To determine whether this is the case, we tested the
resistance of sub-TAD boundaries to the data downsampling
(two-fold depletion of total number of contacts in the snHi-C
maps). In contrast to relatively stable TAD boundaries, sub-TAD
boundaries showed a two-fold reduction in the probability of
detection in downsampled datasets (Fig. 4b). Moreover, we found
that profiles of sub-TADs were highly different in individual
nuclei: only approximately 20% of sub-TAD boundaries in
individual cells were shared in pairwise comparisons, similar to
the shuffled controls (Supplementary Fig. 14). Hence, a potential
hierarchy of TAD structure in single cells appears to reflect local
Hi-C signal fluctuations. The hierarchical structure of TADs
observed in bulk Drosophila Hi-C data45,48, thus, likely results
from the superposition of multiple alternative chromatin folding
patterns present in individual nuclei; this is also supported by the
visual inspection of snHi-C maps (Fig. 4c).

A-compartment in individual Drosophila nuclei. In animal
cells, TADs of the same epigenetic type interact with each other
across large genomic distances, forming compartments that
spatially segregate active and inactive genomic loci in the nuclear
space13. Similarly to Drosophila embryo5, S249, and Kc167 cells50,
we observed an increased long-range interaction frequency within
the A-compartment in the bulk BG3 in situ Hi-C data (Fig. 4d–f;
Supplementary Fig. 15). Supporting this observation, we also
found increased long-range interactions between genomic regions
of the X chromosome activated by male-specific-lethal (MSL)
complex binding51 (Fig. 4h) in both BG3 in situ Hi-C data and
the merged cell. In contrast, we observed a weak enrichment of
long-range interactions between Polycomb-repressed regions52,53

bound by dRING (Fig. 4i)54 and nearly no enrichment for B-
compartment regions (Fig. 4d, e, g).

We could not directly detect compartments in individual nuclei
due to the sparsity of the maps, but we observed a substantial
enrichment of contacts in the A-compartment after averaging
contacts in each individual nucleus across the population-based
compartment mask (Fig. 4d, Supplementary Fig. 15). Compart-
mentalization might, thus, be a genuine feature of chromatin
folding of Drosophila individual nuclei. The presence of extensive
long-range contacts between the active genome regions in
individual chromosomes is also supported by the contact
probability Pc(s) plotted for active and inactive genomic bins
separately: Pc(s) between active genome regions has a gentler
slope outside TADs, indicating that active, but not inactive
chromatin forms spatial contacts across large genomic distances
(Fig. 4e). These results suggest that active and inactive genome
loci are spatially segregated in individual Drosophila nuclei; active
regions establish long-distance contacts, possibly at transcription
factories and nuclear speckles55–58.
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Modeling of DNA fiber folding within X-chromosome by
constrained polymer collapse. We next applied dissipative par-
ticle dynamics (DPD) polymer simulations59 to reconstruct the
3D structures of haploid X chromosomes (Supplementary
Fig. 16a) in individual cells using the snHi-C data (Fig. 5a,
Supplementary Fig. 16b). The chromatin fiber path in these
structures is strictly determined by the pattern of contacts derived
from the snHi-C experiments and, thus, reflects the actual folding
of the X chromosome in living cells60. As revealed by TAD
annotation, the DPD simulations successfully reproduced chro-
matin fiber folding even at short and middle genomic distances
because TAD positions along the X chromosome were largely
preserved between the models and the original snHi-C data
(Fig. 5a, Supplementary Figs. 17, 19a, b; also see “Methods”).
Moreover, the simulations correctly reproduced chromatin fold-
ing at the scale of the whole chromosome with a well-defined A-
compartment (Fig. 5a, Supplementary Fig. 18). Additionally, to
validate the simulation results using an alternative approach, we
performed multicolor in situ fluorescence hybridization (FISH)
with two intra-TAD probes and one probe located outside the
selected TAD. The distributions of inter-probe spatial distances
extracted from the X chromosome model closely resemble those
of the FISH analysis (Supplementary Fig. 19c). Taken together,
these observations confirm the validity of our approach.

The snHi-C maps show remarkable cell-to-cell variability in
the distribution of captured contacts (Figs. 3a, 4c); therefore, we
performed a pairwise comparison of 3D models of the X
chromosome in individual cells using the coefficient of the
difference at a broad range of genomic distances (Fig. 5b; see
“Methods”). The higher the value of the coefficient, the higher the
difference between the distance matrices obtained from the
models. We have found that chromatin fiber conformation was
strikingly different between individual models (red curve, Fig. 5b)
in comparison to different configurations (at different time
points) of each particular model (blue curve, Fig. 5b), showing the
prominent cell specificity in the organization of the X chromo-
some territory (CT). Notably, shuffling of contacts (see
“Methods”) in the snHi-C data prior to simulations significantly
decreased the variability in the chromatin fiber conformation at
long distances (gray curve, Fig. 5b). Despite cell-to-cell differences
in the overall 3D shape of a particular TAD (Fig. 5c,
Supplementary Fig. 19d), the variability of the chromatin fiber
conformation was substantially lower at short ranges (within
TADs) as compared to long-range distances (Fig. 5b). This
difference could be due to an increased flexibility in chromatin
folding arising from larger genomic distances. In addition, the
curve of the coefficient of difference between individual models
reached the plateau outside TADs (Fig. 5b), suggesting that the

c

d e

f

g

a b

6420-2
Log enrichment

6420-2
Log enrichment

0.20-0.2
Log enrichment

Log enrichment

R
el

at
iv

e 
co

nt
ac

t p
ro

ba
bi

lit
y

10 kb 100 kb 1 Mb 10 Mb

104

103

102

101

100

10-1

Genomic distance

Active-Active
Inactive-Inactive

s-1.5

s-1

Chr2L: 14.28-14.74 Mb

C
el

l 1
B

ul
k

C
el

l 2
C

el
l 3

C
el

l 4

=10 kb

1

20

1

4000

1

10

1

20

1

10

100 kb

Chr2L: 9.92-10.31 Mb

C
el

l 1
B

ul
k

C
el

l 2
C

el
l 3

C
el

l 4

Chr3L: 12.6-13.09 Mb
C

el
l 1

B
ul

k
C

el
l 2

C
el

l 3
C

el
l 4

1

10

1

3000

1

10

1

10

1

9

1

10

1

3000

1

10

1

10

1

7

=10 kb 100 kb

TAD
scale

=10 kb 100 kb

-2.5 0 5 10

Shuffled

Single cells

Merged

Bulk
A

B
A B

A

B
A B

TAD boundaries
sub-TAD boundaries located
inside TADs

****

1

9

1

9
ChrX: 20.55-21.01 Mb

1

9
ChrX: 16.07-16.46 Mb

ChrX: 17.95-18.35 Mb

TAD

sub-TADs

TAD

sub-TADs 1

9
ChrX: 3.97-4.38 Mb
TAD

sub-TADs

TAD

sub-TADs
N

 o
f c

on
ta

ct
s

N
 o

f c
on

ta
ct

s

N
 o

f c
on

ta
ct

s
N

 o
f c

on
ta

ct
s

N
 o

f c
on

ta
ct

s

N
 o

f c
on

ta
ct

s

N
 o

f c
on

ta
ct

s

60

40

20

0

TAD

sub-TAD

sub-TAD boundaries

P
er

ce
nt

ag
e 

of
 T

A
D

 a
nd

 s
ub

-T
A

D
 b

ou
nd

ar
ie

s
fo

un
d 

af
te

r 5
0%

 d
ow

ns
am

pl
in

g 

0300
300

-300

-300

0

kb

kb

0300
300

-300

-300

0

kb

kb

1.15

0.85

2.85

2.45

2.651

1.1

0.75

0.95

2.8

2.6

2.4

Bulk Merged

Bulk Merged

A
-c

om
pa

rtm
en

t
B

-c
om

pa
rtm

en
t

0300
300

-300

-300

0

kb

kb

0300
300

-300

-300

0

kb

kb

h

i

0300
300

-300

-300

0

kb

kb

0300
300

-300

-300

0

kb

kb

1

0.85

0.65

1.05

0.8

0.9

Merged

Bulk

Bulk

Merged

M
S

L
dR

IN
G

0300
300

-300

-300

0

kb

kb

0300
300

-300

-300

0

kb

kb

2.2

2.75

2.6

2.45

2.4

2.6
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variability of chromatin folding inside and outside TADs was
governed by different rules. Due to the fact that TADs in Drosophila
(at the 10–20 kb resolution of the Hi-C maps) are largely composed
of inactive chromatin, we propose that the chromatin fiber
conformation within TADs is mostly determined by interactions
between adjacent non-acetylated nucleosomes. In contrast, at large
genomic distances, TADs interact with each other in a stochastic
manner, imposing the spherical form of the CT that is observed in
all model structures (Fig. 5a, Supplementary Figs. 16, 20). In line
with this hypothesis, the dependence of spatial distance R between
any two particles on the genomic distance s revealed two distinct
modes of polymer folding (Fig. 5d). At the scale of ~100 kb (e.g.,
inside TADs), the chromatin fiber demonstrated a random walk
behavior (s0.5) similar to the chromatin of budding yeast. At larger
distances, R(s) had a scaling similar to a crumpled globule build of
Gaussian blobs (s0.14)61. Thus, chromatin folding within TADs and
at the scale of the whole CT could be driven by different molecular
mechanisms.

Analysis of the radial distributions of transcriptionally active,
inactive, and Polycomb-bound genome regions in our models
demonstrated that active chromatin tended to be located in the
CT interior, whereas inactive regions were located near the CT
surface (Fig. 5e, f); this can be driven by interactions with the
nuclear lamina62. Formation of nuclear microcompartments such

as Polycomb bodies63 represents another factor determining the
large-scale spatial structure of the X chromosome territory. We
analyzed patterns of interactions between individual Polycomb-
occupied regions in the 3D models. To this aim, each of such
regions was assigned a consecutive number according to their
positions along the chromosome. The examples of 2D maps
demonstrating regions residing in a spatial proximity in each cell
are presented in Fig. 5g (upper panels). We found that Polycomb-
occupied regions interacted with each other in a cell-specific
manner and, moreover, such contacts occurred between loci
regardless of the genomic distances between them (Fig. 5g, upper
panels). Using a similar approach, we constructed 2D interaction
maps of active genomic regions (Fig. 5g, bottom panels). Active
genome regions also interacted with each other across large
genomic distances in a cell-specific manner (Fig. 5g, bottom panels).
We propose that these two types of long-range interactions:
stochastic assembly of Polycomb bodies and transcription-related
microcompartments (factories64), underlie the cell-specific con-
formation of the chromatin fiber within CTs in Drosophila.

Discussion
Folding of interphase chromatin in eukaryotes is driven by
multiple mechanisms operating at different genome scales and
generating distinct types of the 3D genome features16,20. In
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mammalian cells, cohesin-mediated chromatin fiber extrusion
mainly impacts the genome topology at the scale of ~100–1000 kb
by producing loops, resulting in the formation of TADs18,19 and
establishing enhancer-promoter communication65. Chromatin
loop formation by the loop extrusion complex (LEC) in mam-
malian cells is a substantially deterministic process due to the
preferential positioning of loop anchors encoded in DNA by
CTCF binding sites (CBS). The cohesin-CTCF molecular tandem
modulates folding of intrinsically disordered chromatin fiber16,23.
On the other hand, association of active and repressed gene loci
in chromatin compartments13,14, and formation of Polycomb and
transcription-related nuclear bodies66,67 in both mammalian and
Drosophila cells shape the 3D genome at the scale of the whole
chromosome. These associations appear to be stochastic: a par-
ticular Polycomb-bound or transcriptionally active region in
individual cells interacts with different partners located across a
wide range of genomic distances68.

Here, we applied the single-nucleus Hi-C to probe the 3D
genome in individual Drosophila cells at a relatively high reso-
lution that was not achieved previously in single-cell Hi-C stu-
dies. Based on our observations, we suggest that, in Drosophila,
both deterministic and stochastic forces govern the chromatin
spatial organization (Fig. 6a).

We found that the entire individual Drosophila genomes were
partitioned into TADs; this observation supports the results of
recent super-resolution microscopy studies37. TAD profiles are
highly similar between individual Drosophila cells and demon-
strate lower cell-to-cell variability as compared to mammalian
TADs. According to our model24, large inactive TADs in Dro-
sophila are assembled by multiple transient electrostatic interac-
tions between non-acetylated nucleosomes in transcriptionally
silent genome regions. Conversely, TAD boundaries and inter-
TAD regions at the 10-kb resolution of Hi-C maps in Drosophila
were found to be formed by transcriptionally active chromatin.
This result may explain why TADs in individual cells occupy
virtually the same genomic positions (Fig. 6b). Gene expression
profile is a characteristic feature of a particular cell type, and,
thus, should be relatively stable in individual cells within the
population. In agreement with this, we demonstrated that
invariant TAD boundaries present in a major portion of indivi-
dual cells were highly enriched in active chromatin marks.
Moreover, stable boundaries were also largely conserved in other
cell types (see “Results” and ref. 46), possibly due to the fact that
TAD boundaries were frequently formed at the position of
housekeeping genes.

In contrast to stable TAD boundaries, the boundaries that
demonstrate cell-to-cell variability bear silent chromatin. Some
cell-specific TAD boundaries may originate at various positions
due to a putative size limit of large inactive TADs or other
restrictions in chromatin fiber folding. Indeed, it appears that the
assembly of randomly distributed TAD-sized self-interacting
domains is an intrinsic property of chromatin fiber folding35. In
mammals, the positioning of these domains is modulated by
cohesin-mediated DNA loop extrusion35, whereas in Drosophila,
it may be modulated by segregation of chromatin domains
bearing distinct epigenetic marks16,23. Even if cell-specific and
unstable TAD boundaries are distributed in a random fashion,
they should be depleted in active chromatin marks because active
chromatin regions are mainly occupied by stable TAD bound-
aries. We also cannot exclude that variable boundaries and the
TAD boundary shifts are caused by local variations in gene
expression and active chromatin profiles in individual cells that
we cannot assess simultaneously with constructing snHi-C maps.

Our results are also compatible with an alternative mechanism
of TAD formation. Given that the above-mentioned cohesin-
driven loop extrusion is evolutionarily conserved from bacteria to

mammals69, it is compelling to assume that extrusion works in
Drosophila as well. Despite the presence of all potential compo-
nents of LEC (cohesin, its loading and releasing factors), TAD
boundaries in Drosophila are not significantly enriched with
CTCF24,25 and do not form CTCF-enriched interactions or TAD
corner peaks. These observations suggest that the binding sites of
CTCF or other distinct proteins do not constitute barrier ele-
ments for the Drosophila LEC even if these proteins are enriched
in TAD boundaries; this may be due to some other properties of a
genomic region. For example, stably bound cohesins were pro-
posed to act as the barriers for cohesin extrusion in yeast70.

Active transcription interferes with DNA loop extrusion71,72.
Because TAD boundaries in Drosophila are highly transcribed, we
propose that open chromatin with actively transcribing poly-
merase and/or a high density of chromatin remodeling complexes
could serve as a barrier for the Drosophila LEC. Contrary to the
strictly positioned and short CBSs in mammals, active loci
flanking Drosophila TADs represent relatively extended regions
up to several dozens of kb in length. Probabilistic termination of
LEC at varying points within such regions in different cells of the
population could explain the absence of canonical loop signals
and the presence of strong compartment-like interactions
between active regions flanking a TAD (Fig. 6c). This model also
provides a potential explanation for the relatively high stability of
TAD positioning in individual Drosophila cells in comparison to
mammals. A relative permeability of CBSs in mammalian cells
allows LEC to proceed through thousands of kilobases and to
produce large contact domains17. Extended active regions acting
as “blurry” barrier elements where LEC termination occurs at
multiple points, should stop the LEC more efficiently, making the
TAD pattern more stable and pronounced.

Taken together, the order in the Drosophila chromatin 3D
organization is manifested in a TAD profile that is relatively
stable between individual cells and likely dictated by the dis-
tribution of active genes along the genome. On the other hand,
our molecular simulations of individual haploid X chromosomes
indicate a prominent stochasticity in both the form of individual
TADs and the overall folding of the entire chromosome territory.
According to our data, the active A-compartment is
easily detectable in individual cells, and the profiles of interaction
between individual active regions are highly variable between
individual cells. Notably, this also holds true for Polycomb-
occupied loci that are known to shape chromatin fiber in living
cells48.

Although these highly variable long-range interactions of active
regions and Polycomb-occupied loci are closely related to the
shape of chromosome territory (CT), the cause-and-effect rela-
tionships between them and the stochastic nature of the cell-
specific chromatin chain path are currently unclear. The main
question to be answered by future studies is whether these
interactions are fully stochastic or at least partially specific. The
possible molecular mechanisms that may provide specific com-
munication between remote genomic loci separated by up to
megabases of DNA are not known. In a scenario of the absence of
any specificity, the pattern of contacts inside A-compartment and
within Polycomb bodies in a particular cell is established by
stochastic fluctuations of the large-scale chromatin fiber folding.
In this case, the large-scale chromatin fiber folding dictates the
cell-specific location of Polycomb-enriched and active chromatin
regions in the 3D nuclear space. The formation of Polycomb
bodies and transcription-related chromatin hubs is achieved by
confined diffusion of these regions and might be further stabilized
by specific protein-protein interactions and liquid-liquid phase
separation73. This mechanism allows to sort through alternative
configurations of the 3D genome and to transiently stabilize those
that are functionally relevant under specific conditions. A balance
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between the order and the stochasticity appears to be an intrinsic
property of nuclear organization that enables rapid adaptation to
changing environmental conditions.

Methods
Cell culture. Drosophila melanogaster ML-DmBG3-c2 cell line (Drosophila
Genomics Resource Center) was grown at 25 °C in a mixture (1:1 v/v) of Shields
and Sang M3 insect medium (Sigma) and Schneider’s Drosophila Medium (Gibco)
supplemented with 10% heat-inactivated fetal bovine serum (FBS, Gibco), 50 units/
ml penicillin, and 50 µg/ml streptomycin.

Single-nucleus Hi-C library preparation. We modified the previously published
single-nucleus Hi-C protocol32 as follows: 5–10 million cells were fixed in 1×
phosphate-buffered solution (PBS) with 2% formaldehyde for 10min with occasional
mixing. The reaction was stopped by the addition of 2M glycine to give a final
concentration of 125mM. Cells were centrifuged (1000 × g, 10 min., 4 °C), resus-
pended in 50 μl of 1× PBS, snap-frozen in liquid nitrogen, and stored at −80 °C.
Defrozen cells were lysed in 1.5ml isotonic buffer (50mM Tris-HCl pH 8.0, 150mM
NaCl, 0.5% (v/v) NP-40 substitute (Fluka), 1% (v/v) Triton-X100 (Sigma), 1× Halt™
Protease Inhibitor Cocktail (Thermo Scientific) on ice for 15min. Cells were cen-
trifuged at 2500 × g for 5min, resuspended in 100 μl of 1× DpnII buffer (NEB), and
pelleted again. The pellet was resuspended in 200 μl of 0.3% SDS in 1.1× DpnII buffer
and incubated at 37 °C for 1 h. Then, 330 μl of 1.1× DpnII buffer and 53 μl of 20%
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Fig. 6 Order and stochasticity in the Drosophila 3D genome. a Schematic representation of the ordered and stochastic components in the Drosophila
genome folding. Positions of TAD boundaries are largely conservative between individual cells and determined by active chromatin. Chromatin fiber path
within a particular TAD and within the whole chromosome territory is largely stochastic and demonstrate prominent cell-to-cell variability. b Determined
positions of active regions along the Drosophila genome define TAD boundaries persistent in individual cells. Inactive region is folded into chromatin globule
due to interactions between non-acetylated “sticky” nucleosomes. This region adopts different configurations in individual cells (and at different time
points in a particular cell). In a cell 1, it is folded into two globules separated with stochastically formed fuzzy boundary. In a cell 2, one part of the region is
compact (left) and the other part (right) is transiently decondensed. In a cell 3, the entire region forms one densely packed globule. Averaging of these
configuration results in a TAD containing two sub-TADs in a population-based Hi-C map. Note, that the hierarchical structure of the TAD emerging in a
population Hi-C map reflects different configuration of the region in individual cells. We note that the absence of any structure at inactive TAD borders
denotes ambiguity of folding of these regions with snHi-C, but not the absence of this structure. c Extended active regions serving as barrier elements for
potential loop extrusion complex (LEC) in Drosophila cells. It has been previously shown that transcription might interfere with loop extrusion71,72. Since
stable TAD boundaries in Drosophila are enriched with transcribed genes, we propose that extended regions of active chromatin but not binding sites of
architectural proteins represent barrier elements for LEC in Drosophila cells. In this scenario, LEC is looping out a TAD and terminates within flanking active
regions colliding with RNA-polymerases, large chromatin-remodeling complexes and other components of active chromatin. In different individual cells,
termination occurs accidentally at different points within these regions. In a population-based Hi-C map that results in a compartment-like signal but not in
a conventional pointed loop observed in mammalian cells where CTCF binding sites serve as barrier elements for LEC.
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Triton X-100 (Sigma) were added, and the suspension was incubated at 37 °C for 1 h.
Next, 600 U of DpnII enzyme (NEB) were added, and the chromatin was digested
overnight (14–16 h) at 37 °C with shaking (1400 rpm). On the following day, 200 U of
DpnII enzyme were added, and the cells were incubated for an additional 2 h. DpnII
was then inactivated by incubation at 65 °C for 20min. Nuclei were centrifuged at
3000 × g for 5min, resuspended in 100 μl of 1× T4 DNA ligase buffer (Fermentas),
and pelleted again. The pellet was resuspended in 400 μl of 1× T4 DNA ligase buffer,
and 75U of T4 DNA ligase (Fermentas) were added. Chromatin fragments were
ligated at 16 °C for 6 h. Next, the nuclei were centrifuged at 5000 × g for 5min,
resuspended in 100 μl of sterile 1× PBS, stained with Hoechst, and single nuclei were
isolated into wells of a standard 96-well PCR plate (Thermo Fisher) using FACS (BD
FACSAriaTMIII). Each well contained 3 μl of sample buffer from the Illustra Gen-
omiPhi v2 DNA amplification kit (GE Healthcare). Sample buffer drops containing
isolated nuclei were covered by 5 μl of mineral oil (Thermo Fisher) and incubated at
65 °C for 3 h to reverse formaldehyde cross-links. Total DNA was amplified according
to a previously published protocol74. The amplification was considered successful if
the sample contained ≥1 μg DNA. The DNA was then dissolved in 500 μl of soni-
cation buffer (50mM Tris-HCl (pH 8.0), 10 mM EDTA, 0.1% SDS) and sheared to a
size of ~100–1,000 bp using a VirSonic 100 (VerTis). The samples were concentrated
(and simultaneously purified) using AMICON Ultra Centrifugal Filter Units to a total
volume of about 50 μl. The DNA ends were repaired by adding 62.5 μl MQ water, 14
μl of 10× T4 DNA ligase reaction buffer (Fermentas), 3.5 μl of 10mM dNTP mix
(Fermentas), 5 μl of 3 U/μl T4 DNA polymerase (NEB), 5 μl of 10 U/μl T4 poly-
nucleotide kinase (NEB), 1 μl of 5 U/μl Klenow DNA polymerase (NEB), and then
incubating at 20 °C for 30min. The DNA was purified with Agencourt AMPure XP
beads and eluted with 50 μl of 10mM Tris-HCl (pH 8.0). To perform an A-tailing
reaction, the DNA samples were supplemented with 6 μl 10× NEBuffer 2, 1.2 μl of 10
mM dATP, 1 μl of MQ water, and 3.6 μl of 5 U/μl Klenow (exo-) (NEB). The
reactions were carried out for 30min at 37 °C in a PCR machine, and the enzyme was
then heat-inactivated by incubation at 65 °C for 20min. The DNA was purified using
Agencourt AMPure XP beads and eluted with 100 μl of 10 mM Tris-HCl (pH 8.0).
Adapter ligation was performed at 22 °C for 2.5 h in the following mixture: 41.5 μl
MQ water, 5 μl 10× T4 DNA ligase reaction buffer (Fermentas), 2.5 μl of Illumina
TruSeq adapters, and 1 μl of 5 U/μl T4 DNA ligase (Fermentas). Test PCR reactions
containing 4 μl of the ligation mixture were performed to determine the optimal
number of PCR cycles required to generate sufficient PCR products for sequencing.
The PCR reactions were performed using KAPA High Fidelity DNA Polymerase
(KAPA) and Illumina PE1.0 and PE2.0 PCR primers (10 pmol each). The tempera-
ture profile was 5min at 98 °C, followed by 6, 9, 12, 15, and 18 cycles of 20 s at 98 °C,
15 s at 65 °C, and 20 s at 72 °C. The PCR reactions were separated on a 2% agarose gel
containing ethidium bromide, and the number of PCR cycles necessary to obtain a
sufficient amount of DNA was determined based on the visual inspection of gels
(typically 12–15 cycles). Four preparative PCR reactions were performed for each
sample. The PCR mixtures were combined, and the products were separated on a
1.8% agarose gel. 200–600 bp DNA fragments were excised from the gel and purified
with a QIAGEN Gel Extraction Kit.

Bulk BG3 in situ Hi-C library preparation. Bulk BG3 in situ Hi-C libraries were
prepared as described previously24 with minor modifications. The first steps of the
protocol (from fixation to DpnII enzyme inactivation) were completely identical to
the corresponding steps in the single-cell Hi-C library preparation procedure
described above. After DpnII inactivation, the nuclei were harvested for 10 min at
5000 × g, washed with 100 μl of 1× NEBuffer 2, and resuspended in 50 μl of 1×
NEBuffer 2. Cohesive DNA ends were biotinylated by the addition of 7.6 μl of the
biotin fill-in mixture prepared in 1× NEBuffer 2 (0.025 mM dATP (Thermo Sci-
entific), 0.025 mM dGTP (Thermo Scientific), 0.025 mM dTTP (Thermo Scien-
tific), 0.025 mM biotin-14-dCTP (Invitrogen), and 0.8 U/μl Klenow enzyme
(NEB)). The samples were incubated at 37 °C for 75 min with shaking (1400 rpm).
Nuclei were centrifuged at 3000 × g for 5 min, resuspended in 100 μl of 1× T4 DNA
ligase buffer (Fermentas), and pelleted again. The pellet was resuspended in 400 μl
of 1× T4 DNA ligase buffer, and 75 U of T4 DNA ligase (Fermentas) were added.
Chromatin fragments were ligated at 20 °C for 6 h. The cross-links were reversed
by overnight incubation at 65 °C in the presence of proteinase K (100 μg/ml). After
cross-link reversal, the DNA was purified by single phenol-chloroform extraction
followed by ethanol precipitation with 20 μg/ml glycogen (Thermo Scientific) as the
co-precipitator. After precipitation, the pellets were dissolved in 100 μl 10 mM
Tris-HCl pH 8.0. To remove residual RNA, samples were treated with 50 μg of
RNase A (Thermo Scientific) for 45 min at 37 °C. To remove residual salts and
DTT, the DNA was additionally purified using Agencourt AMPure XP beads
(Beckman Coulter). Biotinylated nucleotides from the non-ligated DNA ends were
removed by incubating the Hi-C libraries (2 μg) in the presence of 6 U of T4 DNA
polymerase (NEB) in NEBuffer 2 supplied with 0.025 mM dATP and 0.025 mM
dGTP at 20 °C for 4 h. Next, the DNA was purified using Agencourt AMPure XP
beads. The DNA was then dissolved in 500 μl of sonication buffer (50 mM Tris-
HCl (pH 8.0), 10 mM EDTA, 0.1% SDS) and sheared to a size of approximately
100–1000 bp using a VirSonic 100 (VerTis). The samples were concentrated (and
simultaneously purified) using AMICON Ultra Centrifugal Filter Units to a total
volume of approximately 50 μl. The DNA ends were repaired by adding 62.5 μl MQ
water, 14 μl of 10× T4 DNA ligase reaction buffer (Fermentas), 3.5 μl of 10 mM
dNTP mix (Fermentas), 5 μl of 3 U/μl T4 DNA polymerase (NEB), 5 μl of 10 U/μl

T4 polynucleotide kinase (NEB), 1 μl of 5 U/μl Klenow DNA polymerase (NEB),
and then incubating at 20 °C for 30 min. The DNA was purified with Agencourt
AMPure XP beads and eluted with 50 μl of 10 mM Tris-HCl (pH 8.0). To perform
an A-tailing reaction, the DNA samples were supplemented with 6 μl 10× NEBuffer
2, 1.2 μl of 10 mM dATP, 1 μl of MQ water, and 3.6 μl of 5 U/μl Klenow (exo−)
(NEB). The reactions were carried out for 30 min at 37 °C in a PCR machine, and
the enzyme was then heat-inactivated by incubation at 65 °C for 20 min. The DNA
was purified using Agencourt AMPure XP beads and eluted with 100 μl of 10 mM
Tris-HCl (pH 8.0). Biotin pulldown of the ligation junctions was performed as
described previously, with minor modifications. Briefly, 4 μl of MyOne Dynabeads
Streptavidin C1 (Invitrogen) beads were used to capture the biotinylated DNA, and
the volumes of all buffers were decreased by 4-fold. The washed beads with cap-
tured ligation junctions were resuspended in 50 μl of adapter ligation mixture
comprising 41.5 μl MQ water, 5 μl 10× T4 DNA ligase reaction buffer (Fermentas),
2.5 μl of Illumina TruSeq adapters, and 1 μl of 5 U/μl T4 DNA ligase (Fermentas).
Adapter ligation was performed at 22 °C for 2.5 h, and the beads were sequentially
washed twice with 100 μl of TWB (5mM Tris-HCl (pH 8.0), 0.5 mM EDTA, 1M
NaCl, 0.05% Tween-20), once with 100 μl of 1× binding buffer (10 mM Tris-HCl
(pH 8.0), 1 mM EDTA, 2 M NaCl), once with 100 μl of CWB (10 mM Tris-HCl
(pH 8.0) and 50 mM NaCl), and then resuspended in 20 μl of MQ water. Test PCR
reactions containing 4 μl of the streptavidin-bound Hi-C library were performed to
determine the optimal number of PCR cycles required to generate sufficient PCR
products for sequencing. The PCR reactions were performed using KAPA High
Fidelity DNA Polymerase (KAPA) and Illumina PE1.0 and PE2.0 PCR primers (10
pmol each). The temperature profile was 5 min at 98 °C, followed by 6, 9, 12, 15,
and 18 cycles of 20 s at 98 °C, 15 s at 65 °C, and 20 s at 72 °C. The PCR reactions
were separated on a 2% agarose gel containing ethidium bromide, and the number
of PCR cycles necessary to obtain a sufficient amount of DNA was determined
based on the visual inspection of gels (typically 12–15 cycles). Four preparative
PCR reactions were performed for each sample. The PCR mixtures were combined,
and the products were separated on a 1.8% agarose gel. 200–600 bp DNA frag-
ments were excised from the gel and purified with a QIAGEN Gel Extraction Kit.
Two biological replicates were performed.

snHi-C raw data processing and contact annotation. The whole-genome
amplification step of snHi-C uses the Phi29 DNA polymerase, which is known to
produce chimeric DNA molecules by randomly switching the DNA template40.
DNA molecules created by the template switch were further amplified during the
snHi-C protocol and resulted in chimeric reads. Notably, in theory, template
switches can be detected by the presence of two consecutive parts of the same read
that map to different genomic locations and do not align immediately next to the
restriction sites at the DNA breakpoint. This situation is different from the stan-
dard Hi-C, where each read pair is considered to be a true contact pair regardless of
the DNA breakpoint presence and annotation. Standard Hi-C processing tools,
such as hiclib32,41, Juicer75, and HiCExplorer26, typically rely on mapping of both
reads in a Hi-C pair and do not account for the presence of chimeric parts in a
single side of paired-end sequencing. We devised a more accurate approach for
processing of snHi-C data that annotates each DNA breakpoint observed in each
single-end read, and selects the contacts that do not represent possible template
switches of Phi29 polymerase. Thus, we developed a custom approach for snHi-C
data processing termed ORBITA (One Read-Based Interaction Annotation), as
described below.

Reads mapping. As the first step of the approach, FASTQ files with paired-end
sequencing data are mapped to Drosophila reference genome dm3 using Burrows-
Wheeler Aligner (BWA-MEM, console version 0.7.17-r1188)76 with default para-
meters. Notably, this mapping procedure allows independent alignment of chi-
meric parts of both forward and reverse reads. This step results in BAM files with
paired-end mapping information.

Annotated pairs retrieval. In the next step, the BAM files are parsed with an
adapted version of pairtools (https://github.com/mirnylab/pairtools) with our
newly implemented option ORBITA. Among many other utilities for Hi-C data
processing, we selected pairtools from the Mirny lab as the basis of our approach,
due to the convenience and modular structure of its code. This version of the tool
can be accessed at the GitHub repository https://github.com/agalitsyna/pairtools.

ORBITA treats each read in the BAM file independently, regardless of whether
it is forward or reverse. Reads that are uniquely mapped to a single location of the
genome are marked as type P, meaning that they are part of a standard Hi-C Pair
with no DNA breakpoint evidence. Reads that contain precisely two successive
regions uniquely mapped to different genomic locations (MAPQ > 1) are selected
for further DNA breakpoint annotation. ORBITA takes the genome restriction
annotation (provided as a BED file with DpnII restriction fragments positions,
produced by cooler digest77) and compares each breakpoint against the list of
restriction sites. For each 3′-end of the right chimeric part and 5′-end of the left
chimeric part (in other words, ligated ends), both upstream and downstream
restriction sites are annotated, and the distance to the closest one is calculated. If
both ends are located sufficiently close (<10 bp) to any restriction site in the
genome, ORBITA considers them as a true ligation junction of restricted fragments
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in the snHi-C proximity ligation step. These cases are marked as J type (ligation
Junction), with the evidence of traversing the ligation junction of DpnII restriction
fragments. If at least one ligated end of the chimeric read was not mapped to the
restriction site, ORBITA marks it as H (template switch, or Hopping of Phi29 DNA
polymerase). To simplify the ORBITA approach, we omit the cases with more
complicated scenarios of read mapping, when three or more uniquely mapped
chimeric parts of a single-end read were present. If the read contains multiple
mapped chimeric parts, it is discarded. ORBITA produces the resulting PAIRS file
with annotation of JJ pairs (with the evidence of the ligation) that are accepted for
further processing. If not explicitly mentioned, the generic names “pair” or
“contact” are used for snHi-C contacts with the evidence of the ligation junction.

Amplification duplicates removal. In the next step, we performed a correction for
amplified duplicates of snHi-C contacts. Standard Hi-C uses amplification by the
Illumina PCR protocol with primers that are ligated to the ends of sheared DNA17.
Thus, two independent Hi-C pairs can be PCR duplicates if their mapping posi-
tions coincide (e.g., see hiclib). However, the amplification in snHi-C32 is followed
by sonication, resulting in random breaks of ligated DNA fragments. Hence,
coinciding mapping positions cannot be used as a criterion of PCR duplication.
Notably, we cannot distinguish the amplified pair contacting restriction fragments
from the contacts of the same regions in the homologous chromosomes. Thus, we
removed all multiple copies of restriction fragment pairs and retained unique
contacts for each combinatorial pair of restriction fragments.

Fragment filtration. In the next step, we used restriction fragment filtration to
reduce the possible contribution of copy number variation, read misalignment, and
Phi29 DNA polymerase template switch that had not been removed by the
ORBITA filter.

In theory, each restriction fragment of DNA has two ends and is present twice
in the diploid nucleus of ML-DmBG3-c2 Drosophila cells; thus, we expect the
upper limit of four unique contacts per restriction fragment if no unannotated
genomic rearrangements, mismappings, or template switches occurred. For each
restriction fragment, we calculated the observed number of contacts and removed
fragments that had more than four contacts.

Before contact filtration by this rule, we compared the number of restriction
fragments with more than four unique contacts according to ORBITA and one
previous approach, hiclib for Flyamer et al. 2017. We obtained datasets for mouse
nuclei from Flyamer et al. 2017 and Nagano et al. 2017 and mapped with the hiclib
and ORBITA pipelines. We found a significant reduction in the number of unique
contacts per fragment for snHi-C from Phi29 DNA polymerase datasets (Flyamer
et al. 2017, present work], but not for scHi-C without Phi29 DNA polymerase
(Nagano et al. 2017) (Supplementary Figs. 2, 3). Thus, we conclude that ORBITA is
an effective approach to reduce the number of snHi-C artefactual contacts arising
from random template switches of Phi29 DNA polymerase.

Cell selection by raw data subsampling. We obtained filtered contacts for 88
individual nuclei after the initial round of sequencing. Before the second round of
sequencing, we assessed the robustness of the number of unique contacts by
subsampling of raw datasets (Supplementary Fig. 2a). For each library, we created a
uniform grid of sequencing depth (from 0 to the resulting number of reads with the
step of 100,000 reads). We then randomly selected X reads from the full library and
calculated the number of unique contacts (as described above) for each number
from the grid X. We repeated this procedure ten times and plotted the mean
number of unique contacts for each sequencing depth from the grid.

We proposed that there are a significant number of cells containing PCR
duplicates and that the number of contacts increases slowly depending on the
sequencing depth due to the poor efficiency of the snHi-C protocol. Further
sequencing of these cells would result in a relatively small improvement of the
detectable number of unique contacts. The number of contacts for other cells
increases more rapidly with the number of reads but reaches a plateau once the
maximum number of unique contacts is achieved. Thus, additional sequencing of
these cells might result in reading duplicated contacts.

For other cells, the number of contacts grew slowly with sequencing depth
(Supplementary Fig. 2a). However, for all these cells, the number of unique
contacts gradually increased with no plateau signature. We selected the cells
displaying the best growth of the number of contacts, indicative of the good quality
of the dataset. The top 20 cells by the number of unique contacts were subjected to
an additional round of sequencing. The same mapping and parsing pipeline was
used for these datasets. Technical replicates (initial and additional rounds of snHi-
C libraries sequencing) were merged at the annotated PAIRS file stage.

snHi-C interaction map construction. The resulting pair data were binned at 1 kb,
10 kb. 20-kb, 40-kb, and 100-kb resolutions with cooler version 0.8.577 and stored
in the COOL format. We constructed the merged dataset by summing all snHi-C
maps. To exclude self-interacting genomic bins and possible contribution of
dangling ends, self-circles41, and mirror reads78, we removed the first diagonal in
both single cells and the merged maps. The HiGlass server was used for data
visualization79. 10-kb resolution was used throughout the paper if another reso-
lution is not specified.

Bulk BG3 in situ Hi-C raw data processing. For bulk BG3 in situ Hi-C (two
biological replicates), reads were mapped to Drosophila reference genome dm3
with Burrows-Wheeler Aligner (BWA-MEM, console version 0.7.17-r1188)76 with
default parameters. For consistency with the snHi-C analysis, the resulting BAM
files were parsed with pairtools v0.3.0, (https://github.com/mirnylab/pairtools)
using default parameters. The resulting files were sorted by the pairtools module
“sort”; replicates were merged by the pairtools module “merge” and duplicates were
removed, allowing one mismatch between possible duplicates (pairtools dedup with
--max-mismatch 1 and—mark-dups options). The resulting PAIRS file was binned
with cooler77 at the same resolutions as the single-cell datasets. To remove the
contribution of possible Hi-C technical artifacts, such as backward ligation, dan-
gling ends, self-circles41, and mirror reads78, the first two diagonals of Hi-C maps
were removed. As the last step of bulk Hi-C processing, the maps were iteratively
corrected for the removal of coverage bias41 by the cooler balance tool with default
parameters77.

For the reproducibility control, both replicates were converted to interaction
maps independently by the above pipeline. The resulting maps demonstrated a
correlation of 0.9–0.95 as estimated by the HiCRep stratum-adjusted correlation
coefficient for intrachromosomal maps smoothed with one-bin offset and genomic
distance up to 300 kb at 20 kb resolution80.

snHi-C background model construction. We sought to create a background
model for snHi-C that can be used as a control for the subsequent analysis of
intrachromosomal snHi-C interaction maps. For that, we considered two major
factors contributing to the intrachromosomal contact frequency in the genomic
region: the contact probability for a particular genomic distance Pc(s)13, and region
visibility81.

For bulk BG3 in situ Hi-C, the Pc(s) is assessed by the mean number of contacts
for a certain genomic distance13. However, the same procedure cannot be readily
used for snHi-C due to data sparsity and missing data. Thus, to calculate Pc(s) for a
snHi-C dataset, we counted the number of contacts for a certain genomic distance
and normalized by the number of genomic bins that had contact in at least one
snHi-C experiment at any distance. Notably, we use the same procedure for the
visualization of snHi-C Pc(s) dependence on the genomic distance s (Fig. 1f and
Fig. 4e); the genomic distance step size was set to 1 kb. For snHi-C background
models, we used Pc(s) genomic distance step size 10 kb.

We assessed the region visibility in snHi-C by the marginal distribution of the
number of contacts for the region margi (in other words, the total number of
observed intrachromosomal contacts for a genomic region) using maps at a 10-kb
resolution.

For each snHi-C map, we calculated Pc(s) and the marginal distribution of
contacts and shuffled the positions of the contacts for each chromosome, so that
the marginal distribution was preserved, and Pc(s) was at least approximated
(Supplementary Fig. 4a–d). Note that for 3D modeling, we used more crude
shuffling without saving the marginal distribution of contacts.

Assessment of percentage of recovered contacts. To compare snHi-C datasets
across species (Fig. 2a–c), we assessed the percentage of recovered contacts out of
all possible contacts per nuclei.

First, we determined the theoretical size of the pool of restriction fragments for
the nucleus of each species and cell type. For Drosophila, we used a diploid male
cell line. Thus, the total number of restriction fragments was ~600,000, composed
of the double amount of fragments in autosomes (2 × 265,167, as assessed by the
dm3 in silico digestion) in addition to the number of fragments on chromosome X
(64,108). For mice, Flyamer et al. (2017) analyzed oocytes with four copies of the
genome, resulting in a total of 4 × 6,407,802 ~ 25,600,000 fragments. Gassler et al.
(2017) analyzed G2 zygotes pronuclei with two copies of the genome, resulting in a
total of 2 × 6,407,802 ~ 12,800,000 fragments (we did not distinguish between the
maternal and paternal pronuclei because the contribution of chromosome X is not
as significant for the mouse genome).

We next assessed the upper limit of the total number of possible contacts per
single nucleus, which is achieved when each restriction fragment formed two
contacts with the ends of any other restriction fragments from the pool. Because
the valency of each fragment is two, the theoretical upper limit is equal to the
number of restriction fragments.

We then divided the total number of observed contacts (recovered by ORBITA)
by the upper bound of the possible number of contacts, and we recovered up to
~16% of the total number of possible contacts for Drosophila (see Fig. 2b); this
number is approximately 2.6% for the best mouse dataset. The mean percentage of
recovered contacts is 4.9% for our dataset and <1% for Flyamer et al. (2017) and
Gassler et al. (2017).

However, this assessment of the percentage of recovered contacts is not exact
for several reasons: (1) we did not perform sorting prior to snHi-C to isolate
G1 cells; hence, some regions of the genome might have an increased copy number
in S or G2 cells; (2) some regions of the genome might be affected by deletions and
copy number variations that were not accounted for in our analysis. However, even
in the worst-case scenario, if we imagine that all Drosophila cells are in the G2
phase of the cell cycle, we recovered at least 8% of all possible contacts for the best
cells in our analysis, which is still a substantial improvement compared to recovery
for the best cells from mammalian studies.
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TAD calling in snHi-C and bulk BG3 in situ Hi-C data. We used Hi-C map
segmentation with lavaburst (v0.2.0) (https://github.com/nvictus/lavaburst) with
the modularity scoring function for TAD calling in Hi-C maps at 10-kb resolu-
tion32. All TAD segments smaller or equal to 3 bins (30 kb) were considered to be
inter-TADs24. lavaburst has a gamma (γ) parameter controlling the size and the
number of resulting TADs. We varied g from 0 to 375 with a step of 0.1 for
Drosophila datasets. The range and the step were selected to guarantee the com-
prehensive coverage of both extremes (a small amount of unusually large TADs
and a large amount of smallest possible TADs). We observed a sharp decrease in
median TAD size and an increase in the number of TADs with the γ increase
(Fig. 3b, Supplementary Fig. 5). After reaching the peak, the number of TADs starts
to drop because many segments fall beyond the minimal allowed TAD size. For
large γ, both the number of TADs and mean TAD size reach a plateau at low levels.
We considered the point of the maximum number of TADs (γmax) as the most
informative segmentation reachable by the algorithm for a particular dataset. The
mean TAD size is ~70 kb on average between cells compared to the expected 120
kb size of Drosophila TADs24. Thus, we considered this level to be the sub-TADs.
To guarantee a uniform γ selection procedure for all the cells, we arbitrarily
selected γmax/2 to obtain a resulting TAD segmentation (mean TAD size ~90 kb).

For the other resolutions of snHi-C maps, the same protocol of TAD calling was
applied, except the inter-TAD size threshold was set to 60 kb (3 bins at 20 kb) for
20 kb and 120 kb (3 bins of 40 kb) for 40 kb.

Robustness of TAD calling. To assess TAD calling robustness and filter out
potentially artifactual TAD boundaries, we performed TAD calling on snHi-C maps
with random subsampling of the contacts as a control. For each cell, we performed
ten iterations of independent subsampling of contacts leaving 95%, 90%, … 5% of
the initial number of unique contacts per dataset. For each subsampling, we per-
formed the TAD calling in the same manner as for the full dataset. We then
assumed the bins found as TAD boundaries in the full snHi-C maps with no
subsampling to be positives and inner TAD bins to be negatives. Based on this
definition, we calculated both false positive rates (FPR) and false negative rates
(FNR) for each cell and all subsampling levels. As expected, FNR gradually
decreased with the percentage of remaining contacts. FPR reached a maxima at
10–30% subsampling level and then gradually decreased (Supplementary Fig. 6a, b).

We then defined a TAD boundary support for a given subsampling level (X%).
TAD boundary support is calculated for each genomic bin as the number of
subsampling iterations with the number of contacts equal to or larger than X%,
where the bin was annotated as the TAD boundary (allowing a one-bin offset). We
used TAD boundary support as a predictor of observed TAD boundaries in each
cell (with no subsampling of the snHi-C dataset). We plotted receiver operating
characteristic (ROC) curves for each X= (95%, 90%, … 5%) and calculated the
ROC area under the curve (AUC) for each case (Supplementary Fig. 6c). Based on
the largest ROC AUC, we selected the best subsampling level predictive of
boundaries, X= 90% ROC AUC 0.9969 (Supplementary Fig. 6c). We then chose
the TAD boundary support threshold by optimizing the accuracy. We obtained an
accuracy of 0.9765 for the final criteria that the TAD boundary support is larger
than 45% for (90%..95%) subsampling levels.

We refined the boundaries based on these final criteria and observed only a
mild decrease in the number of boundaries per cell (Supplementary Fig. 6d). Thus,
we conclude that the TAD calling procedure is robust to subsampling. We used the
non-refined boundaries set in the paper if not stated otherwise.

For the refined boundaries set, we allowed a 10-kb offset for each boundary and
assessed the number of cells in which each genomic bin was annotated as a
boundary. We then defined the stable boundaries as bins that were annotated as
boundaries in more than or equal to 50% of cells (>= 7), and unstable boundaries
as the bins annotated as boundaries in less than 50% of cells (<7).

We compared stable boundaries with boundaries conserved between Kc167 and
BG3 cells46. For that, we obtained TAD positions from46, mapped them to the dm3
genome with liftover, and coarse-grained the coordinates to 10-kb bins. We then
allowed the 10-kb offset and counted the boundaries that overlapped with stable
boundaries obtained in the single-cell analysis.

Segmentation comparison. We introduced two types of similarity scores for
TAD/sub-TAD segmentation comparison:

(1) the percentage of shared boundaries, where we fixed the first segmentation
and compared it with the second segmentation. Each TAD boundary bin of
the second segmentation was allowed to include two of its closest neighbors
at a 10 kb distance (one bin offset). The number of shared boundaries
between two segmentations was calculated as a simple intersection of sets.
The percentage was calculated by division by the total number of bins
annotated as TAD boundaries in the first segmentation.

(2) Jaccard index for TAD bins, where the bins inside a TAD (excluding the
boundaries) were considered. The shared TAD bins between two
segmentations were calculated and divided by the total number of bins
annotated as TADs in both segmentations.

To assess the significance of obtained similarity score of TADs, we randomized
the locations of TAD boundaries preserving the distributions of TAD and inter-
TAD sizes and the number of TADs/inter-TADs per chromosome. Each

randomization was performed 1000 times; the distribution of scores was
approximated by Gaussian distribution; p-values were inferred from these
backgrounds. The same procedure was used for sub-TADs.

Non-backtracking approach for annotation of TADs in single cells contact
maps. The chromatin network, constructed on the basis of the single-cell Hi-C
data, can be classified as sparse (i.e., the number of actual contacts per bin in a
single-cell contact matrix (adjacency matrix of the network) is much less than the
matrix size N). The sparsity of the data significantly complicates the community
detection problem in single cells. It is known that upon dilution of the network,
there is a fundamental resolution threshold for all community detection methods82.
Furthermore, traditional operators (adjacency, Laplacian, modularity) fail far above
this resolution limit (i.e., their leading eigenvectors become uncorrelated with the
true community structure above the threshold)43. That is explained by the emer-
gence of tree-like subgraphs (hubs) overlapping with true clusters in the isolated
part of the spectrum for these operators. Localization on the hubs, but not on true
communities in the network, is a drawback of all conventional spectral methods in
the sparse regime.

To overcome the sparsity issue and to make spectral methods useful in the
sparse regime, Krzakala et al.43 proposed to construct the transfer-matrix of non-
backtracking random walks (NBT) on a directed network. The NBT operator B is
defined on the edges i→ j, k→ l as follows:

Bi!j;k!l ¼ δilð1� δjkÞ ð1Þ
By construction, NBT walks cannot revisit the same node on the subsequent

step and, thus, they do not concentrate on hubs. It has been shown that the non-
backtracking operator is able to resolve the community structure in a sparse
stochastic block model up to the theoretical resolution limit. In recently published
paper42, we have proposed the neutralized towards the expected contact probability
NBT operator for the sake of a large-scale splitting of a sparse polymer network
into two compartments.

Here, we are interested in the small-scale clustering into TADs, for which the
conventional NBT operator is appropriate. To eliminate the compartmental signal
from the data, we first cleansed all chromosome contact matrices starting from the
diagonal, corresponding to 1 Mb separation distance (100th diagonal in the 10-kb
resolution). To respect the polymeric nature of the contact matrices, we have filled
all empty cells on the leading sub-diagonals with 1. Then, the NBT spectra of all
single-cell contact matrices were computed. The majority of eigenvalues of the
non-Hermitian NBT operator are located inside the disc in a complex plane, and
some number of isolated eigenvalues with large amplitudes lie on the real axis. The
edge of the isolated part of the spectrum was defined as the real part of the largest
in absolute value eigenvalue with a non-zero imaginary part. All eigenvalues λi such
that Re(λi) > rc are isolated, and the corresponding eigenvectors correlate with
annotation into the TADs. The position of the spectral edge, determined by the
procedure above, has been found to be very close to the edge of the disk for the

stochastic block model rc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d�1 d

d�1

� �q
, where d is the vector of degrees83. The

typical number of the isolated eigenvalues was around 100 for dense contact
matrices and somewhat less for sparser ones. The leading eigenvectors define the

coordinates uðiÞj ; j ¼ 1; 2; ¼ ;N of the nodes (bins) of the network in the space of
reduced dimension k << N. At the second step, the clustering of the data was
performed using the spherical k-means method, realized in the Python library
spherecluster84. The number of isolated eigenvalues establishes a lower bound on
the new space dimension k to be used for the clustering algorithm, since the
respective leading eigenvectors are linearly independent. The dimension of the
space k establishes a lower bound on the number of clusters because the leading
eigenvectors are linearly independent. To take into account the hierarchical
organization of TADs, we have communicated to the spherical k-means the
number of clusters somewhat larger than the lower bound. Although the final
splitting was found to be not particularly sensitive to this number, we have chosen
to split the network into 2.5*k clusters in order to obtain the same mean amount of
TADs per chromosome as with the modularity method (171 TADs).

The annotations produced by the spherical k-means on the single-cell Hi-C
matrices were contiguous (i.e., the clusters were sequence respective, thus
resembling TADs). The clusters (i) of size less than 30 kb and (ii) with amount of
contacts equal to 2(l – 1) (i.e., with no contacts other than on the sub-diagonals)
were excluded from the set as the inter-TADs regions. The ultimate median size of
the TADs across all single cells obtained by this algorithm was 110 kb (from 60 kb
to 260 kb), and the mean chromosome coverage was 82% (from 57 to 93%). The
same analyses of shuffled contact maps have revealed a similar number, size, and
coverage of the domains, formed purely due to fluctuations. The boundaries of the
NBT TADs in single cells were significantly conserved from cell to cell: the mean
pairwise fraction of matched boundaries was 44% for all the cells and 59% for the
five densest ones (for the shuffled cells with preservation of stickiness and scaling,
see the MSS model; the mean pairwise fraction was 38 and 50% for the five densest
cells).

Regarding the comparison of TAD boundaries with the modularity approach,
the mean fraction of conserved modularity boundaries is somewhat less – 42% for
all pairs of cells in the analyses and 52% for the five densest cells, whereas the
number of TADs per chromosome is the same in the two methods (171). Between
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the two methods, the mean number of matched boundaries for the corresponding
cells is 61%.

Compartment annotation in snHi-C and bulk BG3 in situ Hi-C. For compart-
ment annotation in bulk BG3 in situ Hi-C, we used eigenvector decomposition of
cis-interactions maps for each chromosome, as implemented in cooltools call-
compartments tool version 0.2.0 (https://github.com/mirnylab/cooltools). We then
reversed the sign of eigenvalues based on GC content (positive values corre-
sponding to an A compartment with larger GC content)26. We next carried out a
saddle plot analysis for each snHi-C dataset based on bulk BG3 in situ Hi-C
compartment annotation32. For this procedure, the bins in raw scHi-C maps were
reordered by ascending first eigenvector values and averaged to 5 × 5 saddle plots32.

Epigenetic analysis of TAD boundaries. For the functional annotation of TAD
boundaries, we downloaded modENCODE normalized array files85: total RNA of
ML-DmBG3-c2 cell line assessed by RNA tiling array (modENCODE id 713) and
the ChIP-chip for MOF (id 3041), BEAF-32 (id 921), Chriz (275), CP190 (924),
CTCF (3280), dmTopo-II (5058), GAF (2651), H1 (3299), HP1a (2666), HP1b
(3016), HP1c (942), HP2 (3026), HP4 (4185), ISWI (3030), JIL-1 (3035), mod
(mdg4) (324), MRG15 (3045), NURF301 (5063), Pc (325), RNA-polymerase-II
(950), Su(Hw) (951), Su(var)3-7 (2671), Su(var)3-9 (952), WDS (5148), H3 (3302),
H3K27ac (295), H3K27me3 (297), H3K36me1 (299), H3K36me3 (301), H3K4me1
(2653), H3K4me3 (967), H3K9me2 (310), H3K9me3 (312), H4K16ac (316). For
RNA-Seq coverage, we used the data from ref. 24. The files were binned at 10-kb
resolution by summation.

We plotted the ChIP-chip signal around different types of boundaries with
pybbi utility (https://github.com/nvictus/pybbi.git) based on UCSC tools86 and
constructed six sets of boundaries: boundaries found in the bulk in situ Hi-C,
boundaries found in the merged snHi-C dataset, boundaries present in >= 50% of
cells (>= 7 cells, stable boundaries), boundaries present in <50% of cells (<7 cells,
unstable boundaries), boundaries present in just one single cell, and random
boundaries. To obtain randomized boundaries, we shuffled bulk in situ Hi-C
boundaries across the Drosophila genome, preserving the number of boundaries
per chromosome. We also used the bins from the inner parts of TADs as a control
for the epigenetic analysis.

Functional annotation of distant contacts. The 10-kb genomic bins were sepa-
rated into four groups based on chromatin states for BG3 from Kharchenko et al.54:
active chromatin (>0.5 of RED and MAGENTA color), inactive chromatin (>0.5
LIGHT GRAY), Polycomb chromatin (>0.5 DARK GRAY), and unannotated (all
the rest) for functional annotation of distant contacts. The thresholds for functional
enrichment of particular types of chromatin were selected in order to guarantee the
selection of the regions with the most prominent properties of active/inactive/
Polycomb chromatin.

The 10-kb genomic bins were split into five groups based on the average
expression from two RNA-seq replicates in BG3 cells24 (0 expression, 38.1–40%,
40–60%, 60–80%, top 20% expression) for expression activity annotation. We were
not able to split the data using an even grid of percentiles (e.g., 0–20%, 20–40%)
because ~38% of all genomic bins had zero expression in both replicates. The same
functional annotation was used later for polymer model coloring.

Average loop. For the construction of an average loop of A-compartment regions
(Fig. 4f) and B compartment regions (Fig. 4g), MSL complex (Fig. 4h) and Poly-
comb (Fig. 4i), we selected the top 1000 genomic regions with the highest abun-
dance of the corresponding genomic annotations as potential looping positions. A
and B compartments were assessed by a cis-derived eigenvector of the bulk BG3
Hi-C data. MSL ChIP-Seq was obtained from Ramirez et al.51, GEO ID GSE58821).
dRING binding data were obtained from modENCODE as a ChIP-chip normalized
array file (ID 92754). We considered the pairs of potential looping positions cor-
responding to intrachromosomal interactions, at the genomic distances of more
than 600 kb, separated by up to 50 other looping positions. The snipping of Hi-C
square 600-kb windows, centered on the corresponding looping positions, was
done with cooltools (https://github.com/mirnylab/cooltools/tree/master/cooltools).
The aggregation was performed by summation. log10 values were plotted as
heatmaps.

Assessment of folding hierarchy of TADs. To assess the folding hierarchy at the
level of TADs, we used the assumption that the successive sub-TADs that form the
same TAD will have more interactions in the observed real snHi-C maps than in the
control maps described in the section “snHi-C background model” of these
Methods. We calculated the number of contacts directly from snHi-C maps and the
control maps. Only sequential sub-TADs falling into the same TAD were con-
sidered. The distribution of the number of contacts in the windows between
sequential sub-TADs was calculated. We compared the distributions of the number
of contacts between sub-TADs falling into the same TAD for real snHi-C maps and
the control maps. For each cell, we used either TAD/sub-TAD annotations from the
corresponding snHi-C map or TAD/sub-TAD annotation from bulk in situ Hi-C.

Marginal scaling (MS) and marginal scaling and stickiness (MSS) models. We
carried out the statistical analysis of the single-cell Hi-C maps to provide statistical
arguments supporting the premise that the clustering observed in snHi-C contact
matrices “is not random”. For this, we used two different models of a polymer
network based on Erdos-Renyi graphs, where bins of the contact map resemble
graph vertices, and contacts between bins are graph edges87 (Supplementary
Fig. 4a):

(a) In the MS model, we require the probability of contact between nodes to
respect the contact probability of the experimental contact map, i.e. P (s)=
Pc(|i− j|). Decay of the contact probability originates from the intrinsic
linear connectivity of the chromatin nodes; therefore, it is an important
ingredient for studying fluctuations in a polymer network. The probability
of the link between i and j in the random graph I, j= 1, 2…, N is, thus,
defined as follows:

pij ¼
Pcðji� jjÞ

PN�1
s¼1 ðN � sÞPcðsÞ

Nc ð2Þ

where the normalization factor in the denominator guarantees that the mean
number of links in the graph equals Nc (i.e., the number of experimentally
observed links in each single cell). To obtain the average scaling, we merge all
contacts from the available single cells and compute the average Pc(s). Given
the probability pij by Eq. 2, we randomly generate adjacency matrices that
have a homogenous distribution of contacts along the diagonals and do not
respect local peculiarities of the bins, such as insulation score, acetylation,
and protein affinity. Nevertheless, some non-homogeneity (clustering) of
contacts still emerges as a result of stochasticity in each realization of this
graph (Supplementary Fig. 4e).

(b) the MSS model introduces probabilistic non-homogeneity along the
diagonals of the adjacency matrices through definition of the “stickiness”
of bins, or. Specifically, under “stickiness”, we understand a non-selective
affinity ki of a bin i to other bins; the probability that the bin i forms a link
with any other bin in the polymer graph is proportional to its stickiness.
Thus, the clusters of contacts close to the main diagonal of contact matrices
form as a result of different “stickiness” of bins in the MSS model. Stickiness
might effectively emerge as a result of a particular distribution of “sticky”
proteins, such as PcG proteins known to mediate bridging interactions
between nucleosomes and to participate in stabilization of the repressed
chromatin state.

Assuming that the stickiness is distributed independently of the polymer scaling
Pc(|i− j|), we use the following expression for the probability of the link, pij, in the
MSS model:

pij ¼
kikjPcðji� jjÞ

P
i<j kikjPcðji� jjÞNc ð3Þ

To derive the values of stickiness, we calculated the coverage at each bin in the
merged contact map ~ki , which stands for the average number of contacts at a
particular bin. Due to the polymer scaling, the rates of contacts along each row
(column) vary. Thus, ~ki is not equal to stickiness, ~ki≠ki . To determine the stickiness
values ki, one should correlate the experimental coverage ~ki with the theoretical
mean number of contacts per bin, according to Eq. 3:

~ki ¼
X

j
pij ¼ kiαi ð4Þ

where is “activity” of surrounding bins, measured for the i-th bin:

αi ¼
1
Z

X
j
kjPcðji� jjÞ; Z ¼ 1

Nc

X
i<j

kikjPcðji� jjÞ ð5Þ
Equation 3 sets a system of N non-linear equations that cannot be solved

analytically. To determine the stickiness values, we implement the numerical
method of iterative approximations. Namely, we start with:

kð0Þi ¼ ~ki; α
ð0Þ
i ¼ αið~kiÞ ð6Þ

and recalculate kð1Þi using Eqs. (4, 5) at the second step. After several recursive
steps, we find good convergence of the stickiness and activity to their limiting
values k1i and α1i . In particular, the derived values of the stickiness provide a good
estimate for the averaged theoretical coverage ~ki as compared to the experimental
coverage; see Supplementary Fig. 4f, g. Therefore, the derived null-model of single-
cell maps reproduces, on average, the observed coverage of contacts of each bin by
means of the individual stickiness assignment. We would like to point out the
difference between the limiting values of the stickiness and ~ki, used as a starting
approximation in the iterative procedure; Supplementary Fig. 4h. This difference is
a result of the non-homogeneous redistribution of contacts at each particular row
in accordance with the marginal polymeric scaling Pc(|i− j|).

Number of contacts in windows. The MS and MSS models introduced above
demonstrate apparent clustering of generated contacts close to the main diagonal
in realizations of adjacency matrices. In the MS model, this is purely due to
fluctuations: the mean weight of the link wij= ps depends only on the genomic
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distance between the bins s= |i− j| in the respective Poisson version of the
weighted network. In contrast, in the MSS model, the non-homogeneity of bin
sicknesses allows for a deterministic non-homogeneous distribution of contacts
along the main diagonal.

To statistically compare the clustering of contacts generated by the two models
with the clustering in experimental single cell Hi-C maps, we studied distributions
of the number of contacts in certain “windows” of different sizes. The inspected
windows are isoscele triangles with the base located on the main diagonal and
having the angle with the congruent sides. These windows look like TADs but, in
contrast to the latter, have a fixed size throughout the genome.

At a given window size W, we sampled the number of contacts falling in the
defined windows in each snHi-C map. We compared the samples originating from
100 random MS-generated maps and 100 random MSS-generated maps with
derived limiting values of stickiness (see the previous section for discussion of the
models).

Note that in the theoretical models (MS and MSS), all contacts are statistically
independent: in both models, the number of contacts falling in a window of size
can be interpreted as a number of “successes” occurring independently in a certain
fixed interval. In the MS model, the “success” rate is constant along each diagonal;
thus, for rather sparse MS maps (i.e. sufficiently small rates), one would expect the
observed contacts in the windows to follow the Poisson distribution. In the MSS
maps, the stickiness distributions introduce non-homogeneity to “success” rates
along the diagonals; however, as our analyses suggest, the random MSS maps
exhibit much more satisfactory Poisson statistics than their original experimental
counterparts; Supplementary Fig. 4j, k.

Deviations from the Poisson statistics of the snHi-C contact maps are evaluated
by the p-value of the χ2 goodness of fit test (Supplementary Fig. 4k). The heatmaps
of the common logarithm of p-values for the top-10 single cells and the
corresponding MS and MSS maps are presented in Supplementary Fig. 4j. The
random maps (the second and third rows) demonstrate reasonably even
distributions of the p-values across distinct single cells that rarely enter below the
significance level α= 10−5. Several atypically low p-values correspond either to the
most dense single cells and small window sizes (upper-left corner), for which the
sparse Poisson limit is violated, or to a quite uneven distribution of stickiness for a
given chromosome. Notably, the snHi-C maps demonstrate remarkable deviations
from the Poisson statistics for small window size W < 40 bins (<400 kb). As can be
seen from the heatmaps (Supplementary Fig. 4j) the χ2 test rejects the null
hypothesis at the significance level α= 10−5 for most of the single cells at small
scales. Therefore, the probability that the experimental contact maps are described
by the Poisson statistics is significantly low (α).

To understand the source of inconsistency between the experimental and
Poisson distributions, we plotted the histograms of the number of contacts along
with their best Poisson-fit for W= 10 (Supplementary Fig. 4k, left) and W= 40
(Supplementary Fig. 4k, right). The presence of large-scale heavy tails and low-scale
shoulders in the experimental histograms results in the rejection of the null
hypothesis.

Finally, the samples corresponding to larger windows are notably better
described by the Poisson distribution, exhibiting a level of p-values similar to the
random maps. The crossover W0 ≈ 40 (400 kb) corresponds to the scale of 3–4
typical TADs; this implies that the positioning of the contacts inside a single TAD
is sufficiently correlated. Correlations between the contacts of different pairs of loci
can originate from a specific non-ideal folding of chromatin (e.g., fractal globule) or
be a signature of active processes (e.g., loop extrusion) operating at the scale of one
TAD. Larger window sizes accumulate contacts from different TADs, whereas most
of the inter-TADs contacts are much less correlated. As a result, we see reasonable
Poisson statistics of the number of contacts from larger windows with W >W0.
Taken together, we conclude that correlations in contacts is a structural feature of
experimental single cell maps and that clusters (TADs) identified in the maps
cannot be reduced to random fluctuations imposed by the white noise or
imperfections of the experimental setup.

Fluorescence in situ hybridization. The cells were harvested overnight on poly-l-
lysine coated coverslips placed in culture flasks. The cells were fixed in 4% paraf-
ormaldehyde for 10min, permeabilized in 0.5% Triton X-100, washed in PBS,
dehydrated in ethanol series, air-dried, stored at room temperature for 2 days, and
then frozen at −80 °C. Probes were prepared from fosmids by labeling with
fluorophore-conjugated dUTPs using nick-translation. Approximately 150 ng of
each probe was used in hybridization. Denaturation was performed at 80 °C for 30
min in 70% formamide (pH 7.5), 2× SSC. Hybridization of probes was done for 24 h
in 50% formamide, 2× SSC, 10% dextran sulfate, 1% Tween 20. Washing steps were
performed in 2× SSC at 45 °C followed by 0.1× SSC at 60 °C and 4× SSC, 0.1%
Triton X-100. For imaging, cells were counterstained with DAPI, and epifluorescent
images were acquired using a microscope setup comprising a Zeiss Axiovert 200
fluorescence microscope (Carl Zeiss UK, Cambridge, UK), X-Cite ExFo 120 Mer-
cury Halide (Exfo X-cite 120, Excelitas Technologies) fluorescent source with liquid
light guide and 10-position excitation, neutral density, and emission filter wheels
(Sutter Instrument, Novato, CA), ASI PZ2000 3-axis XYZ stage with integrated
piezo Z-drive (Applied Scientific Instrumentation, Eugene, OR), Retiga R1 CCD
camera (Qimaging, Surrey, BC, Canada). The filter wheels were populated with a
#89903 ET BV421/BV480/AF488/AF568/AF647 quinta set (Chroma Technology

Corp., Rockingham, VT). Image capture was performed using Micromanager 1.4
(https://open-imaging.com/). Hardware control and image capture were carried out
using µManager88. Images were deconvolved using Nikon NIS-Elements. Mea-
surements were taken using Imaris.

Polymer simulations. Simulation of 3D chromatin fiber enabled substantiation of
assumptions about factors that play key roles in chromatin organization and to
obtain important information about its packaging. We focused on the static
properties of the system and did not consider its dynamic properties.

Modeling pipeline, general description of the procedure. Many methods are
currently used to perform computer modeling of polymers. Due to the actual size
and complexity of the chromatin, the all- or united-atom model cannot be used to
simulate spatial scales of interest. The dissipative particle dynamics (DPD) tech-
nique was used because it enables modeling of the physical properties of polymer
systems59. DPD is a coarse-grain method of molecular dynamics. Newton’s
equations are solved numerically for each particle in the system for every time step.
The total force consists of conservative, dissipative, random, and elastic forces.

Conservative force is described by a soft potential within the sphere with cutting
radius Rc= 1.0. The soft potential has no singularity at the zero point
(Supplementary Fig. 21a). It is possible to use a large time step in the Velocity
Verlet integration scheme, in contrast to classical molecular dynamics (CMD) with
the Lennard-Jones potential. The typical time step in CMD is 20 times smaller than
in DPD. The solvent is taken into account explicitly; it is necessary for the DPD
thermostat to work89,90. The temperature control of the system is ensured by a
balance of dissipative and random forces that conserve the momentum. The elastic
force simulates the presence of a bond between beads. An ensemble of NVT
(number of particles, volume, temperature) is used. A detailed description of the
simulation method can be found elsewhere91. We used our own implementation of
DPD that is 2D parallelized and lightweight92.

In all simulations, the following parameters were used: app= ass= 25.0, aps=
26.63 (soft potential repulsion coefficient), in terms of Flory-Huggins’ theory
χ ¼ 0:5 ¼ 0:306*ðaps � appÞ, where app—repulsion coefficient between polymer
and polymer beads, ass—between solvent and solvent beads, aps—between polymer
and solvent beads; l0= 0.5 (undeformed bond length), k= 40 (bond stiffness),
dt= 0.04 (integration timestep), σ= 3 (number density), simulation box size 22 ×
22 × 22 DPD a.u.

With these parameters, the polymer chain (or chromatin fiber) is able to self-
intersect but still has an effective excluded volume. At χ= 0.5, the single polymer
chain in a dilute solution has a Gaussian conformation (i.e. it corresponds to a
simple random walk).

Each simulation was organized as follows:
The polymer chain is generated as a random walk within the cubic cell with the

size of 10 DPD units. Adjacent solvent particles are included into the simulation
cell with the size of 22 DPD units until the number density σ= 3. Additional bonds
between beads are added according to the snHi-C contact matrix. If i-th and j-th
beads have a contact, an additional harmonic bond between i-th and j-th beads is
added to the system if |i− j| > 1. We define contact as an event when the distance
between two beads (i, j) meets criterion Dij < Rcut= 0.7 Such Rcut value corresponds
to the average bond length. We count all the contacts in the system. So, in a system
any bead can have more than 1 contact. Additional bonds could be overstretched;
therefore, the system is equilibrated over 106 steps. The simulation time is two
orders of magnitude higher than the necessary equilibration time (Supplementary
Fig. 21b); hence, there are no doubts regarding the system equilibrium. According
to our calculations, the equilibration time is ~20k steps. The equilibrated system
contained overstretched bonds, which were removed one by one until the
maximum length became less than the threshold lmax < 1.5 DPD a.u.
(Supplementary Fig. 21c, Supplementary Table 2). Backbone bonds were not
removed, because they represented reliable information. The system was
equilibrated for 20k steps after each bond removal.

Values of the single-cell Hi-C matrix elements could vary because the restriction
fragment is smaller than the selected resolution (10 kb). Data regarding the exact
number of contacts between two fragments were not used. Therefore, the contact
matrix was considered to be binary. Only the X chromosome was simulated
because it is haploid. The X chromosome corresponds to the polymer chain
consisting of 2242 beads at 10 kb resolution. Every single chain bead represents 50
nucleosomes. Our model does not consider the shape of a 10-kb region or any
other internal properties.

Control simulations were organized in the same manner, but the contacts were
shuffled. Shuffling was performed while maintaining the number of contacts at
each genomic distance. We also performed simulations with shuffling on the long
genomic distances only and sampling the contacts from two cells (Supplementary
Table 3). The second case shows that reconstruction of the 3D conformation from
diploid chromosomes is meaningless in comparison with haploid chromosomes.

Coefficient of the difference. To compare two 3D structures, corresponding
distance matrices were calculated. Orientation of the chain in 3D space did not
affect the elements of distance matrices. The Coefficient of the difference is
introduced as K=Masym/Msym, where Masym= ||D–D′||/2 and Msym= ||D–D′||/2,
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where D and D′—distance matrices. ||Matrix||—is the Euclidean distance
(d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a211 þ a212 þ ::þ a221 þ ¼

p
, a##—matrix element). To avoid the contribu-

tion of thermal fluctuations, each distance matrix was averaged over 100 con-
formations with an output rate of 10k steps.

To demonstrate the independence of the final result on the initial conformation,
we repeated the calculation of the system ten times with the maximal number of
contacts. For each repeat, we created a new independent initial conformation, but
we kept the same set of additional bonds. The initial conformation does not affect
the final result in the simulation protocol.

Visualization of epigenetic states. The visualization was performed using the
pymol software v. 2.3.2 (https://pymol.org/2/). 1D epigenetic data were added to
the structure as a bead type and represented with a corresponding color. Analysis
of different epigenetic states was performed via Python scripts (https://github.com/
polly-code/DPD_withRemovingBonds). Before the visualization, some of the
conformations were smoothed by averaging coordinates within the window of 15
beads along the chain. This approach ensured that thermal fluctuations were
avoided (Supplementary Figs. 16, 21).

Radial distances and center of mass. We calculated the surface of the chro-
mosome territory as a convex hull. The distance to the surface was evaluated as the
minimal distance from the particle to the surface, and then the distance arrays were
averaged.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Raw and processed snHi-C and bulk BG3 in situ Hi-C data are available in the GEO
NCBI under accession number “GSE131811”. List of publicly available GEO sources used
in this study: “GSE122603” (Hi-C for Kc167 and BG3 cell lines for comparison of stable
TAD boundaries), “GSE58821” (MSL; ChIP-seq), “GSE69013” (RNA-Seq). List of
publicly available modENCODE data sources used in this study: total RNA of ML-
DmBG3-c2 cell line assessed by RNA tiling array (modENCODE id 713) and the ChIP-
chip for MOF (id 3041), BEAF-32 (id 921), Chriz (id 275), CP190 (id 924), CTCF (id
3280), dmTopo-II (id 5058), GAF (id 2651), H1 (id 3299), HP1a (id 2666), HP1b (id
3016), HP1c (id 942), HP2 (id 3026), HP4 (id 4185), ISWI (id 3030), JIL-1 (id 3035),
mod(mdg4) (id 324), MRG15 (id 3045), NURF301 (id 5063), Pc (id 325), RNA-
polymerase-II (id 950), Su(Hw) (id 951), Su(var)3-7 (id 2671), Su(var)3-9 (id 952), WDS
(id 5148), H3 (id 3302), H3K27ac (id 295), H3K27me3 (id 297), H3K36me1 (id 299),
H3K36me3 (id 301), H3K4me1 (id 2653), H3K4me3 (id 967), H3K9me2 (id 310),
H3K9me3 (id 312), H4K16ac (id 316). dRING binding data were obtained from
modENCODE as a ChIP-chip normalized array file (id 927). All other relevant data
supporting the key findings of this study are available within the article and its
Supplementary Information files or from the corresponding author upon reasonable
request. A reporting summary for this Article is available as a Supplementary
Information file. Source data are provided with this paper.

Code availability
The data processing pipeline is available at https://github.com/agalitsyna/sc_dros. The
modeling pipeline is available at https://github.com/polly-code/DPD_withRemovingBonds.
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