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ABSTRACT

Context. As a result of Titan’s migration and Saturn’s probable capture in secular spin–orbit resonance, recent works show that Saturn’s
obliquity could be steadily increasing today and may reach large values in the next billions of years. Satellites around high-obliquity
planets are known to be unstable in the vicinity of their Laplace radius, but the approximations used so far for Saturn’s spin axis are
invalidated in this regime.
Aims. We aim to investigate the behaviour of a planet and its satellite when the satellite crosses its Laplace radius while the planet is
locked in secular spin–orbit resonance.
Methods. We expand on previous works and revisit the concept of Laplace surface. We use it to build an averaged analytical model
that couples the planetary spin-axis and satellite dynamics.
Results. We show that the dynamics is organised around a critical point, S1, at which the phase-space structure is singular, located at
90◦ obliquity and near the Laplace radius. If the spin-axis precession rate of the planet is maintained fixed by a resonance while the
satellite migrates outwards or inwards, then S1 acts as an attractor towards which the system is forced to evolve. When it reaches the
vicinity of S1, the entire system breaks down, either because the planet is expelled from the secular spin–orbit resonance or because
the satellite is ejected or collides into the planet.
Conclusions. Provided that Titan’s migration is not halted in the future, Titan and Saturn may reach instability between a few gigayears
and several tens of gigayears from now, depending on Titan’s migration rate. The evolution would destabilise Titan and drive Saturn
towards an obliquity of 90◦. Our findings may have important consequences for Uranus. They also provide a straightforward mechanism
for producing transiting exoplanets with a face-on massive ring, a configuration that is often put forward to explain some super-puff
exoplanets.

Key words. planets and satellites: dynamical evolution and stability – planets and satellites: formation – celestial mechanics

1. Introduction

A secular spin–orbit resonance occurs when the spin-axis pre-
cession rate of a planet becomes commensurate with a frequency
(or a combination of frequencies) that appears in its orbital
precession. Secular spin–orbit resonances were first studied indi-
vidually and linked to Cassini’s laws (Colombo 1966; Peale
1969; Ward 1975; Henrard & Murigande 1987). The effect on the
spin-axis dynamics of a whole multi-harmonic orbital precession
spectrum has also been investigated, and the overlap of several
secular spin–orbit resonances has been identified as responsi-
ble for large chaotic regions in the inner Solar System (Ward
1973, 1982; Laskar & Robutel 1993; Néron de Surgy & Laskar
1997; Laskar et al. 2004). More recently, higher-order resonances
have been characterised in a systematic way, and their relation to
the emergence of chaos has been assessed (Li & Batygin 2014;
Saillenfest et al. 2019b). In fact, secular spin–orbit resonances
are found to rule the long-term spin-axis dynamics of planets
not only in the Solar System but also in extrasolar systems (see
e.g. Atobe et al. 2004; Deitrick et al. 2018; Shan & Li 2018;
Millholland & Laughlin 2019).

As shown by Ward & Hamilton (2004), Saturn is today very
close to or inside a secular spin–orbit resonance with the nodal
orbital precession mode of Neptune, noted s8. The current large
26.7◦ obliquity of Saturn probably results from this resonance
(Hamilton & Ward 2004). It was first thought that the resonance

trapping occurred more than four billion years ago during the
late planetary migration (Boué et al. 2009; Brasser & Lee 2015;
Vokrouhlický & Nesvorný 2015). However, this would require
Saturn’s satellites to not have migrated much since this event,
which contradicts the fast migration of the satellites measured
by Lainey et al. (2020). Instead, Saillenfest et al. (2021a) have
shown that the migration of Saturn’s satellites, and in particular
of Titan, is likely responsible for the resonance encounter. The
resonant interaction therefore began more recently than previ-
ously thought, perhaps about one billion years ago. Using Monte
Carlo simulations, Saillenfest et al. (2021b) show that in order
to reproduce Saturn’s current state, the most likely dynamical
pathway is a gradual tilting starting from a few degrees before
the resonance encounter. Since a near-zero primordial obliquity
is also what is expected from planetary formation theories (see
e.g. Ward & Hamilton 2004, Rogoszinski & Hamilton 2020,
and references therein), and even though primordial non-zero
obliquities are not totally excluded (Millholland & Batygin 2019;
Martin & Armitage 2021), this scenario appears quite promising.

If Saturn did follow its expected pathway (and was not
affected by an accidental major impact; see e.g. Li & Lai 2020),
then Saturn should still be trapped inside the resonance today.
As Titan continues migrating, Saturn should therefore continue
to follow the drift of the resonance centre in the future. Because
of this mechanism, Saturn may reach very large obliquity values
in the next few billions of years (Saillenfest et al. 2021b).
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Yet, the final outcome of this dynamical mechanism remains
unknown. The obliquity of a planet cannot increase forever, and
there must exist some kind of dynamical barrier, either on the
planet’s or on the satellite’s side, that would halt the tilting at
some point. Even though this final outcome may not be directly
relevant for Saturn and Titan because of the large timescales
involved (see below), its generic nature makes it important even
from the point of view of pure celestial mechanics as other plan-
ets and exoplanets may have been affected. Hence, we aim to
characterise the full tilting mechanism in a general way, with-
out any assumption about the distance of the satellite, and with a
special focus on the case of Saturn and Titan.

Since Titan is still far from its Laplace radius today and may
only reach it after billions of years of continuous orbital expan-
sion (if not tens of billions of years), previous studies have been
restricted to the close-in satellite regime, in which Titan’s orbit
lies in Saturn’s equatorial plane (see e.g. Goldreich 1966). Out
of this regime, regular satellites are known to oscillate around
their local Laplace plane, which is inclined halfway between
the equator and the orbital plane of the host planet (Laplace
1805). Most importantly, Tremaine et al. (2009) found that the
satellite is unstable in the vicinity of its Laplace radius if the
planet’s obliquity is larger than about 69◦ (for a circular satel-
lite) or 71◦ (for an eccentric satellite). According to Saillenfest
et al. (2021b), Saturn’s obliquity may exceed these thresholds in
a few gigayears from now, depending on Titan’s migration rate.
Hence, if Titan happens to be located near its Laplace radius at
this stage of the evolution, a non-trivial dynamics is expected
for the system. The simulations of Tremaine et al. (2009) and
Tamayo et al. (2013) revealed that, in some ranges of parameters,
strong chaotic transitions in the satellite’s eccentricity and incli-
nation are possible. Tamayo et al. (2013) drew a parallel between
the eccentricity increase of the satellite and the ZKL mecha-
nism (for ‘von Zeipel–Lidov–Kozai’; see Ito & Ohtsuka 2019),
in which large eccentricity oscillations occur while the satellite’s
argument of pericentre oscillates around a fixed value. Beyond
some eccentricity threshold, the effect of planetary oblateness
re-initiates the apsidal precession, with the result of averaging
to zero the solar torque and stopping the eccentricity increase1.
More recently, Speedie & Zanazzi (2020) performed an exten-
sive numerical exploration of the stability of particles initially
located near their local Laplace plane. Their study confirms
the secular instabilities reported by Tremaine et al. (2009) and
Tamayo et al. (2013), and their fully unaveraged model allows
for other kinds of instability to appear, driven by the evection
and ‘ivection’ resonances2.

These previous results show that studying Saturn’s tilting
mechanism in a general way requires one to keep an eye on
both the satellite’s and planet’s dynamics. Out of the close-in
satellite regime, and a fortiori if the satellite becomes unstable,
the model used by Saillenfest et al. (2021a,b) for Saturn’s spin-
axis dynamics is invalidated. As a first step before developing a
complete numerical model, our goal in this article is to estab-
lish a qualitative understanding of what happens to the planet
and its satellite when the secular spin–orbit resonance leads them

1 The same mechanism was described by Saillenfest et al. (2019a) as a
protection mechanism for inner Oort cloud objects against the action of
galactic tides.
2 The ‘ivection’ resonance mentioned by Speedie & Zanazzi (2020) is
order zero in eccentricity; it should not be confused with the mixed-type
‘eviction’ resonance described by Touma & Wisdom (1998), which is
order two in eccentricity and can only be triggered once the eccentricity
is high enough. See the preprint of Xu & Fabrycky (2019) for more
details.

to their ultimate large-obliquity regime, where previous models
fail.

In Sect. 2, we revisit the concept of Laplace surface intro-
duced by Tremaine et al. (2009); we go further in the analytical
characterisation of the equilibria and focus on the large-obliquity
regime. In Sect. 3, we describe the influence of the satellite’s
dynamics on the spin-axis motion of the planet. We provide sim-
plified formulas that allow the planet’s obliquity evolution to be
described as a function of the satellite’s properties. In Sect. 4, we
apply our findings to Saturn and Titan and explore their coupled
dynamics as Titan migrates outwards. We conclude in Sect. 5
and present some further applications of our results in other
contexts.

2. Orbital motion of the satellite

In order to investigate the way satellites interact with the spin
axis of their host planet, we must get a clear understanding of
their orbital dynamics as well. In this section, we first consider
a massless satellite orbiting an oblate planet, which has itself a
fixed orbit around the star (or an orbit that can be regarded as
fixed over the interval of time considered).

2.1. Equations of motion

The Hamiltonian function describing the orbital motion of the
massless satellite around the planet can be writtenK =K0 + εK1,
where K0 is the Keplerian part and εK1 gathers the orbital
perturbations. The parameter ε � 1 stresses that the orbital per-
turbations are small; neglecting O(ε2), the long-term behaviour
of the satellite is described by the secular HamiltonianH , which
can be written

H = kPHP + k�H�, (1)

where kPHP comes from the planet’s oblateness and k�H�
comes from the star’s gravitational attraction. The secular semi-
major axis a of the satellite is a constant of motion and a
parameter of H . Considering that a is much larger than the
planet’s equatorial radius Req and much smaller than the star’s
semi-major axis a� in its orbit around the planet, both terms of
Eq. (1) can be expanded in Legendre polynomials. As Tremaine
et al. (2009), we first limit the expansion to the quadrupo-
lar approximation, which amounts to neglecting (Req/a)3 and
(a/a�)3. This leads us to define the two fixed parameters of
Eq. (1) as

kP =
3
4
µP

a
J2

R2
eq

a2 and k� =
3
8

µ�

a�(1 − e2
�)3/2

a2

a2
�

, (2)

and the two parts of the Hamiltonian function as
HP =

1 − 3 cos2 IQ

3(1 − e2)3/2 ,

H� = sin2 IC

(
1 +

3
2

e2 −
5
2

e2 cos(2ωC)
)
− e2.

(3)

In these expressions, µP and J2 are the gravitational parame-
ter and the second zonal gravity coefficient of the host planet,
and µ�, a�, and e� are the gravitational parameter, the semi-
major axis, and the eccentricity of the star, respectively. The
usual orbital elements of the satellite are written (e, I, ω,Ω), and
we use the index Q for quantities measured with respect to the
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planet’s equator, and the index C for quantities measured with
respect to the planet’s orbital plane (that we improperly call the
‘ecliptic’). Since Eq. (3) is obtained through a multi-polar devel-
opment only, it is valid for arbitrary eccentricity and inclination
of the planet and of its satellite (Laskar & Boué 2010).

The Hamiltonian function H� in Eq. (3) has been averaged
over the star’s orbital motion. As stressed by Tremaine et al.
(2009), this approximation requires not only that a � a�, but
even that a � rH, where rH is the Hill radius of the planet.
In particular, Eq. (3) does not contain the evection resonance,
which can have important effects for far-away satellites (see e.g.
Frouard et al. 2010; Speedie & Zanazzi 2020). In Sect. 4, we ver-
ify that Eq. (3) provides a fair approximation of Titan’s orbital
dynamics.

The coordinates of the satellite measured with respect to the
equator (Q) or to the ecliptic (C) are linked through the obliq-
uity ε of the planet via the relations given in Appendix A. These
relations can be used to express H in terms of the equator or
ecliptic coordinates only. Noting C = cos ε and S = sin ε, the
HamiltonianHP in Eq. (3) can be written equivalently as

HP =
−1

6(1 − e2)3/2

[
(3C2 − 1)(3 cos2 IC − 1)

+ 12CS cos IC sin IC cos δC

+ 3S 2 sin2 IC cos(2δC)
]
,

(4)

where δC ≡ ΩC−ΩP and ΩP is the ascending node of the planet’s
equator measured along the ecliptic. Likewise, the Hamiltonian
H� in Eq. (3) can be written equivalently as

H� = −
1
8

[
8e2 + 2(3e2 + 2)(2C2 cos2 IQ + S 2 sin2 IQ − 2)

+ 8CS (3e2 + 2) cos IQ sin IQ cos δQ

+ 5S 2e2(cos IQ + 1)2 cos(2ωQ + 2δQ)

− 20CS e2(cos IQ + 1) sin IQ cos(2ωQ + δQ)

+ 10(3C2 − 1)e2 sin2 IQ cos(2ωQ)

− 20CS e2(cos IQ − 1) sin IQ cos(2ωQ − δQ)

+ 5S 2e2(cos IQ − 1)2 cos(2ωQ − 2δQ)

+ 2S 2(3e2 + 2) sin2 IQ cos(2δQ)
]
,

(5)

where δQ ≡ ΩQ − Ω� and Ω� is the ascending node of the star
measured along the equator of the planet.

If the planet’s axis of figure has a fixed orientation in space,
then ΩP is a constant angle, and both the ecliptic and equatorial
reference frames are inertial. This is equivalent to considering
that the spin-axis precession of the planet is infinitely slow com-
pared to the timescales relevant for the satellite. The validity of
this hypothesis will be discussed in Sect. 3. For now, we consider
that ΩP is constant and examine the dynamical system described
by Eq. (3), expanding on the work of Tremaine et al. (2009).

First of all, the parameters kP and k� in Eq. (2) make appear
a characteristic length called ‘Laplace radius’ defined by

r5
L =

1
2

kP

k�
a5 =

µP

µ�
J2R2

eqa3
�(1 − e2

�)3/2. (6)

We also introduce a critical radius rM, already used by Goldreich
(1966), that we define by

r5
M = 2 r5

L. (7)

As noticed by Tamayo et al. (2013), it is more natural to use
rM as a reference radius than the conventional rL of Tremaine
et al. (2009). The symbol M stands here for ‘midpoint’ and the
dynamical meaning of rM will appear clear below3. Using this
definition, we can rewriteH as

H = kP

HP +
a5

r5
M

H�

 = k�

 r5
M

a5HP +H�

 , (8)

where a change of timescale could be used to remove the leading
constant factor. In order to investigate the dynamics of a slowly
migrating satellite, it is more convenient to introduce a timescale
that does not involve its semi-major axis. As shown below, the
frequency κ, defined as

κ2 =
9
4

µ2
�r3

M

µPa6
�(1 − e2

�)3
, (9)

naturally appears in the dynamics, and it is therefore a good
choice of characteristic timescale. We define the corresponding
period as τ= 2π/κ. Hence, we can describe the full variety of tra-
jectories of the satellite by the only two parameters a/rM and ε,
and their evolution timescale is provided by the period τ. Table 1
lists these parameters for various satellites in the Solar Sys-
tem. We also include the case of distant trans-Neptunian objects
perturbed by the galactic tides, which have an almost identical
dynamics (see Saillenfest et al. 2019a).

In order to study the orbital dynamics of the satellite, it is
more suitable to use a set of coordinates that are not singular for
circular and/or zero-inclination orbits, as the usual rectangular
coordinates

k = e cos(ωQ + δQ),

q = sin
IQ

2
cos(δQ),

h = e sin(ωQ + δQ),

p = sin
IQ

2
sin(δQ).

(10)

Alternatively, one can use a vectorial formulation as Tremaine
et al. (2009).

2.2. The Laplace states

By writing down the equations of motion in a non-singular set
of coordinates, we see that the condition e = 0 is an equilib-
rium point for the satellite whatever its other orbital elements.
Moreover, linear stability analysis shows that the eccentricity
and inclination degrees of freedom are decoupled in the vicin-
ity of e = 0. Assuming that the satellite’s eccentricity is zero (for
instance, if it has been damped at the time of its formation in a
circumplanetary disc), we can therefore study the evolution of its
inclination degree of freedom in a decoupled way.

Figure 1 shows examples of trajectories for the satellites
obtained by plotting the level curves ofH for e = 0. The dynam-
ics of the satellite is described by the direction of its orbital
angular momentum; since the dynamics actually lie on a sphere,
any planar representation of the trajectories has coordinate sin-
gularities. In Fig. 2a, we show the same phase portrait as Fig. 1
on the sphere. The system being secular, it is independent of
whether the orbits and spins are prograde or retrograde. This is

3 Ćuk et al. (2016) and Speedie & Zanazzi (2020) go one step further
and redefine rL by adding the factor 2 in Eq. (6). We rather prefer to
introduce a different symbol, because using differing definitions for the
classic ‘Laplace radius’ is misleading when it comes to comparison with
previous works.
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Table 1. Parameters and dynamical timescales of some satellites and their host planets in the Solar System.

Satellite rM a/rM τ η Planet ε T

The Moon 9.7 Req 6.23 139 yr 532 The Earth 23.4◦ 73 700 yr
Deimos 13.0 Req 0.53 260 yr 1.22× 10−4 Mars 25.2◦ 0.154 Myr
Callisto 36.3 Req 0.73 1269 yr 1.46 Jupiter 3.1◦ 1.40 Myr

Titan 41.7 Req 0.49 4501 yr 12.4
}

Iapetus 54.8 Req 1.08 2982 yr 6.45× 10−2 Saturn 26.7◦ 6.74 Myr

Oberon 65.0 Req 0.34 25 674 yr 7.27 Uranus 97.9◦ 165 Myr
TNO 1038 au − 209 Gyr 0 Solar System 61.7◦ ∞

Notes. See text for the definition of the parameters. The J2 used in Eq. (6) is enhanced by the contribution of inner satellites if there are any
(Tremaine et al. 2009), thus the difference of rM and τ between Titan and Iapetus. The parameter λ appearing in Eq. (29) is not well known for the
giant planets, so the values of T given here are only approximate. We used λ= 0.25, 0.23, and 0.23 for Jupiter, Saturn, and Uranus, respectively.
The line ‘TNO’ refers to the motion of a trans-Neptunian object perturbed by the quadrupolar perturbations from the planets and from the galactic
tides (Saillenfest et al. 2019a); in this case, ε is the tilt of the galactic plane with respect to the invariable plane of the Solar System (Murray 1989;
Souami & Souchay 2012), and the other parameters are r5

M = (3/2)
∑

i µia2
i /G3 and κ2 = r3

MG
2
3/µ�, where µi and ai are the gravitational parameters

and semi-major axes of the planets of the Solar System, and G3 is a constant incompassing the mass distribution within the Galaxy (Fouchard
2004).

−π −π/2 0 π/2 π

δQ = ΩQ − Ω� (rad)

0

45

90

135

180

I Q
(d

eg
)

P1

P2

P3

Fig. 1. Level curves of the Hamiltonian functionH for a circular orbit.
The parameters are a/rM = 1.1 and ε= 40◦. The separatrix is shown by a
thicker black curve. The coloured dots represent the three kinds of equi-
librium points (‘Laplace states’), labelled as in the text. A dark colour
is used for points P1 and P3 lying at δQ = 0 and for P2 lying at δQ = π/2.
A light colour is used for the symmetric equilibrium point that corre-
sponds to the same Laplace state with reversed orbital motion. Figure 2a
shows the same phase portrait plotted on the sphere.

traduced by the invariance of the phase space to the transforma-
tions (δQ, IQ) → (π + δQ, π − IQ) and (ε, IQ) → (π − ε, π − IQ).
Three kinds of equilibrium points can be seen, which we label
P1, P2, and P3. In the work of Tremaine et al. (2009), the points
P1 and P3 are called ‘circular coplanar Laplace equilibria’, and
the point P2 is called ‘circular orthogonal Laplace equilibrium’.
This denomination clearly reflects the geometry of these con-
figurations. For the sake of succinctness, we call them ‘Laplace
states’ 1, 2, and 3 (in reference to the famous ‘Cassini states’
described below).

The geometry of the phase portraits for any value of the
parameters can be described by the location of the equilibrium

points and the shape of the separatrix. The respective locations
of the Laplace states when varying the parameters are illustrated
in Figs. 3 and 4. Because of the symmetries mentioned above,
each equilibrium point has a twin obtained by the transformation
(δQ, IQ)→ (π+ δQ, π− IQ) that corresponds to the same Laplace
state with reversed orbital motion.

In the space of parameters, there is a critical point, that we
call S1, defined by

S1 =
{
a/rM = 1, ε= 90◦

}
. (11)

At point S1, the Laplace states P1 and P3 and the separatrix
degenerate into an equilibrium circle L13 spanning all values of
inclination (see Fig. 2b). All points of this circle are stable equi-
librium configurations in which the linearised problem has zero
eigenfrequency for inclination variations (we note it ξ2

13 = 0). As
shown by Figs. 3 and 4, going through point S1 by smoothly
changing the parameters inverts the locations of P1 and P3. We
stress that in Fig. 4 the apparent jumps of P1 (for a < rM) and
P3 (for a > rM) are only coordinate singularities in which P1 or
P3 smoothly pass through the pole of the sphere (see Fig. 2).
On the contrary, the jump observed at point S1 (a = rM) is a real
singularity.

Another singularity occurs for a null or 180◦ obliquity. We
call S2 the corresponding region of the parameter space, defined
by

S2 =
{
a/rM > 0, ε= 0◦ or 180◦

}
. (12)

In region S2, the Laplace states P2 and P3 and the separatrix
degenerate into an equilibrium circle L23 spanning all values of
δQ (see Fig. 2c). All points of this circle are stable equilibrium
configurations in which the linearised problem has zero eigenfre-
quency for inclination variations (we note it ξ2

23 = 0). The regions
S1 and S2 of the parameter space can be visualised in Fig. 5.

Apart from regions S1 (in which P1 becomes singular) and
S2 (in which P2 becomes singular), the phase space keeps the
same topology whatever the parameters a/rM > 0 and ε. This
means that the Laplace states are smoothly transported by a
continuous change of parameters, and they keep their stability
nature against inclination variations. On Fig. 2a, such a contin-
uous change of parameter would simply produce the rotation of
the sphere around the x-axis and the narrowing or widening of
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x
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z
a

P1

P2

P3

x

y

z
b

L13

P2

x

y

z
c

P1

L23

Fig. 2. Level curves of the Hamiltonian function H with e = 0 plotted on the sphere. The z-axis is along the spin axis of the planet. The x-axis is
along the intersection of the equatorial and ecliptic planes (i.e. the line joining both equinoxes of the planet) and directed towards the ascending
node of the star. The equator xy plane and the ecliptic plane are highlighted by the two outer grey circles. A point on the sphere represents the tip of
the orbital angular momentum of the satellite, which has coordinates (x, y, z) = (sin IQ sin δQ,− sin IQ cos δQ, cos IQ). The colour code is the same
as in Fig. 1. Panel a: same parameters as Fig. 1. Panel b: parameter region S1, defined by a/rM = 1 and ε= 90◦. The magenta curve L13 is made
of an infinity of stable equilibria resulting from the merging of P1 with the separatrix emerging from P3. Panel c: parameter region S2, defined by
a/rM > 0 and ε= 0◦ (or 180◦). The brown curve L23 is made of an infinity of stable equilibria resulting from the merging of P2 with the separatrix
emerging from P3.

the black separatrix. More precisely, Fig. 4 shows that for a < rM,
varying the obliquity produces an oscillation of P1 around the
pole and P3 remains near 90◦; for a > rM, on the contrary, vary-
ing the obliquity makes P1 and P3 roll all over the sphere. The
opposite behaviour would be obtained by representing the eclip-
tic inclination IC instead of IQ. The location and stability nature
of the Laplace states play a fundamental role in the combined
dynamics of the satellite’s orbit and the planet’s spin axis. For
this reason, we review here their basic properties and go deeper
than previous works in their analytic characterisation.

P1 is stable to inclination variations. As illustrated by Fig. 3,
it corresponds to an orbit lying on the equator plane for close-in
satellites (a � rM), and on the ecliptic plane for far-away satel-
lites (a � rM). In between, P1 corresponds to an intermediate
tilt between the equator and the ecliptic. As a result of eccen-
tricity and inclination damping, P1 is expected to be the birth
place of regular satellites formed in a circumplanetary disc. P1
is therefore particularly important in satellite dynamics studies;
for this reason, it is called ‘classical Laplace equilibrium’ by
Tremaine et al. (2009). For δQ = 0 (dark blue colour in the fig-
ures), the inclination of P1 is given by one of the two solutions
of the equation4

tan(2IQ) =
sin(2ε)

cos(2ε) + r5
M/a

5
, (13)

the second solution being the inclination of P3. We note them IQ1
and IQ3. Their closed form expressions can be written

IQ1 =
π

2
+

1
2

atan2
[
− sin(2ε),−u − cos(2ε)

]
,

IQ3 =
π

2
+

1
2

atan2
[
sin(2ε), u + cos(2ε)

]
,

(14)

where u ≡ r5
M/a

5. At a = rM, the Laplace state P1 lies exactly
halfway between the equator and the ecliptic planes (i.e.
4 There seems to be a typographical error in Eqs. (22) and (23) of
Tremaine et al. (2009): for both equations, the first equality is correct
but not the second one. We give the correct expression in Eq. (13).

IQ1 = ε/2 for ε < 90◦). This is why we use the index M, for ‘mid-
point’, introduced in Eq. (7). Interestingly, this midpoint does not
depend on the value of the obliquity ε, but only on the distance
of the satellite. The curve described by Eq. (13) and illustrated in
Fig. 3, however, is not exactly symmetric with respect to a = rM.
Its inflexion point F (for ‘flex’) is reached at radius rF(ε), defined
by

r5
F =

√
cos2(2ε) + 24 − cos(2ε)

6
r5

M (15)

and illustrated in Fig. 6. The distance between rF and rM is a
way to quantify the asymmetry of IQ1 as a function of a. We
stress that all level curves in Fig. 6 converge at S1. Through a
smooth variation of parameters, the satellite can therefore reach
the singular point S1 from any orbital inclination between 0◦ and
180◦. This property has important consequences for the spin-axis
dynamics of the host planet, as we discuss in Sect. 3. We also
show that rF divides the close-in and far-away satellite regimes
considered in previous works.

Tremaine et al. (2009) give a compact expression for the fre-
quency of small-amplitude oscillations around P1, which can be
written as

ξ2
1 = −

κ2

4

(
a

rM

)3 cos ε sin2 ε

cos IQ1 sin2 IQ1
cos(ε − IQ1), (16)

where IQ1 is the equatorial inclination at P1 given in Eq. (14). A
negative value of ξ2

1 means that the equilibrium point is stable.
As expected, ξ2

1 is negative all over the parameter space. For a
zero-obliquity planet, Eq. (16) simplifies to

ξ2
1

∣∣∣∣
ε= 0

= −
κ2

4

 r5
M

a5 + 1
2

a3

r3
M

. (17)

It shows that the timescale parameter κ defined in Eq. (9) is the
oscillation frequency around P1 for ε= 0 and at a radius a = rM.
See Appendix B for the limit value of ξ1 in the regions of param-
eter space where Eq. (16) looks undefined. As a summary, Fig. 7
shows the libration period around P1 in the whole parameter
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a horizontal dotted line. The colour code is the same as in Fig. 1. The
black vertical line in the central panel shows the degenerate equilibrium
circle produced by the merging of P1 and P3.

space. The stability properties of P2 and P3 are not crucial for
the dynamics of a regular satellite, but they can play a role if
the satellite becomes unstable during its orbital migration (see
Sect. 4). For this reason, a brief description of P2 and P3 is
provided in Appendix B.
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and 20, respectively). Colours have the same meaning as in Fig. 3.

From P3 emerges the separatrix that divides the regions of
oscillations around P1 and around P2. Noting u = r5

M/a
5, the

extent of the separatrix can be expressed as

cos2 IQ =
1 + u −

√
1 + u2 + 2u cos(2ε)

2u
, (18)
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P1 and P2 are stable to inclination variations and P3 is unstable. At point
S1 of the parameter space, P1 and P3 degenerate into the equilibrium
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tively, P1, P2, and P3 are unstable to eccentricity variations. In region
S2 ∪ E2, L23 is unstable to eccentricity variations. At point S1, L13 is
stable to eccentricity variations provided that the equatorial inclination
of the satellite verifies cos2 IQ 6 1/5.

in which the two solutions are the minimum and maximum value
of IQ along the separatrix (see Fig. 1). From Eq. (18), we deduce
that the width of the island surrounding P2 is zero in parame-
ter region S2 (as expected from Fig. 2), and that it increases for
growing a and for decreasing cos2 ε. This has important conse-
quences for the emergence of chaos discussed in Sect. 4. At the
singular point S1, the island covers the whole sphere.

Apart from the singular regions S1 and S2, the continuous
behaviour of the Laplace states all over the parameter space is
crucial for the long-term satellite dynamics, because if some
physical mechanism induces a slow change of parameters (e.g.
if the satellite migrates, or if the planet’s spin axis is gradually
tilted), then the satellite would adiabatically follow the equilib-
rium point around which it oscillates, while conserving the phase
space area J spanned by its trajectory. If the system never transits
through point S1 (for oscillations around P1) or S2 (for oscilla-
tions around P2), then this adiabatic drift can go on as long as
the phase space area delimited by the separatrix is wide enough
to contain J. This last condition is always verified if J = 0, that
is, if the satellite lies exactly on a stable Laplace state.

2.3. Stability to variations in eccentricity

Up to now, we assumed that the eccentricity e of the satellite is
zero, which is an equilibrium point. Since the linearised system
in the vicinity of e = 0 produces a decoupling between eccentric-
ity and inclination variations, the previous analysis is valid up to
order O(e) and it neglects O(e2). Since the condition e = 0 for a
real satellite is never exactly verified, we must consider the sta-
bility of the Laplace states to eccentricity variations, that is, we
must determine whether a small non-zero offset of eccentricity
remains small or grows big over time. As before, we focus on the
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Laplace state P1; the description of P2, P3, and the degenerate
circles L13 and L23 are provided in Appendix B.

The eigenvalues of the eccentricity linear sub-system inform
us about their stability against eccentricity growth. Tremaine
et al. (2009) give a compact expression for the frequency of
small-amplitude eccentricity oscillations around P1. It can be
written

µ2
1 = −

κ2 (a/rM)3

512 sin2(2IQ1)

[
− 106 + 24 cos(2IQ1) + 146 cos(4IQ1)

−100 cos(6IQ1 − 2ε) − 24 cos(2IQ1 − 4ε)
+224 cos(2IQ1 − 2ε) − 54 cos(4IQ1 − 4ε)

−8 cos(2ε) − 11 cos(4ε) − 124 cos(2IQ1 + 2ε)

+25 cos(8IQ1 − 4ε) + 8 cos(4IQ1 − 2ε)
]
,

(19)

where IQ1 is the equatorial inclination at P1 given by Eq. (14).
See Appendix B for the limit value of µ1 in the regions of param-
eter space where Eq. (19) looks undefined. A negative value of
µ2

1 means that the equilibrium point is stable to eccentricity vari-
ations. As noted by Tremaine et al. (2009), P1 is stable in all
the parameter space except in a small closed region resembling
a cardioid. We call E1 this region of the parameter space; it can
be visualised in Figs. 5 and 8.

The boundary of E1 is given by the roots of µ2
1, which have

a closed-form analytical expression. We first define two critical

radii r1 and r2 as

r5
1 =

1
3

r5
M and r5

2 =
10
√

22 − 4
39

r5
M. (20)

As shown in Fig. 8, the radii r1 and r2 mark the leftmost and
rightmost limits of E1, and the boundary of E1 has a cusp at the
singular point S1. Noting u = r5

M/a
5, the boundary of E1 can be

expressed piecewise as

cos2 ε=
−32u2 + 113u − 72 + (4 − u)

√
56u2 − 8u − 39

242u
(21)

for r1 6 a 6 r2, and

cos2 ε=
−32u2 + 113u − 72 − (4 − u)

√
56u2 − 8u − 39

242u
(22)

for rM 6 a 6 r2. Equation (22) corresponds to the cusp portion
of the curve, and the two portions meet at a = r2 (see Fig. 8).
The obliquity ε ≈ 68.875◦ quoted by Tremaine et al. (2009)
as the minimum value where P1 can be unstable is reached at
a5/r5

M = 2/3. It has actually the following closed-form:

cos2 ε=
51 + 25

√
3

726
. (23)

Interestingly, µ2
1 does not go to zero at the singular point S1, but

is discontinuous (see Appendix B). Moreover, the value of µ2
1

at ε= 90◦ and a → r−M is the largest (positive) value that µ2
1 can

ever reach in the whole parameter space: it is therefore the most
unstable location of P1 to eccentricity variations. This explains
the numerical results of Tamayo et al. (2013), who note that for
Uranus, whose obliquity is not far from 90◦, the radius rM is
the approximate location at which the eccentricity grows most
rapidly. This also explains why they find that the instability is
more violent if the satellite reaches E1 while migrating inwards
rather than outwards (see Fig. 8).

The stability properties of P2 and P3 to eccentricity variations
are given in Appendix B. We show that they are unstable in the
regions E2 and E3, respectively, illustrated in Fig. 5. We note
that E2 entirely contains the region E1; hence, in region E1 all
Laplace states are unstable to at least eccentricity or inclination
variations.

2.4. Eccentric Laplace states

Along the boundaries of the regions E1 and E2, where the
Laplace states P1 and P2 become unstable to eccentricity vari-
ations, Tremaine et al. (2009) show that they both bifurcate into
equilibrium configurations with an eccentric orbit. We call these
configurations P′1 and P′2. Likewise, we show in Appendix C
that along the two boundaries of the E3 region (the V-shaped
boundary for a < rL and the drop-like boundary for a > rL; see
Fig. 5 and Appendix B), the Laplace state P3 bifurcates into two
eccentric equilibria that we call P′3 and P′′3 , respectively.

In the space of parameters, there exist stable regions for all
of these eccentric equilibria. Therefore, satellites reaching the
unstable regions E1, E2, or E3 via a smooth parameter change
are not bound to destabilise; they can instead bifurcate to a stable
eccentric configuration. The properties of the eccentric equilib-
ria are recalled in Appendix C; we provide formulas that can be
used to easily compute their locations as a function of the param-
eters. In our case, we are mostly interested in the equilibrium P′1,
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Fig. 9. Eccentricity and inclination of the satellite at the eccentric equi-
librium P′1. The three-dimensional surface of equilibrium has been cut
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because it bifurcates from the classic Laplace state P1 in which
regular satellites are formed.

At equilibrium P′1, the orbital angles of the satellite are
ωQ = π/2 mod π and δQ = 0 (or δQ = π for the twin equilibrium
with reversed orbital motion). The equatorial inclination of the
satellite at P′1 can be written as

I′Q1 =
π

2
+

1
2

atan2
[
− sin(2ε),−v − cos(2ε)

]
, (24)

where we define v as

v=
r5

M

a5

1
(1 − e2)3/2(1 + 4e2)

, (25)

in which e is the satellite’s eccentricity at equilibrium. We note
that the inclination I′Q1 in Eq. (24) has the same form as IQ1 in
Eq. (14), but where u = r5

M/a
5 is replaced by v. The behaviour
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Fig. 10. Eccentricity at the eccentric equilibrium P′1 seen as a three-
dimensional surface. The colour is the same as in Fig. 9, top panel. In
Fig. 9, the top tube-like portion of the surface has been cut off along
the grey line. As detailed in Appendix C, the top portion extends up to
a → ∞, where it tends to e = 1. Sections of this surface can be seen in
Fig. 6 of Tremaine et al. (2009).

of I′Q1 as a function of the parameters is therefore very similar to
IQ1 except that the non-zero eccentricity of the satellite acts like a
modified orbital distance. For e = 0, the definitions of I′Q1 and IQ1

coincide. As shown in Appendix C, the eccentricity at equilib-
rium can be computed in the general case as a three-dimensional
surface with an explicit parametric representation.

The eccentricity and inclination of the satellite at equilibrium
P′1 are shown in Fig. 9 as a function of the parameters. We recog-
nise the cardioid-like boundary of the E1 region. Since Fig. 9 is
the projection of a complex three-dimensional surface, a portion
of this surface has been cut off for the purpose of the figure. The
removed portion of the surface connects to the grey line near the
centre of the figure (see the colour discontinuity), and it can be
visualised in Fig. 10. Along the cutting line, the right portion of
the three-dimensional surface turns round to higher semi-major
axes again.

Along the three-dimensional curve S1 defined by

S1 =

 a5

r5
M

=
1

(1 − e2)3/2(1 + 4e2)
, ε= 90◦

 , (26)

the inclination I′Q1 of the satellite given in Eq. (24) is unde-
fined. This is a real singularity, where P′1 does not exist. Indeed,
the curve S1 is the eccentric continuation of the singular point
S1, at which P1 and P3 are degenerate. In Fig. 9, the curve S1
is visible between the points labelled S1 and S′1. Along this
line, the orbital inclination I′Q1 has two different limits (differ-
ent from 0◦ and 180◦) according to whether the system tends to
ε= 90◦ from below or from above. As shown in Appendix C, the
point S′1 is the location where S1 pierces the three-dimensional
surface of equilibrium. Noting u = r5

M/a
5, the point S′1 has coor-

dinates u = 75
√

35/343 and ε= 90◦. By comparing Figs. 9 and 6,
we see that S′1 can be seen as the eccentric counterpart of S1,
where inclination level curves converge. This property will be
important in Sect. 3.

Contrary to the circular case, the eccentricity and inclina-
tion degrees of freedom are fully coupled at P′1. Therefore, in
the vicinity of P′1, the eccentricity and inclination of the satellite
both vary according to two distinct eigenfrequencies (plus their
opposite). The periods of these two oscillation modes in the sta-
ble regions are shown in Fig. 11. By comparing with Fig. 7, we
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see that the oscillation timescale near P′1 has the same order of
magnitude as in the circular case. Moreover, we note that one fre-
quency tends to zero at point S′1, in the same way as ξ2

1 tends to
zero at S1. Along the boundary of the E1 region, the two eigen-
frequencies tend to the oscillation frequencies ξ1 and µ1 around
P1 given at Eqs. (16) and (19), confirming that the eccentric
equilibrium P′1 bifurcates from the circular equilibrium P1.

As stressed by Tremaine et al. (2009), the eccentric equilib-
rium P′1 is stable near its bifurcation from P1 and in the central
region of Fig. 11. These properties will be important for the
future evolution of Titan described in Sect. 4. On the top tube-
like portion of the equilibrium surface (not shown in Fig. 11), we
show in Appendix C that P′1 is mostly unstable, even though a
small stable region exists at very high eccentricities.

Before concluding this section, we stress that the linear insta-
bility of a Laplace state does not necessarily mean that the
satellite’s trajectory is chaotic, and it gives no information about
the amount of eccentricity and inclination increase suffered by

the satellite. Interestingly, the simulations of Tremaine et al.
(2009), Tamayo et al. (2013), and Speedie & Zanazzi (2020)
reveal more chaos than expected in the E1 region, even where
the eccentric equilibrium P′1 should theoretically be stable. In the
case of trans-Neptunian objects perturbed by the galactic tides
(see Table 1), Saillenfest et al. (2019a) find that at a ≈ rM the
phase space is covered by chaos, allowing for transitions between
circular and quasi-parabolic orbits. The emergence of violent
chaos in the orbit of Titan is confirmed numerically in Sect. 4.
But before speaking of chaos, we must first understand the mech-
anism through which Titan is brought into the unstable region. In
the next section, we see that it results from an interplay between
the dynamics of Titan’s orbit and Saturn’s spin axis.

3. Spin-axis dynamics of the planet

In the previous section, the spin axis of the host planet was
assumed to be fixed in an inertial frame. Actually, because of
the torque applied by the star and the satellite on its equatorial
bulge, the spin axis of the planet is made to slowly precess over
time. In this section, we aim to get a qualitative understanding
of the effect of the satellite on the spin-axis motion of its host
planet, with an eye on the case where the planet is locked in a
secular spin–orbit resonance, that is, where additional perturba-
tions maintain the planet’s spin-axis precession frequency to a
fixed value.

A self-consistent model for the dynamics of a satellite and
the spin axis of its host planet has been derived by Boué &
Laskar (2006): under the assumption that the satellite’s argument
of pericentre stably circulates, they obtained a full analytical
characterisation of the averaged dynamics, which was proven
to be integrable. However, this model does not hold if the sys-
tem is affected by additional perturbations. In particular, mutual
interactions between planets result in their nodal and apsidal
precession motions (see e.g. Murray & Dermott 1999), whose
multiple modes and harmonics are responsible for the secu-
lar spin–orbit resonances. Besides, the assumptions of Boué &
Laskar (2006) cannot apply if the system reaches the region E1,
as the satellite’s pericentre can become stationary near the equi-
librium P′1 (see Sect. 2). Consequently, the model of Boué &
Laskar (2006) will serve us as a reference for the ‘instantaneous’
value of the secular spin-axis precession rate of the planet, but
it cannot be used (as such) to describe the dynamics inside a
secular spin–orbit resonance.

In this section, we first recall the properties of secular spin–
orbit resonances (Sect. 3.1), and then we study the effect of a
satellite on a resonantly locked planet (Sect. 3.2).

3.1. Secular spin–orbit resonance

In the approximation of rigid rotation, the secular spin-axis
dynamics of an oblate planet is ruled by the Hamiltonian
function

M=M�(X) +MP(X, ψ, t), (27)

where the conjugate canonical coordinates used here are
X = cos ε (cosine of obliquity) and −ψ (minus the precession
angle). The first part comes from the torque exerted by the star
on the equatorial bulge of the planet at quadrupolar order. It can
be written

M� =−
α

2
X2(

1 − e2
�

)3/2 , (28)
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where the parameter α is called the ‘precession constant’. In the
absence of satellite, the expression of the precession constant is
given for instance by Néron de Surgy & Laskar (1997) as

α=
3
2
µ�

ωa3
�

J2

λ
, (29)

where ω is the spin rate of the planet and λ is its normalised
polar moment of inertia. The parameters J2 and λ are related to
the moments of inertia A, B, and C of the planet through

J2 =
2C − A − B

2MR2
eq

and λ=
C

MR2
eq
, (30)

where M is the mass of the planet. The second part of the Hamil-
tonian function stems from the motion of the planet’s orbital
plane, produced for instance through mutual perturbations with
other planets. It can be written

MP = −
√

1 − X2
(
A(t) sinψ + B(t) cosψ

)
+ 2XC(t), (31)

where A, B, and C are explicit functions of time whose expres-
sions in terms of the planet’s classical orbital elements are given
for instance by Laskar & Robutel (1993) and Néron de Surgy &
Laskar (1997). If the planet’s orbit were fixed, thenMP would be
identically zero.

We assume that the orbit of the planet is long-term sta-
ble, so that its secular orbital motion can be expressed (at
least locally) in convergent quasi-periodic series. Truncating the
series describing its orbital inclination motion to N terms, it can
be expressed as

ζ = sin
I
2

exp(iΩ) =

N∑
k = 1

S k exp(iφk), (32)

where S k is a positive real constant and φk evolves linearly over
time with frequency νk, that is,

φk = νk t + φ(0)
k , (33)

for any k = 1, 2...N. In Eq. (32), I and Ω are the orbital inclina-
tion and the longitude of ascending node of the planet measured
in an inertial reference frame, not to be confused with the satel-
lite’s orbital elements used in Sect. 2. As shown by Saillenfest
et al. (2019b), the Hamiltonian functionMP is proportional to the
amplitudes S k of the quasi-periodic decomposition. Therefore,
if the planet is not much inclined with respect to the invari-
able plane of the system (i.e. S k � 1 for νk , 0), which is
what we expect in a long-term stable planetary system, then the
Hamiltonian MP in Eq. (27) can be considered as a perturba-
tion to the unperturbed Hamiltonian M�. In this setting, the
long-term spin-axis dynamics of the planet is shaped by reso-
nances between the unperturbed spin-axis precession frequency
and the forcing frequencies appearing in Eq. (33). In the Solar
System, the orbital precession motions of the terrestrial planets
contain numerous large-amplitude harmonics, creating a collec-
tion of wide secular spin–orbit resonances which overlap with
each other and create wide chaotic zones (Laskar & Robutel
1993). The orbital precession motions of the giant planets, on the
contrary, are composed of many fewer strong harmonics, so that
large secular spin–orbit resonances are rare and isolated from
each other. Depending on their spin-axis precession frequency,
the giant planets of the Solar System can therefore be captured

into an isolated resonance and oscillate stably within its sepa-
ratrix (see e.g. Ward & Hamilton 2004; Ward & Canup 2006;
Saillenfest et al. 2020, 2021b).

Using a perturbative approach, Saillenfest et al. (2019b) have
described the properties of all resonances up to order three in the
amplitudes {S k}. The largest resonances are those of order 1, for
which the resonance angle is σ=ψ+φ j, where j is a given index
in the orbital series in Eq. (32). Second-order resonances involve
two terms in the series, and third-order resonances involve three.
Eccentricity-driven resonances only appear at order three and
beyond. In any case, the resonance angle is a linear combination
involving ψ and one or several φk. If the planet is trapped inside
one of those resonances, then the resonance angle oscillates
around a fixed value, which means that the spin-axis precession
frequency ψ̇ is forced to remain approximatively constant, equal
to a combination of frequencies νk.

In the vicinity of a first-order secular spin–orbit reso-
nance, the Hamiltonian function reduces to the well-known
‘Colombos’s top Hamiltonian’ (Colombo 1966; Henrard &
Murigande 1987). This Hamiltonian can be written

F =−
1
2

X2 + γX + β
√

1 − X2 cosσ, (34)

where the conjugate coordinates are X = cos ε and −σ= − ψ −
φ j (i.e. minus the resonance angle). Neglecting terms of order
four and higher in the amplitudes {S k}, the parameters γ and β in
Eq. (34) are

γ=
−1
p

ν j − 2
N∑

k = 1

νkS 2
k

 ,
β=
−S j

p

2ν j + ν jS 2
j − 2

N∑
k = 1

νkS 2
k

 ,
(35)

where p =α(1− e2
�)−3/2 is the characteristic spin-axis precession

frequency of the planet. Contrary to Saillenfest et al. (2019b), we
do not expand the eccentricity variations of the planet in quasi-
periodic series: since eccentricity variations only appear at third
order in the amplitudes, they are not important for our present
qualitative description of the dynamics. Written as in Eq. (35),
eccentricity variations simply produce slight fluctuations in the
resonance parameters γ and β.

As defined in Eq. (35), for small amplitudes S k, the param-
eters γ and β are both positive if ν j < 0. This corresponds to a
prograde resonance, for which the resonance centre is located at
an obliquity ε 6 90◦. An example is presented in Fig. 12. On
the contrary, retrograde resonances are obtained for ν j > 0, for
which γ and β are negative. Due to symmetries, changing the
sign of γ is equivalent to replacing X by −X, and changing the
sign of β is equivalent to replacing σ by σ + π. Following Peale
(1969), the equilibrium points are usually called ‘Cassini states’,
numbered from 1 to 4, as labelled in Fig. 12.

Henrard & Murigande (1987) showed that the phase space
has two different topologies according to whether γ2/3 + β2/3 is
smaller or larger than 1. If γ2/3 + β2/3 > 1, then there is no res-
onance (i.e. no separatrix) and only the Cassini states C2 and
C3 are present (see Fig. 13a). If γ2/3 + β2/3 < 1, then all four
Cassini states are present, and C2 becomes the resonance centre
(see Fig. 13b). As noted by Saillenfest et al. (2019b), in some
parameter region, the resonance contains the north pole and/or
the south pole of the sphere. We stress that the resonance can be
quite large even for a moderate amplitude S j.
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Fig. 12. Spin-axis dynamics in the vicinity of a first-order secular spin–
orbit resonance. Some level curves of the Hamiltonian function F in
Eq. (34) are represented in black or in red, according to whether they are
outside or inside the resonance, respectively. The separatrix is shown by
a thick black curve. The constant parameters are γ= 0.75 and β= 0.03.
The equilibrium points (‘Cassini states’) are represented by coloured
dots. Figure 13b shows the same phase portrait plotted on the sphere.

As detailed below, the effect of satellites on the spin-axis
motion can be modelled by replacing α in Eq. (28) by an effec-
tive precession constant α′, whose value depends on the distance
of the satellites. Therefore, we are interested in how the geome-
try of the phase space is changed when modifying the parameter
α appearing in Eq. (35) via p. Analytical formulas for the loca-
tions of the equilibrium points and the separatrix are provided
by Saillenfest et al. (2019b) or Haponiak et al. (2020); we recall
here their behaviour when varying the parameter α. Due to sym-
metries, we only describe the case of a prograde resonance, for
which γ and β are positive.

Figure 14 shows the generic behaviour of the system with
respect to the parameter 1/γ, which is proportional to α. For α→
0, both γ and β tend to infinity, so only Cassini states 2 and 3 are
present (see Fig. 13a). Their asymptotic locations are

lim
α→0

cos ε2 = − lim
α→0

cos ε3 =
1√

1 + β2/γ2
, (36)

which, for a small amplitude S j, represents just a small offset
from ε2 = 0◦ and ε3 = 180◦ (see Fig. 14). In other words, for
α→ 0 the resonance is infinitely far away and it only contributes
through a residual shift of the equilibrium points at the north
and south poles of the sphere. Therefore, the obliquity is almost
constant and σ circulates.

If we increase α above zero, the Cassini state C2 is tilted away
from the north pole of the sphere (see Figs. 13a and 14); then,
when γ2/3 + β2/3 becomes smaller than 1, the Cassini states C1
and C4 appear together with the separatrix. As shown in previous
articles (see in particular Figs. B.1 and B.2 of Saillenfest et al.
2020), for increasing α the resonance first contains the north
pole of the sphere, and then the separatrix crosses the north pole
and moves down to larger obliquities. This transition is visible
in Fig. 14 as the very narrow interval of 1/γ in which the pink
region touches ε= 0◦.

For α→ ∞, the parameters γ and β both tend to zero and the
location of the Cassini states tend to

lim
α→∞

ε1 = 0◦, lim
α→∞

ε2 = 90◦,

lim
α→∞

ε3 = 180◦, lim
α→∞

ε4 = 90◦.
(37)

Moreover, for α→ ∞ the separatrix enclosing C2 becomes van-
ishingly narrow and it merges with the Cassini states C2 and
C4, producing the degenerate equilibrium circle C24 shown in
Fig. 13c. For large but finite values of α, we note that the
resonance width goes beyond ε= 90◦ (there is no topological
boundary at ε= 90◦ for non-zero libration amplitudes).

Hence, as a summary, if we increase the parameter α from 0
to∞, the Cassini state C2 gradually passes from ε2 ≈ 0◦ (without
separatrix) to ε2 = 90◦ (inside the resonance separatrix). These
properties will be important below.

3.2. Effect of a satellite

The orbital angular momentum of the planet usually greatly
exceeds its rotational angular momentum. Therefore, the planet’s
orbit remains almost unaffected by the spin-axis precession
motion. In Sect. 3.1, this property allowed us to treat the orbital
variations as a forcing term in the spin-axis dynamics. Now, if
the planet has a satellite that lies in its local Laplace plane (i.e.
if it is in the Laplace state P1 described in Sect. 2.2), then the
planet’s spin axis and the satellite’s orbit rigidly precess as a
whole about the planet’s orbital angular momentum (Boué &
Laskar 2006). In Eq. (4), this precession would be traduced by a
drift of ΩP over time.

We define the characteristic spin-axis precession timescale of
the planet as T = 2π/p, where p =α(1 − e2

�)−3/2 has been intro-
duced in Sect. 3.1. Without satellite, the free spin-axis precession
frequency of the planet is simply

Ω0 = p cos ε, (38)

as obtained from Eq. (28). The characteristic timescale T is given
in Table 1 for some planets of the Solar System. The value of T
can be compared to the characteristic timescale τ of the satellite’s
orbital dynamics. We see that τ � T for all satellites listed in
Table 1. This large separation of timescales justifies the approx-
imation made by Tremaine et al. (2009) and used in Sect. 2 to
consider that the planet’s equatorial reference frame is inertial
despite its precession motion. For a satellite oscillating about the
Laplace state P1, this timescale condition may be violated at the
border of region E1 or in the extreme vicinity of the singular
point S1, that is, where one of its orbital oscillation frequen-
cies tends to zero (see Fig. 7). The behaviour of satellites in this
critical regime will be investigated numerically in Sect. 4.

Substantially massive satellites contribute to the spin-axis
precession frequency of their host planet. If the satellites oscil-
late about the Laplace state P1 with τ � T , French et al.
(1993) give an elegant expression for their contribution: one must
simply replace J2 and λ in Eq. (29) by the effective values

J′2 = J2 +
1
2

∑
k

mk

M
a2

k

R2
eq

sin(2ε − 2Lk)
sin(2ε)

,

λ′ = λ +
∑

k

mk

M
a2

k

R2
eq

nk

ω

sin |ε − Lk |

sin ε
,

(39)

where mk, ak and nk are the mass, the semi-major axis, and
the mean motion of the kth satellite, and Lk is the inclination
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Fig. 13. Level curves of the Hamiltonian F plotted on the sphere. The planet’s orbit lies in the xy-plane. The obliquity ε is the tilt from the
z-axis, and the resonance angle σ is the polar angle measured in the xy-plane. The colour code is the same as in Fig. 12. Panel a: geometry for
γ2/3 + β2/3 > 1. Panel b: geometry for γ2/3 + β2/3 < 1 (same parameters as in Fig. 12). Panel c: geometry for γ and β tending to zero.

0

15

30

45

60

75

90

0.01 0.1 1 10 100 1000

165

180

o
b
li
q
u
it
y
ε
(d

eg
)

1/γ

0

15

30

45

60

75

90

0.01 0.1 1 10 100 1000

165

180

C1C2

C3

C4

extent of the
resonance region
surrounding C2

Fig. 14. Bifurcation diagram of the system as a function of 1/γ, which is proportional to α. The second parameter used in this example is β= 0.03γ.
The Cassini states are labelled with the same colour code as previous figures.

of the Laplace plane of the kth satellite with respect to the
planet’s equator5. Using these expressions, the free spin-axis
precession frequency Ω0 of the planet is still obtained from
Eq. (28), but where α is replaced by an effective precession con-
stant α′. We stress that Eq. (39) is valid whatever the distance
of the satellite, and not only in the close-in regime considered
previously by Saillenfest et al. (2020, 2021b). It only requires
that the satellites oscillate around the Laplace state P1, which is
what we expect for any regular satellite (see e.g. Tremaine et al.
2009), unless it reaches the high-obliquity unstable region E1
(see Sect. 2.3).

For small satellites, the value of Lk can be directly taken from
Eq. (14). In this case, the model is not self-consistent, because
the satellite is considered to be massless when dealing with the

5 Ward & Hamilton (2004) give another expression for J′2 and λ′ in
their Eqs. (2) and (3). When the results are compared to the self-
consistent theory of Boué & Laskar (2006), the expression of Ward &
Hamilton (2004) appears to be erroneous. We suspect that Eq. (2) of
Ward & Hamilton (2004) actually contains a typographical error. This
likely error seems to have been propagated in Eq. (44) of Millholland &
Laughlin (2019).

orbital dynamics (Sect. 2) but massive when computing its long-
term influence on the planet’s spin axis. Yet, because τ � T (see
Table 1), this approximation results to be very accurate for satel-
lites having a small mass ratio mk/M. For Titan, whose mass
is about 10−4 of Saturn’s, the inclination Lk and the precession
rate Ω0 obtained through Eqs. (14) and (39) are very close to
those obtained using the self-consistent (but quite complicated)
model of Boué & Laskar (2006), as detailed in Appendix D.
The approximation is less good for very massive satellites like
the Moon (mk/M ≈ 0.01), but we can check that the qualita-
tive picture described below remains valid, which means that
our analysis captures the essence of the dynamics even for large
satellite-to-planet mass ratios.

We note that Eq. (39) looks undefined for ε= 0 or 90◦. How-
ever, computing Lk using Eq. (14), the contribution of satellites
around a zero-obliquity planet simplifies to

J′2
∣∣∣∣
ε= 0

= J2 +
1
2

∑
k

mk

M
r2

M

R2
eq

 a2
k/r

2
M

1 + a5
k/r

5
M

 ,
λ′

∣∣∣∣
ε= 0

= λ +
∑

k

mk

M
r2

M

R2
eq

nk

ω

 a2
k/r

2
M

1 + a5
k/r

5
M

 . (40)
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Likewise, for ε= 90◦ the parameter J′2 becomes

J′2
∣∣∣∣
ε= 90◦

= J2 +
1
2

∑
k

mk

M
r2

M

R2
eq

∣∣∣∣∣∣ a2
k/r

2
M

1 − a5
k/r

5
M

∣∣∣∣∣∣ . (41)

However, since Ω0 is factored by cos ε, the spin-axis precession
frequency of the planet is in any case zero for ε= 90◦, except at
a = rM, where the Laplace state P1 of the satellites is undefined
(see Sect. 2).

In order to keep the discussion as general as possible before
focussing on particular bodies, one more approximation can be
made. Indeed, even for a fast-spinning planet like Saturn, the
oblateness coefficient J2 appearing in Eq. (29) is a small param-
eter compared to λ (whose order of magnitude is slightly less
than unity). As a result, the relative increase in J2 produced by
satellites in Eq. (39) is much larger than the relative increase in
λ. This discrepancy is amplified by the factor nk/ω appearing in
Eq. (39), which further reduces the satellites’ contribution to λ′.
Therefore, as a first approximation, the contribution of satellites
to λ′ is negligible compared to their contribution to J′2. Assum-
ing that λ′ ≈ λ, and considering that the planet has a single main
satellite, the free precession frequency of the planet’s spin axis
simplifies to

Ω0 = p
cos ε + η

a2

r2
M

sin(2ε − 2L)
2 sin(ε)

 , (42)

where we have introduced the ‘mass parameter’ η of the satellite,
defined as

η=
1
2

m
M

r2
M

J2R2
eq
. (43)

The mass parameters of some satellites in the Solar System are
given in Table 1. We stress that even a low-mass satellite can
have a large mass parameter η. For instance, Titan has a mass
of m/M ≈ 10−4 but a mass parameter η ≈ 10, and Titan greatly
affects Saturn’s spin-axis dynamics (see below). Therefore, con-
trary to what one could think a priori (see e.g. Li & Batygin
2014), a large mass ratio m/M is not necessarily required to sub-
stantially alter a planet’s obliquity. Using Eq. (42), the spin-axis
precession rate of the planet normalised by p is only a function
of ε, η, and a/rM. We can therefore study its behaviour in a very
generic way, as we did for the satellite’s dynamics in Sect. 2.

Figure 15 shows the spin-axis precession frequency of the
planet as a function of the distance of its satellite. We retrieve the
classical curve shown in Fig. 5 of Boué & Laskar (2006), with
the close-in and far-away satellite regimes. For a → 0 and a →
∞, the precession frequency tends to the value p cos ε obtained
without satellite. In between, the satellite enhances the preces-
sion frequency of the planet by an increment that is proportional
to its mass parameter η (see Eq. (42)). For a given obliquity, the
maximum value of Ω0 divides the close-in and far-away satel-
lite regimes, characterised by the well-known power laws in a2

and a−3, respectively. The magnitude of Ω0 differs when varying
the satellite’s mass parameter η, but the location of its maximum
as a function of a is independent of η. As shown in Fig. 15, the
maximum of Ω0 is located somewhat below the midpoint radius
a = rM. By analysing Eq. (42), we find that the maximum of the
curve is located at a = rF, defined in Eq. (15). We recall that rF
is the inflexion point of the satellite’s inclination, illustrated in
Fig. 6. We see here that the spin-axis precession frequency of
the planet is intimately linked to the properties of the Laplace
state P1 of its satellite. We further analyse this relation below.
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Fig. 15. Spin-axis precession frequency of a planet orbited by a single
satellite. The frequency is given by the simplified expression in Eq. (42)
and represented here in unit of the characteristic frequency p, for differ-
ent obliquity values (see labels). In this example, the mass parameter of
the satellite is set to η= 10, which is close to Titan’s value (see Table 1).
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Figure 16 shows the value of Ω0 at its maximum (i.e. at
a = rF) as a function of the planet’s obliquity. The global max-
imum of Ω0 is reached at ε= 0◦, for which a5/r5

M = 2/3. It has
value

Ωmax = p
(
1 +

1081/5

5
η

)
. (44)

For an obliquity ε → 90◦, the maximum of Ω0 is reached at
a = rM, that is, at the singular point S1 of the satellite’s dynam-
ics (see Sect. 2). Figure 16 shows that the maximum value of
Ω0 has two different limits at point S1 according to whether the
obliquity tends to 90◦ from above or from below. These limits
are Ω0 =±ΩS, where

ΩS =
1
2

pη. (45)

We note that these limits are non-zero and well defined. This is
far from obvious when modelling the satellites by an effective
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precession constant α′, as one would never guess that α′ cos ε
tends to a non-zero finite value when cos ε tends to zero (α′
actually goes to infinity). We deduce that when the system
approaches the singular point S1, the notion of ‘precession con-
stant’ loses its meaning. In this regime, classical figures drawn
in the plane (ε, α), like those used by Saillenfest et al. (2021b)
are inappropriate.

We are interested in the level curves of Ω0 as a function of the
parameters. Indeed, if the planet is trapped in a secular spin–orbit
resonance during the migration of its satellite, its precession fre-
quency ψ̇ ≈ Ω0 is forced to oscillate around a constant value
while the parameters a and ε vary (see Sect. 3.1). This is likely
the case for Saturn and Titan (see Saillenfest et al. 2021b), and it
will probably be the case for Jupiter and its satellites in the future
(see Saillenfest et al. 2020). Figure 17 shows the spin-axis pre-
cession period of the planet in the parameter space for different
values of the satellite’s mass parameter η. We choose here to plot
the precession period |2π/Ω0|, instead of the frequency Ω0 for
easier comparison with the satellite’s oscillation period shown
in Fig. 7. Values of τ, η and T for real bodies can be found in
Table 1. As shown in Appendix D, Fig. 17 presents a very good
agreement with the precession period obtained in self-consistent
models.

For a very small mass parameter η � 1 (e.g. for Deimos),
the effect of the satellite is negligible and the level curves of
Ω0 would appear perfectly horizontal in Fig. 17. Therefore, even
if the planet is trapped in a secular spin–orbit resonance, its
mean obliquity would remain unaltered over the migration of its
satellite. For a substantial value of η, on the contrary, Fig. 17
shows that the level curves of Ω0 lose their horizontal shape and
rearrange around the ridge line a = rF, where the satellite’s con-
tribution is maximum. Indeed, since the factor in front of η in
Eq. (44) is close to 1/2, the relative difference between Ωmax and
ΩS is very small for a large value of η, namely

lim
η→∞

Ωmax −ΩS

Ωmax
= 1 − 5

721/5

12
≈ 0.02. (46)

Therefore, a large value of η implies that Ω0 is approximatively
constant along the ridge line a = rF (i.e. the two curves in Fig. 16
are nearly horizontal). Consequently, the ridge line a = rF creates
a barrier that cannot be crossed by the level curves of Ω0: instead,
the level curves must go around the ridge line, and they converge
at the singular point S1 (see Fig. 17). More precisely, all level
curves with frequency values |Ω0| 6 ΩS converge to S1. For a
large mass parameter η, this condition is verified for almost all
level curves of Ω0. This property is related to the orbital plane of
the satellite, which can reach S1 from any inclination (see Fig. 6).

Figure 17 shows that for a large enough value of η, numerous
level curves of Ω0 connect the singular region S2 (i.e. ε= 0) to
the singular point S1. Therefore, if the planet is trapped in a sec-
ular spin–orbit resonance, the migration of its satellite through
a = rM forces its obliquity to increase all the way from 0◦ to
90◦. We see that such an extreme obliquity increase can take
place over a very short migration range for the satellite (e.g. in
panel d if its distance decreases from a ≈ 1.05rM to a = rM). The
theoretical limit for the obliquity reached through the mecha-
nism described by Saillenfest et al. (2021b) is therefore 90◦, or
even more if the resonance is large and its width extends beyond
ε= 90◦ (see Sect. 3.1). If ever the system manages to go through
the singular point S1 in some way, one could even imagine a sce-
nario where the planet then picks a retrograde resonance (see e.g.
Kreyche et al. 2020) and goes on tilting up to 180◦.
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Fig. 17. Spin-axis precession period of a planet orbited by a single satel-
lite. The period is given by Eq. (42) and represented here in unit of the
characteristic period T = 2π/p. For ε > 90◦, the spin-axis precession
frequency is negative. Each panel corresponds to a given value of the
satellite’s mass parameter η (see Eq. (43)), as labelled in the top right
corner. Some level curves are highlighted in black. The singular point
S1 and the ridge line a = rF are indicated in red.

The level curves of Ω0 going from ε= 0◦ to ε= 90◦ verify
p 6 Ω0 6 ΩS. Therefore, the minimum mass parameter allowing
the planet to tilt all the way from 0◦ to 90◦ through the migration
of its satellite is obtained by putting ΩS = p in Eq. (45), which
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Table 2. Largest terms of Saturn’s inclination series in the J2000 ecliptic
and equinox reference frame.

k Identification νk (′′ yr−1) S k × 108 φ(0)
k (o)

1 s5 0.00000 1 377 395 107.59
2 s6 −26.33023 785 009 127.29
3 s8 −0.69189 55 969 23.96
4 s7 −3.00557 39 101 140.33
5 g5 − g6 + s7 −26.97744 5889 43.05
6 2g6 − s6 82.77163 3417 128.95
7 g5 + g6 − s6 58.80017 2003 212.90
8 2g5 − s6 34.82788 1583 294.12
9 s1 −5.61755 1373 168.70

10 s4 −17.74818 1269 123.28

Notes. Adapted from Laskar (1990). Each frequency νk is a combi-
nation of the fundamental frequencies si and gi of the planets of the
Solar System. See Appendix A of Saillenfest et al. (2021b) for the full
quasi-periodic decomposition with amplitudes down to 10−8.

gives η= 2. In other words, η= 2 is the minimum mass parameter
for which the level curve Ω0 = p, which starts at (a, ε) = (0, 0◦),
connects to (a, ε) = (rM, 90◦): see the level curve labelled ‘1’ in
Fig. 17. In Table 1, the condition η > 2 is verified for the Moon,
Titan, and Oberon, but not for Deimos, Callisto, and Iapetus.

In practice, since the singular point S1 is surrounded by the
unstable region E1 (see Sect. 2.3), we expect the satellite’s orbit
to become unstable before actually reaching S1. Moreover, the
width of the secular spin–orbit resonance of the planet decreases
as the obliquity increases (see Fig. 14), and since many level
curves converge to S1, other secular spin–orbit resonances (if
any) would necessarily overlap at some point and create a chaotic
region. For these two reasons, we expect the planet to be released
out of resonance before actually reaching ε= 90◦. This double
destabilisation of the planet and of its satellite is investigated in
the next section.

4. Saturn and Titan

4.1. Overview of the dynamics

The Hamiltonian function in Eq. (27) explicitly depends on the
orbit of the planet and on its temporal variations. In order to
explore the long-term dynamics of Saturn’s spin axis, we need
an orbital solution that is valid over billions of years. As in
previous studies, we use the secular solution of Laskar (1990)
expanded in quasi-periodic series, that is, under the form given
in Eq. (32). The ten largest terms of the ζ series of Saturn are
shown in Table 2, ordered by decreasing amplitude.

As explained in Sect. 3, a satellite is able to tilt a planet
from ε= 0◦ to 90◦ if its mass parameter η is larger than 2. This
condition is met for Titan, which has η ≈ 12.4. Furthermore,
the maximum spin-axis precession frequency of the planet is
reached along a = rF, and the global maximum Ωmax is given
by Eq. (44). For Saturn and Titan (see Table 1), we obtain
Ωmax ≈ 1.41′′ yr−1. Therefore, all frequencies in Saturn’s orbital
decomposition whose magnitude exceeds this value are unreach-
able by Saturn, whatever the distance of Titan. This only leaves
a handful of possible first-order secular spin–orbit resonances,
even when considering the full quasi-periodic solution of Laskar
(1990). The largest resonance is with ν3 = s8 (see Table 2). Other
resonances can be identified in Table A.2 of Saillenfest et al.
(2021b): there are two prograde resonances (ν19 and ν51) and

two retrograde resonances (ν28 and ν44). As revealed by their
high index in the orbital series, these four resonances are very
small. This explains why no relevant second- or higher-order
resonance can possibly affect Saturn. Then, we know that all
precession frequencies Ω0 verifying p 6 Ω0 6 ΩS have a level
curve that connects ε= 0◦ to 90◦ (or ε= 180◦ to 90◦ for a ret-
rograde spin). For Saturn and Titan, we have p ≈ 0.19′′ yr−1

and ΩS ≈ 1.20′′ yr−1, so this condition is met by all five reso-
nances mentioned above (even though ν51 is right at the limit,
since |ν51| ≈ ΩS).

Figure 18 shows the location and width of the first-order
secular spin–orbit resonances reachable by Saturn as a function
of the distance of Titan. The full effect of Titan on Saturn’s
spin-axis is taken into account, including its contribution in λ′

(see Eq. (39)). For each resonance, the location of the Cassini
states and the separatrix are obtained using the exact analyti-
cal formulas of Saillenfest et al. (2019b); however, since Titan’s
contribution to the precession constant α itself depends on the
obliquity ε (see Eq. (39)), the equations become implicit and
must be solved numerically (e.g. with the bisection method).
As expected, all five resonances converge at the singular point
S1. If the planet is trapped in a secular spin–orbit resonance
during the migration of its satellite, we see that it can behave
very differently according to whether the satellite migrates out-
wards or inwards. For an outward migration, the system goes
straight across the unstable region E1 before reaching the singu-
larity S1; therefore, the satellite is expected to become gradually
eccentric and eventually destabilise (see Sect. 2.4 and Tremaine
et al. 2009). On the contrary, for an inward migration, the system
can go very close to S1 before being brutally destabilised at the
singularity.

Figure 18 can be compared to Figs. 1 and 17 of Saillenfest
et al. (2021b), drawn in terms of Saturn’s effective precession
constant (the vertical and horizontal axes are inverted). Figure 17
of Saillenfest et al. (2021b) is a good example of how using a for-
malism with the precession constant α can be misleading when
the satellite gets close to its Laplace radius. Indeed, because of
the frequency cut at Ωmax ≈ 1.41′′ yr−1, Saturn would be unable
to reach ν14 and ν15 for any distance of Titan, even though the
trajectory in Fig. 17 of Saillenfest et al. (2021b) appears at the
same height as ν14 and ν15 on the graph. Moreover, as shown
in Sect. 3.2, α can tend to infinity while the spin-axis preces-
sion frequency remains finite, which is quite counter-intuitive. In
order to prevent misinterpretations, we advocate avoiding using
α as parameter when the satellite approaches a = rM, and using
the general formula in Eq. (39) or the model of Boué & Laskar
(2006) for the spin-axis precession.

Assuming that Saturn follows the centre of the resonance
with s8 (Cassini state 2) and Titan remains in its Laplace plane
as it migrates (Laplace state 1), all the properties of the sys-
tem can be monitored through the analytical formulas given
in Sects. 2 and 3. The general behaviour of the system is
presented in Fig. 19. On the top left panel, we see that the close-
satellite approximation used in previous articles underestimates
the obliquity increase of Saturn, even though it remains valid
up to an obliquity of about 60◦. As detailed in Sect. 2, we note
that Titan’s inclination is very different according to whether it
reaches the singular point at a = rM from above or from below.
For an outward migration, Titan reaches the singularity with a
quite moderate inclination of about 15◦. Yet, since the width of
the separatrix enclosing Laplace state 2 tends to 180◦ at a = rM,
this gives an idea of the large inclination variations expected
if Titan deviates from the exact equilibrium point, for instance
because of a coupling with the eccentricity becoming unstable
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(see Sect. 2.3). The right column of Fig. 19 gives an idea of the
large separation of timescales between the dynamics of Titan and
of Saturn’s spin axis. The two timescales become commensurate
only in the vicinity of S1, where the libration period of σ3 tends
to zero while Titan’s libration periods tend to infinity because
of the nearby instability. On the top right panel, we can appreci-
ate how Saturn’s spin-axis precession period is maintained to a
constant value as it enters the resonance.

Titan is located today at a mean semi-major axis of a0 ≈

0.49 rM. If Titan goes on migrating outwards, it will eventually
reach a = rM at some time in the future. The simplified migration
law for Titan provided by Lainey et al. (2020) is

a(t) = a0

(
t
t0

)b

, (47)

where t0 is Saturn’s current age and b is a real parameter. Accord-
ing to this formula, Titan will reach a = rM after an interval of
time from today equal to

∆t = t0

( rM

a0

)1/b

− 1

 . (48)

The astrometric measurements of Lainey et al. (2020) yield
values of b ranging in [0.18, 1.71], and their radio-science exper-
iments yield values ranging in [0.34, 0.49]. We deduce that if
Titan goes on migrating as expected, it will reach a = rM between
about 2.4 and 230 Gyr from now according to astrometric mea-
surements, and in about 15 to 33 Gyr according to radio-science
experiments. Figures 18 and 19 show that the system will first

reach the unstable region E1 when a ≈ 0.83 rM, that is, between
about 1.6 and 80 Gyr from now according to astrometric mea-
surements and in about 8.7 to 17 Gyr according to radio-science
experiments. These large values show that the system is unlikely
to destabilise before the Sun leaves the main sequence. Yet,
Saturn and Titan are not located exactly at their respective equi-
librium points, but they oscillate around them with substantial
amplitudes. As shown by Tamayo et al. (2013), this can speed up
the destabilisation process.

Because of the instabilities described above, Saturn and
Titan are not expected to exactly follow Cassini state 2 and
Laplace state 1, especially when they approach the singularity
point S1. For this reason, Fig. 19 can only provide a quali-
tative picture of the evolution of the system. Because of the
intricate and multi-timescale nature of the dynamics, building a
self-consistent numerical model for the evolution of Saturn and
Titan is challenging: the system involves the orbital dynamics
of Titan and Saturn, the spin-axis dynamics of Saturn torqued
by the Sun and by Titan, and other planets of the Solar Sys-
tem should be included as well in some way to produce the
multi-harmonic orbital precession of Saturn. Such a numeri-
cal model should also be fast enough to be usable for gigayear
propagations (while Titan’s orbital period today is only a few
weeks). The design of such a model and the statistical explo-
ration of the chaotic behaviour of Titan and Saturn are left
for future works. Yet, a precise idea of the outcomes of the
instability can already be obtained by mixing the two simpli-
fied models presented in Sects. 2 and 3: on the one hand we
explore numerically the dynamics of Titan when Saturn’s spin-
axis drifts inside the resonance, and on the other hand we explore
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Fig. 19. Evolution of Saturn’s spin axis and Titan’s orbit while following the centre of the secular spin–orbit resonance with s8. We use blue for
Saturn’s spin axis and red for Titan’s orbit. Each panel is described directly on the graph when the legend is not self-explanatory. In the right
column, time is shown both in normalised units (left vertical axis) and in physical units (right vertical axis). The conversion factors are given in
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formula used by Saillenfest et al. (2021b) valid for a close satellite. In the bottom right panel, the black curve in the unstable region corresponds to
the period needed for the eccentricity to be multiplied by exp(2π) ≈ 535.

the behaviour of Saturn while Titan migrates in the Laplace
surface.

4.2. Titan’s orbit

Using the Hamiltonian function in Eq. (1), our setting is simi-
lar to the migration simulations of Tremaine et al. (2009), except
that both the semi-major axis of Titan and the obliquity of Saturn
evolve over time as slow-varying parameters. As a first approx-
imation, their evolution law is provided by the top-left panel
of Fig. 19 (blue curve). Therefore, in our simulations we make
the obliquity of Saturn and the semi-major axis of Titan vary
simultaneously, the latter evolving according to the migration
law given by Eq. (47). We tried various values of b in the full
uncertainty range [0.18, 1.71], but the statistics of the simula-
tions result to be absolutely independent of Titan’s migration

velocity. Indeed, the gigayear timescale of Titan’s orbital
expansion always remains extremely large as compared to the
timescale of its secular dynamics (τ ≈ 4501 yr; see Table 1 and
Fig. 7). Yet, when Titan reaches the unstable region, we do obtain
several possible outcomes due to the intrinsic chaotic divergence
of trajectories.

Figure 20 shows two examples of simulations. As expected,
Titan closely follows its local Laplace plane (blue curve), until
it reaches the neighbourhood of the unstable region E1. At this
point, Titan’s eccentricity increases, as the trajectory wanders in
the vicinity of the stable eccentric equilibrium P′1 (red curve).
Then, P′1 becomes unstable, as shown by the hatched region in
Fig. 11, and Titan’s evolution becomes chaotic. This is where
the two solutions in Fig. 20 diverge. In the case labelled ‘Solu-
tion 1’, Titan jumps right away to a trajectory reaching very
high eccentricity and inclination values. In the case labelled
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Fig. 20. Long-term dynamics of Titan as it migrates away from
Saturn. Saturn is assumed to remain locked in secular spin–orbit res-
onance with s8 at all time; we take its obliquity evolution at the centre
of the resonance (red curve in Fig. 18). Titan evolves according to the
secular Hamiltonian function given in Eq. (1) in which its semi-major
axis is a slowly varying parameter. The top and bottom panels give two
outcomes of the chaotic transitions obtained by using a slightly differ-
ent migration rate. In all panels, the blue curve shows the location of
the circular Laplace state P1, and the red curve shows the location of the
eccentric Laplace state P′1.

‘Solution 2’, Titan catches the eccentric equilibrium P′1 when this
equilibrium becomes stable again (see Fig. 11), but it eventually
goes back to the unstable zone where it reaches high eccen-
tricity and inclination values. In this example, a new transition
occurs just before the end of the simulation, and Titan’s equa-
torial inclination starts oscillating between 0◦ and 180◦. In both
cases presented in Fig. 20, the ecliptic inclination (not shown) at
the end of the integration also oscillates roughly between 0◦ and
180◦. Such extreme inclination variations are not surprising: in
the circular case, Fig. 2 shows how the level curves of the Hamil-
tonian pass from a horizontal structure for ε= 0◦ (panel c) to a
vertical structure at S1 (panel b), where the orbit can roll all the
way around its nodal line. This is traduced by the extent of the
separatrix that reaches 180◦ at S1 (see the bottom left panel of
Fig. 19).
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Fig. 21. Same as Fig. 20, except that the integration is performed using
the unaveraged equations of the restricted three-body problem including
Saturn’s oblateness. The output is then digitally filtered to remove its
short-period component. Due to the chaotic divergence of trajectories,
we ran several simulations with different migration velocity and chose
two of them that resemble the trajectories in Fig. 20.

For comparison, we also performed direct unaveraged
numerical integrations of the restricted three-body problem
including Saturn’s oblateness. In order to reproduce the drift in
Titan’s semi-major axis, we added in its equations of motion a
small additional acceleration that depends on its velocity, and
Saturn’s obliquity is varied accordingly. No orbital or spin-axis
precession motions for Saturn are included. In these simulations,
Titan’s migration is sped up by a factor of about 500 as com-
pared to Eq. (47), which yields reasonable computation times
(a few days or so). As explained above, this acceleration fac-
tor is justified by the extremely large separation between Titan’s
orbital timescale (thousands of years) and its migration timescale
(billions of years). Figure 21 shows two examples of such simu-
lations, chosen for their similarity with Fig. 20. They show that
the secular model truncated at quadrupole order used throughout
this article does capture the essence of the dynamics. In partic-
ular, the evection and ‘ivection’ resonances reported by Speedie
& Zanazzi (2020) to produce additional unstable regions are not
found to play any role in Titan’s future evolution.
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Fig. 22. Numerical integration of Saturn’s spin-axis dynamics for Titan remaining at all time in its circular Laplace equilibrium as it migrates away.
Titan’s migration parameter is set to b = 1 (see Eq. (47)) and each panel corresponds to a given value of Saturn’s polar moment of inertia (see the
red labels in Fig. 23). Trajectories are shown in black. The pink bands are Saturn’s first-order secular spin–orbit resonances, and the blue hatched
area is the region E1 where the Titan’s circular equilibrium is unstable (same as Fig. 18).

Of course, when Titan’s eccentricity increases and begins to
oscillate widely, our model breaks down because the influence
of Titan on Saturn’s spin-axis precession is no longer given by
Eq. (39). As a result, Saturn’s obliquity should no longer follow
the law given in Fig. 18. In order to explore the dynamics in
the unstable region, Saturn’s spin-axis motion should instead be
integrated as well in a self-consistent way. Yet, Figs. 20 and 21
already give an idea of what can happen to Titan’s orbit when
the system reaches the unstable region E1 and the vicinity of the
singular point S1. We see that its eccentricity and inclination can
reach almost any value. In particular, Titan goes well below its
Roche radius in Figs. 20 and 21.

4.3. Saturn’s spin-axis

Using the Hamiltonian function in Eq. (27), our setting is similar
to the migration simulations of Saillenfest et al. (2021b), except
that both the semi-major axis and the inclination of Titan evolve
over time as slowly varying parameters. The problem with this
approach, and the reason why it has not been used in previous
works, is that Titan’s inclination (when it is not in the close-in or
far-away regime) depends on Saturn’s obliquity. Therefore, Sat-
urn’s effective precession constant α′ depends on the obliquity in
a complicated way (see Sect. 3.2), and we lose the Hamiltonian
structure described by Eq. (27).

Yet, except in the vicinity of the singular point S1, the depen-
dence of α′ on the obliquity is weak. Therefore, at first level
of approximation, the equations of motion obtained from the
Hamiltonian in Eq. (27) are still valid, and the dependence of

α′ on the obliquity can be added afterwards in the equations
of motion, in order to account for its long-term drift. Includ-
ing Titan’s Laplace plane inclination in α′ means that for any
obliquity variation of Saturn, Titan instantly moves at the new
equilibrium configuration. As explained above, this approxi-
mation is justified by the large separation between the two
timescales, but it fails near S1, where the inclination variations
of Titan as a function of obliquity are extremely sharp (and dis-
continuous exactly at S1). But as shown in Sect. 4.2, Titan is
expected anyway to be destabilised before actually reaching S1.
Therefore, we stress that this model is not self-consistent; we
use it here as a quick way to assess the relevance of our analyti-
cal predictions in Sect. 4.1, and to give a first qualitative picture
of the different possible trajectories for Saturn. Apart from the
obliquity dependence in α′, our model is the same as that of
Saillenfest et al. (2021b): the orbit of Saturn evolves according
to the full series of Laskar (1990), and Titan is made to migrate
outwards according to the migration law in Eq. (47). Since
Saturn’s polar moment of inertia and Titan’s migration rate are
not well known, we perform a large number of simulations with
parameters (b, λ) sampled in their uncertainty ranges. We refer
to Saillenfest et al. (2021b) for a discussion about all parameters
and their uncertainties. We note that because of our rigid rota-
tion model, λ can be considered as an effective parameter that
may slightly differ from what would be obtained using a refined
model with differential rotation.

Figure 22 shows examples of trajectories for six different val-
ues of Saturn’s normalised polar moment of inertia λ. Contrary
to Saillenfest et al. (2021b), we do not represent the trajectories
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Fig. 23. Maximum obliquity reached by Saturn for Titan migrating from its current location up to a = rM. Titan is assumed to remain at all time in
its circular Laplace equilibrium. The integration time (top horizontal axis) depends on Titan’s migration parameter b (bottom horizontal axis). The
noisy grey curve is the 90◦ obliquity level. The red labels show the location of the six examples of trajectory presented in Fig. 22.

as a function of Saturn’s precession constant because this con-
stant is ill-defined near the singular point S1 (see Sect. 3.2). In
order to compare Fig. 22 with previous works, we stress that the
initial point of the trajectory is the same on each panel; what
differs here is the locations of the resonances, which are slightly
shifted from one value of λ to another. We recognise the different
types of trajectories described by Saillenfest et al. (2021b):

In panel a, Saturn is currently out of the resonance and it
goes farther away as Titan migrates. The two crossings of the ν51
resonance do not produce substantial obliquity variations.

In panel b, Saturn currently oscillates inside the resonance
with a large amplitude. When the resonance width decreases, the
adiabatic invariant cannot be conserved and Saturn escapes the
resonance by crossing the separatrix. In this case, Saturn reaches
a large obliquity, but Titan may remain stable anyway because it
does not enter deep inside the unstable zone E1 (hatched region).
Eventually, Saturn crosses the s8 resonance again when Titan
passes in the far-satellite regime, producing an obliquity kick.

In panels c and d, Saturn currently oscillates closely around
the resonance centre (with a minimum libration amplitude of 30◦
or so; see Ward & Hamilton 2004). As shown in previous works,
this configuration is the most likely in a dynamical point of
view, regardless of the actual mechanism that is responsible for
Saturn’s resonance encounter with s8 (Hamilton & Ward 2004;
Boué et al. 2009; Vokrouhlický & Nesvorný 2015; Saillenfest
et al. 2021b). In this case, we see that Saturn is able to get very
close to the singular point S1 before being destabilised, because
the neighbouring resonances are thin and their overlap does not
produce much chaos. After the chaotic transition, Saturn can
either be ejected from the resonance with an obliquity of about
90◦ or slightly more (panel c), or it can be recaptured at once
when the resonance width increases again (panel d). However,

as shown in Sect. 4.2, Titan is expected to be completely desta-
bilised before reaching S1, so the evolution of Saturn’s obliquity
should remain frozen at some point as Titan is removed (colli-
sion or ejection). The questions of where this transition happens
and what is the statistical outcome of the destabilisation would
require a self-consistent numerical model; these questions are
left for future works.

In panels e and f, Saturn did not reach yet the resonance
with s8 today. As discussed by Saillenfest et al. (2021b), this
configuration would require a value of λ that is slightly out
of its expected range (namely λ & 0.241 while we expect λ ∈
[0.200, 0.240]). We include it here for completeness. As Saturn
encounters the resonance, it can either cross it without being cap-
tured (panel e), in which case its obliquity suffers from a small
kick, or it can be captured (panel f), in which case we end up
with the same kind of evolution as in panel b.

As a summary of these numerical experiments, Fig. 23 shows
the maximum obliquity reached by Saturn for Titan migrating
from its current location a = a0 up to its midpoint radius a = rM.
The figure shows the results obtained in a grid made of 250 val-
ues of b and 501 values of λ. We stress that, contrary to previous
works, the integration duration is not the same for each run, but
depends on b (see the top horizontal axis). The bottom dark-blue
region in Fig. 23 corresponds to the cases where Saturn is out
of the resonance today and goes farther away as Titan migrates.
The large coloured region corresponds to values of the param-
eters that put Saturn inside the resonance today. It is narrower
for larger b because large-amplitude librations are unstable if
Titan’s migration is too fast. The top region (which is out of the
expected range for λ) corresponds to cases where Saturn did not
reach yet the resonance today but will in the future, resulting in
a capture (coloured stripe) or not (dark background). See Fig. 16
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of Saillenfest et al. (2021b) for a discussion about this striped
pattern.

From Fig. 23, we conclude that Saturn gets extreme obliq-
uities in a large region of the parameter space. If Saturn is
inside the resonance today, then its obliquity reaches at least
about 75◦. This limit is robust in spite of our simplified model
because it is reached before encountering the unstable region
(see Fig. 22b). The preferred parameter range for Saturn in pre-
vious studies (Boué et al. 2009; Vokrouhlický & Nesvorný 2015;
Saillenfest et al. 2021b) is precisely the one producing the max-
imum obliquity increase (about 91◦ in our simplified model); it
is also the one producing the maximum destabilisation for Titan
(see Sect. 4.2). However, according to the exact migration rate of
Titan, the system may not reach the instability by the end of the
Sun’s main sequence.

5. Summary and discussions

Titan is observed to migrate away from Saturn much faster than
previously thought (Lainey et al. 2020). This migration is likely
responsible for Saturn’s current axis tilt of 26.7◦ (Saillenfest et al.
2021a), in which case Saturn should still be trapped today in sec-
ular spin–orbit resonance with Neptune’s nodal precession mode
s8. Since Titan goes on migrating today, Saturn’s obliquity is
expected to increase in the future (Saillenfest et al. 2021b). In
this article, we investigated the final outcome of this mechanism,
and the behaviour of the system when Titan will cross its Laplace
radius.

The intricate nature of the dynamics requires the evolution
of both the satellite’s orbit and the planet’s spin axis to be stud-
ied. Building on the work of Tremaine et al. (2009), we have
shown that the three circular equilibria for the satellite (dubbed
here Laplace states P1, P2, and P3) are organised around two
critical regions S1 and S2 in the parameter space, in which the
pairs (P1,P3) or (P2,P3), respectively, are degenerate. In partic-
ular, S1 is defined as the point where the planet’s obliquity is
ε= 90◦ and the satellite’s semi-major axis is a = 21/5rL (where rL
is the Laplace radius defined by Tremaine et al. 2009).

We found that all three circular equilibria bifurcate to eccen-
tric equilibrium configurations (noted P′1, P′2, P′3, and P′′3 ) in some
regions of the parameter space. The location of all eccentric
equilibria can be expressed with explicit parametric represen-
tations. The critical regions S1 and S2 both have an eccentric
continuation, in which the pairs (P′1,P

′
3) or (P′2,P

′′
3 ), respectively,

are degenerate.
Regular satellites like Titan form in their classical Laplace

plane (i.e. at equilibrium P1). As long as the equilibrium remains
stable, they stay in its vicinity during their orbital migration, and
their orbital inclination varies accordingly (see e.g. Tremaine
et al. 2009). Using numerical integrations, we verified that this is
indeed the case for Titan, even when taking into account its fast
orbital expansion measured by Lainey et al. (2020).

As shown in previous works, satellites increase the mean
spin-axis precession rate Ω0 of their host planet, with a mag-
nitude that depends on their orbital distance (see e.g. Boué &
Laskar 2006). Consequently, if the planet is trapped in a secular
spin–orbit resonance, any migration of its satellites is compen-
sated by an obliquity change, so that Ω0 is maintained fixed at the
resonant value (usually called Cassini state 2). In other words,
the planet and its satellite follow a level curve of Ω0 in the plane
(a, ε). When the satellite’s inclination is fully taken into account
(i.e. without the usual close-in or far-away approximations),
the singularity S1 in its orbital dynamics is transferred to the

spin-axis precession rate of the planet. As a result, if the
satellite is massive enough, most level curves of Ω0 converge
towards the singularity S1. This means that if the satellite
reaches the vicinity of its Laplace radius during its migra-
tion, the obliquity of its host planet is driven towards ε= 90◦.
If the resonance is large, the planet can even go beyond this
limit. Simplified analytical formulas give the conditions required
for a full 90◦-tilt. These conditions are met for Titan and
Saturn and the s8 resonance, and confirmed using numerical
simulations.

In the vicinity of S1, however, several kinds of instabil-
ity are expected to happen. Firstly, S1 lies at the border of a
region in the parameter space where the circular Laplace state
P1 is unstable. As discussed in previous works (Tremaine et al.
2009; Tamayo et al. 2013), when a satellite crosses this border,
it can transfer to the stable eccentric equilibrium P′1, but this
equilibrium soon becomes unstable, too. At this point, numer-
ical integrations show that Titan’s eccentricity and inclination
completely destabilise, potentially allowing for the ejection of
Titan or its collision on Saturn. In a hypothetical system in
which the satellite would migrate inwards, the destabilisation
is expected to be more violent, because in this case the sys-
tem would smoothly reach the extreme vicinity of S1, where the
instability is strongest, before being destabilised.

Secondly, all neighbouring secular spin–orbit resonances
converge towards S1. The planet’s spin axis is therefore expected
to reach a chaotic region at some point, produced by resonance
overlap. In the case of Saturn, the neighbouring resonances
are very thin, and numerical experiments show that the chaotic
region is restricted to a very small region near S1.

Thirdly, the widths of all secular spin–orbit resonances
decrease in the vicinity of S1. As a result, if the libration
amplitude of the planet inside the resonance is too large, it
can be ejected before actually reaching ε= 90◦. Using a sim-
plified numerical model, we performed a preliminary survey
of Saturn’s behaviour and explored a large range for its poorly
known moment of inertia. We found that Saturn can indeed be
ejected from resonance with an obliquity ε & 75◦, depending on
its libration amplitude inside the resonance. Regardless of the
mechanism responsible for Saturn’s capture in secular spin–orbit
resonance, previous studies show that Saturn is likely located
deep inside the resonance today (Boué et al. 2009; Vokrouhlický
& Nesvorný 2015; Saillenfest et al. 2021b). In this case,
Saturn’s obliquity increase is maximum, and it may reach ε ≈
91◦ in the future (provided that Titan is not ejected before;
see above). Determining the statistical outcome of this dou-
ble dynamical instability for Saturn and Titan is left for future
works. It will require a self-consistent model coupling the orbital
motions of Saturn and Titan, the spin-axis dynamics of Saturn
torqued by the Sun and by Titan, and the multi-harmonic orbital
precession of Saturn produced by the other planets of the Solar
System.

Our results about Saturn and Titan rely on the assump-
tion that Titan will go on migrating for gigayears in the future.
If instead, Titan’s migration rate strongly drops before reach-
ing the unstable zone (i.e. if Titan is released out of the tidal
resonance-locking mechanism of Fuller et al. 2016) the system
would remain frozen, with roughly constant obliquity for Saturn
and fixed orbit for Titan. However, to our knowledge, there is no
evidence showing that Titan’s migration would stop in the future
(at least not before it becomes strongly unstable). The timescale
required to tilt Saturn also plays an important role. According
to the precise migration rate of Titan, Saturn and Titan should
reach the instability region between a few gigayears and several
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tens of gigayears from now, provided that Titan goes on migrat-
ing as expected. Therefore, the evolution timescale may be too
slow for the system to reach instability by the end of the Sun’s
main sequence. Yet, even if it does not reach instability in time,
Saturn would anyway get very large obliquity values, as already
described in Fig. 16 of Saillenfest et al. (2021b).

Moreover, the mechanism described here is generic: it only
requires a secular spin–orbit resonance and a substantially mas-
sive migrating moon. The structure of the resonance and its
convergence towards ε= 90◦ near the moon’s Laplace radius are
the same for any (exo)planet considered, as well as the mecha-
nism of destabilisation. In particular, tilting Uranus on a gigayear
timescale by a former satellite now removed by the instabil-
ity is a promising mechanism that has not been explored yet
(Boué & Laskar 2010; Rogoszinski & Hamilton 2020, 2021).
This mechanism may also provide a dynamical explanation for
the ‘super-puff’ exoplanets thought to possess a massive face-
on ring (Akinsanmi et al. 2020; Piro & Vissapragada 2020): the
destroyed satellite would both provide the tilting mechanism (for
the obliquity to be near 90◦) and the ring material. More work
is now needed to assess the feasibility of this scenario to these
specific systems.
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Appendix A: Conversion formulas between the
equator and ecliptic reference frames

The ecliptic reference frame is defined with the third axis
perpendicular to the planet’s orbit; we write (IC, ωC,ΩC) the
Keplerian elements of the satellite measured in this frame, which
are, respectively, the inclination, the argument of pericentre, and
the longitude of the ascending node. The equator reference frame
is defined with the third axis perpendicular to the planet’s equa-
tor; we write (IQ, ωQ,ΩQ) the Keplerian elements of the satellite
measured in this frame. Passing from one frame to the other cor-
responds to a rotation of ±ε around the mutual line of nodes of
the two reference planes (i.e. the line joining both equinoxes), ε
being the obliquity of the planet. We obtain

cos IC = cos ε cos IQ + sin ε sin IQ cos δQ, (A.1)

and
cosωC sin IC = cos ε cosωQ sin IQ

+ sin ε(sinωQ sin δQ − cosωQ cos IQ cos δQ),
sinωC sin IC = cos ε sinωQ sin IQ

− sin ε(cosωQ sin δQ + sinωQ cos IQ cos δQ),
(A.2)

where δQ ≡ ΩQ − Ω� and Ω� is the ascending node of the star
measured along the equator of the planet. The first equation
reverses as

cos IQ = cos ε cos IC + sin ε sin IC cos δC, (A.3)

where δC ≡ ΩC−ΩP and ΩP is the ascending node of the planet’s
equator measured along the ecliptic. These three equations are all
what we need to express the Hamiltonian functionH in Eq. (1) in
terms of the equator or ecliptic coordinates only. The expressions
obtained are given in Eqs. (3), (4) and (5).

Appendix B: Circular Laplace equilibria

In Sect. 2, we describe the secular orbital dynamics of a mass-
less satellite perturbed by the Sun and by the oblateness of its
host planet at quadrupole order. We call the three kinds of circu-
lar equilibria the ‘Laplace states’ P1, P2, and P3. Even though the
equilibrium P1 is the one that matters most for regular satellites,
all equilibria can play a role in the dynamics when the satel-
lite becomes unstable and explores wide regions in the phase
space (see Sect. 4). For this reason, we recall here the stability
properties of all three circular equilibria.

Appendix B.1: Circular equilibrium P1

P1 is stable to inclination variations (see Fig. 1). For δQ = 0,
the equatorial inclination IQ1 of the satellite at P1 is given by
Eq. (14). Inclination oscillations around the Laplace state P1 have
frequency ξ1 given in Eq. (16). For a ε= 0◦ or 180◦, it simplifies
into Eq. (17). Likewise, the value obtained for ε= 90◦ is

ξ2
1

∣∣∣∣
ε= 90◦

=


−
κ2

4

 r5
M

a5 − 1
 r2

M

a2 if a < rM,

−
κ2

4

1 − r5
M

a5

 a3

r3
M

if a > rM,

(B.1)

and we note that it tends to 0 at the singular point S1 (i.e. a = rM),
since we retrieve the eigenfrequency ξ2

13 = 0 along the degen-
erate stable circle L13. For a very close satellite, ξ1 becomes
independent of the obliquity:

ξ2
1

∣∣∣∣
a→0

= −
κ2

4
r7

M

a7 = −

3
2

nJ2
R2

eq

a2

2

, (B.2)

where n =
√
µP/a3 is the satellite’s mean motion. This is the

usual nodal precession frequency produced by the oblateness of
the central body in absence of other perturber (see e.g. Murray
& Dermott 1999).

P1 is stable to eccentricity variations, except in the region
E1 described in Sect. 2.3. Eccentricity oscillations around P1
have frequency µ1 given in Eq. (19). For a zero-obliquity planet,
Eq. (19) simplifies to

µ2
1

∣∣∣∣
ε= 0

= −
κ2

4

 r5
M

a5 + 1
2

a3

r3
M

, (B.3)

which is exactly equal to the inclination eigenfrequency ξ2
1 given

by Eq. (17). Therefore, for a planet with a near-zero obliquity,
the oscillations of the inclination and eccentricity of a satellite
around the classical Laplace state P1 have the same frequencies.
The value obtained for ε= 90◦ is

µ2
1

∣∣∣∣
ε= 90◦

=


−
κ2

4

 r5
M

a5 − 3
  r5

M

a5 + 2
 a3

r3
M

if a < rM,

−
κ2

16

2 − r5
M

a5

2
a3

r3
M

if a > rM.

(B.4)

We see that µ2
1 does not go to zero when a → rM and that it has

two different limits; this means that going through the singularity
S1 produces a discontinuity of µ2

1. This could have been expected
since P1 and P3 are inverted (i.e. there is a discontinuity in their
location as well, jumping by 90◦ in inclination; see Sect. 2.2).

For a very close satellite, µ1 becomes independent of the
obliquity:

µ2
1

∣∣∣∣
a→0

= −
κ2

4
r7

M

a7 = −

3
2

nJ2
R2

eq

a2

2

, (B.5)

which is the same value of ξ2
1 in Eq. (B.2). This is the usual

pericentre precession frequency produced by the oblateness of
the central body in absence of other perturber (see e.g. Murray
& Dermott 1999).

The eccentricity eigenfrequency µ2
13 along the degenerate

stable circle L13 (see Fig. 2b) is given by

µ2
13 = −

κ2

16
(
1 + 5 cos2 IQ

)(
1 − 5 cos2 IQ

)
. (B.6)

The value of µ2
13 depends on the inclination of the satellite

along the degenerate circle. We retrieve the discontinuous lim-
its of Eq. (B.4) when a → rM by putting IQ = 0◦ or 90◦ in
Eq. (B.6). Along the degenerate circle, the satellite is stable only
if cos2 IQ 6 1/5, that is, if 63◦ . IQ . 117◦. This corresponds to
the region where the J2-induced precession of ωQ is negative.
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Appendix B.2: Circular equilibrium P2

P2 is stable to inclination variations, and located at δQ = ± π/2
and IQ = 90◦ (see Fig. 1). As described by Tremaine et al. (2009),
P2 corresponds to an orbit that is perpendicular to both the equa-
tor and the ecliptic planes. The frequency of small-amplitude
inclination oscillations around P2 is given by

ξ2
2 = −

κ2

4
r2

M

a2 sin2 ε. (B.7)

As expected, the value of ξ2
2 is always negative, and it tends to

zero in the region S2 of the parameter space (i.e. ε= 0◦ or 180◦),
since we retrieve the eigenfrequency ξ2

23 = 0 along the degenerate
stable circle L23.

The frequency of small-amplitude eccentricity oscillations
around P2 is given by

µ2
2 = −

κ2

16

 r5
M

a5 + 6
  r5

M

a5 − 4
 a3

r3
M

. (B.8)

We deduce that P2 is stable to eccentricity variations only for
close enough satellites that verify a 6 r3, where we define

r5
3 =

1
4

r5
M. (B.9)

The region where P2 is unstable to eccentricity variations is
therefore

E2 =
{
a/rM > 1/41/5, ε ∈ [0◦, 180◦]

}
. (B.10)

The eccentricity eigenfrequency µ2
23 along the degenerate

stable circle L23 (see Fig. 2c) is also given by Eq. (B.8). Hence,
as for the Laplace state P2, it is only stable for close-enough
satellites.

Appendix B.3: Circular equilibrium P3

P3 is unstable to inclination variations (see Fig. 1). The squared
eigenvalue ξ2

3 of the linearised problem at P3 is given by Eq. (16)
where IQ1 must be replaced by IQ3, which is equal to IQ1 ± 90◦.
As expected, ξ2

3 > 0 whenever P3 exists, and ξ2
3 tends to 0 at the

singular regions S1 and S2, where we retrieve the eigenfrequen-
cies ξ2

13 = 0 and ξ2
23 = 0 along the degenerate stable circles L13

and L23.
Even though P3 is unstable to inclination variations any-

where it exists in the parameter space, this is not the case for
eccentricity variations (Tremaine et al. 2009). As illustrated in
Figs. 5 and B.1, P3 is stable to eccentricity variations for close-
enough satellites and in a region resembling a water drop. The
squared eigenvalue µ2

3 of the linearised problem at P3 is given by
Eq. (19) where IQ1 must be replaced by IQ3 = IQ1 ± 90◦. We call
E3 the unstable region where µ2

3 > 0. Its border can be expressed
piecewise as

cos2 ε=
−2u2 + 13u + 38 − (6 + u)

√
−4u2 + 12u + 41

2u
(B.11)

for r3 6 a 6 rL, and Eq. (22) for rL 6 a 6 rM, recalling that rL is
the traditional ‘Laplace radius’ defined in Eq. (7), and r3 is given
in Eq. (B.9).
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Fig. B.1. Region E3 of the parameter space where the Laplace state
P3 is unstable to eccentricity variations. The colours and labels have
the same meaning as in Fig. 8, and the axes have the same scale.
The border of E3 is obtained using the closed-form expression in
Eqs. (B.11) and (22). The drop-like portion of the contour reaches its
maximum width at a5/r5

M = 2/3 where the obliquity on the boundary is
cos2 ε= (51 − 25

√
3)/726.

Appendix C: Eccentric Laplace equilibria

The Hamiltonian function in Eq. (1) describes the secular orbital
dynamics of a massless satellite perturbed by the star and by the
oblateness of its host planet at quadrupole order. In Sect. 2.2,
the circular equilibrium configurations, called Laplace states P1,
P2, and P3 are described. Wherever they are defined, all three of
them are stable to eccentricity variations, except in the regions
E1, E2, and E3, respectively, described in Sect. 2.3 and illustrated
in Fig. 5.

Tremaine et al. (2009) have shown that the system also
admits eccentric equilibria, that is, configurations in which the
satellite has a frozen eccentric orbit. Two of these configurations
bifurcate away from P1 and P2 where these equilibria become
unstable (i.e. at the borders of the E1 and E2 regions).

In this section, we recall these results and go further in the
analytical characterisation of the eccentric equilibria, allowing
one to compute them more easily and in a form that is more
directly usable in the context of our work. Furthermore, we show
that the remaining eccentric equilibria described by Tremaine
et al. (2009) bifurcate away from P3 at the border of region
E3; therefore, all eccentric equilibria (that we call below P′1,
P′2, P′3, and P′′3 ) emerge from a bifurcation of a circular Laplace
equilibrium.

Appendix C.1: Eccentric equilibrium P′1
The eccentric equilibrium P′1 corresponds to one of the configu-
rations called ‘eccentric coplanar–coplanar Laplace equilibria’
by Tremaine et al. (2009). As such, the orbital angles of the
satellite at P′1 are ωQ = π/2 mod π and δQ = 0. As before,
because of the symmetries of the secular problem, each eccentric
equilibrium point has a twin obtained by the transformation
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(δQ, IQ)→ (π+ δQ, π− IQ) that corresponds to the same Laplace
state with reversed orbital motion (see e.g. Fig. 1). The equato-
rial inclination I′Q1 of the satellite at P′1 is given in Eq. (24), and
its eccentricity e is obtained by solving the equation

r5
M

a5 (1 − 3 cos2 I′Q1) = 2(1 − e2)5/2
(
1 − 4 sin2(ε − I′Q1)

)
. (C.1)

By injecting the expression of I′Q1 into Eq. (C.1), we obtain an
equation that only depends on e and on the parameters of the
problem, a/rM and ε. If we solve it for e → 0, we obtain again
the boundary of the E1 region defined at Eqs. (21) and (22); this
shows that P′1 indeed bifurcates away from P1 where the latter
becomes unstable.

When trying to solve Eq. (C.1) for η=
√

1 − e2 as a function
of u = r5

M/a
5 and ε, we obtain an intractable polynomial of order

20. However, there exists a straightforward analytical expression
for ε as a function of u and η. Even though this is not exactly
what we are looking for, this expression can be used to visualise
the solutions in a graphical form and to set up efficient root-
finding algorithms to reverse the expression for η. We define the
obliquity solutions ε+ and ε− as

cos2 ε± =
Z − 8X ±Y

2Z
, (C.2)

where
X = 24η12 − 90η10 + 75η8 − 4uη7 + 5uη5 − u2η2 + 5u2,

Y = (4η5 − u)
√
−8xu2 − 8yu + 3z,

Z = uη3(4η2 − 15)2,

(C.3)

and
x = 8η4 − 40η2 + 25,

y= η5(4η2 − 5)2,

z = η6(4η2 − 5)2(32η4 − 120η2 + 75).

(C.4)

The values of cos2 ε+ and cos2 ε− are shown in Fig. C.1. They
give the location of the eccentric equilibrium P′1 in the whole
space of parameters. We see that solutions exist for any eccen-
tricity value. However, they lie in restricted regions of the (η, u)
space, whose boundaries can be defined piecewise by analyti-
cal formulas of the form u = f (η). These formulas are directly
labelled on the figure, except u+ and u− whose expressions are:

u±(η) =
−η3(5 − 4η2)

4(8η4 − 40η2 + 25)

[
2η2(5 − 4η2)

± 5
√

2(3 − 4η2)(15 − 4η2)(2η4 − 8η2 + 5)
]
.

(C.5)

Along the curves u+(η) and u−(η), the variable Y cancels in
Eq. (C.3), which means that cos2 ε+ and cos2 ε− have the same
value (double root). Along the remaining boundary curves in
Fig. C.1 (green, orange, and magenta curves), the solution cos ε
represented is equal to zero.

Instead of projecting the solutions in the (η, u) plane as in
Fig. C.1, the closed-form expression in Eq. (C.2) can be used
to plot the eccentricity of the satellite at equilibrium P′1 as a
function of the parameters in a parametric form. We obtain a
three-dimensional surface, as illustrated in Fig. C.2. As expected,
the bottom section of this surface (i.e. at e = 0) coincides with

Table C.1. Junction points of the piecewise-defined boundaries in
Figs. C.1 and C.6.

label η2 u
a 0 0
b 1

(
2 + 5

√
22

)
/28

c 1 1

d
(
15 − 5

√
3
)
/8 75

32

√
5
2

(
33 − 19

√
3
)

e 5/8 25
√

10/64
f 5/6 25

√
30/108

g 5/7 75
√

35/343

h
(
10 − 5

√
2
)
/4 75

16

√
5
(
58 − 41

√
2
)

i 1 2
j 1 3

Notes. The variables are η=
√

1 − e2 and u = r5
M/a

5. The points are
sorted by increasing value of u. The obliquity ε is equal to 90◦ at all
points except at point b, where cos2 ε± = (977 − 200

√
22)/2002.

the border of the region E1 where the circular equilibrium P1 is
unstable (see Figs. 5 and 8). In the main text, Fig. 9 shows the
value of the eccentricity at P′1 as a colour scale, as well as the
value of the inclination obtained using Eq. (24). In order to draw
this figure, the tube-like portion of the three-dimensional surface
has been cut off.

Along the three-dimensional curve S1 defined in Eq. (26) and
depicted by a magenta curve in Figs. C.1 and C.2, the three-
dimensional surface has a cusp. As discussed in the main text,
the curve S1 is the eccentric continuation of the singular point
S1 described in Sect. 2.2, where the equilibrium point P1 is sin-
gular. We note that S1 pierces the three-dimensional surface in
Fig. C.2 and reappears on the other side (this corresponds to the
dotted portion in Fig. C.1).

We did not find a closed-form expression for the boundary
dividing the regions of the parameter space where P′1 is sta-
ble from the regions where it is unstable. However, the stability
nature of P′1 as a function of the parameters can be determined
numerically: the equilibrium is stable wherever the linearised
system has no eigenvalue with positive real part. Figure C.3
shows the stable and unstable regions projected on the three-
dimensional surface of P′1. Sections of this surface can be seen
in Fig. 6 of Tremaine et al. (2009). In the stable regions, the
oscillation frequencies of the satellite are illustrated in Fig. 11.

For completeness, Fig. C.4 illustrates the stability nature of
P′1 in the space (rM/a, ε, e2), where the full three-dimensional
shape can be visualised, including the region where a→ ∞. We
see that there is a small additional region where P′1 is stable, for a
large semi-major axis and an eccentricity very close to 1 (see the
thin grey border on the right side of the figure). This thin stable
region also appears in Fig. 5 of Tremaine et al. (2009) as the blue
points lying at the tip of the middle triangle6.

Appendix C.2: Eccentric equilibrium P′2
The eccentric equilibrium P′2 corresponds to the configuration
called ‘eccentric orthogonal–coplanar Laplace equilibrium’ by
Tremaine et al. (2009). As such, the orbital inclination of the

6 Due to their similar properties, the equilibria P′1 and P′3 have been
studied together by Tremaine et al. (2009). Their Fig. 5 features there-
fore both P′1 (for inclinations smaller than 90◦) and P′3 (for inclinations
larger than 90◦).
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Fig. C.1. Location of the eccentric equilibrium P′1 as a function of the parameters. The colour shades show the two closed-form obliquity solutions
given by Eq. (C.2). Some levels are highlighted in white. The definition regions of the solutions are bounded by curves of the form u = f (η), as
labelled on the figures (coloured curves). Among those, u+ and u− are given in Eq. (C.5). The junction points (black labels) are given in Table C.1.
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Fig. C.2. Eccentricity e of the satellite at equilibrium P′1 as a function of the parameters. The solutions lie on a three-dimensional surface shown
here from two viewing angles. This figure is obtained by stitching together the patches represented in Fig. C.1. For better comparison, the dividing
curves are drawn on the surface using the same colour code. The top tube-like portion of the surface has been cut; as shown in Fig. C.1, it extends
up to a→ ∞ (i.e. u→ 0). The equilibrium P′1 is singular along the magenta curve, called S1 in the text.
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Fig. C.3. Stability of the equilibrium point P′1 as a function of the parameters. The stable and unstable regions are painted in grey and red,
respectively, and they are projected on the three-dimensional surface describing the eccentricity of the satellite. As in Fig. C.2, the surface is seen
from two viewing angles and the top tube-like portion has been cut for better readability.
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Fig. C.4. Same as Fig. C.3 but replacing the coordinates a/rM and e by
rM/a and e2, respectively. Contrary to previous figures, the top tube-like
portion of the surface is seen in its totality.

satellite at P′2 is IQ = IC = 90◦, while its orbital angles are ωC = 0
mod π and δQ = π/2 (or 3π/2 for its twin equilibrium with
reversed orbital motion). The eccentricity of the satellite at P′2
is given by the relation

u = 4η5, (C.6)

where u = r5
M/a

5 and η=
√

1 − e2. If we solve it for e → 0, we
obtain again the critical distance a = r3 defined in Eq. (B.9);
this shows that P′2 indeed bifurcates away from P2 where the
latter becomes unstable. Hence, P′2 exists for a > r3 and the
eccentricity of the satellite at P′2 is

e′2 =

√
1 −

(
rM/a
41/5

)2

. (C.7)

The bifurcation of P′2 from P2 can be visualised as a three-
dimensional surface, illustrated in Fig. C.5.

As shown by Tremaine et al. (2009), P′2 is stable wherever it
exists. The eigenfrequencies of the linearised system are given
by

ξ′22 = − κ2
(

a
rM

)3

(1 − e′22 ) sin2 ε, (C.8)

and

µ′22 = −
25
2
κ2

(
a

rM

)3

e′22 . (C.9)
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Fig. C.5. Eccentricity e of the satellite at equilibrium P′2 as a function of
the parameters. The eccentricity is given by Eq. (C.7); it only depends
on the semi-major axis a/rM of the satellite. The equilibrium is stable
wherever it exists.

The eccentricity and inclination of the satellite are coupled in
the vicinity of P′2, so they their oscillation spectra both contain
the two frequencies ξ′2 and µ′2. At the transition radius a = r3, we
note that ξ′2 and µ′2 are equal to the oscillation frequencies ξ2
and µ2 around P2 given in Eqs. (B.7) and (B.8), confirming that
the eccentric equilibrium P′2 bifurcates away from the circular
equilibrium P2.

Appendix C.3: Eccentric equilibria P′3 and P′′3
As explained in Sect. 2, the circular equilibrium P3 is unstable to
eccentricity variations in the region E3 of the parameter space.
In its illustrations in Figs. 5 and B.1, we see that the border of E3
can be divided into two components: a small drop-like boundary
for a > rL (whose expression is given by Eq. (22)), and a V-
shaped boundary for a < rL spanning all values of obliquity ε
from 0 to 180◦ (and whose expression is given by Eq. (B.11)).
Below, we show that along these two boundaries, the circular
equilibrium P3 bifurcates into two distinct eccentric equilibria.
We call them P′3 and P′′3 , respectively, for the eccentric equilibria
bifurcating away from the drop-like boundary and from the V-
shaped boundary.

Eccentric equilibrium P′3: The eccentric equilibrium P′3
corresponds to one of the configurations called ‘eccentric
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coplanar–coplanar Laplace equilibria’ by Tremaine et al. (2009).
As such, the orbital angles of the satellite at P′3 are ωQ = π/2
mod π and δQ = 0 (or δQ = π for the twin equilibrium with
reversed orbital motion). The equatorial inclination of the satel-
lite at P′3 can be written as

I′Q3 =
π

2
+

1
2

atan2
[
sin(2ε), v + cos(2ε)

]
, (C.10)

where v depends on the eccentricity at equilibrium, as given in
Eq. (25). The inclination I′Q3 in Eq. (C.10) has the same form as
IQ3 in Eq. (14), but where u = r5

M/a
5 is replaced by v. The two

definitions coincide for e = 0.
The eccentricity e of the satellite at P′3 is obtained by solving

the equation (C.1), but where I′Q1 must be replaced by I′Q3. If we
solve it for e → 0, we obtain again the drop-like boundary of
the E3 region; this shows that P′3 indeed bifurcates away from P3
along this boundary. The resolution of the equation in the general
case is very similar to what is presented in Appendix C.1 for P′1:
we obtain a closed-form analytical expression for ε as a function
of u and η, which is again given by Eqs. (C.2), (C.3), and (C.4),
but with a differing domain of definition.

The values of cos2 ε+ and cos2 ε− for the eccentric equilib-
rium P′3 are shown in Fig. C.6. They give its location in the whole
space of parameters. Contrary to P′1, we see that solutions do
not exist for all eccentricity values: there is a gap between ηg
and ηf where P′3 does not exist (see the corresponding values of
eccentricity in Table C.1).

The expression in Eq. (C.2) can be used to plot the eccen-
tricity of the satellite at equilibrium P′3 in a parametric form. We
obtain the three-dimensional surface illustrated in Fig. C.7. As
expected, the bottom section of this surface (i.e. at e = 0) coin-
cides with the drop-like boundary of the region E3 where the
circular equilibrium P3 is unstable to eccentricity variations (see
Figs. 5 and B.1). As mentioned in Appendix C.1, the eccentric
equilibrium P′3 is singular along the three-dimensional curve S1
given in Eq. (26), where I′Q3 is undefined. It corresponds to a
degenerate equilibrium which results from the merging of P′1 and
P′3. Indeed, we note that S1 is a contact region between the two
three-dimensional surfaces shown in Figs. C.2 and C.7 (see the
magenta curve).

Figure C.8 highlights the regions of the parameter space
where P′3 is stable, projected on the three-dimensional surface.
Interestingly, a small stable region exists on the top portion of
the three-dimensional surface. This stable region is visible in
Fig. 5 by Tremaine et al. (2009) as the blue points in the upper-
most triangle. Therefore, even though the circular equilibrium
P3 described in Sect. 2 is unstable to inclination variations in
the whole space of parameters, this is not everywhere the case
for its eccentric counterpart P′3. Yet, Fig. C.8 shows that this sta-
ble region is disconnected from the low-eccentricity portion of
the three-dimensional surface, which means that a regular satel-
lite starting with a roughly circular orbit cannot reach it by a
smooth change of parameters occurring after its formation. For
completeness, Fig. C.9 illustrates the stability nature of P′3 in the
space (rM/a, ε, e2), where the full three-dimensional shape can
be visualised, including the region where a→ ∞. No additional
stable region can be seen.

Eccentric equilibrium P′′3 : The eccentric equilibrium P′′3
corresponds to the configuration called ‘eccentric coplanar–
orthogonal Laplace equilibrium’ by Tremaine et al. (2009). As
such, the orbital angles of the satellite at P′′3 are ωQ = 0 mod π
and δQ = 0 (or δQ = π for the twin equilibrium with reversed

orbital motion). The equatorial inclination of the satellite at P′′3
can be written as

I′′Q3 =
π

2
+

1
2

atan2
[
sin(2ε), w + cos(2ε)

]
, (C.11)

where we define

w=
r5

M

a5

1
(1 − e2)5/2 , (C.12)

in which e is the satellite’s eccentricity at equilibrium. The incli-
nation I′′Q3 in Eq. (C.11) has the same form as IQ3 in Eq. (14), but
where u = r5

M/a
5 is replaced by w. The two definitions coincide

for e = 0.
The eccentricity e of the satellite at P′′3 is given by the

implicit equation

cos2 ε=
−2w2 + 13w + 38 − (6 + w)

√
−4w2 + 12w + 41

2w
, (C.13)

that must be inverted to obtain w (and thus e) as a function of
ε. We recognise the V-shaped boundary of the region E3 (see
Eq. (B.11)), but where u is replaced by w. This shows that P′′3
indeed bifurcates away from P3 along this boundary. Through
the inversion of Eq. (C.13), the inclination I′′Q3 is a function of
ε only and it does not depend on the orbital distance a/rM. The
eccentric equilibrium P′′3 is unstable wherever it exists, except for
ε= 0◦ or 180◦, where its unstable mode tends to zero. Indeed, the
three-dimensional domain

S2 =
{
u = 4η5, ε= 0◦ or 180◦

}
, (C.14)

is the eccentric continuation of the singular region S2 described
in Sect. 2, where P2 and P3 merge with the separatrix. Similarly,
S2 results from the merging of P′2 and P′′3 , which degenerate into
an equilibrium region L ′

23. The bifurcation of P′′3 from P3 and the
two curves that define S2 can be visualised in Fig. C.10. We see
that S2 is the contact region between the two three-dimensional
surfaces shown in Figs. C.5 and C.10.

Inside the region S2, the degenerate equilibrium L ′
23 is

defined by an eccentricity e given by Eq. (C.7), an inclina-
tion IQ = 90◦, an argument of pericentre ωQ = 0 mod π, and
any value for the longitude of node δQ. In the vicinity of L ′

23,
the eigenfrequencies of the system are given by ξ′23 = 0, and by
Eq. (C.9) for µ′223.

Appendix D: Self-consistent formula for the
spin-axis precession rate

In Eq. (42), we give a simplified expression for the spin-axis pre-
cession rate of an oblate planet affected by a satellite. Taking
advantage of the simplicity of this expression, many properties
of the precession rate are given by closed-form analytical formu-
las, such as the location and magnitude of the maximum rate, or
the shape of its level curves as a function of the parameters (see
Sect. 3.2). However, as stressed in the main text, Eq. (42) is not
self-consistent. The satellite is considered massless to compute
its equilibrium inclination (Laplace state P1), but massive when
it comes to its influence on the planet’s spin axis. Then, the spin
axis is taken as fixed when studying the satellite’s dynamics, but
moving when taking into account secular spin–orbit resonances.
Both these approximations are expected to be accurate for satel-
lites with a small enough mass, because in this case the satellite’s
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Fig. C.6. Same as Fig. C.1, but showing the location of the eccentric equilibrium P′3 as a function of the parameters. On the top panel, the definition
region of cos2 ε+ is very narrow, comprised between the curves u = η3(5 − 4η2) and u = u−(η).
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Fig. C.7. Eccentricity e of the satellite at equilibrium P′3 as a function of the parameters. This figure is obtained by stitching together the patches
represented in Fig. C.6. The top tube-like portion of the surface has been cut; as shown in Fig. C.6, it extends up to a → ∞ (i.e. u → 0). The
equilibrium P′3 is singular along the magenta curve, called S1 in the text.
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Fig. C.8. Stability of the equilibrium point P′3 as a function of the parameters. The stable and unstable regions are painted in grey and red,
respectively, and they are projected on the three-dimensional surface describing the eccentricity of the satellite. As in Fig. C.7, the surface is seen
from two viewing angles and the top tube-like portion has been cut for better readability.
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Fig. C.9. Same as Fig. C.8 but replacing the coordinates a/rM and e by
rM/a and e2, respectively. Contrary to previous figures, the top tube-like
portion of the surface is seen in its totality.
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Fig. C.10. Eccentricity e of the satellite at equilibrium P′′3 as a func-
tion of the parameters. The colour gives its stability: grey for stable and
red for unstable. P′′3 is unstable in the whole parameter space except
along S2, which results from the merging of P′′3 and P′2 into a degenerate
equilibrium.

orbit evolves on a much shorter timescale than the planet’s spin
axis, and only the very long-term component of the satellite’s
dynamics (mean secular motion) affects the planet’s obliquity.
Yet, the validity range of our approximations are not known a
priori, and since we explore a large range of mass parameters

(see Fig. 17), a comparison with self-consistent models would
be useful.

For this purpose, we use the model of Boué & Laskar (2006),
which describes the orbital dynamics of an oblate planet and of
its (massive) satellite, together with the spin-axis dynamics of
the planet, considering the fully coupled equations of motion
at quadrupolar order. Since the satellite is nonetheless consid-
ered to be less massive than its host planet, high-order terms
in δ are neglected, where δ= m/(m + M) with our notations.
Even though the model of Boué & Laskar (2006) stands for any
eccentricity of the satellite, it is averaged over the satellite’s argu-
ment of pericentre, which means that it cannot be used when
the satellite oscillates around one of the stable eccentric equi-
libria described in Sect. 2.4. Under the approximation that the
total angular momentum of the system is contained in the orbital
motion of the planet (which is almost exactly verified in prac-
tice), Boué & Laskar (2006) give an analytical expression for the
time-evolution of the satellite’s orbital pole and the planet’s spin
axis (see their Eq. 133). Due to its high level of generality, this
expression is quite complicated and cumbersome to use. How-
ever, it shows that if the satellite is placed on its circular Laplace
plane, then the planet and its satellite rigidly precess as a whole
at the frequency

Ω =
T +
√

∆

2
, (D.1)

where
T = −

ax + byz
γ

−
cz + bxy

α
,

∆ =

(
ax + byz

γ
−
cz + bxy

α

)2

+ 4
b2xy2z
γα

,

(D.2)

in which

x = cos ε, y= cos IQ, z = cos(ε − IQ), (D.3)

are constant, and the physical parameters of the system are
contained in the coefficients

α=
Mm

M + m

√
µP(1 + m/M)a, γ= λMR2

eqω, (D.4)
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and

a=
3
2

µ�MJ2R2
eq

a3
�(1 − e2

�)3/2
, b=

3
2

µPmJ2R2
eq

a3 ,

c=
3
4

µ�
mM

M+m a2

a3
�(1 − e2

�)3/2
.

(D.5)

In this self-consistent model, the equatorial inclination IQ of the
satellite at its circular Laplace equilibrium is obtained by can-
celling the nutation amplitude of the solution (coefficient s in
Eq. 133 of Boué & Laskar 2006). This amounts to solving for IQ
the equation

a sin(2ε) + b sin(2IQ) + 2γΩ sin ε= 0, (D.6)

where Ω depends itself on IQ through Eq. (D.1). For a given set
of parameters, this equation can easily be solved numerically.
For small masses, one can check that we retrieve very accurately
the inclination given by the classical massless-case formula in
Eq. (13).

Figure D.1 shows the precession period obtained for the
parameters of Saturn and Titan. The mass of Titan is varied
between each panel so as to produce the same mass parameter
η as in Fig. 17; all other physical parameters are left unchanged.
Because physical parameters are deeply entangled in the self-
consistent model of Boué & Laskar (2006), the precession rate
in Eq. (D.1) cannot be expressed in terms of a few macro-
parameters, as done in Sect. 3.2. As a result, Fig. D.1 is specific
to the parameters of Titan and Saturn, whereas Fig. 17 is generic.

For small satellite masses, Figs. 17 and D.1 give undistin-
guishable results (panels a and b). For a mass of the order of
Titan’s (panel c), small differences in magnitude are noticeable
near a = rM, as shown by the slight displacements of the level
curves labelled 0.2 and 0.17. For a satellite about ten times
as massive as Titan (panel d), the ridge line is slightly shifted
right as compared to our simplified model, but its magnitude is
still very similar to that of Fig. 17. For even larger masses (not
shown), the ridge line is further shifted right, and the contri-
bution of the satellite to λ becomes non-negligible (see Eq. 39).
However, the overall structure of the dynamics remains the same,
with a singular point at ε= 90◦ towards which the level curves
converge.

From this comparison, we conclude that the simplified model
presented in Sect. 3.2 provides a very good qualitative descrip-
tion of the dynamics, even though the exact magnitude of the
precession rate can differ somewhat for large satellite-to-planet
mass ratios. For the Earth-Moon system, whose mass ratio is as
large as about 0.01, a self-consistent precession model would be
required to get precise quantitative results.

0

30

60

90

120

150

180

0

30

60

90

120

150

180

0

30

60

90

120

150

180

0

30

60

90

120

150

180

0 0.5 1 1.5 2

ε
(d

eg
)

0

30

60

90

120

150

180

0.01 0.1 1 10 100 1000

spin-axis precession period (unit T )

a. η = 0.1

0.96
1

1.3

3

ε
(d

eg
)

0

30

60

90

120

150

180

b. η = 1

0.7

0.8
1

1.5

3

ε
(d

eg
)

0

30

60

90

120

150

180

c. η = 10

0.17

0.
2

0.
41

3

ε
(d

eg
)

a/rM

0

30

60

90

120

150

180

0 0.5 1 1.5 2

d. η = 100

0.02

0.
02
10.
040.
15

1

Fig. D.1. Same as Fig. 17, but using the self-consistent precession rate
of Boué & Laskar (2006) given in Eq. (D.1). The physical parameters
are those of Titan and Saturn, except that the mass of Titan is adjusted
to produce the same mass parameters η as in Fig. 17. In order to ease
the comparison, the ridge line and singular point (in red) are those of
the simplified model, and the labelled level curves are the same as in
Fig. 17 (except the level 0.021 in panel d which is added here).
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