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Abstract. Multi-view multi-object tracking algorithms are expected to
resolve multi-object tracking persistent issues within a single camera.
However, the inconsistency of camera videos in most of the surveillance
systems obstructs the ability of re-identifying and jointly tracking tar-
gets through different views. As a crucial task in multi-camera tracking,
assigning targets from one view to another is considered as an assign-
ment problem. This paper is presenting an alternative approach based
on Unbalanced Optimal Transport for the unbalanced assignment prob-
lem. On each view, targets’ position and appearance are projected on a
learned metric space, and then an Unbalanced Optimal Transport algo-
rithm is applied to find the optimal assignment of targets between pairs
of views. The experiments on common multi-camera databases show the
superiority of our proposal to the heuristic approach on MOT metrics.

Keywords: Multi-object Tracking · Multi-view Tracking · Unbalanced
Optimal Transport.

1 Introduction

Multiple Object Tracking (MOT) is still one of the most challenging and vi-
tal problems in computer vision. Therein, the goal is to determine the position
and identity of a variable number of targets throughout video frames. In the
past recent years, the rise of deep learning approaches [17] has led to an in-
crease in the performance, robustness and reliability of Single Object Tracking
(SOT) algorithms. Implementing these SOT trackers to track multiple objects
simultaneously, however, appears challenging for many typical reasons, such as
initialization step at every frame, interactions between targets causing frequent
mutual occlusions and identity switches.

A popular approach to track multiple objects is to adopt the tracking-by-
detections paradigm ([1, 40]), relying on detections at every frame. This approach
has been reinforced in the recent years since many powerful object detection al-
gorithms ([16, 29, 23]), e.g., Faster R-CNN, Mask R-CNN, YOLO, SSD, have
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emerged and even outperformed humans in the past recent years. In principle,
the detection-based MOT methods directly link together detections which be-
long to targets, on the entire videos, in order to form their final trajectories.
Tracking-by-detection MOT methods lead to data association algorithms, often
formulated as a global optimization problems in which a graph-based represen-
tation of detections with edges weighted by a distance (or similarity) is adopted.
The distance between detections mostly includes Euclidean distance, time delay,
and appearance affinity [40, 2, 35, 32]. The online/offline distinguishes between
methods that solely use results from previous detections, and the ones that con-
sider the whole (or batch) time-sequence in order to compute data associations.

Both SOT-based and online association-based methods require an efficient
way to control the state of targets in order to prevent missing tracks, occlu-
sions, and identity switches. For SOT-based methods, Markov Decision Processes
(MDP) were adopted in the papers [38, 42] to tackle this issue. This approach has
been extended to an overlapping multiple camera setting in [21] and has shown
capability in allowing the individual cameras to recapture/re-identify their lost
targets.

Within multiple camera systems, Multi-Camera Multi-Object Tracking (MC-
MOT) or Multi-Target Multi-Camera Tracking (MTMCT) problem is frequently
formulated as an assignment problem or, in many cases, the re-identification/
recognition problems as the object of interest is mainly human or transport vehi-
cle. Since data association approaches are extendable in multi-camera cases, most
of MCMOT algorithms of the state-of-the-art are mainly derived from single-
camera association-based MOT approaches. Indeed, the role of multi-camera
tracking is to link detections or tracklets across cameras in the network. Gen-
erally, associating targets between two views is formulated as assignment prob-
lem, or bi-graph matching problem, which is originally resolved by Hungarian
or Munkres algorithms. This is not the case of MOT because of the varying
target number. As a solution to this issue, the modified version of the Munkres
algorithm is used with virtual targets.

In our case study, we address the target association problem between different
views within an overlapping camera system for online multi-camera applications.
The target matching is well defined by the unbalanced assignment problem, in
which the number of targets in one view is not equal to those in another view.
In this paper, we propose a novel assignment approach formulated as an un-
balanced optimal transport problem for multi-view tracking applications. Our
second contribution is to develop a deep distance learning framework for Opti-
mal Transport. Our third contribution is to adopt the target association between
two cameras within multiple camera systems. Our multi-camera tracking frame-
work is functional with mere pairs of cameras, which is called as “dual-camera”
approach in the multi-camera tracking problem (Fig. 1). Our approach helps
elevate the all-camera condition, renders it more flexible to any number of cam-
eras inside the camera system, and essentially adapts well with our proposed
assignment problem at the early of this paper.
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The structure of this paper is as follows: we first mention the works related to
ours; secondly, we describe the formulation of our dual-camera target association
problem as unbalanced optimal transport; then introduce our proposed distance
learning method of Optimal Transport based on a deep neural network; and
finally, we present our experimental results showing the advantage of our method.

a) b)

Fig. 1. (a) Assignment between two distributions as Optimal Transport problem (b)
Target assignment across cameras in multiple cameras tracking application

2 Related Works

2.1 Single view multi-object tracking

Since handling multiple different targets is the main work of MOT algorithms,
the tracking-by-detection paradigm has evolved as their major approach. This is
especially true as the result of the advent of high-performing category detectors.
Tracking-by-detection approaches can be sorted into the following two groups.

Offline approaches Following the tracking-by-detection paradigm [40, 2], graph
optimization problems are formulated to create links between detections of tar-
gets, in successive frames, then the chain of detections through frames determines
the full trajectory of a target. These methods have become popular because they
simplified the classic issues mentioned above, such as trackers management, in-
teraction, initialization, and update. The data association problem is formulated
via a graph whose nodes represent the detections/features and whose edges are
weighted by the distance (or similarity) between detections. Association meth-
ods usually collect all detections/features over the video, the current position of
a target (a node of the graph) being thus determined by adjacent nodes that
represent past and future detections. The goal of data association methods is to
optimize the cost made by the edges of the graph. There are various methods
using global and flow network optimization algorithms [41], and relying on cri-
teria such as Graph Clique [40, 36], Graph Multicut [18, 31], Network Flow [41,
27, 2, 7], Maximum Weight Independent Set [5, 20, 8]
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Online approaches To fulfill the need for immediate tracking results in many
applications, numerous papers proposed online tracking methods [1, 27, 32, 11,
42]. Within the tracking-by-detection paradigm, only detections in the current
and previous frames are used to form targets’ trajectories. One of the most pop-
ular approaches to associate detections is the bipartite matching formulation [32,
28, 42], usually solved by using the Hungarian algorithm or heuristic approaches.
Some offline methods, which can perform online when their optimization pro-
cess only uses detections from the first to current frames of videos (i.e., causal
system), or several methods can be considered as “near-online” methods such
as [8, 31], as their offline optimization process applies on a window of frames
at the time in videos, which causes the delay on tracking results. Alternatively,
the tracking-by-detection strategy and multiple SOT algorithms are combined
to benefit from the SOT trackers, and the ability to recover lost targets of data
association approaches in [38, 42], classified as SOT-based approaches.

2.2 Multi-view multi-object tracking

MOT approaches based on a single camera have recently been extended to mul-
tiple cameras. These approaches have been proposed in an attempt to cover the
observation of the objects fully. Multiple-camera tracking can solve the problem
of occlusion, where the interesting targets are frequently occluded by the envi-
ronment or by other targets. First attempts in using multiple (non-overlapping)
cameras dealt with the re-identification problem, in order to track objects be-
tween cameras [37]. Following this approach, many researchers studied the prob-
lem of collaboratively using overlapping cameras for tracking. Almost all authors
made the hypothesis that the exact position of each camera is already known,
and camera calibration has been done before applying the tracking process. In
the tracking phase, the trackers implemented on different cameras usually pool
their results with 3-D coordination via projection from the image plane to ground
plane in the real world [24, 33, 26]. This allows combining the different results,
and in particular, reconnecting detections/tracklets to missing targets. Mean-
while, K-shortest path (KSP) [15] only uses detections from all cameras to first
detect targets’ positions on the ground via a POM (Probabilistic Occupancy
Map), then perform tracking later.

Besides of the above generic multi-camera tracking approaches, the methods
based on the tracking-by-detection arises as an alternative. These methods in-
herit from most of the global optimization methods of MOT in single view such
as graph multicuts [35, 31, 18], graph cliques [40, 10], network flow [41, 27, 7].
Meanwhile, the other data association methods including bipartite matching [1,
32] and independent set [5, 20] do not address multi-camera tracking problem, be-
cause the tracklets are formed through the detections in consecutive frames (i.e.,
a short time window) of a single view, whereas tracking with multiple cameras is
to connect trajectories of targets at different times. Some other approaches [36,
19] generalize multi-camera tracking into two main steps: MOT on every sin-
gle view, then linking the trajectories across cameras. Unfortunately, none of
those mentioned methods perform online. Recently, Le et al. [21] introduced



Unbalanced Optimal Transport in Multi-Camera Tracking Applications 5

an online multi-camera tracking based on data association on each processing
frame. In the next section, we introduce our dual-camera tracking approach in
a multi-camera setting based on unbalanced optimal transport to handle hard
occlusions and prevents identity switches. Our strategy is to assign targets from
one to another view with the help of Deep Neural Nets. In literature, there are
several approaches that have the same initiative to combine deep neural nets
and optimization methods on which gradients are backpropagated such as [39,
4]. However, to the best of our knowledge, our paper is the first one applying
this strategy in MOT with the multiple overlapping cameras.

3 Proposed Method

3.1 Targets Association Across Cameras as an Unbalanced Optimal
Transport Problem

Fig. 2. The pipeline of our distance learning framework. The red arrow indicates the
direction during training process, meanwhile the blue lines for testing.

This section describes in detail our approach to solving target association
across cameras via optimal transport. Within a frame-synchronized, overlapping
camera network, associating targets between different cameras emerges as the
main issue for collaborative tracking.

Let us start by considering the case of a network consisting of two cameras
C1 and C2. At a given frame index F , we have {v11,F , . . . , v1n,F } targets detected

in Camera C1 and {v21,F , . . . , v2m,F } targets detected in Camera C2. In order to
simplify our notations, we drop the F subscript in sequel. In general, n 6= m,
since some targets can be seen by only one camera. This can happen either
because a given target occupies a position that does not belong the common
field of view or, more crucially, because of occlusion.

Each detection vki , k ∈ {1, 2} is characterized by an feature vector generally
consisting of an appearance vector, extracted from the bounding box provided
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by the detector, and the target’s position. The current practice leverages the
capability of recent deep convolutional neural networks to extract useful ap-
pearance features from the bounding boxes provided by the detectors, e.g. by
using VGG [34] or ResNet [17] as a ‘backbone’. For the target’s position, it is
necessary to define a common coordinate system, where the position of targets
can be converted into the same measure unit. For pedestrian tracking, this issue
is usually resolved by projecting the target’s feet point on the image into the
ground plane via the homography matrix of the camera. This is the solution we
retain in our current setting.

These feature vectors allow to define a cost matrix C ∈ Rn×m, whose entry
Ci,j defines the cost of associating target v1i to target v2j . The matrix C allows,
in turn, to formulate the problem of target association between Cameras C1 and
C2, at frame index F , as a, possibly unbalanced, assignment problem. These
problems amount to solving integer linear programs, using either combinatorial
algorithms such as the Hungarian or the auction algorithm, or, ignoring the
integer constraints, continuous linear programming.

For associating targets across different cameras, the definition of an appro-
priate cost matrix poses two serious problems. The first one is related to the
definition of appearance features. These features should incorporate some kind
of invariance with respect to the different cameras, that is, the appearance fea-
ture of the same target computed through two different cameras should be close.
This invariance is not necessarily enforced when using popular convolutional
networks such as VGG or ResNet. The second issue is related to the combina-
tion of the appearance features and the position, the appearance features being
generally in the range [0, 1], while the position extending to the whole field of
view.

In order to solve the issues raised by the two previous problems, we pro-
pose to adopt a learning-based approach, where the appearance features and
their combination with the target’s position are learned from a set of examples.
The training data in this case are generated from the training sequences of the
datasets we consider. More precisely, we extract from each training video frame
the provided bounding boxes and the corresponding ground-truth assignments.
With this training set at hand, we aim at end-to-end gradient-based learning,
that is, the empirical loss that we minimize for learning should be related to the
assignment task we consider, and implemented by (automatically computed)
gradient descent.

Using combinatorial algorithms such as the Hungarian or auction algorithms
rules out the possibility of using automatic differentiation engines for perform-
ing gradient descent. Furthermore, even when ignoring integer constraints, linear
programming solvers can hardly be differentiated, since their solutions are not
unique. To deal with this problem, we follow a recent line of works [9] by con-
sidering the natural relaxation of the assignment, namely the optimal transport
problem and its entropic regularization [25].

In our formulation of assignment problem of targets in two views via Optimal
Transport, the sets of targets v1i

n
in one view is being matched with those v2i

m
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in other view. Those two sets represents two empirical distributions: one Source
and one Target, supported on a feature space X .

α :=

n∑
i=1

aiδxi
, β :=

m∑
j=1

bjδyj
, (1)

where δx is the Dirac at x ∈ X and ai and bj are the corresponding weights.
In our setting, we will consider uniform discrete measures, which is, all the
components of a weight vector are equal.

The optimal transport between source ans target is represented by an optimal
transport plan P, which minimizes the following transportation cost:

LC(a,b) := min
P∈U(a,b)

〈C,P〉 = min
P∈U(a,b)

∑
i,j

CijPij , (2)

where C is the ground cost matrix, whose elements Cij are the pairwise distance
between the Dirac δxi of the source measure α and those δyj of the target mea-
sure β, and U(a,b) is a coupling from the source a to the target b. The feasible
couplings are defined by a set of coupling matrices {P ∈ Rn×m

+ }, where Pij de-
picts the amount of mass flowing from xi toward yj , under the mass preservation
constraint.

U(a,b) = {P ∈ Rn×m
+ : P1m = a and PT1n = b}. (3)

The Optimal Transport (OT) problem with entropic regularization has a
dual form following [13]:

min
P>0

max
(f,g)∈Rn×Rm

〈C,P〉 − εH(P) + 〈a−P1m, f〉+ 〈b−PT1n,g〉 (4)

where the set of admissible dual variables (called potentials) (f ∈ Rn,g ∈
Rm). The optimal transport plan solved via the dual problem (4) has a closed-
form [13]:

P? = π = exp

(
1

ε
(f⊕ g−C)

)
. (α⊗ β) , (5)

where f⊕g is denoted as a sum matrix of 2 vectors f and g whose cell {f⊕ g}ij
is equal to fi +gj , in the same manner, α⊗β is also denoted as a product matrix
of 2 vectors α and β whose cell {α⊗ β}ij is equal to αiβj .

3.2 Ground cost learning for UOT-based targets association across
cameras

This section describes our proposed deep distance learning framework, which
helps to compute an appropriate distance for the Optimal Transport problem
between targets of one camera and those of another. More concretely, on each
camera, the appearance feature of each target is extracted from its image patch
via a deep convolutional neural network, e.g. VGG [34], ResNet [17]. Meanwhile,
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its position x is determined by projecting the target’s feet point on the image into
the ground plane via the homography matrix of the camera. Both the appearance
and location feature vectors are the input of a deep neural network whose output
is an embedding in a feature space X . The collection of all points mapped from all
targets of a camera via the deep neural net generates a distribution. As discussed
in the previous section, given two distributions originated from the targets of a
pair of cameras, target association in a pair of two cameras is an Unbalanced
Optimal Transport from a distribution, called source, to the other one, called
target. Therefore, the Optimal Transport plan is followed by a thresholding step,
to obtain a binary matrix as the association matrix of targets between the two
cameras. Fig. 2 displays the pipeline of our distance learning framework, which
aims to learn ground cost between targets across cameras so that the optimal
transport plan approximates the ground-truth assignment.

Because our deep-learning-based method is a supervised learning approach, it
is required a training data with labels. Our training data are directly generated
from the training sequences of a dataset. Precisely, for each frame of videos,
every pair of cameras gives a single assignment as the label of a sample, while
the data of the sample is extracted from the ground-truth bounding boxes via
the deep extracting feature net. In the case of N cameras in the network, the
combination of camera possible pairs is N(N − 1)/2, which is also the number
of samples generated in each frame instant.

In our formulation, for each target i, given Φi ∈ R2048 (i.e., output of
ResNet50 backbone [17]) and xi ∈ R2 (i.e., target coordinate on ground), the
embedding function fw, via our deep neural network (see Fig. 3), projects the
appearance feature and location of target i into the feature space X ,

fw : (Φ, x)→ X ,

where w is the parameters of the deep neural net. As a result of unbalanced
optimal transport, the transport plan shows the mass flows from point i of source
to point j of target. Based on the properties of optimal transport [25], any pair of
close points distributions source and target results in a significant mass flow on
its transport plan compared with others. Fig. 4 (a) is an optimal transport plan
in which ith row represents the mass of the ith source point being transferred
to all target. Since only consistent mass transfers from one point on source to a
unique point in target is sought, the optimal transport plan between source and
target is expected to be well “sparse”, which means that the matching can be
deduced straightforwardly (see Fig. 4 (b)) by thresholding the optimal transport
plan. We then can obtain the assignment from source to target.

In terms of optimization, the dissimilarity between the optimal transport
plan Pε(α, β) and the ground-truth assignment G(α, β) is measured by a loss
function L. The learnable parameters w of our neural net is then determined via
a minimization problem:

w = arg min
w
L (Pε (.;w) ,G(.)) (6)
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(a)

(b)

Fig. 3. Proposed distance learning neural net. The neural net consists of a CNN back-
bone (e.g. ResNet50 in our case), which extract appearance features from raw image,
and a series of Fully Connected (FC) layers with ReLU layers as activations. Model
(a) with locations at the bottom of the deep distance network, meanwhile, model (b)
with locations at the second last FC layer.

a) b)

Fig. 4. Comparison between optimal transport plan (a) and assignment matrix (b)

The loss functions in our framework are formulated as following. Given two sets

of targets
{
vk1
i

}
n

and
{
vk2
j

}
m

, each belongs to a single camera, the assignment

task is to find the correspondence of common targets in the pair of cameras k1
and k2 while excluding the targets which can be seen in only one view. Given
Pε ∈ Rn×m

+ the transport plan and G ∈ {0, 1}n×m the ground-truth assignment,
we propose our loss which is delivered from the dual problem of regularized
optimal transport problem (4). Therefore, the first order condition to reach the
optimal solution [25] yields to:

log(Pij) =
fi + gj −Cij

ε
(7)

In the training phase of our experiments, by default, both total masses of the
measure α and β are equal 1. The constraint of mass conservation in the Bal-
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anced Optimal Transport problem leads to the sum of all elements of the opti-
mal transport plan P smaller or equal 1. The equality happens in the case of
the balanced optimal transport, and the inequality for the Unbalanced Optimal
Transport case. As a result, the ground-truth assignment G needs to be nor-
malized to keep the assignment matrix and optimal transport plan comparable.
Hence, from the expression of the transport plan (7), our loss is formulated as
follows:

L (Pε,G) =
∑
i,j

∣∣∣∣log(G′ij)−max

(
fi + gj −Cij

ε
, log σ

)∣∣∣∣ (8)

where the normalized assignment coupling Gi,j is defined as

G′ij =
Gij∑

i,j Gij + γ
+ σ ≥ σ (9)

with σ is a tiny threshold value, and γ is a normalization constant. This threshold
value is added to avoid the logarithm of zero value in the loss function (8) and
to set a margin for any near-zero transport, which does not contribute to the
distance loss if its value is extremely low.

Additionally, the parameters of our neural net w are updated iteratively via
minimizing the loss L. The derivation of the loss function to the net parame-
ters ∂L/∂w is computed via back-propagation, which occurs after every optimal
transport of a source-target pair from two cameras.

4 Experimental Results

4.1 Implementations

In our implementations, we build two versions of distance learning neural nets
in order to compute the source-target distance in the Optimal Transport:

(a) The appearance feature of targets obtained from the backbone of ResNet50,
in addition to their location, is considered as the inputs of our distance
learning network. Our deep network is a series of Full Connected Layers with
ReLU layer on the top of each. The outputs of FC layers are respectively
1024, 512, 256 and 128 (see Fig. 3 (a)).

(b) The second model is modified from the original one, but instead of using lo-
cations in the first layer, it is concatenated with the second last output layer.
The intuition behind is to emphasize the location feature of targets, because,
in tracking applications, positions of targets are crucial to the performance
of tracking algorithm (see Fig. 3 (b)).

In the deployment phase, numerous experiments with different configura-
tions are conducted within the framework of multiple camera tracking of the
paper [21]. Therefore, the target assignment or matching is applied on only two
cameras, collaborative tracking in our multiple camera approach occurs on pairs
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of cameras, but one camera can reach all others through the whole tracking
process. Precisely, at each frame, each camera consecutively pairs with all other
cameras, then within each pair of cameras, an optimal transport plan C is com-
puted in order to link targets from one camera to the other in the pair. As
mentioned in the section 3.1, the value of each cell Cij of the optimal transport
plan implies how likely element i of source set is matched to element j of target
set based on the amount of mass being transferred, named OT value. Therefore,
each missing target on one view is associated with its corresponding target on
each other view by an OT value obtained from its optimal transport plan. Hence,
the tracking result of the missing target is replaced by the “tracked” target with
the highest value among its correspondences on all other cameras.

The Optimal Transport algorithm we used in this paper is a public Opti-
mal Transport library [14] on Python with GPU parallelization support, named
KeOps-GeomLoss3. The parameters of the unbalanced optimal transport prob-
lem (4) are set as follows:p = 2; “blur” = 0.5 → ε = blurp; “reach” = 0.1 →
τ1 = τ2 = τ = reachp; Dϕ = KL : soft Kulback–Leibler divergence.

Meanwhile, the other parameters in the expression (9) are adjusted for σ =
10−8 and γ = 10−4. The value of threshold to convert transport plan to assign-
ment matrix is set equal to 10−3, which is greater than σ in order to reduce
the sensibility during testing phrase. The detailed implementation of our deep
distance learning method will be available publicly on our project page.

4.2 Benchmarking Performance

This section shows our experimental results verifying the efficiency of the multi-
camera MOT algorithm with various appearance features. As a performance
evaluation for MOT algorithms, the benchmark MotChallenge [22] has been
released with two datasets (MOT15 and MOT16), which contain many single-
view video sequences recorded by static or dynamic cameras, and the evaluation
metrics of CLEAR MOT [3] and ID measure [30] are used. Additionally, the
MotChallenge also provides multiple video sequences, but most of them are not
from multiple camera aspect, which requires overlapping zones, synchronization,
calibration. Therefore, these datasets, unfortunately, unfit to this case study
that focuses on using multiple overlapping views to tackle the targets missing
by occlusions. As the multi-camera method aims to improve identity robustness
in single views, we will emphasize ID scores in the sequel.

Datasets. In our experiments we used the well-known PETS2009 [12] and
EPFL Multi-camera Pedestrian Videos [2] datasets. Among all sequences of
PETS2009, the most relevant and suitable for our multiple-camera tracking sys-
tem is “PETS09-S2L1” with 7 views from 7 synchronized and calibrated cameras.
For our experiment, only one main view (from the camera 1) and 4 close-up views
(from the cameras 5, 6, 7, and 8) are used. Besides of the sequence “PETS09-
S2L1” with 7 cameras, the sequence “PETS09-S2L2” is also available with only
3 cameras. The scenario of surveillance is to track an influx of people moving

3 https://www.kernel-operations.io/geomloss/
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on the roads with different speed, and this makes it far more crowded that
“PETS09-S2L1”. Since the lack of cameras in this sequence, we set up dual-
camera tracking experiments on View 1 and View 2. View 3 is excluded, due
to its small impact on the sequence and the absence of ground-truth data as
well. On the other hand, the EPFL dataset provides multiple indoor and out-
door video sequences, recording pedestrians by 4 different cameras. Due to the
similarity between sequence scenarios, only the sequence “Terrace1” is selected
for the experiments. In terms of camera topology, only about 15 − 20% of the
observable zones are covered by all cameras in our tracking sequences.

Detection. In all tracking-by-detection approaches, the detector plays an
important role in tracking performance. Detections in video frames are generated
by the public high-accuracy detectors such as OpenPose [6] and R-CNN [16].

Evaluation metric. To validate the efficiency of our various settings on
the multi-camera MOT approach, we adopt the CLEAR MOT metrics and ID
measures and in particular the following scores: MOTA (multiple-object tracking
accuracy), MOTP (multiple-object tracking precision), IDs (identity switches),
IDF1 (ID F1-score), IDP (ID precision), IDR (ID Recall), False Positive (FP)
and False Negative (FN). For further details on the metric, we recommend the
MOTChallenge website1. In comparison between MOT scores and ID-measures,
all multiple camera approaches slightly improves both MOTA and MOTP scores,
regarding to ID-measures. Because the CLEAR MOT metric does not focus
on re-identification ability of tracking algorithms [30], while ID-measure scores
does. In other words, the significant improvement can be seen on IDF1 and IDP
score. As another important indicator for tracking performance in CLEAR MOT
metric, IDs score (i.e. identity switches) relates more to ID preservation, which
is essential in multiple camera tracking. Therefore, in the following analysis, we
measure the impact of methods based on IDF1, IDP and IDs scores rather than
MOTA and MOTP.

4.3 Performance analysis

The results shown in the following tables are the average values of all views.
Concretely, the overall tracking results of the PETS sequence can be seen in
the Table 1, Table 2 and Table 3. Each score column has either a ↑ or a ↓
indicating whether better corresponds to higher or lower, respectively. The red
color indicates the best score and the blue for the second best.

Primarily, our multi-camera tracking method aims to address hard occlusion
problems. It leads to an important reduction of identity switches and a significant
improvement of ID measures in comparison with the single-camera method. In
the sequence “PETS09-S2L1”, the targets have their complex movements and
mutual interactions inside the overlapped area of the tracking scene. All the
methods using the target trajectory as the features of the affinity measure show
the better scores in all categories, in comparison with the approaches, which
do not consider historical position record of targets (i.e., trajectories), but only
the instant measure including image patch and position of targets. In detail, the
method with full camera collaboration (All-cam) [21] shows off its superiority.
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Method + Feature IDF1↑ IDP ↑ IDs↓ MOTA↑ MOTP↑
Single cam [38]+∅ 57.49 62.24 333 68.44 68.83

All cam [21]+path 72.8 78.53 98 73.26 70.69

KSP [15]+∅ 21.51 18.16 812 -29.63 64.27

Dual-cam [21]+path 67.96 72.72 126 73.4 70.65

Dual-cam UOT+DL (a) 68.15 73.41 153 73.16 70.81

Dual-cam UOT+DL (b) 66.71 71.73 174 72.19 70.65

Dual-cam UOT+pos 66.04 70.66 163 72.76 70.60

Table 1. Scores on “PETS09-S2L1” multi-camera sequence.

Meanwhile, our Unbalanced Optimal Transport approach (UOT) is less robust,
but still significantly improves tracking scores compared to single-camera ap-
proach. Notwithstanding, in the tests with the sequence “EPFL/terrace1”, the
tracking scene composes 8 identities moving mainly around a relatively small
area covered by a smaller camera number, which makes the scene more crowded
and targets hardly seen by all cameras. Consequently, the original approach [21]
failed to improve tracking results, because, with a smaller camera amount, it is
obviously less probable that there are more than 2 or 3 cameras observed the
same target at the same time. The results in Tab. 2 show that all other ap-
proaches with dual-camera mode perform significantly better than the original
ones. The next remark is that in the scenario where there are only short tra-
jectories that can be seen, the trajectory feature is less reliable. In other words,
shorter trajectories, less effective the original approach is. Hence, in Tab. 2,
our distance learning method based on Optimal Transport outweighs the con-
ventional approaches which only use position or trajectory of target as input
feature for affinity measure.

Method + Feature IDF1↑ IDP ↑ IDs↓ MOTA↑ MOTP↑
Single cam [38]+∅ 21.88 25.66 388 55.98 72.53

All cam [21]+path 21.32 25.05 461 54.14 72.47

KSP [15]+∅ 25.85 23.51 695 19.57 62.26

Dual-cam [21]+path 23.23 26.72 382 56.71 72.43

Dual-cam UOT+DL (a) 24.36 31.40 305 46.86 72.91

Dual-cam UOT+DL (b) 25.15 28.88 385 56.93 72.63

Dual-cam UOT+pos 22.00 25.32 381 56.40 72.48

Table 2. Scores on “terrace1” multi-camera sequence.

Secondly, the KSP method performs poorly on the sequence PETS09-S2L1,
but gives a greater score on EPFL/terrace1. We can explain that KSP method
was developed on the EPFL Multiple View Pedestrian Dataset. In fact, they
assume that the targets being observed by cameras system does not leave the
scene during their presence. In other words, the targets have to finish their
complete trajectories before leaving the scene. The out/in positions of targets
is also fixed on the scene, so we can see the actors walking in and out at the
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same place. Under these conditions, they came up with the K-shortest path
problem where K, which is the number of targets in the tracking videos. On
EPFL/terrace1, the algorithm has found 8 paths, which exactly corresponds to
8 targets in the video that help them get the highest IDF1 score. Back to the
sequence PETS09, the algorithm cannot deal with the targets that usually went
out of and returned to the scene. It only found the longest paths and ignored the
targets which appeared in a short period of time and regularly got confused by
other targets at the boundary. Moreover, in this database, there is no constrain
on where people will appear and disappear on the scene. Apparently, this leads
to a negative score on MOTA. It indicates that the KSP algorithm cannot handle
the enter/exit of targets. Another problem with KSP is that the tracking process
occurs on a grid, called Probabilistic Occupancy Map (POM), the discrete unit
size directly affects the accuracy of the tracker. Unfortunately, increasing the size
of POM required more iterations to make sure the occupancy map converged
correctly.

Method + Feature IDF1↑ IDP ↑ IDs↓ MOTA↑ MOTP↑
Single cam [38]+∅ 53.46 55.53 321 63.66 75.14

Dual-cam [21]+path 55.63 57.67 327 63.79 75.16

Dual-cam UOT+DL (a) 53.16 55.76 310 62.62 75.16

Dual-cam UOT+DL (b) 53.75 55.83 329 63.51 75.16

Dual-cam UOT+pos 57.30 59.38 312 63.74 74.98

Table 3. Scores on “PETS09-S2L2” dual-camera sequence.

Finally, on the tests with dual-camera sequence “PETS09-S2L2”, we excluded
the methods which require more than 2 cameras to be operational, including all
camera [21] and KSP [2]. As single object trackers can generate long trajectories
for targets, trajectories are still an important feature to distinguish targets that
we can see in Table 3. The approach [21] with dual-camera only using trajectory
as target features archived the second-best result on ID-measures and the best
on MOT-scores. Meanwhile, our UOT dual-cam approach based on position
only obtained the best scores on ID-measures and the second-best on MOT-
scores. Unfortunately, two of our UOT methods using distance learning could
not outperform others in this sequence.

5 Conclusion

In this paper, we proposed a novel unbalanced assignment method based on op-
timal transport to address the target assignment problem between two cameras
in an online multi-camera tracking application. A deep metric learning method
is introduced with an efficient metric loss function. Our experiments showed the
effectiveness of our approach to the multiple camera tracking systems.



Unbalanced Optimal Transport in Multi-Camera Tracking Applications 15

References

1. Andriluka, M., Roth, S., Schiele, B.: People-tracking-by-detection and people-
detection-by-tracking. In: 2008 IEEE Conference on CVPR. pp. 1–8. IEEE (2008)

2. Berclaz, J., Fleuret, F., Turetken, E., Fua, P.: Multiple object tracking using k-
shortest paths optimization. IEEE Trans. on PAMI 33(9), 1806–1819 (2011)

3. Bernardin, K., Stiefelhagen, R.: Evaluating multiple object tracking performance:
the clear mot metrics. Journal on Image and Video Processing 2008, 1 (2008)

4. Brachmann, E., Rother, C.: Neural-guided ransac: Learning where to sample model
hypotheses. In: ICCV. pp. 4322–4331 (2019)

5. Brendel, W., Amer, M., Todorovic, S.: Multiobject tracking as maximum weight
independent set. In: CVPR 2011. pp. 1273–1280. IEEE (2011)

6. Cao, Z., Simon, T., Wei, S.E., Sheikh, Y.: Realtime multi-person 2d pose estimation
using part affinity fields. In: CVPR (2017)

7. Chari, V., Lacoste-Julien, S., Laptev, I., Sivic, J.: On pairwise costs for network
flow multi-object tracking. In: CVPR. pp. 5537–5545 (2015)

8. Choi, W.: Near-online multi-target tracking with aggregated local flow descriptor.
In: ICCV. pp. 3029–3037 (2015)

9. Cuturi, M., Teboul, O., Vert, J.P.: Differentiable ranks and sorting using optimal
transport. arXiv preprint arXiv:1905.11885 (2019)

10. Dehghan, A., Modiri Assari, S., Shah, M.: Gmmcp tracker: Globally optimal gen-
eralized maximum multi clique problem for multiple object tracking. In: CVPR.
pp. 4091–4099 (2015)

11. Fagot-Bouquet, L., Audigier, R., Dhome, Y., Lerasle, F.: Improving multi-frame
data association with sparse representations for robust near-online multi-object
tracking. In: ECCV. pp. 774–790. Springer (2016)

12. Ferryman, J., Shahrokni, A.: Pets2009: Dataset and challenge. In: PETS-Winter.
pp. 1–6. IEEE (2009)
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