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Via Celoria 18, I-20133 Milano, Italy
cDepartment of Mathematics, Khalifa University of Science and Technology, Al Saada St.
PO Box 127788, Abu Dhabi, United Arab Emirates

ABSTRACT

We propose the analysis of a scalable parallel MCMC algorithm for graph coloring aimed at balancing
the color class sizes, provided that a suitable number of colors is made available. Firstly, it is shown
that the Markov chain converges to the target distribution by repeatedly sampling from suitable
proposed distributions over the neighboring colors of each node, independently and hence in parallel
manner. We prove that the number of conflicts in the improper colorings genereted thoughout the
iterations of the algorithm rapidly converges in probability to 0. As for the balancing, given to the
complexity of the distributions involved, we propose a qualitative analysis about the balancing level
achieved. Based on a collection of multinoulli distributions arising from the color occurrences within
every node neighborhood, we provide some evidence about the character of the final color balancing,
which results to be nearly uniform over the color classes. Some numerical simulations on big social
graphs confirm the fast convergence and the balancing trend, which is validated through a statistical
hypothesis test eventually.

1. Introduction

Graph theory is a branch of discrete mathematics which also
has cross-disciplinary aspects with computer science as well as
other branches of natural and physical sciences. It plays sig-
nificant roles in modelling real-world problems and exhibits
numerous applications in Pattern Recognition, Operation Re-
search, Chemistry, Physics and Engineering disciplines among
others.

Within this theory, the graph coloring problem is one of the
oldest and among the most popular constraint satisfaction prob-
lems. Basically, it consists in finding an assignment of colors
to the vertices of a given graph such that no two adjacent ver-
tices share the same color. Graph coloring is extensively used in
many Pattern Recognition applications: social networks prob-
lem such as Community Identification in Dynamic Social Net-
works (Tantipathananandh et al., 2007), summarization of so-
cial networks messages (Mosa et al., 2017), Improving Friends
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Matching in Social Networks (Murad et al., 2016), and for Col-
lective Spammer Detection (Fakhraei et al., 2015). It can also
be used for recording medical or biometric images (Lupaşcu
et al., 2013; Cuculo et al., 2014) and for finding good re-
source allocation scheme for device-to-device (D2D) commu-
nications (Tsolkas et al., 2012; Comi et al., 2016) in modern
wireless communication systems (Janis et al., 2009).

Moreover, recast balancing as graph coloring problem fre-
quently appears in parallel scientific computing to identify eq-
uitable subsets of independent tasks that allow for a better uti-
lization of hardware resources, essentially by overcoming inef-
ficiency due to small color classes (Lu et al., 2017).

A common characteristic of these problems is that the graphs
have very large size, thus requiring a speed up of the traditional
greedy sequential coloring heuristics (Coleman and Moré,
1983) typically by introducing parallelization techniques. For
instance, in (Deveci et al., 2016) and (Chen et al., 2017) the au-
thors focus on thread scalability for hundreds or thousands of
threads, showing that it is possible to achieve both good perfor-
mance and high quality with massive parallelism. Thus, thread
scalability in parallel algorithms, namely the ability of hard-



2

ware and software to deliver greater computational power when
the amount of resources is increased, is crucial and widely ex-
ploited in this work.

In the literature, parallel graph coloring problem has been
tackled by several approaches but, at the best of our knowl-
edge, very few of them address the problem of balancing the
color classes in parallel manner. One category of them is based
on searching for a maximal independent set of vertices on a
progressively shrunk graph and the concurrent coloring of the
vertices in the found independent set. Often the independent
set itself is computed in parallel using some variant of the
Luby’s algorithm (Luby, 1985). Examples of such approaches
are Jones and Plassmann (1992); Gjertsen et al. (1996). An-
other category includes methods that color as many vertices as
possible concurrently, tentatively tolerating potential conflicts,
while detecting and solving conflicts afterwards (e.g. Boman
et al. (2005)). Despite these solutions are effective in produc-
ing a proper coloring, generally minimizing the number of col-
ors, they produce highly skewed color classes, undesirable for
many applications, such as parallel job scheduling, that requires
balancing among the classes. At the other extreme, one could
search for a coloring being equitable, that is a coloring that
guarantees that the sizes of any two color classes differ by at
most one (Meyer (1973)). This constraint is computationally
very demanding and somehow too stringent for practical ap-
plications; moreover class size constraints are known to usu-
ally raise computational hardness when performing partition-
ing (Bertoni et al., 2012). Balanced coloring relaxes the equi-
table constraint requiring that any two color class sizes differ at
most by an integer l greater than 1. Few approaches have been
proposed to tackle Balanced graph coloring (e.g. Robert et al.
(1996); Lu et al. (2015)). However, the limit of these methods
is still that they are intrinsically sequential thus not scalable,
becoming unfeasible on large graph. A promising direction of
research on graph coloring concerns the Markov Chain Monte
Carlo (MCMC) methods that allow sampling from non analytic
complex distributions. The idea is to define an ergodic Markov
chain whose steady state distribution is defined over the set of
colorings we wish to sample from. Within the framework of
graph coloring using Markov chains several contributions have
been proposed. In Jerrum (1995) a simple sequential solution
based on the Glauber dynamics has been adopted. The Glauber
dynamics produces a Markov chain on a proper coloring where
at each step a random vertex v is recolored, choosing a color
uniformly at random from the permissible ones.

To deal with large graphs, in Conte et al. (2019) we pre-
sented an algorithm based on MCMC method producing bal-
anced graph coloring in a parallel way. Moreover, in that pre-
liminary work we showed the effectiveness of this stochastic
approach through experiments on random graphs. In this paper
we provide some advances outlined in the following points:

• we analyze the convergence the proposed MCMC algo-
rithm on the basis of the stochastic rules used in the differ-
ent stages of the overall sampling process;

• we provide an intuitive and non-rigorous analysis of the
balancing mechanism, whereas we assess the quality of the

final balancing through a suitable asymptotic hypothesis
test of statistical fitting;

• we have conducted experiments on social graphs (ex-
tracted from real data) in order to show that both conver-
gence and balancing properties do not depend on “regular”
topologies as those exhibited by random graphs.

As for experiments, to achieve significant speedups we
leverage on modern many-core GPUs architectures (NVIDIA,
2019). Numerical results also show that the number of threads
used by the parallel algorithm scales well with the graph sizes,
even if compared with the GPU exploitation by the greedy strat-
egy.

The remainder of the paper is organized as follows: Section 2
recall the basic principles of the MCMC algorithm described
in Conte et al. (2019); the convergence analysis is given in Sec-
tion 3 while in Section 4 we show numerical results on some
real graphs of considerable size. Section 5 concludes the paper.

2. A parallel MCMC algorithm for graph coloring

In this section we briefly outline the parallel algorithm for
graph coloring based on the MCMC sampling technique pre-
sented in Conte et al. (2019).

2.1. Notations

We will consider a simple undirected graph G = 〈V, E〉 with
n = |V | vertices and the set [k] = {1, . . . , k} of colors used
to label the vertices. A k-coloring c : V → [k], also repre-
sented as vector c = (c1, . . . , cn) ∈ [k]n, is called proper if ad-
jacent vertices receive different colors, otherwise it is termed
improper. It is well-known that, if ∆(G) is the maximum de-
gree of G, k = ∆(G) + 1 colors are sufficient to properly color
the graph by a sequential greedy algorithm. For a given col-
oring c, let N(v) denote the neighborhood of node v in G, and
cN(v) ⊆ [k] be the set of colors occupied by vertices N(v) and
c̄N(v) its complement; let us denote the respective cardinalities
with hv(c) = |cN(v)| and h̄v(c) = |c̄N(v)|. Given c, an edge uv ∈ E
with cu = cv is a conflict and #(c) : [k]n → N counts the number
of conflicts. We will also consider the absolute frequency of the
color j in c: f j(c) = |{u ∈ V : cu = j}|.

Hereafter we will use lowercase letters, e.g. c, c′, c∗, for
given colorings and uppercase for random colorings, e.g.
C,C′,C∗. For example the probability of C′ = c′ given C = c
will be denoted P(C′ = c′ | C = c) or P(c′ | c) for short.

2.2. Markov Chain Monte Carlo for sampling colorings

This novel parallel Markov Chain Monte Carlo (MCMC)
technique relies on a 1st-order ergodic Markov chain (Ci)∞i=1 vis-
iting a sequence of (possibly improper) k-colorings c ∈ [k]n and
whose stationary distribution π strongly depends on the set of
conflicts involved in c. As usual, we consider the Gibbs dis-
tribution as target stationary distribution for the Markov chain:

π(c) =
e−β#(c)

Z(β)
, with Z(β) =

∑
c′∈[k]n

e−β#(c′). (1)
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The role of parameter β in (1) aims to penalize improper color-
ings, leading π toward the uniform distribution over the proper
colorings only with exponential decrease (as β increases). It is
known from MCMC theory that the latter distribution is asymp-
totically approached in the sampling process when the chain
is suitably constructed using the well-established Metropolis-
Hastings algorithm (Hastings, 1970). This construction re-
quires the specification of a proposal probability encapsulating
the acceptance ratio and a transition probability for the chain.

As for the transition probabilities of the Markov chain, given
a coloring C = c we sample the successive coloring C∗ in
two phases acting according to a typical “rejection sampling”
scheme (Voss, 2013): first a candidate coloring C′ is gener-
ated according to a suitable proposal probability r(c, c′) :=
P(c′ | c), then the proposal C′ is accepted effectively as succes-
sive coloring C∗ according to the acceptance ratio α(c, c′) :=
min

{
π(c′)r(c′,c)
π(c)r(c,c′) , 1

}
:

P(c′ | c) :=

α(c, c′), c′ , c
1 − α(c, c′), otherwise

.

The proposal coloring C′ is sampled with probability r(c, c′) as
follows. Each node v ∈ V is drawn independently and with
identical distribution P(c′v | c) of colors so that the overall pro-
posal probability is

r(c, c′) =
∏
v∈V

P(c′v | c). (2)

Notice that, in the construction of the acceptance ratio also the
backward probability r(c′, c) is required, hence r(c, c′) is called
forward probability.

The choice of the node proposal probability P(c′v | c) is a
key step and is hence detailed distinctly in the following sub-
section. It is also important to observe from the computational
viewpoint that the independent drawing of all c′v, v ∈ V , allows
for the generation of the new coloring in a parallel manner.

2.3. Proposal distribution for new colorings

Here we specify the algorithm for the proposal distribu-
tion procedure so that the stochastic evaluations follow conse-
quently from the analysis of the color generation. First, the
behavior of the algorithm splits into two cases based on the old
coloring c. When there is some conflict locally for v, namely
cv ∈ cN(v), the new proposed color C′v for v shall be redrawn
with the aim of reducing the possible conflicts. We draw it from
the free colors c̄N(v) following a nearly uniform distribution of
C′v = j given c:

ηv( j, c) =

 1−ε hv(c)
k−hv(c) , if j ∈ c̄N(v)

ε, if j ∈ cN(v).
(3)

The rationale behind such definition is that we want to gen-
erate with high probability, a color equally likely among those
free, in order to aim at the balancing objective of the method.
Nevertheless, we keep a negligible chance ε > 0 to pick a color
that is not free, in order to widen the search space.

As for the case of no conflict for v, i.e. cv ∈ c̄N(v), it is
desirable to keep nearly surely the old color cv to facilitate the
convergence of the algorithm, or otherwise pick another color
with a small chance ε. Hence, in the case of no conflict, for the
node v the proposal color C′v = j given c is distributed as

ζv( j, c) =

1 − ε (k − 1), if j = cv

ε, if j , cv.
(4)

With the above definitions we derive the following condi-
tional distribution for proposal color (also called forward):

P(c′v | c) =

ηv(c′v, c), if hv(c) < k, cv ∈ cN(v)

ζv(c′v, c), otherwise.
(5)

The backward probabilities

r(c′, c) = P(C′ = c | C = c′) =
∏
v∈V

P(C′v = cv | C = c′)

can be obtained by symmetrical reasoning, i.e. exchanging the
role of c and c′ in the calculations outlined above. This allows
to compute then the acceptance ratio α(c, c′).

The main procedural steps of the MCMC algorithm de-
scribed above are sketched in Algorithm 1.

Algorithm 1: Parallel MCMC Graph Coloring
Input : Graph G = 〈V, E〉 with n = |V |;

Number k of colors;
Gibbs parameter β � 1

Output: Random proper coloring C ∈ [k]n

1 C ← random initial coloring ∈ [k]n

while #(C) > 0 do

foreach v ∈ V in parallel do
2 Calculate CN(v)
3 hv(C)← |CN(v)|

4 P(c′v | C)← Compute according to (5)
5 C′v ← Generate with distribution P(c′v | C)

6 C′ ← Proposed coloring (C′1,C
′
2, ...,Cn)

7 r(C,C′)← Compute forward probability
8 r(C′,C)← Compute backward probability
9 α(C,C′)← min

{
r(C′,C)
r(C,C′) e−β(#(C′)−#(C)), 1

}
10 Accept C ← C′ with probability α(C,C′)

3. Algorithm analysis

We now deal with the study of the behavior of the highly
scalable parallel MCMC algorithm for graph coloring proposed
in Conte et al. (2019), and outlined in the previous section.
First, we claim that in the Markov chain, the color distribu-
tion stochastically converges to proper colorings by repeatedly
sampling a pool of easier proposal distributions built upon the
sets of neighboring node colors. Then, we also develop a dis-
cussion about the quality of balancing achieved, the latter being
the main goal of this modelling.
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3.1. Convergence analysis
As for the convergence properties of Algorithm 1, due to

the intrinsic randomness in drawing colors we cannot guarantee
that the number of conflicts #C strictly decreases at each itera-
tion. Therefore we give a characterization of the convergence
in probabilistic terms, studying a slight variant of Algorithm 1
where we bring the parameters to the extreme values: accep-
tance ratio α(C,C′) = 1 and ε = 0.

Lemma 1. Given current coloring C, let #W and #W∗ be num-
ber of nodes in G having some conflict at, respectively, any
current and successive iteration of Algorithm 1, where we set
acceptance ratio α(C,C′) = 1 and ε = 0. For any integer r > 1
and provided a number of colors k ≥ ∆(G) + r, the following
expectation inequality holds:

E[#W∗ | C] ≤ ρ#W

for some 0 < ρ = 1 − (1 − 1/r)∆(G) < 1.

Proof. Preliminarily, we introduce the convenient notation of
indicator expression 1(cond) that takes value 1 if the condition
cond is true, and 0 otherwise. The number of conflicts in the
new coloring C∗ can be written as #C∗ =

∑
uv∈E 1(C∗u = C∗v),

while the number of local conflicts is #vC∗ =
∑

u:uv∈E 1(C∗u =

C∗v); similar definitions can be given for #C and #Cv. Given
the current coloring C we partition V into nodes with conflicts,
W = {u ∈ V : #uC > 0}, and conflict-free nodes W̄ = V r W.

First, notice that the number of local conficts at any v ∈ W is
simply

#vC∗ =
∑

u∈W:uv∈E

1(C∗u = C∗v)

due to
∑

u∈W̄:uv∈E 1(C∗u = C∗v) = 0, since when u is not in W it
maintains the old color C∗u = Cu , C∗v . Hence, in the summation
in #vC∗ each term 1(C∗u = C∗v) is a Bernoullian variable with
parameter

puv :=
|C̄N(u) ∩ C̄N(v)|

|C̄N(u)| · |C̄N(v)|
≤

min
{
|C̄N(u)|, |C̄N(v)|

}
|C̄N(u)| · |C̄N(v)|

≤
1
r
,

conditioned on C, i.e.

1(C∗u = C∗v) | C ∼ Bernoulli(puv).

Moreover, these terms are stochastically independent since the
drawing of C∗u for each neighbor u of v is done autonomously
from the other neighbors. Given C, the variable #vC∗ is hence
a sum of independent Bernoullian variables having parameters
puv with uv ∈ E, u ∈ W, namely a so-called Poisson-Binomial
random variable:

#vC∗ | C ∼ PoissonBinomial({puv : uv ∈ E, u ∈ W})

We define the Bernoulli variable B∗v := 1(#vC∗ > 0) indicat-
ing whether v has some conflict in the new coloring. Thanks
to the observation above, its distribution conditioned on C is
easily determined as

(B∗v | C) = (1(#vC∗ > 0) | C) ∼ Bernoulli(1−Πu∈W:uv∈E(1−puv))

when v ∈ W, since Πu∈W:uv∈E(1 − puv) is the probability that v
does not have any conflict with the neighbors in the new color-
ing C∗. Clearly, B∗v = 0 if v < W. The number #W∗ = #{u ∈ V :
#uC∗ > 0} =

∑
v∈W B∗v of conflicting nodes in the new coloring

C∗ thus satisfies the following relationships

E[#W∗ | C] = E
∑

v∈W

B∗v | C

 =
∑
v∈W

E[B∗v | C]

=
∑
v∈W

1 − ∏
u∈W:uv∈E

(1 − puv)


≤

∑
v∈W

1 − ∏
u∈W:uv∈E

(
1 −

1
r

)
≤

∑
v∈W

1 − (
1 −

1
r

)deg v ≤ 1 − (
1 −

1
r

)∆(G)∑
v∈W

Bv

=

1 − (
1 −

1
r

)∆(G) #W = ρ#W

where 0 < ρ := 1 − (1 − 1/r)∆(G) < 1. That is, the claim
E[#W∗ | C] ≤ ρ#W holds.

Directly following the previous result, we have the following
convergence.

Theorem 1. The number of conflicts #C converges in probabil-
ity to 0, i.e. limt→∞ P(#(Ct) < δ) = 1 ∀δ > 0.

Proof. From Lemma 1, using the monotonicity property of the
expected value we have

E[E[#W∗ | C]] ≤ ρE[#W].

By the Tower Rule of the conditional expectation (E[E[#W∗ |
C]] = E[#W∗]) we can give the bound

E[#W∗] ≤ ρE[#W].

The coloring C∗ is the one successive to C; hence building the
sequence of successive colorings Ct, t = 0, 1, 2, ... by means of
the algorithm above, one can guarantee E[#W t] ≤ ρtE[#W0]
for any t. Hence, applying limt→∞ to both side, we have the
convergence in expectation of the number of conflicting nodes
to 0:

lim
t→∞

E[#W t] = lim
t→∞

ρtE[#W0] = 0.

Now, it is well known that convergence in expectation
(namely, L1-convergence in the proper probability space
(Ω,F ,P)) implies the convergence in probability, i.e.

lim
t→∞

P(#W t < δ) = 1 for any δ > 0.

Since the number #Ct of conflicts is easily bounded above by
1
2 ∆(G)#W t, it converges in probability to 0 as well:

lim
t→∞

P(#Ct < δ) = 1 for any δ > 0.



5

3.2. Qualitative analysis of the balancing
The balancing of color classes is an important aspect but it is

difficult to prove it rigorously, due to the complex role that the
distributions arising from the model play in the evolution of the
algorithm towards attaining the final coloring. Nevertheless, in
this section we sketch a qualitative non-rigorous analysis of this
process in order to provide some intuition and rationale about
the nearly uniform character of final color frequencies, regard-
less of the topology of the graphs at hand.

To carry out this analysis, we resort to the (n, k)-Poisson
Multinomial Distribution (PMD) (Daskalakis et al., 2015)
which is the distribution of the sum of n independent random
variables supported on the set Bk = {e1, . . . , ek} of standard ba-
sis vectors in Rk, representing the k colors provided to the al-
gorithm. We replace the representation of the color set [k] with
Bk for technical reasons in this section only.

At each iteration step t of the Algorithm 1, each node v ∈ V
randomly draws a color with probability distribution (5). Let
F(t)

v ⊆ Bk be the set of free colors, at step t, for node v whose
color is represented by the random variable C(t)

v ∈ Bk, and let
p(t)

v =
(
p(t)

v,1, . . . , p(t)
v,k

)
be the distribution of the new color for v

in Bk. Clearly, due to the random drawing triggered by (5) we
have

p(t)
v, j ≈

1/|F(t)
v |, if e j ∈ F(t)

v

0, if e j < F(t)
v

(6)

in case of conflict for v (eq. (3)), or

p(t)
v, j ≈

1, if e j = C(t)
v

0, otherwise
, (7)

when v is conflict-free (eq. (4)). This means that the process of
assigning a new color C(t+1)

v ∈ Bk to node v, can be expressed
by a multinoulli distribution with parameter p(t)

v , i.e.,

C(t+1)
v ∼ Multinoulli(p(t)

v ).

Notice that each node in the color C(t+1)
v is drawn independently

from each other.
Let X(t) =

∑
v∈V C(t)

v be the number of occurrences of all col-
ors in the graph coloring at time t. In particular, for each j ∈ [k],
X(t)

j represents the frequency of color e j within the coloring C(t).
Hence, the random vector X(t) is the sum of independent but not
identically distributed multinoulli random variables, which fol-
lows a (n, k)-PMD, where n is the number of vertices and k the
number of colors. Let ξ(x) = P(X(t) = x) denote the proba-
bility mass function of X(t), where x is a k-dimensional vector
with non-negative integer entries summing up to n. Clearly, in
order to have the desired balancing, it is crucial to assign high
probability ξ(x) to the elements x with equalized entries. In the
following, we provide a qualitative and non-rigorous analysis
of the dynamics of color assignments and its distribution evolu-
tion in order to support the experimental evidence that the color
classes are quite balanced among each other. Let us investigate
the following steps in the coloring process generated by Algo-
rithm 1.

Step 1. Assume that in the first step the colors are assigned in-
dependently and uniformly at random at each node. As

a consequence, the set of free colors F(1)
v of v comes up

uniformly among all subsets of size
∣∣∣F(1)

v

∣∣∣. Let us observe
how a new coloring is generated by focusing on a color
e j through all the n independent trials, each one corre-
sponding to a node v. To consider the overall chances
e j has, we have to focus in turn on the probability sets
P j =

{
p(1)

v, j : v ∈ V
}
. In particular, for large n and under the

above independence assumptions, it results that p(1)
v, j is the

same on average for all v due to the uniformness of F(1)
v ,

so that e j is assigned nearly the same chance to be selected
in each trial. In other words, the averages over all nodes
P̄ j should be approximately 1/k for large graph size n.

Step t. Assuming that at time t − 1 the (in general improper)
coloring C(t−1) is quite balanced in terms of color frequen-
cies, we can conclude that also the new coloring C(t) could
achieve a good balancing. This should happen thanks to
the following two facts. First, some colors are definitely
fixed since they are randomly chosen in some previous
step, as described by the (7) and this contribute to uni-
formly spread the colors in the neighborhoods of those
nodes that have to make a choice. Second, those nodes
that have to update the color, are in the same condition de-
scribed in Step 1, thus they repeat the same independent
drawings.

Figure 1 provides an empirical demonstration of the balanc-
ing trend exhibited by the MCMC algorithm and described in
the above steps for a social graph (labeled ca-coauthors-dblp)
introduced in the next section on numerical simulations. In fact,
the balancing quality in each repetition (light blue lines) and on
average (red line) is maintained quite constant over all iterations
(Step t) apart from the first iteration (Step 1) that requires an
adjustment as a consequence of the random initial coloring.

Figure 1: Color balancing quality of a sample graph (the so-
cial graph ca-coauthors-dblp) during the iterations of the parallel
MCMC algorithm for the first 10 states (colorings) visited by the
Markov chain.

4. Numerical simulations

In Conte et al. (2019) we offered a preliminary assessment
of a novel parallel stochastic technique for recovering balanced
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colorings on big random graphs. Here we extend the evalua-
tion to a small sample of real-world instances, where graphs de-
scribe relations among individuals, to identify differences and
analogies in behavior between synthetic and real-world data.
A second purpose of these experiments is to empirically val-
idate both algorithm convergence and balancing properties in
the light of the analysis delineated in the previous section.

Hence, as in Conte et al. (2019), we tested our GPU imple-
mentation of the presented strategy, hereafter called MCMC-
GPU, against a non-parallel implementation (called MCMC-
CPU) of the same algorithm which runs on a standard CPU.
The purpose of this comparison is to evaluate the scalability and
speed-up of the parallel approach taking the sequential imple-
mentation as baseline reference. Also, we tested the MCMC-
GPU implementation against a fast and fully parallel greedy
coloring strategy inspired by Luby (1985) work, called Luby-
GPU. This simple coloring strategy provides a proper coloring
in very short time, at the cost of a very high class unbalance. All
the algorithms were implemented1 in C++ and both MCMC-
GPU and Luby-GPU leverages the NVidia CUDA program-
ming paradigm (NVIDIA (2019)). All the host code is single-
threaded and it is meant to be run on a single machine, hence no
other libraries (such as pthread, C++11 threads, OpenMP, MPI,
etc...) are required. Both CPU and GPU code is compiled with
NVidia nvcc v10.1, using the underlying GNU GCC v5.4.0 as
C++ compiler.

For running the experiment we used a workstation with 2×
Intel Xeon CPU E5-2620 v3 @ 2.40GHz, 64GB of RAM,
Linux 16.04 and an NVidia GTX980 GPU featuring 2880 cores
and 4GB of VRAM. MCMC-CPU runs are single-threaded,
hence were run on a single core of the host CPU. For Luby-
GPU and MCMC-GPU, on the host the processes are single-
threaded as well, and parallelization occurs only on the GPU
side with the 2880 cores.

The three coloring approaches have been tested on four real-
world social graphs taken from the Rossi and Ahmed (2016)
repository. They greatly vary in terms of size (number of
nodes and edges) and average/maximum degree, thus providing
a small but relatively diverse array of use cases. Their relevant
features are summarized in Table 1. The maximum number of
possible colors to be used is a parameter in our algorithm and
it has to be fixed in advance. We fixed this parameter in such a
way that the results are stable for each trial. Table 1 shows the
values of this parameter for each graph used in the experiment.

For measuring the overall balancing quality of a coloring c,
we used the following

quantity, we call
unbalancing index, which is closely related to the
classical root mean square deviation
of the color class sizes {n j : j = 1, . . . , k}:

Γn,k(c) =

1
k

k∑
j=1

∣∣∣∣∣n j −
n
k

∣∣∣∣∣2


1/2

. (8)

1The software used for the experiments is freely available on the GitHub
repository: https://github.com/phuselab/MCMC_Colorer

Naturally, a perfectly balanced coloring satisfies Γn,k(c) = 0.
Figure 2 top shows the average unbalancing index over 35

repetitions for each coloring algorithm applied to the 4 sam-
ple graphs. Giving to its greedy design, Luby-GPU achieved
a worse balancing performance, being largely outperformed by
MCMC strategy. For the latter we set a number of colors a bit
greater than the one obtained by Luby (for details see Table 1).

Figure 2: Average unbalancing index (upper plot) of final color-
ings achieved by the three algorithms for the graphs of Table 1 and
related average execution times (lower plot), expressed in seconds.
Results are on 35 repetitions (standard deviation as error bar) and
plotted in logarithmic scale.

Figure 2 bottom shows the average computing times over the
trials. Being inherently sequential, MCMC-CPU is the slowest
and a direct comparison with MCMC-GPU results in an aver-
age speed-up ranging from 28× (for sc-pwtk) up to 69× (for
ca-hollywood-2009). We also remark that in our experiments,
MCMC-GPU produces a proper coloring for each graph in less
time than Luby-GPU does, showing that sometimes it is even
faster than the greedy approach.

For statistically assessing the balancing, we test the uni-
formness of color distribution through a hypothesis test starting

https://github.com/phuselab/MCMC_Colorer
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Table 1: Features of the graphs used in the experiments: number of nodes and edges (columns 2-3), maximum and average degree (columns 4-
5), average number of colors found by Luby-GPU (column 6) and the parameter of maximum number of colors to be used, set for MCMC-GPU
(and MCMC-CPU) (last column).

Graph Nodes Edges Max deg Avg deg N. colors by Luby N. colors by MCMC-GPU
sc-shipsec5 179.1K 4.4M 75 24 33 50
sc-pwtk 218K 11.4M 179 51 43 85
ca-coauthors-dblp 540K 30M 3.3K 56 337 460
ca-hollywood-2009 1.1M 56M 11.5K 105 2209 2400

from the balancing index (8). Given a coloring c produced by
MCMC-GPU, we consider the statistic defined as

K2 =

(
k Γn,k(c)

)2

n
=

k∑
j=1

(n j − n/k)2

n/k
.

In fact, this expression is well known in statistical inference
as the Pearson’s chi-squared statistic for goodness-of-fit test
(Mood et al., 1973, §IX.5.2), that is used for assessing whether
the observed categorical outcomes of the experiment have fre-
quencies (n j) following a hypothesized categorical distribution,
namely uniform distribution in our case (i.e. color class sizes
n/k). With this so-called null hypothesis H0, it was proved
using the Central Limit Theorem and a suitable geometric
transformation (see Cochran (1952)) that such statistic K2 has
asymptotically a χ2(k− 1) distribution (chi-squared distribution
with k − 1 degrees of freedom) as n→ ∞: hence, χ2(k − 1) is a
good approximation of the true distribution for large number n
of nodes, as in our experiments.

The key point is that the statistic K2 is large and the corre-
sponding p-value is small, when the produced color class sizes
are unbalanced, and vice-versa.

Results of the test are reported in Table 2 for 35 runs: notice
that the range of rather large p-values leads to accept the H0
hypothesis stating the color balancing in all analyzed graphs.

Table 2: Test for fitting uniform color distribution on the result of
35 runs with the analyzed graphs. Ranges of observed Pearson’s
chi-squared test-statistics and corresponding p-values are shown.

Graph K2 statistic range p-value range
sc-shipsec5 [19.51, 50.52] [0.413, 0.999]
sc-pwtk [31.14, 64.57] [0.940, 1.000]
ca-coauthors-dblp [368.09, 473.42] [0.310, 0.998]
ca-hollywood-2009 [2205.43, 2446.97] [0.242, 0.997]

5. Conclusions and discussion

We have studied the convergence properties of a scalable par-
allel algorithm for graph coloring problem based on Markov
Chain Monte Carlo techniques (Conte et al., 2019). We also
have sketched a qualitative analysis of the achieved balancing,
remarking that it is as important as difficult to formally derive
an analytic form for the distribution on the final colorings, due
to the complex dynamics among the applied probability distri-
butions that the model brings into play during its evolution. It

would be also worth it to study MCMC models that incorporate
in the target distribution not only the term promoting proper
colorings (as in the current one), but also new specific terms
helping in recovering suitable families of colorings not neces-
sarily equalized in the color classes. For example, in case of
application of graph coloring to the deployment of independent
tasks performed concurrently on a pool of processors (typically
within datacenters or on distributed architectures), in order to
gain computational efficiency the target distribution should look
for colorings having color classes of size multiple of the num-
ber of processors.

In Conte et al. (2019) the effectiveness of this stochastic ap-
proach in finding balanced colorings has been shown through
experiments on random graphs. Here we have extended the
algorithm assessment on some kind of social graphs just to
show that both convergence and balancing properties are pre-
served although the topologies of the graphs considered are not
as “regular” as those exhibited by random graphs. As for the
experimental analysis, further studies on realistic applications
where graph topology and size (especially big graphs) are taken
into account should be conducted. For instance, it is important
to stress the heuristic ability on graphs where edge density is
not uniform and the presence of quasi-clique subsets interferes
with the needs of MCMC model to locally find low conflict
level with high probability.

Moreover, being an heuristic technique based on a number
of parameters that affect the behavior and ultimately its ability
to find highly balanced solutions, a both theoretical and experi-
mental deep analysis focused on some of the most relevant pa-
rameters is worth a great attention. For instance, it is the case of
the number of colors required as input to the MCMC algorithm,
which gives rise to a clear trade off between convergence speed
and balancing quality, as emerged since the early experiments.
There are also meta-parameters related to the MCMC technique
itself that affect the results, such as the parameter β appearing
in the formulation of the target stationary distribution for the
Markov chain (Eq. 1). Furthermore, besides its effect in pe-
nalizing improper colorings and leading π toward the uniform
distribution over the proper ones, β or some function of it would
also have a relevant role in defining new interesting metrics that
can promote colorings that capture graph properties other than
the balancing, such as those associated to planar graphs.
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clustering: separation properties and some complexity results. Fundamenta
Informaticae 115, 125–139.



8
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