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Abstract
The shifts in adaptive strategies revealed by ecological succession and the mecha-
nisms that facilitate these shifts are fundamental to ecology. These adaptive strate-
gies could be particularly important in communities of arbuscular mycorrhizal fungi 
(AMF) mutualistic with sorghum, where strong AMF succession replaces initially rud-
eral species with competitive ones and where the strongest plant response to drought 
is to manage these AMF. Although most studies of agriculturally important fungi 
focus on parasites, the mutualistic symbionts, AMF, constitute a research system of 
human-associated fungi whose relative simplicity and synchrony are conducive to ex-
perimental ecology. First, we hypothesize that, when irrigation is stopped to mimic 
drought, competitive AMF species should be replaced by AMF species tolerant to 
drought stress. We then, for the first time, correlate AMF abundance and host plant 
transcription to test two novel hypotheses about the mechanisms behind the shift 
from ruderal to competitive AMF. Surprisingly, despite imposing drought stress, we 
found no stress-tolerant AMF, probably due to our agricultural system having been 
irrigated for nearly six decades. Remarkably, we found strong and differential cor-
relation between the successional shift from ruderal to competitive AMF and sor-
ghum genes whose products (i) produce and release strigolactone signals, (ii) perceive 
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1  |  INTRODUC TION

The changes in adaptive strategies that accompany microbial suc-
cession and the mechanisms behind the changes are fundamental 
aspects of microbial ecology that are now being studied owing to ad-
vances in environmental molecular biology (Datta et al., 2016; Green 
et al., 2008; Guittar et al., 2019; Kearns & Shade, 2018; Kim et al., 
2017; Martiny et al., 2015; Nemergut et al., 2016; Ortiz-Alvarez et al., 
2018; Prest et al., 2018) (Table S1). The prolonged succession seen in 
natural plant communities (Bruelheide et al., 2011) is compressed by 
the rapid development of microbial communities that follows coloni-
zation of a new environment (Fierer et al., 2010), for example a field 
newly planted to sorghum (Gao et al., 2019), thus providing a more 
tractable system to investigate the patterns and mechanisms under-
lying community assembly (Datta et al., 2016). The system is made 
even more tractable by focusing on crops, which have been domes-
ticated consciously, and the arbuscular mycorrhizal fungi (AMF) 
mutualists, which have been domesticated unconsciously, because 
individual crop plants are, typically, all of one genotype and develop, 
along with their AMF, in synchrony. A key ecological phenomenon 
studied with fungi, succession or temporal dynamics, has been 
documented for fungi in general (Guo et al., 2018; Han et al., 2017; 
Voriskova et al., 2014), as well as for fungal functional guilds, which 
include saprotrophic fungi (Harper & Webster, 1964; Macauley & 
Thrower, 1966), endophytic and pathogenic fungi (Tadych et al., 
2012), ectomycorrhizal fungi (Gao et al., 2015; Twieg et al., 2007) 
and, the focus of our report, AMF (Bahram et al., 2015; Bainard et al., 
2014). Using the annual crop system employed here, sorghum, ex-
ceptionally strong succession has been reported for AMF (Gao et al., 
2019) as has a remarkably strong drought response led by the strong 
and coordinated down-regulation of transcription of hundreds of 
sorghum genes known to manage AMF (Varoquaux et al., 2019).

The value to civilization of AMF is not limited to their experi-
mental tractability and history of unwitting domestication. AMF are 
an essential ingredient for natural ecosystem productivity, diversity 
and stability, as evidenced by the fact that this earliest evolving 
(400–600 million years ago) and most prevalent type of mycorrhiza 
continues to form mutualisms with 85% of vascular plant species, in-
cluding most crops (van der Heijden et al., 1998; Martin et al., 2018; 
Redecker et al., 2000; Smith & Read, 2008; Taylor et al., 1995). AMF 
also present ample opportunity to examine fundamental biologi-
cal questions because, owing to their recalcitrance to cultivation 
away from their plant symbiont, features as basic as sexuality and 

intra-individual genetic homogeneity remain controversial (Bruns 
et al., 2018; Ropars et al., 2016; Thiery et al., 2016). As noted above, 
AMF are obligate symbionts living in and feeding from the roots of 
their host plant (Smith & Read, 2008). Therefore, annual plant devel-
opment over a growing season can be expected to play a dominant 
role in the succession of AMF, particularly in relatively homogeneous 
agricultural systems with predictable environmental parameters, as 
we have recently documented (Gao et al., 2019, 2020). Of course, 
one cannot exclude smaller contributions to succession by environ-
mental perturbation, dispersal limitation, stochastic rearrangements 
and priority effects (Chagnon et al., 2012; Dumbrell et al., 2010; 
Werner & Kiers, 2015a). As with any group of organisms, AMF em-
brace a variety of ecological strategies and these can be recognized 
using Grime's three strategies (C, competitors; S, stress-tolerators; 
and R, ruderals), which are based on the response of species to stress 
and disturbance (Grime, 1974). With AMF, Chagnon et al. (2013) in-
vestigated the C–S–R framework by using previously published, 
trait-based studies to propose definitions of the three strategies: (i) 
ruderal AMF that quickly re-establish symbiosis after disturbance 
(e.g., the cultivation associated with replanting fields) and quickly 
complete their life history by generating large amounts of spores; 
(ii) competitive AMF that enjoy low stress and low disturbance while 
providing plants with large amounts of soil-derived resources in ex-
change for high levels of host-derived carbon; and (iii) stress-tolerant 
AMF that withstand the stress of harsh environments (e.g., drought) 
(Hart & Reader, 2002; Helgason et al., 1998; Maherali & Klironomos, 
2007; Staddon et al., 2003). Chagnon et al. (2013), however, did not 
match specific AMF species with Grime's categories, and currently 
there is no consensus as to which AMF species are competitive, rud-
eral or stress-tolerant. Here, we investigate the C–S–R framework 
in light of our study of AMF succession with sorghum (Gao et al., 
2019), which employed abundant sampling of root, rhizosphere and 
soil, and used internal transcribed spacer 2 (ITS2) metabarcoding to 
document strong succession in AMF communities over a summer 
field season (Gao et al., 2019).

Two controversial aspects of AMF ecology deserve consid-
eration at the outset. First, should AMF species be recognized in 
mycobiome studies by rDNA regions that are variable (ITS) or con-
servative (18S) (Bruns et al., 2018; Bruns & Taylor, 2016)? We have 
shown that metabarcoding by the more variable ITS2 (i) recognizes 
AMF species-level operational taxonomic units (OTUs) that are com-
parable to those recognized for other fungi, (ii) is robust to possible 
individual and intraspecific ITS variation, and (iii) reveals succession 

mycorrhizal-lipochitinoligosaccharide (Myc-LCO) signals, (iii) provide plant lipid and 
sugar to AMF, and (iv) import minerals and water provided by AMF. These novel in-
sights frame new hypotheses about AMF adaptive evolution and suggest a rationale 
for selecting AMF to reduce inputs and maximize yields in commercial agriculture.

K E Y W O R D S
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    |  3GAO et al.

whether the threshold for OTU recognition is based on fast evolving 
ITS or lowered to mimic the slow evolving 18S rDNA (Gao et al., 
2019). The second controversy concerns succession, both its defi-
nition and its modelling. A definition of microbial succession has 
been proposed by Fierer and colleagues (2010), “… the somewhat 
orderly and predictable manner by which communities change over 
time following the colonization of a new environment …” These au-
thors go on to consider three types of primary succession, based 
on whether the organisms are autotrophic or heterotrophic and, 
if heterotrophic, whether the substrate is finite and consumed by 
the microbes (as in a newly fallen leaf) or continually renewed and 
not consumed by the microbes (as in a sewage treatment reactor or 
mammalian gut). Fierer and colleagues focus on primary succession 
and avoid “… temporal changes in microbial communities that occur 
following disturbances …” Although Fierer et al. (2010) formulated 
their definition for bacteria that consume biological carbon in an 
asymbiotic manner, their definition can be applied to AMF, which 
are obligately symbiotic with plants and live by trading minerals and 
water for products of photosynthesis. As obligate symbionts with 
plants, AMF are clearly heterotrophic, and the supply of biologi-
cal carbon is exogenous. Therefore, AMF fit the general category 
of exogenous–heterotrophic succession proposed by Fierer et al. 
(2010). Less clear is the distinction between primary and second-
ary succession. Recognizing that some might consider emerging root 
tips to constitute a new environment whereas others might consider 
the sowing of seeds and emergence of plants to constitute a distur-
bance in an existing environment, our use of the term succession 
does not specify either primary or secondary succession. Turning to 
models, the classic autogenic succession model postulates that early 
arriving species can either tolerate, promote or inhibit later arriving 
species (Connell & Slatyer, 1977). However, because AMF are ob-
ligately symbiotic to host plants, this type of autogenic succession 
is not expected; rather any succession would be due to significant 
changes in the external biotic environment (i.e., host plant growth, 
which is the key biotic factor for heterotrophic AMF) or the abiotic 
environment (i.e., drought) (Connell & Slatyer, 1977).

In our previous study of sorghum AMF succession (Gao et al., 
2019), we identified two, initially dominant AMF species-level OTUs 
(OTU51 [Rhizophagus], OTU70 [Claroideoglomus]), and 13 initially 
rare AMF species-level OTUs (OTUs 150, 132, 166, 251, 118, 213, 
161 [Rhizophagus] and OTUs 133, 126, 323, 229, 476, 400 [Glomus]) 
(Gao et al., 2019). Based on their rapid establishment of arbuscular 
mycorrhizae with sorghum roots and their even distribution in root 
and soil compartments, we consider the two initially dominant AMFs 
to have a ruderal lifestyle. Because the 13 initially rare AMFs rose 
in abundance to displace the two ruderal AMF and dominate arbus-
cular mycorrhiza in the sorghum roots, we consider them to have 
a competitive lifestyle. Analyses and data supporting our definition 
of ruderal and competitive in terms of abundance of AMF species, 
competition for the same niche and coexistence of competitive spe-
cies can be found in Gao et al. (2019). However, lacking a stressful 
environment in our prior research (Gao et al., 2019), we were un-
able to identify species whose abundance depended on stress. In a 

subsequent study of the same AMF–sorghum system we included 
drought stress and discovered that AM fungal abundance (together 
with the abundance of transcripts from sorghum genes induced 
by AMF) was drastically decreased by both pre- and postflower-
ing drought (Varoquaux et al., 2019). This result indicated that the 
AM fungal community, as a whole, is not tolerant to drought stress, 
but we could not say that no individual AMF species could maintain 
its abundance or even increase it during drought. Here, to look for 
drought-tolerant AMF, we add drought stress to our study in framing 
the first of three hypotheses, H1: Competitive AMF species will be 
replaced by drought-stress-tolerant AMF species when irrigation is 
withheld to induce pre- or postflowering drought.

For our second and third hypotheses, we use expression of host 
genes involved in key physiological AMF traits to investigate the 
mechanism of the transition of AMF species from ruderal to com-
petitive. H2: The transition from ruderal to competitive AMF will 
correlate with shifts in transcription of host genes responsible for 
producing and receiving signalling molecules. H3: The transition in 
abundance of AMF from ruderal to competitive species will cor-
relate with shifts in transcription of host genes responsible for re-
source transfer between fungi and host. Testing these hypotheses 
involves combining data from our study of AMF succession (Gao 
et al., 2019) with those of our study of the effect of drought on 
the expression of plant genes activated when forming arbuscular 
mycorrhizae (Varoquaux et al., 2019). Knowing that key plant and 
AMF responses to the arbuscular mycorrhizal symbiosis involve sig-
nalling and nutrient transfer (Akiyama et al., 2005; Besserer et al., 
2006; Jiang et al., 2017; Luginbuehl et al., 2017; Olah et al., 2005; 
Rausch et al., 2001), we correlate the abundance of AMF species 
with the expression of host plant genes involved in these two areas. 
Exchanges of signals and resources between plants and AMF are re-
ciprocally regulated to enable efficient partner selection (Bonfante 
& Genre, 2010; Werner & Kiers, 2015b), which might be central to 
the transition from ruderal to competitive AMF. Communication 
between plant and AMF can be monitored from the transcrip-
tion of host genes involved in detecting the AMF-produced sig-
nal molecules, mycorrhizal-lipochitinoligosaccharides (Myc-LCOs), 
or producing the plant signal molecules, strigolactones (Akiyama 
et al., 2005; Besserer et al., 2006; Olah et al., 2005). Resource ex-
change between AMF and plants can similarly be detected from 
the transcription of host genes involved in the exchange of host-
produced sugars and lipids for minerals and water provided by the 
fungus (Jiang et al., 2017; Luginbuehl et al., 2017; Rausch et al., 
2001). Results by Kiers et al. (2011) from inoculation experiments 
demonstrated that outcomes of mycorrhizal symbiosis are affected 
by manipulation of host-produced or AMF-transported resources 
(Table S3). However, the “culturable” AMF used in these artificial 
inoculation experiments are mostly ruderal (Ohsowski et al., 2014), 
and leave open the question of whether efficient partner selection 
exists in nature (van der Heijden & Walder, 2016; Kiers et al., 2016; 
Walder & van der Heijden, 2015).

The system that we use to address hypotheses about the oc-
currence of stress-tolerant AMF (H1) and host selection of AMF 
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partners through signalling (H2) and potential resource exchange 
(H3) consists of an open, agricultural field with two cultivars of 
one host species, Sorghum bicolor (L.) Moench, and three irriga-
tion regimes, continual irrigation, preflowering drought and post-
flowering drought, with three replicate plots (Xu et al., 2018). Our 
discovery that the effect of host genotype is negligible allowed 
us to use six replicate plots in most of our analyses (Gao et al., 
2020; Xu et al., 2018). Samples of soil, rhizosphere and root were 
taken weekly over the 17 weeks from seedling emergence to grain 
maturation. DNA was isolated to characterize fungal, species-
level, OTUs by ITS2 sequence and to estimate fungal biomass by 
quantitative polymerase chain reaction (qPCR) of 18S rDNA (Gao 
et al., 2020). RNA was isolated to characterize the plant transcrip-
tome as a whole (Varoquaux et al., 2019). The analyses presented 
here integrate data published on both the AMF mycobiome and 
the sorghum transcriptome (Gao et al., 2019, 2020; Varoquaux 
et al., 2019). By combining these two data sets and focusing on 
specific plant genes involved in the AMF symbiosis, we test our 
hypotheses 2 and 3. We focused on plant genes involved in the 
exchange of resources and signal communications during mycor-
rhizal symbiosis, to determine if their expression is related to AMF 
succession.

2  |  MATERIAL S AND METHODS

Both fungal mycobiome and sorghum transcriptome data were pub-
lished earlier in separate papers (Gao et al., 2019, 2020; Varoquaux 
et al., 2019). The results reported here provide new analyses that 
integrate the two different data sets, one about AMF succession and 
the other about expression of host plant genes known to be impor-
tant for arbuscular mycorrhizal symbiosis. The experimental design, 
sampling, and DNA and RNA analyses described here are summa-
rized from our previous publications on research conducted at the 
same study site (Gao et al., 2019, 2020; Varoquaux et al., 2019; Xu 
et al., 2018).

2.1  |  Experiment design and sampling

Our experiment is a random block design using three replicate 
plots (16 × 8 m) for each of three treatments (control, preflowering 
drought and postflowering drought) and two sorghum (Sorghum 
bicolor (L.) Moench) cultivars (the preflowering, drought-tolerant 
sorghum cultivar RTx430, and the postflowering, drought-
tolerant [or “stay green”] cultivar BTx642) (Gao et al., 2019, 2020; 
Varoquaux et al., 2019; Xu et al., 2018). During the course of our 
experiment (May 27 to September 28, 2016), no precipitation oc-
curred; the daily minimum temperature ranged from 7.8 to 22.8°C, 
and the daily maximum temperature ranged from 22.8 to 40.5°C 
(Gao et al., 2019). The trial was planted on May 27, 2016 and plant 
emergence was recorded on June 1, 2016 (Gao et al., 2019, 2020; 
Varoquaux et al., 2019; Xu et al., 2018). From the 3rd week until 

the 17th week of growth, the plots were either: (i) regularly wa-
tered in the control treatment, or (ii) were not watered until the 
ninth week in the preflowering drought treatment at which time 
regular watering was initiated, or (iii) were regularly watered until 
the 10th week in the postflowering drought treatment at which 
time watering ceased (Gao et al., 2020). Weekly samples of leaf, 
root, rhizosphere and soil were taken in 2016 for control plots on 
June 8, 15, 22, 29; July 6, 13, 20, 27; August 3, 10, 17, 24, 31; and 
September 7, 14, 21, 28 (Gao et al., 2019, 2020; Varoquaux et al., 
2019; Xu et al., 2018). To avoid redundancy of control conditions, 
preflowering treatment sampling began on June 22 (TP03) and 
postflowering sampling began on July 27 (TP08) (Gao et al., 2019, 
2020; Varoquaux et al., 2019; Xu et al., 2018). In each plot on 
every sampling date, at least 10 individual sorghum plants were 
collected and pooled to generate one combined sample each of 
leaf, root and rhizosphere, and 10  soil cores were collected and 
pooled to generate one combined soil sample, as described in our 
previous publications (Gao et al., 2019, 2020; Varoquaux et al., 
2019; Xu et al., 2018).

2.2  |  DNA-based analysis

Detailed description of DNA extraction, fungal 18S qPCR, fun-
gal ITS2 amplification and MiSeq sequencing can be found in our 
publication of the sorghum mycobiome (Gao et al., 2020). DNA 
was extracted from 0.2  g of root, rhizosphere or soil samples 
using the MoBio PowerSoil DNA kit (MoBio) (Gao et al., 2020). 
Fungal biomass was estimated by qPCR of the fungal small subu-
nit rRNA (SSU or 18S) using the FF2 and FR1 primers (Gao et al., 
2020; Zhou et al., 2000). Standard curves were developed using a 
series of 10-fold dilutions of plasmids containing an inserted frag-
ment of the 18S gene of Penicillium purpurogenum (Adams et al., 
2013; Gao et al., 2020). We recognize that no current method of 
estimating fungal biomass in field conditions is ideal (Baumgartner 
et al., 2010; Song et al., 2014; Tellenbach et al., 2010). All meth-
ods of estimating biomass have their drawbacks; for example, the 
use of the fungal cell wall polymer, chitin, is confounded by chitin 
found in dead hyphae and insects, the use of the fungal membrane 
lipid, ergosterol is confounded by varying ratios of lipid to bio-
mass and the use of DNA by qPCR can be confounded by variation 
in target copy number (Song et al., 2014). Of the three methods, 
the one that we chose, qPCR, is increasing in popularity because 
the same DNA used to identify fungal OTUs can be used for 
quantification and because qPCR is economical in terms of sup-
plies and labour (Adams et al., 2013; Gao et al., 2020; Varoquaux 
et al., 2019). Fungal ITS2 was PCR-amplified from DNAs diluted to 
5 ng µl–1 with ddH2O, using dual-barcoded 5.8SFun and ITS4Fun 
primers (Gao et al., 2019, 2020; Taylor et al., 2016). The yields of 
PCR products were quantified using a Qubit dsDNA HS kit (Life 
Technologies) and 200 ng of DNA from each sample was randomly 
assigned to four different pools, purified using AMPure magnetic 
beads (Beckman Coulter), checked for concentration and amplicon 
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size using an Agilent 2100 Bioanalyzer (Agilent Technologies), and 
sequenced (four runs) on the Illumina MiSeq PE300  sequencing 
platform (Illumina) at the Vincent J. Coates Genomics Sequencing 
Laboratory (GSL, University of California, Berkeley, CA, USA) 
(Gao et al., 2020). Raw fastq sequences were subjected to quality 
evaluation using fastqc version 0.11.5 (Andrews, 2010), removal of 
primers using cutadapter version 1.9.1 (Martin, 2011), merging of 
forward and reverse reads, control of quality, clustering of OTUs, 
global search using usearch version 8.0 (Edgar, 2013), and blastn 
search for identification of OTUs, to generate a table of 776 sam-
ples ×65 AMF OTUs (Gao et al., 2020).

2.3  |  RNA-based analysis

Detailed description of RNA extraction and sequencing can be 
found in our publication of the sorghum transcriptome (Varoquaux 
et al., 2019). RNA was extracted from root samples using the 
Qiagen miRNeasy Mini Kit (Cat. no. AM217004) with modifications 
(Varoquaux et al., 2019). DNA contamination was removed using 
the TURBO DNA-free kit (Cat. no. AM1907; Invitrogen) (Varoquaux 
et al., 2019). Stranded cDNA libraries were generated using the 
Illumina Truseq Stranded RNA LT kit (Varoquaux et al., 2019). The 
fragmented cDNA was treated with end-pair, A-tailing, adapter li-
gation and eight cycles of PCR (Varoquaux et al., 2019). qPCR was 
used to determine the concentration of the libraries. Libraries 
were sequenced on the Illumina HiSeq (Varoquaux et al., 2019). 
Raw fastq reads were filtered and trimmed using the JGI QC pipe-
line (Varoquaux et al., 2019). Filtered reads from each library were 
aligned to the reference genome (phytozome version 3.1, supple-
mented with RTx430 and BTx642 single nucleotide polymorphism 
[SNP] information) using hisat version 2.1.0 (Kim et al., 2015). feature-
counts (Liao et al., 2014) was used to generate the raw gene counts 
(counts.txt) file using gff3 annotations.

2.4  |  Statistical methods

To visualize the relative abundances of AMF OTUs, bar plots were 
constructed using the ggplot2 package (Wickham, 2009) in R ver-
sion 3.5.1 (R Development Core Team, 2018). Bray–Curtis dissimi-
larities were calculated to construct distance matrices of the fungal 
community (Hellinger-transformed) using the vegdist command in 
the vegan package (Oksanen et al., 2013), which were subjected 
to principal coordinate analysis using the pcoa command in the 
ape package (Paradis et al., 2004) in R. The most important age-
discriminant AMF OTUs (those OTUs that most effectively predict 
community age) were identified from a random subset of 50% con-
trol samples using the random forest (RF) model in the randomfor-
est package (Liaw & Wiener, 2002) in R. The sparse RF model of 
these age-discriminant fungal OTUs was used to predict the ages of 
drought samples and another subset of 50% control samples; and 
the discrepancies between predicted ages of control and drought 

samples were used to assess the extent of the effect of drought on 
AMF succession. Permutational analysis of variance (PERMANOVA) 
was carried out to assess the effect of compartment (soil, rhizos-
phere or root), sample time (weeks 1–17), predicted time, cultivar 
(BTx642, RTx430) and drought treatment (control, preflowering 
drought or postflowering drought) on the nestedness (members in 
the control community, due to the loss of drought-tolerant species, 
is a subset of that of drought community) and turnover (some mem-
bers in the control community are replaced by drought-tolerant spe-
cies in the drought community, such that the drought community is 
not simply a subset of the control community) components of AMF 
community variation using the vegan package in R. Abundances of 
initially ruderal AMF and later competitive AMF were visualized by 
locally weighted scatterplot smoothing (LOWESS) fitting curves in 
the ggplot2 package in R.

From the sorghum transcriptome data set, we focused on 
the subset of sorghum genes known to be involved in signalling 
and nutrient transfer between AMF and their hosts (Akiyama 
et al., 2005; Besserer et al., 2006; Jiang et al., 2017; Luginbuehl 
et al., 2017; Olah et al., 2005; Rausch et al., 2001). Pearson cor-
relations of AMF and sorghum genes coding importers of soil 
nutrient and water were visualized by a heatmap in the pheatmap 
package (Kolde, 2012) in R. The p values were adjusted using the 
Bonferroni method (Bonferroni, 1935). For each of the targeted 
sorghum genes, the correlations were carried out for relative 
abundance (RA, log-transformed) of each of the OTUs in the ei-
ther ruderal (two OTUs) or competitive AMF (13 OTUs), and thus R 
values represent a range of two or 13 values. Transcription of sor-
ghum genes coding for the protein processing signal of Myc-LCOs 
(signalling molecules produced by AMF), and coding for strigolac-
tones (signalling molecules produced by sorghum) were visualized 
by LOWESS fitting curves in the ggplot2 package in R, and were 
placed in the Myc-LCOs signal molecules pathway as documented 
in Recorbet et al. (2013), and the strigolactone synthesis pathway 
as documented in Seto and Yamaguchi (2014). Transcriptions of 
sorghum genes coding for the synthesis and export of 2-MAG 
(C16:0 2-monoacylglycerol) lipid were visualized by LOWESS 
fitting curves, and placed in the lipid pathway as documented in 
Wang et al. (2017).

3  |  RESULTS AND DISCUSSION

3.1  |  Testing H1: Competitive AMF species 
will be replaced by drought-stress-tolerant AMF 
species when irrigation is withheld to induce pre- or 
postflowering drought

Having documented ruderal and competitive OTUs during AMF 
succession in an irrigated system (Gao et al., 2019), we expected 
to see the appearance of drought-stress-tolerant species when 
we imposed stress in the form of preflowering drought (which 
we then alleviated at the time of flowering), or imposed stress 
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in the form of postflowering drought, having provided water 
for the first half of the sorghum growth cycle (Gao et al., 2020). 
We imagined three possible sources of drought-tolerant AMF. 
First, drought-tolerant AMF could simply be present in the soil 
species pool and be recruited to the root in drought. Second, 

drought-tolerant AMF could be absent from our plots but disperse 
to our site from nearby sites to be recruited by roots. Third, AMF 
could evolve drought tolerance, although an unlikely event over 
one growing season. We found previously that drought drastically 
decreased total AMF abundance (Varoquaux et al., 2019), but to 

F I G U R E  1  Structure of AMF community by time point, compartment, treatment, and cultivar. (a) Principal coordinate (PCo) analysis 
of AMF community Bray−Curtis dissimilarity with permutational analysis of variance (PERMANOVA) showing significant association 
of AMF community composition with, in order of importance, time point (R2 = 0.346, p < 0.001), compartment (R2 = 0.075, p < 0.001), 
drought treatment (R2 = 0.061, p < 0.001) and sorghum cultivar (R2 = 0.003, p = 0.008). (b) Temporal change in relative abundance of AMF 
operational taxonomic units (OTUs) at each time point in the three compartments, and three treatments. To avoid redundancy of control 
conditions (CON), preflowering (PRE) treatment sampling began at the 3rd week and postflowering (POST) sampling began at the 8th week. 
A similar barplot of control samples was reported by Gao et al. (2019)
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identify drought-tolerant species, we would need to find species 
that increased in relative abundance with drought. Although in 
our study none of the AMF species showed an obvious increase 
in their relative abundance with drought (Figure 1), we did find, 
by PERMANOVA of all root, rhizosphere and soil samples, that 
drought does have a small but significant effect on AMF com-
munity composition (R2 = 0.061, p < 0.001). However, the effect 
is far weaker than that of sampling time (17  weeks, R2  =  0.346, 
p < 0.001) and similar to that of compartment (soil, rhizosphere or 
root) (R2 = 0.075, p < 0.001) (Figure 1a). This small but significant 
drought effect on AMF community composition does not neces-
sarily stem from recruitment of drought-tolerant species, because 

the effect also could be attributed to (i) a delay in the plant-driven 
succession of the AMF community in root, rhizosphere and soil, 
or to (ii) the promotion of AMF sporulation in drought-stressed 
compartments of rhizosphere and soil, which would increase the 
DNA of sporulating species in these compartments but not in root. 
To investigate the first of these two alternatives to selection of 
drought-tolerant AMF, we turned to RF analysis to detect and es-
timate any delay imposed by drought on succession of community 
composition (Figure 2a). To investigate the second alternative, we 
analysed components of community composition, separately, in 
each of the three compartments, root, rhizosphere and soil. For 
the first alternative, our RF results showed that both pre- and 

F I G U R E  2  Effect of drought on successional AMF community. (a) Delay in the succession of AMF community composition due to 
pre- and postflowering drought shown by comparing predicted AMF community composition for all compartments (based on Random 
Forest modelling of well-watered sorghum) with observed AMF community composition for well-watered and droughted sorghum. Note 
that preflowering drought delays succession until irrigation is initiated at week 9, at which time succession begins to parallel that seen 
for well-watered sorghum. Postflowering drought delays and then disrupts succession. (b) Preflowering drought prevented AMF richness 
from increasing for all compartments until irrigation was initiated. With postflowering drought, richness appears to decrease following 
withholding water, but the decrease is not significant. (c) Succession of AMF community composition in all compartments involves both 
nestedness (members in the control community, due to the loss of drought-tolerant species, are a subset of that of the drought community) 
and turnover (some members in the control community are replaced by drought-tolerant species in the drought community, such that the 
drought community is not simply a subset of the control community). Drought does not affect the nestedness and turnover components of 
AMF community succession in roots, but it does cause effects in rhizosphere and soil. In this figure and throughout this paper, the shadows 
represent the 95% confidence interval for the fitting of LOWESS curves. F represents the results of Fisher's test

(a)

(c)

(b)
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postflowering drought does delay the development of the AMF 
community (Figure 2a), and that AMF richness is significantly de-
creased by preflowering drought but not by postflowering drought 
(Figure 2b). Thus, the weak effect of drought on total AMF commu-
nity composition can be explained by a delay in its development. 
The second alternative involves changes in particular species, 
which can be evaluated in terms of two components of community 
composition (Baselga, 2010), nestedness (a situation in which spe-
cies in the control community, due to the loss of drought-tolerant 
species, would be a subset of those in the drought community) 
and turnover (where some members in the control community 
would be replaced by drought-tolerant species in the drought 
community, such that the drought community would not simply be 
a subset of the control community). To evaluate these scenarios, 
we carried out PERMANOVA using the nestedness and turnover 
(Gao et al., 2019) components of AMF community composition as 
response variables, and sample time, predicted time and drought 
treatment (pre- or postflowering) as independent variables. The 
within-compartment analysis showed that, in roots, neither pre- 
nor postflowering drought exerted a significant influence on nest-
edness or turnover (Figure 2c), implying neither recruitment nor 
loss of drought-stress-tolerant AMF in roots. In contrast to roots, 

in rhizosphere and soil a significant drought effect on nestedness 
or turnover was observed that could be explained by sporulation 
(Figure 2c). Therefore, although we found changes in AMF rich-
ness and community composition, we can reject H1 because we 
found no evidence of the recruitment to roots of drought-stress-
tolerant AMF from comparison with well-irrigated, control plants, 
making it unnecessary to speculate, as we did above, about pos-
sible sources for drought-resistant AMF in roots.

It could be argued that we saw no recruitment of drought-
tolerant AMF because, in the sorghum system, all of the AMF were 
already drought-adapted. After all, our study site was chosen for 
its absence of precipitation throughout the growing season to 
avoid summer rain that could ruin field experiments (Gao et al., 
2020). However, as noted above, our study site has been irrigated 
with ground water over six decades, time enough to lose drought-
adapted AMF, as seen by the drastic decrease in AMF abundance 
when we imposed drought (Varoquaux et al., 2019). Our inability 
to find drought-adapted AMF in sorghum roots at our study site 
does not mean that none exist. They may exist in unirrigated soils 
near our fields and have been reported in other studies from, for 
example, semi-arid grasslands (mean annual precipitation [MAP] 
300–800  mm) where several studies have reported significant 

F I G U R E  3  Ruderal and competitive AMF groups and signal communication. Top, green pathway: perception of Myc-LCO signal 
molecules. Transcription over a season of sorghum genes (DMI1, DMI2, DMI3 and NSP2) known (Recorbet et al., 2013) to perceive Myc-LCOs 
signal molecules produced by AM fungi. Blue line: ruderal AMF abundance is correlated with the transcription of DMI2. Bottom, yellow 
pathway: synthesis of strigolactones. Transcription of sorghum genes (D27, CCD7, CCD8, P450 and PDR1) known (Seto & Yamaguchi, 2014) 
to synthesize the plant signalling molecule strigolactone (SL). Red lines: competitive AMF abundance is correlated with the transcription 
of CCD7, CCD8 and P450. *Sobic.003G076800 is a representative of eight Cytochrome P450 genes that are significantly correlated with 
competitive AMF, as detailed in Figure S1. The relative abundances (RA, log-transformed) of AMF represent the summed RA of two ruderal 
AMF, or summed RA of 13 competitive AMFs. For each of the targeted sorghum genes, the correlations were carried out for each of the 
OTUs in the either ruderal (two OTUs) or competitive AMFs (13 OTUs), and thus R values represent a range of two or 13 values
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effects of drought on AMF community composition (Chen et al., 
2017; Deveautour et al., 2018, 2019; Gao et al., 2016; Li et al., 
2015) (Table S2). Where water is abundant and reliable, as in wet 
subtropical forests (MAP 1440–1750  mm), studies of drought 
have, like our sorghum system, failed to find a significant effect 
of drought on AMF communities (Cao et al., 2020; Maitra et al., 
2019) (Table S2).

3.1.1  |  Testing H2: The transition from ruderal 
to competitive AMF will correlate with shifts 
in transcription of host genes responsible for 
producing and receiving signalling molecules

A key aspect of the arbuscular mycorrhizal symbiosis is the chemical 
communication between the symbionts via host-derived strigolac-
tones and AMF-derived Myc-LCOs (Akiyama et al., 2005; Besserer 
et al., 2006; Olah et al., 2005). Host-derived strigolactones are rec-
ognized by AMF, leading to AMF hyphal branching and increased 
metabolism (Gough & Bécard, 2016). Strigolactone is produced 
from carotene within plant cells by the action of enzymes that in-
clude carotenoid isomerase encoded by DWARF 27 (D27), two ca-
rotenoid cleavage dioxygenases encoded by CCD7 and CCD8, and 
a cytochrome P450. Strigolactones are then exported through the 
action of proteins encoded by pleiotrophic drug resistance 1 (PDR1) 
(Gough & Bécard, 2016). Conversely, Myc-LCOs are produced by 
AMF and these signalling molecules are then recognized by host 
proteins encoded by nod factor perception (NFP) and processed via 
proteins encoded by does-not-make-infections (DMI1/DMI2, DMI3) 
and nodulation-specific transcription factor (NSP2) (Gough & 
Bécard, 2016).

To address H2, we compared transcription of these plant 
signalling-genes with abundance of AMF species. We found that 
the abundance of ruderal species positively correlated with ex-
pression of a plant gene that processes fungally produced Myc-
LCOs (DMI2) (Figure 3). We also found that the abundance of 
competitive AMF positively correlated with expression of plant 
genes involved in producing strigolactones (D27, CCD7, CCD8, P450 
and PDR1) (Figure 3). Therefore, we are unable to reject H2 that 
the transition from ruderal to competitive AMF will correlate with 
shifts in transcription of host genes responsible for producing and 
receiving signalling molecules. Our results are consistent with a 
scenario where sorghum seedlings produce enough strigolactone 
to stimulate the germination of dormant ruderal AMF spores but 
not dormant competitive AMF spores. As the host develops, in-
creased export of strigolactones promotes the germination of 
competitive AMF species, and the abundance of ruderal AMF 
species decreases along with the decrease in transcription of host 
genes involved in recognizing Myc-LCOs signals. The abundance of 
competitive AMF is also positively correlated with transcription of 
a sorghum phosphate transporter (Sobic.001G234800, Figure 4). 
Consistent with our finding, previous work has found that the 
strigolactone synthesis pathway is stimulated to recruit AMF by 

phosphorus starvation, and suppressed by an increase in phospho-
rus supply (Recorbet et al., 2013).

3.1.2  |  Testing H3: The transition in abundance of 
AMF from ruderal to competitive species will correlate 
with shifts in transcription of host genes responsible 
for resource transfer between fungi and host

Mycorrhizal symbiosis involves resource exchange of host-produced 
sugars and lipids for soil-derived and AMF-transported miner-
als and water. Plants generate and transfer to AMF the lipid, C16:0 
2-monoacylglycerol (2-MAG), via the activities of acyl-ACP thi-
oesterases (FaTM), glycerol-3-phosphate acyltransferase (reduced 
arbuscular mycorrhiza 2 gene, RAM2) and ABCG transporters (stunted 
arbuscle, STR/STR2) (Wang et al., 2017). Plants also export sugar to 
AMF via sugars-will-eventually-be-exported-transporter (SWEET), 
sucrose transporters (SUT) and monosaccharide transporters (MST), 
and plants import soil-derived resources via transporters for phos-
phate (PT), ammonium (AMT), potassium (KT), sulphate (ST), etc. 
(Wang et al., 2017).

To address H3, we retrieved transcripts of these genes from the 
sorghum transcriptome (Varoquaux et al., 2019), and correlated 
them with AMF abundance (Gao et al., 2019). Our results showed 
that the shift from ruderal to competitive AMF involves shifts in 
transcription of genes involved with both plant-derived resources 
and soil-derived, AMF-transported resources. For plant-derived re-
sources, ruderal AMF OTU abundance correlates with transcription 
of FaTM in the lipid synthesis pathway and two SWEET genes coding 
for sucrose exporter proteins. For competitive AMF, their OTU abun-
dance is positively correlated with the transcription of a SWEET gene 
coding for a different sucrose exporter protein (Figure 4). For AMF-
provided resources, the abundance of ruderal AMF OTUs correlated 
positively with expression from a higher number and proportion of 
aquaporin genes, whereas the abundance of competitive AMF OTUs 
correlated positively with expression from a higher number and pro-
portion of transporters of soil phosphorus, nitrogen, potassium, sul-
phur and metals (Figure 4). From these results, we infer that ruderal 
AMF are less beneficial than competitive AMF in terms of providing 
the host plant with soil phosphorus, nitrogen, potassium, sulphur 
and metals, and the developing host plant selects against ruderal 
AMF by limiting the provision of lipid and sucrose. Using plants of the 
same age would be necessary for testing whether ruderal taxa are 
less beneficial compared to competitive taxa. However, the ruderal 
and competitive AMFs are differentially distributed over the growth 
season of plant, and thus the maturing sorghum plants would not 
have ruderal AMF. Certainly, the different benefits of ruderal and 
competitive AMFs could be tested by manipulating inoculation in the 
laboratory or glasshouse, but those studies are beyond the scope 
of the research project presented here. Therefore, we are unable 
to falsify H3, that the transition in abundance of AMF from ruderal 
to competitive species correlates with shifts in transcription of host 
genes responsible for resource transfer between fungi and host.
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4  |  CONCLUSIONS

Our introduction of severe drought stress to the AMF–sorghum 
symbiosis in agricultural fields revealed that the community compo-
sition of AMF remains stable to change by stress (Figure 1), although 
the abundance of AMF declines in drought (Varoquaux et al., 2019). 
Together, these results indicate the absence of drought-tolerant 
AMFs in our agricultural system. Knowledge of the levels of tran-
scription of plant genes for the entire sorghum genome allowed us 
to correlate the expression of plant genes with AMF abundance, 
particularly during the transition from early, ruderal AMF species to 
later, competitive AMF species. We found that abundances of rud-
eral and competitive AMF species were differentially correlated with 
transcription of sorghum genes coding for the processing of Myc-
LCOs (signalling molecules produced by AMF), and coding for strigo-
lactones (signalling molecules produced by sorghum). We also found 
differences in abundance between ruderal and competitive AMF in 
correlations with plant genes involved in providing sugar and lipid to 
the fungus. More broadly, plant genes involved with water transport 
(i.e., aquaporins) are more strongly associated with the early, ruderal 
AMF, while those involved in mineral nutrient uptake, principally 

phosphorus, are more strongly associated with the later, competitive 
AMF. The novel insights from the correlations between the type of 
AMF and plant gene expression allow us to infer adaptive strategies 
employed by AMF and their host plants. The replacement of ruderal 
AMF with competitive AMF correlates with: (i) a shift from aquapor-
ins to mineral transporters, indicative of a shift in plant host needs 
from water to phosphorous; (ii) a shift from fatty acid transporters 
and one set of sugar transporters to a second set of sugar transport-
ers, indicative of a shift in nutritional needs from those specific to 
ruderal to those specific to competitive AMF; and (iii) a shift in sig-
nalling from Myco-LCOs to strigolactones, suggesting that the het-
erotrophic AMF, wholly dependent on host plant resources, initiate 
communication, but that the needs of the growing, autotrophic host 
plant come to dominate signalling.

We hope that our research will stimulate studies testing the spe-
cifics of our hypotheses through the use of host plants that have 
been genetically modified to disrupt signalling or nutrient transfer. 
We also hope to test the generality of our hypotheses through the 
exploration of additional plant genes as well as fungal genes that 
underlie the adaptive strategies that accompany microbial succes-
sion in nature. We look forward to studies aimed at discovering 

F I G U R E  4  Ruderal–competitive transition involves resource exchange. (a) Different benefits of ruderal and competitive AMF to host 
plants. Heatmap showing co-occurrence (positive correlations in red hues) and co-avoidance (negative correlations in blue hues) between 
AMF OTUs and transcription of sorghum genes. Correlation analysis showed that the 13 competitive AMF are coupled with a higher 
proportion of transporters (green squares) of soil nitrogen (N), phosphorus (P), potassium (K), sulphur (S) and metal in contrast to the two 
ruderal AMF, which are coupled with a higher proportion of aquaporins (yellow squares). (b) Successional AMF groups and host-derived 
resources of sucrose and lipid. Ruderal AMF abundance is coupled with the transcription of FaTM in the lipid synthesis pathway and two 
SWEET genes coding for sucrose exporter proteins. Competitive AMF abundance is correlated with the transcription of a SWEET gene 
coding for a different sucrose exporter protein. The relative abundances (RA, log-transformed) of AMF represent the summed RA of two 
ruderal AMF, or summed RA of 13 competitive AMFs. The pathways are referenced from Wang et al. (2017). STR, stunted arbuscle; RAM, 
reduced arbuscular mycorrhiza; SWEET, sugars-will eventually-be-exported-transporter; 2-MAG, C16:0 2-monoacylglycerol; FAS, fatty acid 
synthase system; FaTM, fat required for arbuscular mycorrhizal symbiosis

(a) (b)
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stress-tolerant AMF in environments where irrigation is not prac-
tised. Although our results pertain to basic aspects of biology, they 
could also be applied to improving commercial sorghum cultivation. 
Treating sorghum seed with ruderal species of AMF could, for exam-
ple, improve water availability in agricultural areas where large-scale 
irrigation has either not been developed or is being abandoned due 
to ground water depletion and global change. Similarly, application 
of competitive AMF might accelerate the development of sorghum 
plants, which could then result in fewer inputs or improved yield or 
both.
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