
HAL Id: hal-03375800
https://hal.science/hal-03375800

Submitted on 16 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A pipeline to analyse time-course gene expression data
Nelle Varoquaux, Elizabeth Purdom

To cite this version:
Nelle Varoquaux, Elizabeth Purdom. A pipeline to analyse time-course gene expression data.
F1000Research, 2020, 9, pp.1447. �10.12688/f1000research.27262.1�. �hal-03375800�

https://hal.science/hal-03375800
https://hal.archives-ouvertes.fr

METHOD ARTICLE

A pipeline to analyse time-course gene expression data

[version 1; peer review: 1 approved with reservations]
Nelle Varoquaux1, Elizabeth Purdom2

1CNRS, University Grenoble Alpes, TIMC-IMAG, Grenoble, France
2Department of Statistics, University of California, Berkeley, Berkeley, California, 94720-3860, USA

First published: 11 Dec 2020, 9:1447
https://doi.org/10.12688/f1000research.27262.1
Latest published: 11 Dec 2020, 9:1447
https://doi.org/10.12688/f1000research.27262.1

v1

Abstract
The phenotypic diversity of cells is governed by a complex equilibrium
between their genetic identity and their environmental interactions:
Understanding the dynamics of gene expression is a fundamental
question of biology. However, analysing time-course transcriptomic
data raises unique challenging statistical and computational
questions, requiring the development of novel methods and software.
This workflow provides a step-by-step tutorial of the methodology
used to analyse time-course data: (1) quality control and normalization
of the dataset; (2) differential expression analysis using functional
data analysis; (3) clustering of time-course data; (4) interpreting
clusters with GO term and KEGG pathway enrichment analysis. As a
case study, we apply this workflow to time-course transcriptomic data
from mice exposed to four strains of influenza to showcase every step
of the pipeline.

Keywords
time-course gene expression data, clustering, differential expression,
workflow

This article is included in the Bioconductor

gateway.

This article is included in the RPackage

gateway.

Open Peer Review

Reviewer Status

Invited Reviewers

1

version 1
11 Dec 2020 report

Michael I. Love , University of North

Carolina at Chapel Hill, Chapel Hill, USA

1.

Any reports and responses or comments on the

article can be found at the end of the article.

Page 1 of 42

F1000Research 2020, 9:1447 Last updated: 04 OCT 2021

https://f1000research.com/articles/9-1447/v1
https://doi.org/10.12688/f1000research.27262.1
https://doi.org/10.12688/f1000research.27262.1
https://f1000research.com/gateways/bioconductor
https://f1000research.com/gateways/bioconductor
https://f1000research.com/gateways/rpackage
https://f1000research.com/gateways/rpackage
https://f1000research.com/articles/9-1447/v1
jar:file:/work/f1000research/webapps/ROOT/WEB-INF/lib/service-1.0-SNAPSHOT.jar!/com/f1000research/service/export/pdf/#
https://orcid.org/0000-0001-8401-0545
http://crossmark.crossref.org/dialog/?doi=10.12688/f1000research.27262.1&domain=pdf&date_stamp=2020-12-11

Corresponding authors: Nelle Varoquaux (nelle.varoquaux@univ-grenoble-alpes.fr), Elizabeth Purdom (epurdom@stat.berkeley.edu)
Author roles: Varoquaux N: Software, Visualization, Writing – Original Draft Preparation, Writing – Review & Editing; Purdom E:
Software, Supervision, Writing – Original Draft Preparation, Writing – Review & Editing
Competing interests: No competing interests were disclosed.
Grant information: This research was funded in part by a Department of Energy (DOE) grant [DE-SC0014081]; by the Gordon and Betty
Moore Foundation [GBMF3834] and the Alfred P. Sloan Foundation [2013-10-27] to the University of California, Berkeley (NV); by a ENS-
CFM Data Science Chair (EP).
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Copyright: © 2020 Varoquaux N and Purdom E. This is an open access article distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.
How to cite this article: Varoquaux N and Purdom E. A pipeline to analyse time-course gene expression data [version 1; peer
review: 1 approved with reservations] F1000Research 2020, 9:1447 https://doi.org/10.12688/f1000research.27262.1
First published: 11 Dec 2020, 9:1447 https://doi.org/10.12688/f1000research.27262.1

Page 2 of 42

F1000Research 2020, 9:1447 Last updated: 04 OCT 2021

mailto:nelle.varoquaux@univ-grenoble-alpes.fr
mailto:epurdom@stat.berkeley.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.12688/f1000research.27262.1
https://doi.org/10.12688/f1000research.27262.1

Introduction
Gene expression studies provide simultaneous quantification of the level of mRNA from all genes in a sam-
ple. High-throughput studies of gene expression have a long history, starting with microarray technologies in the
1990s through to single-cell technologies. While many expression studies are designed to compare the gene
expression between distinct groups, there is also a long history of time-course expression studies. Such studies
compare gene expression across time by measuring mRNA levels from samples collected at different timepoints1.
Such time-course studies can vary from measuring a few distinct timepoints, to sampling ten to 20 time points.
These longer time series are particularly interesting for investigating development over time. More recently, a new
variety of time course studies have come from single-cell sequencing experiments (Habib et al., 2016; Shalek
et al., 2014; Trapnell et al., 2014) which can sequence single cells at different stages of development; in this case,
the time point is the stage of the cell in the process of development -- a value that is not know but estimated from
the data as its “pseudo-time.”

While there are many methods that have been proposed for discrete aspects of time course data, the entire work-
flow for analysis of such data remains difficult, particularly for long, developmental time series. Most meth-
ods proposed for time course data are concerned with detecting genes that are changing over time (differential
expression analysis), examples being edge (Storey et al., 2005), functional component analysis based models
(Wu & Wu, 2013), time-course permutation tests (Park et al., 2003a), and multiple testing strategies to com-
bine single time point differential expression analysis (Wenguang & Zhi, 2011). However, with long time course
datasets, particularly in developmental systems, a massive number of genes will show some change (Varoquaux
et al., 2019). For example, in a study of mice lung tissues infected with influenza that we consider in this work-
flow, we show that over 50% of genes are changing over time. The task in these settings is often not to detect
changes in genes, but to categorize them into biologically interpretable patterns.

We present here a workflow for such an analysis that consists of 4 main parts (Figure 1):

• �Quality control and normalization;

• �Identification of genes that are differentially expressed;

• �Clustering of genes into distinct temporal patterns;

• �Biological interpretation of the clusters.

This workflow represents an integration of both novel implementations of previously established methods and
new methodologies for the settings of developmental time series. It relies on several standard packages for ana-
lysing gene expression data, some specific for time-course data, others broadly used by the community. We
provide the various steps of the workflow as functions in a R package called moanin.

Installation and setup
moanin and timecoursedata are available from bioconductor, and can be installed using the install func-
tion in the package BiocManager, along with the corresponding package that contains time course datasets
we will use:

library (BiocManager)
Need to use the development version for now.
BiocManager::install(version="devel")
BiocManager::valid()

BiocManager::install("timecoursedata")
BiocManager::install("moanin")

1 Because the collection of the mRNA is often destructive, samples at different time points are generally from different biological samples;
longitudinal studies, for example tracking the same subject over time, are certainly possible, but not directly considered here.

Page 3 of 42

F1000Research 2020, 9:1447 Last updated: 04 OCT 2021

https://www.bioconductor.org/

The following additional packages are needed for this workflow:

From Github
library(moanin)
library(timecoursedata)

From CRAN
library(NMF)
library(ggfortify)

From Bioconductor
library(topGO)
library(biomaRt)
library(KEGGprofile)
library(BiocWorkflowTools) #Needed for compiling the .Rmd script

Figure 1. Workflow for analyzing time-course datasets.

Page 4 of 42

F1000Research 2020, 9:1447 Last updated: 04 OCT 2021

If Bioconductor is installed, the CRAN and Bioconductor packages above can be installed via

BiocManager::install(
 c("NMF", "ggfortify", "topGO", "biomaRt",
 "KEGGprofile", "BiocWorkflowTools", "timecoursedata",))

Analysis of the dynamical response of mouse lung tissue to influenza
This workflow is illustrated using data from a micro-array time-course experiment, exposing mice to three dif-
ferent strains of influenza, and collecting lung tissue during 14 time-points after infection (0, 3, 6, 9, 12, 18, 24,
30, 36, 48, 60 hours, then 3, 5, and 7 days later) (Shoemaker et al., 2015). The three strains of influenza used in
the study are (1) a low pathogenicity seasonal H1N1 influenza virus (A/Kawasaki/UTK4/2009 [H1N1]), a mildly
pathogenic virus from the 2009 pandemic season (A/California/04/2009 [H1N1]), and a highly pathogenic
H5N1 avian influenza virus (A/Vietnam/1203/2004 [H5N1]. Mice were injected with 105 PFU of each virus.
An additional 42 mice were injected with a lower dose of the Vietnam avian influenza virus (103 PFU).

By combining gene expression time-course data with virus growth data, the authors show that the inflamma-
tory response of lung tissue is gated until a threshold of the virus concentration is exceeded in the lung. Once
this threshold is exceeded, a strong inflammatory and cytokine production occurs. These results provide evidence
that the pathology response is non-linearly regulated by virus concentration.

While we showcase this pipeline on micro-array data, Varoquaux et al. (2019) leverages a similar set of steps
to analyse RNA-seq data of the lifetime transcriptomic response of the crop S. bicolor to drought.

Overview of the data
First let’s load the data. The package moanin contains the normalized data and metadata of (Shoemaker et al.,
2015).

Now load in the metadata
data(shoemaker2015)
meta = shoemaker2015$meta
data = shoemaker2015$data

The meta data contains information about the treatment group, the replicate, and the timepoint for each
observation (see Table 1).

Before we dive into the exploratory analysis and quality control, let us define color schemes for our data that
we will use across the whole analysis. We define color schemes for groups and time points as named vec-
tors. We also define a series of markers (or plotting symbols) to distinguish replicate samples in scatter plots.
We also reorder the factor Group which describes the treatments so that the treatments are ordered from low to
high pathogeny (with Control being first).

Table 1. Structure of the meta data dataframe.

Group Replicate Timepoint

GSM1557140 0 K 1 0

GSM1557141 1 K 2 0

GSM1557142 2 K 3 0

GSM1557143 3 K 1 12

GSM1557144 4 K 2 12

GSM1557145 5 K 3 12

Page 5 of 42

F1000Research 2020, 9:1447 Last updated: 04 OCT 2021

group_colors = c(
 "M"="dodgerblue4",
 "K"="gold",
 "C"="orange",
 "VH"="red4",
 "VL"="red2")
time_colors = grDevices::rainbow(15) [1:14]
names(time_colors) = c(0, 3, 6, 9,12, 18, 24, 30, 36, 48, 60, 72, 120, 168)

Combine all color schemes into one named lists.
ann_colors = list(
 Timepoint=time_colors,
 Group=group_colors
)

replicate_markers = c(15, 17, 19)
names(replicate_markers) = c(1, 2, 3)
ann_markers = list(
 Replicate=replicate_markers)

Reorder the conditions such that:
- Control is before any influenza treatment
- Each treatment is ordered from low to high pathogeny
meta$Group = factor(meta$Group, levels(meta$Group)[c(3, 2, 1, 5, 4)])

Quality control and normalization
The first steps of analysis of gene expression data is always to do normalization and quality control checks of
the data. However, in what follows, we do not show the steps for normalization, as these are specific to the plat-
form (microarray); the code for the normalization is available from GitHub (Abrams et al., 2019; Park et al.,
2003b).

Instead, we focus on common steps for exploratory analysis of the data, including for the purpose of qual-
ity control. These steps are not specific to time course data, but could be applied for any gene expression analy-
sis. For this reason, we will not print the detailed code that is needed for this part of the analysis; interested
readers can examine the rmarkdown code that accompanies this workflow.

Exploratory analysis and quality control
Typically, two quality control and exploratory analysis steps are performed before and after normalization:
(1) low dimensionality embedding of the samples; (2) correlation plots between each sample. In both cases,
we expect a strong biological signal, while replicate samples should be strongly clustered or correlated with one
another.

Before performing any additional exploratory analysis, let us only keep highly variable genes: for this step,
we keep only the top 50% most variable genes. In Figure 2, we plot the distribution of variance across all genes.

variance_cutoff = 0.5
Filter genes by median absolute deviation (mad)
variance_per_genes = apply(data, 1, mad)
min_variance = quantile(variance_per_genes, c(variance_cutoff))
variance_filtered_data = data[variance_per_genes > min_variance,]

Let us first perform the Principal Component Analysis (PCA) analysis. Here, we perform a PCA of rank 3 of
the centered and scaled gene expression data.

In Figure 3, we visualize the data by plotting the Principal Components (PC), with samples colored by either its
condition (top row) or its sampling time (bottom row) and each replicate a different symbol. We can see a
large difference in later time points.

Page 6 of 42

F1000Research 2020, 9:1447 Last updated: 04 OCT 2021

https://github.com/NelleV/2019timecourse-rnaseq-pipeline/

Figure 2. Distribution of variance.

Figure 3. Plot of principal components (PC): PC2 vs PC1 (right) and PC2 vs PC3 (left). Samples are colored by
condition (top row) and sampling time (bottom row).

We also plot in Figure 4 the Pearson correlation between each sample as a heatmap diagram (using the
function aheatmap in NMF). We order the samples by their group (treatment) and timepoint (the time of
sampling).

We can already see interesting patterns emerging from the correlation plot. First, the cross-correlation amongst
samples taken from the control mice is higher than the cross correlation amongst the rest of the treatments.
Second, the influenza-infected mice mildly react until time point 36. Third, the less pathogenic the strain is,
the closer the samples are to the control condition. Fourth, the Vietnam samples at time point 120 and 168 are
the one that are the most different from control samples.

Page 7 of 42

F1000Research 2020, 9:1447 Last updated: 04 OCT 2021

Differential expression (DE) analysis of time-course data
Approaches to DE analysis in time-course data
The next step in a gene expression analysis is typically to run a differential expression analysis, generally to find
genes different between different conditions. For time-course data, there are two different approaches for
determining differentially expressed genes,

1) �Per-time point analysis, where we consider each time point a different condition and determine what genes
are changing between specific time points, or between conditions at a single time-point.

2) �Global analysis, where we consider the expression pattern globally over time, and consider what genes have
either different patterns between conditions or a changing pattern (i.e. non-constant) over time. A common
approach first step is to fit a spline model to each gene (Storey et al., 2005), and then use that spline model
to test for different kinds of differential expression across time.

The per-time point analysis uses classical differential expression approaches and is often the approach advocated
when dealing with small time-course datasets, where there are only a few time points (Love et al., 2014; Ritchie
et al., 2015; Robinson et al., 2010). For long time-course datasets, however, a separate test for each time point
results in creating many different tests, for example one for every time point, the results of which are difficult to
integrate. We find in practice that the global analysis simplifies analysis and interpretation of longer time courses
data, with per-time point analysis reserved for particularly interesting comparisons of individual time-points.

Time course data can either be on a single condition (to identify genes changing over time) or on multiple con-
ditions (such as the influenza dataset we are considering), which will alter slightly the types of questions we
are interested in.

DE analysis in moanin. Our package moanin provides functionality for performing both of these
types of approaches, though our focus is on the global approach, specifically by fitting spline models to the genes.

Figure 4. Heatmap of the correlation between samples.

Page 8 of 42

F1000Research 2020, 9:1447 Last updated: 04 OCT 2021

In both situations, we first need to set up an object (a moanin object) to hold the meta data, as well as infor-
mation for fitting the spline model (formula, number of degrees of freedom of the splines, ...). The moanin
object will contain information used throughout this analysis, in particular the condition and timepoints of
each sample and the basis matrix for fitting splines models.

We start by creating the moanin object using the create_moanin_model function. We need to pro-
vide two things to the function: a data.frame with the metadata, and the number of degrees of freedom
of the splines to be used in the functional modeling. The metadata data.frame object should contain at
least two columns: one named Group, containing the treatment effect, and a second one named Timepoint
containing the timepoint information (see Table 1).

We create a moanin object for our data:

moanin_model = create_moanin_model(data=data, meta=meta,
 degrees_of_freedom=6)

The main operation of the create_moanin_model function, in addition to holding the necessary meta
data of the samples, is to create a basis matrix for the splines fit. This matrix gives the evaluation of all of
the spline basis functions for each sample (as such, replicate samples will have the same values). By default,
create_moanin_model will create the spline basis functions which will lead to a different spline fit for
every group (as defined by the Group variable in the meta data.frame). This is done by the following R formula
syntax:

formula = ~Group:ns(Timepoint, df=degrees_of_fredoom) + Group + 0.

Alternatively, the user can provide a formula of their own, or simply provide the basis matrix themselves.

We can see this information when we print the object:

show(moanin_model)

Moanin object on 209 samples containing the following information:
Group variable given by 'Group' with the following levels:
M K C VL VH
42 42 42 42 41
Time variable given by 'Timepoint'
Basis matrix with 35 basis_matrix functions
Basis matrix was constructed with the following spline_formula
~Group + Group:splines::ns(Timepoint, df = 6) + 0

Information about the data (a SummarizedExperiment object):
class: SummarizedExperiment
dim: 39544 209
metadata(0):
assays(1): ''
rownames(39544): NM_009912 NM_008725 ... NM_010201.1 AK078781
rowData names(0):
colnames(209): GSM1557140 GSM1557141 ... GSM1557347 GSM1557348
colData names(5): '' Group Replicate Timepoint WeeklyGroup

The moanin class extends the SummarizedExperiment class of Bioconductor, so that the data as well
as the meta data and our spline information are all held in one object. This means that the object can be subset-
ted just like the data matrix, and the corresponding meta data and basis function evaluations will be similarly
subsetted:

Page 9 of 42

F1000Research 2020, 9:1447 Last updated: 04 OCT 2021

dim(moanin_model)

[1] 39544 209

moanin_model[1:10,1:3]

Moanin object on 3 samples containing the following information:
Group variable given by 'Group' with the following levels:
M K C VL VH
0 3 0 0 0
Time variable given by 'Timepoint'
Basis matrix with 35 basis_matrix functions
Basis matrix was constructed with the following spline_formula
~Group + Group:splines::ns(Timepoint, df = 6) + 0

Information about the data (a SummarizedExperiment object):
class: SummarizedExperiment
dim: 10 3
metadata(0):
assays(1): ''
rownames(10): NM_009912 NM_008725 ... NM_013782 NM_028622
rowData names(0):
colnames(3): GSM1557140 GSM1557141 GSM1557142
colData names(5): '' Group Replicate Timepoint WeeklyGroup

Weekly differential expression analysis
moanin provides a simple interface to perform a timepoint by timepoint differential expression analysis.
Comparison between groups is traditionally done by defining the group comparisons (called contrasts in
linear models) as a linear combination of the coefficients of the model. Comparing groups within each timepoint
can create many contrasts, and thus moanin provides functionality to create these contrasts in an automatic way,
and then calls limma (Ritchie et al., 2015) on the set of contrasts provided. By default, moanin expects RNA-Seq
gene counts, and will estimate voom weights, so for microarray data we will set use_voom_weights=FALSE.

Here, we show an example where we create contrasts that will be the difference between the control mouse ("M")
and the mouse infected with the high dose of the influenza strain A/Vietnam/1203/04 (H5N1) ("VL") for each
time point (but the function works with any form contrasts (Ritchie et al., 2015)).

First, create the contrasts for all timepoints between the two groups of interest:

Define contrasts
contrasts = create_timepoints_contrasts(moanin_model,"M", "VL")

This creates a character vector of contrasts to be tested, one for each timepoint, in the format required by limma:

[1] "M.0-VL.0" "M.3-VL.3" "M.6-VL.6" "M.9-VL.9" "M.12-VL.12"

Then moanin will run the differential expression analysis on all of those timepoints jointly using the function
DE_timepoints.

weekly_de_analysis = DE_timepoints(moanin_model, contrasts,
 use_voom_weights=FALSE)

The output is a table of results, where each row corresponds to a gene and the columns correspond to the
p-value (pval), log-fold change (lfc) and adjusted p-value (qval) of the sets of contrasts; the order of the
genes in the table is the same as the input data. Table 2 contains the results for the first timepoint (i.e. first three
columns of the output) and the first ten genes.

Page 10 of 42

F1000Research 2020, 9:1447 Last updated: 04 OCT 2021

Additional timepoints are in the additional columns of the output.

We will repeat this, comparing each of the remaining three treatments to the control ("M") (code not printed here,
as it is a replicate of the above, see accompanying rmarkdown document).

In Figure 5, we show the distribution of genes found differentially expressed per week between control and each
of the influenza strains. Such an analysis can demonstrate some general trends, with clearly more genes being dif-
ferentially expressed at later time points, and the Vietnam high-dose showing perhaps an earlier onset than the
low-dose.

However, the distribution of the number of genes found differentially expressed by considering each time-point
independently highlights the challenges of such approach. We can see that some timepoints have many less genes
found significantly differentially expressed (e.g. timepoint 6H and 18H of the Kawasaki strain). While there may
be biological differences at those time points for some genes, it seems unlikely that the large majority of genes
differentially expressed at timepoint 3H stop being differentially expressed at 6H and then jump back to being
differentially expressed at 9H. A more likely explanation is that there are some technical or biological artifacts
about the samples for 6H that are creating higher variation and thus less ability to detect significance.

Another difficulty with such an approach is making sense of the general temporal structure for any particu-
lar gene, as different genes will have different combinations of timepoints DE. For the comparison of the
Kawasaki strain to the control, for example, there are 26534 genes found DE in some timepoints, and there are 1590
different combinations of timepoints for which they are DE. Some of these make sense, such as DE in timepoints
48H–168H (509 genes), but many are very fragmentary. For example there are 330 genes which are DE in
timepoints 48, 60, 120, 168H, but not in the 72H. Many of these genes are likely to have not made the cut-
off for significance in 72H, but don’t show real differences in the overall trend between 48H-168H. In
Figure 6, we show the plots of the first 10 such genes. We can see that most genes show overall changes across
the timecourse, but have either overall increased variability at 72H often due to one single replicate behaving as
an outlier: This increased variability results at 72H in a lack of significance for this timepoint despite showing
an overall different expression pattern.

As a summary, classic differential expression methods are appropriate for unordered treatments, but fail to
make use of the temporal structure of the data.

Time-course differential expression analysis between two groups
To leverage this temporal structure, Storey et al. (2005) proposed to model each gene in a time-course micro-array
with a splines function, and to use a log-ratio likelihood test to detect differentially expressed genes.

Table 2. Sample output of the timepoint by timepoint differential
expression (DE) analysis. Shown are the three columns giving results
corresponding to timepoint 0 (the first time point).

M.0-VL.0_pval M.0-VL.0_qval M.0-VL.0_lfc

NM_009912 0.2728 0.4746 2.202

NM_008725 0.8509 0.9243 2.028

NM_007473 0.08804 0.2193 0.678

ENSMUST00000094955 0.008188 0.0368 1.186

NM_001042489 0.4192 0.6208 1.212

NM_008159 0.1232 0.2778 1.102

NM_001013813 0.05653 0.1594 0.63

AK039774 0.01504 0.05902 0.6372

NM_013782 0.8754 0.9377 0.594

NM_028622 0.7668 0.8759 1.648

Page 11 of 42

F1000Research 2020, 9:1447 Last updated: 04 OCT 2021

Figure 5. Number of genes found differential expression (DE) in each timepoint when comparing the
influenza strains to control.

Figure 6. The expression values over time for 10 genes found significant differential expression (DE) in
timepoints 48, 60, 120, 168H, but not in the 72H timepoint.

Page 12 of 42

F1000Research 2020, 9:1447 Last updated: 04 OCT 2021

moanin extends this idea by not only fitting a splines function for each gene, but also providing function-
ality to compare time course data between different treatment conditions, using a similar mechanism of
contrasts -- only now the contrasts are differences between the estimated mean functions. This is done with
the function DE_timecourse, which takes a similar input that of DE_timepoints, only now it will fit
spline functions for each gene and test the entire mean function (and unlike DE_timepoints, therefore
does not require the extra step of expanding the contrasts into contrasts for individual timepoints).

Differential expression analysis
timecourse_contrasts = c("M-K", "M-C", "M-VL", "M-VH")

The function takes the data (data.frame or named matrix), the meta data
(data.frame containing a timepoint and group column, the first corresponding
to the time-course information, the latter corresponding to the
treatment).
DE_results = DE_timecourse(moanin_model, timecourse_contrasts,
 use_voom_weights=FALSE)

The output from DE_timecourse is a matrix of (raw) p-values and Benjamini-Hochberg corrected q-values
for each comparison.

names(DE_results)

[1] "M-K_pval" "M-K_qval" "M-C_pval" "M-C_qval" "M-VL_pval” “M-VL_qval"
[7] "M-VH_pval" "M-VH_qval"

For convenience we will separate these into two matrices.

pval_columns = colnames(DE_results)[
 grepl("pval", colnames(DE_results))]
qval_columns = colnames(DE_results)[
 grepl("qval", colnames(DE_results))]
pvalues = DE_results[, pval_columns]
qvalues = DE_results[, qval_columns]

The number of genes found differentially expressed ranges from around 12000 to 29000 depending on the
strain and dosage of influenza virus given to the mice (Figure 7). This corresponds to between 30% to 70% of
the genes found differentially expressed in this time-course experiment.

Figure 7. Distribution of differential expression (DE) genes per condition based on global splines analysis.

Page 13 of 42

F1000Research 2020, 9:1447 Last updated: 04 OCT 2021

Log-fold change for time course data
The next step in a classical differential expression analysis is typically to assess the effect of the treatment by
calculating for each gene the log fold change in the gene expression between the treatment and control.

Computing the log fold change on a time-course experiment is not trivial: one can be interested in the average
log-fold change across time, or the cumulative log-fold change. Sometimes a gene can be over-expressed at the
beginning of the time-course data, and then under-expressed at the end of the experiment. As a result, moanin
provides a number of possible ways to compute the log fold change across the whole time-course. This is done
via the function estimate_log_fold_change which takes as arguments the data, the moanin object,
the contrasts to evaluate, and the method to use to estimate the log-fold change.

Individual timepoints. The first method ("timely") gives a simple interface to compute the log-fold change
for each individual timepoints (see Table 3 for a sample output).

log_fold_change_timepoints = estimate_log_fold_change(
 moanin_model, timecourse_contrasts, method="timely")

This matrix can then be used to visualize the log-fold change for each contrast per timepoint.

Cumulative Effect. Sometimes, a single value per gene for each contrast is more useful, and estimate_
log_fold_change used above provides several options for this as well. See Table 4 for all the possible
ways to compute log-fold change values with estimate_log_fold_change (including timely discussed
above).

Table 4. Different estimates of log-fold change.

Name Formula

timely lfc(t) Per time point

sum ∑t lfc(t) Sum of log fold change.

abs_sum ∑t|lfc(t)| Always positive

max maxt|lfc(t)| Always positive

min mint|lfc(t)| Always positive

timecourse See details below Captures overall strength and direction

Table 3. Sample output for the log-fold change estimation timepoint by
timepoint.

M-K:0 M-K:3 M-K:6 M-K:9 M-K:12

NM_009912 -0.5662 -0.2455 -0.4097 -0.332 -0.05026

NM_008725 0.9947 -3.461 0.6561 -1.211 -0.1999

NM_007473 -0.5177 -0.3147 0.2328 -0.3446 0.04762

ENSMUST00000094955 -0.2202 0.2567 -0.03584 -0.04697 -0.07075

NM_001042489 -0.2476 -0.2044 -0.3428 -0.3931 -0.4822

NM_008159 -0.7466 -0.06789 -0.3072 -0.7067 -0.4967

Page 14 of 42

F1000Research 2020, 9:1447 Last updated: 04 OCT 2021

The method "timecourse" tries to capture the overall strength and direction of the response in the following
way: we leverage the timepoint by timepoint log-fold change lfc(t), and apply the following formula:

1 1

1 1
sign lfc() lfc()

T T

t t
t t

T T= =

   ×∑ ∑      

Note, however, that when a gene is not consistently up- or down-regulated the estimation of the direction will
not accurately represent the changes observed.

We demonstrate several of these methods on our data.

log_fold_change_timecourse = estimate_log_fold_change(
 moanin_model, timecourse_contrasts, method="timecourse")

log_fold_change_sum = estimate_log_fold_change(
 moanin_model, timecourse_contrasts, method="sum")

log_fold_change_max = estimate_log_fold_change(
 moanin_model, timecourse_contrasts, method="max")

log_fold_change_min = estimate_log_fold_change(
 moanin_model, timecourse_contrasts, method="min")

The returning object is a matrix, where each row corresponds to a gene, each column to a contrast, and each
entry to the log-fold change for this pair of contrast and gene (see Table 5).

In Figure 8, we plot the log-fold change summary of each of these methods against each other. We see that each
method captures different elements of the time-course data, for example, overall change versus the largest change.

With a single measure of log-fold change and the p-value, we can now look at the traditional volcano plot. In
Figure 9, we show the example of a volcano plot for the comparison of the control to the Kawasaki strain, using
the "timecourse" method of calculating log fold change.

pvalue = DE_results[, "M-K_pval"]
names(pvalue) = row.names(DE_results)
lfc_timecourse = log_fold_change_timecourse[, "M-K"]
names(lfc_timecourse) = row.names(log_fold_change_timecourse)

plot(lfc_timecourse, -log10(pvalue), pch=20, main="Volcano plot",
 xlim=c(-2.5, 2), xlab="Timecourse lfc")

Visualizing genes of interest
The package moanin also provides a simple utility function (plot_splines_data) to visualize gene
time-course data from different conditions. In Figure 10, we plot the 10 genes with the smallest p-values.

Table 5. Sample output for the overall estimation of the log-
fold change across the whole time-course data.

M-K M-C M-VL M-VH

NM_009912 -0.4091 -0.7525 -1.025 -1.42

NM_008725 1.575 2.008 2.543 2.618

NM_007473 -0.4158 -0.3346 -0.2127 0.3643

ENSMUST00000094955 -0.1126 -0.3763 -0.1558 -0.3091

NM_001042489 -0.2341 -0.4104 0.3085 0.4301

Page 15 of 42

F1000Research 2020, 9:1447 Last updated: 04 OCT 2021

Figure 8. Comparison of the different methods of calculating log-fold change per gene.

Figure 9. Volcano plot for the comparison of the Kawasaki strain to control, where fold-change is calculated
with the timecourse method.

Page 16 of 42

F1000Research 2020, 9:1447 Last updated: 04 OCT 2021

Figure 10. Top 10 genes with the smallest p-values.

top_DE_genes_pval = names(sort(pvalue)[1:10])
plot_splines_data(moanin_model,subset_data=top_DE_genes_pval,
 colors=ann_colors$Group, smooth=TRUE,
 mar=c(1.5,2.5,2,0.1))

For each gene, the individual data points are plotted against time and color coded by their condition.
Further, a fitted spline function for each group is plotted to aid in comparing global trends across conditions.

Figure 11, we visualize the genes with the largest absolute timecourse log-fold change.

top_DE_genes_lfc = names(
 sort(abs(lfc_timecourse),
 decreasing=TRUE)[1:10])
plot_splines_data(moanin_model, subset_data=top_DE_genes_lfc,
 colors=ann_colors$Group, smooth=TRUE,
 mar=c(1.5,2.5,2,0.1))

In examining these visualizations, we can see that genes often follow similar patterns of expression, although
on a different scale for each gene. We can leverage this observation to cluster the genes into groups of
similar patterns of transcriptomic response.

Page 17 of 42

F1000Research 2020, 9:1447 Last updated: 04 OCT 2021

Clustering of time-course data
The very large number of genes found differentially expressed impairs any interpretation one would attempt:
with 70% of the genome found differentially expressed, all pathways are affected by the treatment. Hence the
next step of the workflow to cluster gene expression according to their dynamical response to the
treatment.

Filtering
Before clustering the genes, we first reduce the set of genes of interest to genes that (1) are found to be sig-
nificantly differentially expressed; (2) have a large-fold change between conditions. Reducing the set of genes on
which to perform the clustering allows the estimation of the centroids of the clusters with more stability.

To do this, we first aggregate all p-values obtained during the time-course differential expression step in a sin-
gle p-value using Fisher’s method (Fisher, 1925) (pvalues_fisher_method). Next we select all the
genes which have a Fisher-adjusted p-value below 0.05 and a log-fold change of at least two for at least one
condition and one time-point.

Then rank by fisher’s p-value and take max the number of genes of interest
Filter out q-values for the pvalues table
fishers_pval = pvalues_fisher_method(pvalues)
qvalues = apply(pvalues, 2, p.adjust)
fishers_qval = p.adjust(fishers_pval)

genes_to_keep = row.names(
 log_fold_change_max[
 (rowSums(log_fold_change_max > 2) > 0) &
 (fishers_qval < 0.05),])

Figure 11. Top 10 genes with largest absolute timecourse log-fold change.

Page 18 of 42

F1000Research 2020, 9:1447 Last updated: 04 OCT 2021

Keep the data corresponding to the genes of interest in another variable.
by subsetting the `moanin_model`, which contains the data.
de_moanin_model = moanin_model[genes_to_keep,]

Clustering based on spline fits
After filtering, we are left with 5521 genes. We can then apply a clustering routine. As observed by looking at
genes found differentially expressed, many genes share a similar gene expression pattern, but on different scales.

We thus propose the following adaptation of k-means:

1. �Splines estimation: for each gene, fit the splines function with the basis of your choice (as contained in
the moanin object).

2. �Rescaling splines: for each gene, rescale the estimated splines function such that the values are bounded
between 0 and 1 and thus comparable between genes.

3. �K-means: apply k-means on the rescaled fitted values of the splines to estimate the cluster centroids.

The rescaling of the splines aims at bringing each gene onto a comparable scale, akin to the centering and
scaling performed on gene expression typically done on gene expression studies without a time component.

These clustering steps are performed by the splines_kmeans function in moanin. For now, we will set
the number of clusters to be 8, though we will return to the question of picking the best number of clusters below.

First fit the kmeans clusters
kmeans_clusters = splines_kmeans(de_moanin_model, n_clusters=8,
 random_seed=42,
 n_init=20)

The splines_kmeans function returns a named list with:

• �centroids: a matrix containing the cluster centroids. The matrix is of shape (n_centroid,
n_samples).

• �clusters: a vector of size n_genes, containing the cluster assignments given by the kmeans
step of each gene

We then use the plot_splines_data function, only now applied to the centroids, to visualize the
centroids of each cluster obtained with the splines k-means model (Figure 12).

plot_splines_data(de_moanin_model,
 data=kmeans_clusters$centroids,
 colors=ann_colors$Group,
 smooth=TRUE)

These centroids are on a 0-1 scale, because of our rescaling of the spline fits, and do not represent the
actual gene expression level. In Figure 13, we plot a few of the actual genes assigned to cluster 2 with
the estimated centroid overlaid:

cluster_of_interest = 2
cluster2Genes = names(
 kmeans_clusters$clusters[kmeans_clusters$clusters==cluster_of_interest])
plot_splines_data(de_moanin_model,
 centroid=kmeans_clusters$centroids[cluster_of_interest,],
 colors=ann_colors$Group, smooth=TRUE,simpleY =FALSE,
 subset_data=cluster2Genes[3:6],
 mar=c(1.5,2.5,2,0.1))

Page 19 of 42

F1000Research 2020, 9:1447 Last updated: 04 OCT 2021

Figure 12. K-means centroids.

Figure 13. Genes from cluster 2.

Page 20 of 42

F1000Research 2020, 9:1447 Last updated: 04 OCT 2021

Assigning genes to clusters
As we can see, while these genes have some similarity with the pattern of the cluster centroids, these par-
ticular genes are not the best examples of the cluster, in the sense of matching the centroid estimates. Because
of this variability in how well the genes fit a cluster, we would like to be able to score how well a gene fits a cluster.

Furthermore, we arbitrarily chose a subset of genes based on our filter, and we would like to have a
mechanism to assign all genes to a cluster.

Thus, the next step in the clustering portion of the workflow is a scoring and label step. Each gene is given
a score that corresponds to a goodness-of-fit between each gene and each cluster, computed as follows:

2

,0

1
(,) min (()) ,

()i k iG ij iG k jj ja G bi iGj j j
S y b y a t

S k
µ µ= × + −∑

where μ
k
 is the centroid of cluster k and y

i
 the gene of interest. The scoring function thus returns a value

between 0 and 1, 0 being the best score possible and 1 the worst score possible (no correlation between the
gene and the cluster centroid).

The score then allows us to assign all genes to a cluster (i.e. a label) based on the cluster for which they
have the best score, regardless of whether the gene was used in the clustering procedure.

The scoring and labeling is done via the splines_kmeans_score_and_label function. This func-
tion calculates the goodness of fit of the gene to the cluster centroid and gives a cluster label to the gene if they
have a sufficiently high score, as we explain above.

Then assign scores and labels to *all* the data, using a goodness-of-fit
scoring function.
scores_and_labels = splines_kmeans_score_and_label(
 moanin_model, kmeans_clusters)

The scores_and_labels list contains three elements:

• �scores: the matrix of shape n_cluster x n_genes, containing for each gene and each cluster, the goodness
of fit as described above.

• �labels: the labels for all of the genes with a sufficiently good goodness-of-fit score.

• �score_cutoff: the cutoff used on scores to determine whether to assign a label

Assigning cluster labels: We could just assign each gene to a cluster based on which cluster gave the mini-
mum score. By default, splines_kmeans_score_and_label does not do that, but rather requires a suf-
ficiently low enough goodness-of-fit score. The criteria for being “sufficiently low” is based on looking at
the distribution of the scores of all genes on all clusters (i.e. the entire scores matrix returned by splines_
kmeans_score_and_label). A gene is then assigned to a cluster only if their best score is above the
50% percentile of that distribution, with the remaining genes getting NA as their assignment (this choice can
be changed by proportion_genes_to_label). Note that because the distribution of scores of genes
across all clusters is used -- this is not equivalent to assigning 50% of genes to a cluster -- it is possible that all
genes are assigned to a cluster.

labels = scores_and_labels$labels

Let’s keep only the list of genes that have a label.
labels = unlist(labels[!is.na(labels)])

And also keep track of all the genes in cluster 2.
genes_in_cluster2 = names(labels[labels==cluster_of_interest])

After running scores_and_labels on our data, we now have 19772 genes that are assigned to a cluster.

Page 21 of 42

F1000Research 2020, 9:1447 Last updated: 04 OCT 2021

We can visualize the impact of this filtering process by considering the distribution of goodness-of-fit scores for
each cluster if we did not have the filtering cutoff of splines_kmeans_score_and_label, i.e. if we sim-
ply assign every gene to a cluster based on which gives them their minimum score. We display for each cluster,
the scores of the genes assigned to that cluster (Figure 14), as compared to the cutoff value for what that score
must be under our filtering procedure. We can do this by rerunning splines_kmeans_score_and_label
and setting the filter percentage_genes_to_label=1 (and we can speed up the calculation by giving our
previously calculated score via the argument previous_scores)

Get the best score and best label for all of the genes
This time without filtering labels
We can give the previous calculated scores to `previous_scores` to save time
unfiltered_scores = splines_kmeans_score_and_label(
 moanin_model, kmeans_clusters,
 proportion_genes_to_label=1,
 previous_scores=scores_and_labels$scores)
best_score = rowMin(scores_and_labels$scores)
best_label = unfiltered_scores$labels

par(mfrow=c(3, 3))
n_clusters = dim(kmeans_clusters$centroids)[1]
for(cluster_id in 1:n_clusters){
 hist(best_score[best_label==cluster_id],
 breaks=(1:50/50), xlim=c(0, 1),
 col="black", main=paste("C", cluster_id, sep=""),
 xlab="score", ylab="Num. genes")
 abline(v=scores_and_labels$score_cutoff, col="red", lwd=3, lty=2)
}

Figure 14. Distribution of goodness-of-fit scores for each cluster. The dashed red line indicates the scoring
threshold: all genes with a score above this threshold will not be labeled.

Page 22 of 42

F1000Research 2020, 9:1447 Last updated: 04 OCT 2021

Note that for some of the genes, their scores in all clusters is 1. Such genes fit poorly to all clusters and the
assignment of genes to a single cluster that we did above to one cluster is done arbitrarily to the first matching
cluster for such genes. This underlines the importance of filtering genes that fit poorly to clusters.

We can also investigate the differences between the labels provided by the splines k-means model and our
scoring and labeling step, in terms of the number of genes assigned to each cluster (Figure 15).

Of the original 5521 genes used in the clustering, 4946 are still assigned to a cluster based on their goodness of
fit score. We can compare whether they are still assigned to the same clusters based on a confusion matrix
shown below (Figure 16). The k-means cluster assignments are shown on the rows, and the goodness-of-fit
assignments in the columns, with the number in each cell indicating the number of genes in the intersection of
the two clusters.

Of the four genes we plotted before, two of them remained assigned to cluster 2 after our scoring. We can again
look at a few genes in cluster 2, only now pick the best scoring genes (Figure 17)

order them by their score in cluster
ord = order(scores_and_labels$scores[genes_in_cluster2,
 cluster_of_interest])
cluster2Score = genes_in_cluster2[ord]
plot_splines_data(
 moanin_model, subset_data=cluster2Score[1:4],
 centroid=kmeans_clusters$centroids[cluster_of_interest,],
 colors=ann_colors$Group, smooth= TRUE, simpleY= FALSE,
 mar=c(1.5,2.5,2,0.1))

We see that, as expected, these genes are a much better match to the cluster centroids.

Looking at specific clusters in detail
Now, let us look more in detail at some specific clusters. Cluster 6 seems particularly interesting: it captures
genes with strong differences between the different influenza treatments and the control, while the control
remains relatively flat.

Figure 15. Number of genes assigned to each cluster based on kmeans criteria of nearest centroid (top)
versus our goodness-of-fit filtering strategy (bottom).

Page 23 of 42

F1000Research 2020, 9:1447 Last updated: 04 OCT 2021

Figure 16. Confusion matrix between the two sets of labels.

Figure 17. Top scoring genes in Cluster 2.

We’ve already shown how we can plot a few example genes, however, it can be hard to make sense of individual
genes given the amount of noise, as well as being hard to draw conclusions based on a few genes.

Page 24 of 42

F1000Research 2020, 9:1447 Last updated: 04 OCT 2021

Heatmaps are useful to investigate the range of expression patterns for specific genes. Here, we are going to
plot heatmaps of the normalized gene expression patterns and the rescaled gene expression patterns side by side.

First, we select the genes of interest, namely those in cluster 6, based on our goodness-of-fit assignment.

cluster_to_plot = 6
genes_to_plot = names(labels[labels == cluster_to_plot])

Now we will create the heatmaps of these genes (3746 genes, Figure 18).

layout(matrix(c(1,2),nrow=1), widths=c(1.5,2))

order the observations by Group, then time, then replicate
orderedMeta<-data.frame(colData(moanin_model))
ord = order(
 orderedMeta$Group,
 orderedMeta$Timepoint,
 orderedMeta$Replicate)
orderedMeta$Timepoint = as.factor(orderedMeta$Timepoint)

orderedMeta = orderedMeta[ord,]

res = aheatmap(
 as.matrix(assay(moanin_model[genes_to_plot,ord])),
 Colv=NA,
 color="YlGnBu",
 annCol=orderedMeta[,c("Group", "Timepoint")],
 annLegend=FALSE,
 annColors=ann_colors,
 main=paste("Cluster", cluster_to_plot, "(raw)"),
 treeheight=0, legend=FALSE)

Now use the results of the previous call to aheatmap to reorder the genes.
aheatmap(
 rescale_values(moanin_model[genes_to_plot,ord])[res$rowInd,],
 Colv=NA,
 Rowv=NA,
 annCol=orderedMeta[, c("Group", "Timepoint")],
 annLegend=TRUE,
 annColors=ann_colors,
 main=paste("Cluster", cluster_to_plot, "(rescaled)"),
 treeheight=0)

Those two heatmaps demonstrate that the clustering method successfully clusters genes that are on different
scales, and yet share the same dynamical response to the treatments.

How to choose the number of clusters
A common question that arises when performing clustering is how to choose the number of clusters. A
choice for the number of clusters K depends on the goal. In this particular case, the end goal is not the cluster-
ing, but to facilitate interpretation of the differential expression analysis step. As a result, the number of clusters
should not exceed the number of gene sets the user wants to interpret. This allows to set a maximum number of
clusters. Let us assume here that this number is 20 clusters.

Once the maximum number of clusters is set, several strategies allow the identification of the number of clusters:

• �Elbow method. First introduced in 1953 by Thorndike (Thorndike, 1953), the elbow method looks at the total
within cluster sum of squares as a function of the number of clusters (WCSS). When adding clusters doesn’t
decrease the WCSS by a sufficient amount, one can consider stopping. This method thus provides visual aid to

Page 25 of 42

F1000Research 2020, 9:1447 Last updated: 04 OCT 2021

the user to choose the number of clusters, but often the “elbow” is hard to see on real data, where the number of
clusters is not clearly defined.

• �Silhouette method. Similarly to the Elbow method, the Silhouette method refers to a method of validation
of consistency within clusters, and provides visual aid to choose the number of clusters.

• �Stability methods Stability methods are more computationally intensive than any other method, as they
rely on assessing the stability of the clustering for every k to a small randomization of the data. The
user is then invited to choose the number of clusters based on a number of similarity measures.

First, let us run the clustering for all values of k of interest. We will, for each clustering, conserve (1) with
within cluster sum of squares; (2) the clustering assignment (or label) for each gene.

Below we run the clustering for k equal to 2 – 20. The splines_kmeans function returns the
WCSS for each cluster, which we sum to get the total WCSS.

all_possible_n_clusters = c(2:20)
all_clustering = list()
wss_values = list()

Figure 18. Heatmap of genes in Cluster 6.

Page 26 of 42

F1000Research 2020, 9:1447 Last updated: 04 OCT 2021

i = 1
for(n_cluster in all_possible_n_clusters){
 clustering_results = splines_kmeans(de_moanin_model,
 n_clusters=n_cluster, random_seed=42,
 n_init=10)
 wss_values[i] = sum(clustering_results$WCSS_per_cluster)
 all_clustering[[i]] = clustering_results$clusters
 i = i + 1
}

Elbow method. The Elbow method to choose the number of clusters relies on visualization aid to choose the
number of clusters. The method relies on plotting the within cluster sum of squares (WCSS) as a function of
the number of clusters. At some point, the WCSS will start decreasing more slowly, giving an angle or “elbow”
in the graph. The number of clusters is chosen at this “Elbow point.”

We plot the WCSS for k = 2 – 20 here (Figure 19). We see that as expected the WCSS continues to drop, but
there is no clear drop in the decrease, except for very small values of k (3-4 clusters). However, 3-4 seems a very
small number of gene clusters to find, given the complexity

plot(all_possible_n_clusters, wss_values,
 type="b", pch=19, frame=FALSE,
 xlab="Number of clusters K",
 ylab="Total within-clusters sum of squares")

Average silhouette method. The silhouette value is a measure of how similar a data point is to its own cluster
(cohesion) compared to other clusters (separation), shown in Figure 20.

Figure 19. Plot of within cluster sum of squares (WCSS) as a function of k.

Figure 20. Plot of silhouette values as a function of k.

Page 27 of 42

F1000Research 2020, 9:1447 Last updated: 04 OCT 2021

function to compute average silhouette for k clusters
average_silhouette = function(labels, y) {
 silhouette_results = silhouette(unlist(labels[1]),dist(y))
 return(mean(silhouette_results[, 3]))
}

extract the average silhouette
average_silhouette_values = list()
i = 1
for(i in 1:length(all_clustering)){
 clustering_results = all_clustering[i]
 average_silhouette_values[i] = average_silhouette(clustering_results,
 assay(de_moanin_model))
 i = i + 1
}

plot(all_possible_n_clusters, average_silhouette_values,
 type="b", pch=19, frame=FALSE,
 xlab="Number of clusters K",
 ylab="Average Silhouettes")

Looking at the stability of the clustering. On real data, the number of clusters is not only unknown but also
ambiguous: it will depend on the desired clustering resolution of the user. Yet, in the case of biological data, sta-
bility and reproducibility of the results is necessary to ensure that the biological interpretation of the results
hold when the data or the model is exposed to reasonable perturbations.

Methods that rely on the stability of the clustering results to choose k thus ensure that the biological interpreta-
tion of the clusters holds after perturbations to the data. In addition, simulation where the data is generated with
a well defined k show that the clustering is more stable for the correct number of the clusters.

Most methods to find the number of clusters with stability measures only provide visual aids to guide the
user. The first element often visualized is the consensus matrix: the consensus matrix is an n x n matrix that
stores the proportion of clustering in which two items are clustered together. A perfect consensus matrix
ordered such that all elements that belong to the same cluster are adjacent to one another which show blocks
along the diagonal close to 1.

To perform such analysis, the first step is run the clustering several times on a resampled dataset--either using
bootstrap or subsampling.

Using the bootstrapping strategy, we sample with replacement a sample of the same size as our original
clustering (i.e. 5521 genes):

n_genes = dim(de_moanin_model)[1]
indices = sample(1:dim(de_moanin_model)[1], n_genes, replace=TRUE)

bootstrapped_y = de_moanin_model[indices,]

Using the subsampling strategy, we take a unique subset of the genes, keeping 80% of the genes:

subsample_proportion = 0.8
indices = sample(1:dim(de_moanin_model)[1],
 n_genes * subsample_proportion,
 replace=FALSE)

subsampled_y = de_moanin_model[indices,]

We run the bootstrap method on all genes differentially expressed and with a log-fold-change higher than 2
(computed with the lfc_max method), and do it B = 20 times for each of k = 2 – 10. We show the code below,
but because of the time the computations take, we have evaluated these values separately and provided the
results in separate files (one per k) for users to explore more quickly.

Page 28 of 42

F1000Research 2020, 9:1447 Last updated: 04 OCT 2021

You may want to set the random seed of the experiment so that the results
don’t vary if you rerun the experiment.
set.seed(random_seed)
n_genes = dim(de_moanin_model)[1] * subsample_proportion
indices = sample(1:dim(de_moanin_model)[1], n_genes, replace=TRUE)

kmeans_clusters = splines_kmeans(de_moanin_model[indices,],
 n_clusters=n_clusters,
 random_seed=42,
 n_init=20)

Perform prediction on the whole set of data.
kmeans_clusters = splines_kmeans_predict(de_moanin_model, kmeans_clusters,
 method="distance")

For now, we bring in the results for k = 5 and k = 20.

stability_5 = read.table("results/stability_5.tsv", sep="\t")
stability_20 = read.table("results/stability_20.tsv", sep="\t")

Each column corresponds to a bootstrap sample, each row to a gene, and each entry to the label found for that
particular clustering. Thus, for each gene, we have an assignment to a cluster over the 25 resampling runs.
See Table 6 for a sample of the results of the clustering for 10 bootstrap and k = 5.

Now we will use the function consensus_matrix in the moanin package to calculate propor-
tion of times each pair of samples was clustered together across the 25 resampling runs, and plot the
heatmap of those consensus matrices for k = 5 and k = 20.

par(mfrow=c(1, 2))
consensus_matrix_stability_5 = consensus_matrix(stability_5,
 scale=FALSE)
aheatmap(consensus_matrix_stability_5[1:1000, 1:1000], Rowv=FALSE,
 Colv=FALSE,
 treeheight=0, main="K=5")

consensus_matrix_stability_20 = consensus_matrix(stability_20,
 scale=FALSE)
aheatmap(consensus_matrix_stability_20[1:1000, 1:1000], Rowv=FALSE,
 Colv=FALSE,
 treeheight=0, main="K=20")

Table 6. Sample output of running the clustering on 10
bootstrapped samples with k = 5.

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

AA204140 5 5 5 5 5 1 3 2 1 3

AB008911 5 5 1 4 1 2 3 3 2 3

AB010313 3 3 1 4 1 2 4 3 2 5

AB010342 5 3 1 5 1 1 3 3 1 3

AB011473 2 1 2 1 3 3 2 5 5 2

AB099518 2 1 2 1 3 3 2 5 5 2

Page 29 of 42

F1000Research 2020, 9:1447 Last updated: 04 OCT 2021

We can see (Figure 21) that the choice of K = 5 seems much more stable across resampling runs than that of
K = 20.

The model explorer strategy. The model explorer algorithm (Ben-Hur et al., 2001) proposes to estimate the
number of clusters exploiting the observation that if the number of clusters is correct, the clustering results
are stable to bootstrap resampling, as described above. The distribution of similarities between bootstrapped
results for each k can thus be compared for different values of k and guide the user in the choice of number of
clusters.

The model explorer strategy works as follows. For a single choice of k, first perform n bootstrap experi-
ments to estimate the cluster centroids, followed by a step of assigning a label to all data points. Then, choose a
similarity measure between two partitions or clusters S(B

1
, B

2
). Examples are the normalized mutual informa-

tion or Fowlkes-Mallows. Finally, compute the pairwise similarity measure between all bootstrapped partitions
(i.e. B choose 2 pairs). Repeat this procedure for different k and plot per k the cumulative density of the obtained
scores.

We have already run the bootstrap resampling for values k = 2 – 20 and saved the results. We will read in
that data in, and use it to calculate the pairwise similarity scores.

The function plot_model_explorer takes in input a list of the bootstrapped results for all labels.

plot_model_explorer(all_labels)

From this plot (Figure 22), we can deduce that k = 5 is more stable than k = 3 and k =4, but not as stable as
k = 2. The model explorer strategy, in addition to visualizing the diversity of the centroids, can thus help
assess an adequate number of clusters.

Now, replot the same model explorer, but only for the clustering experiments k = 6, k = 7, k = 8, k = 9, and
k = 10 so that we can see more clearly the stability measures in that range (Figure 23).

clusters = c("k=6", "k=7", "k=8", "k=9", "k=10")
selected_labels = all_labels[clusters]
plot_model_explorer(selected_labels)

This analysis doesn’t necessarily pick a particular k, but can help decide between k within a desired range, for
example, or to avoid k that degrade the stability.

Figure 21. Consensus matrix of proportion of times samples were in the same cluster over bootstrap samples
for k=5 and 20.

Page 30 of 42

F1000Research 2020, 9:1447 Last updated: 04 OCT 2021

Consensus clustering as a way to find k. The consensus clustering (Monti et al., 2003) relies on a simi-
lar idea but instead of looking at the cumulative density of similarity measures of bootstrapped clustering, the
authors suggest plotting the cumulative density of elements of the consensus matrix. We provide a function
plot_cdf_consensus in moanin to do this (Figure 24):

plot_cdf_consensus(all_labels)

The stability of the clustering based on the consensus matrix can then be measured via a single number by
looking at the area under the curve (AUC). Indeed, the more stable the clustering, the closer to 0 or 1 will be

Figure 22. Plot of the cumulative density of similarity of clusterings of data for different k.

Figure 23. Plot of the cumulative density of similarity of clustering of data for different k, restricted to
k=6-10.

Page 31 of 42

F1000Research 2020, 9:1447 Last updated: 04 OCT 2021

the entries of the consensus matrix, and thus, the higher the area under the curve (AUC). To choose a good
balance between the model complexity (the number of clusters) and the stability of the clustering, the consen-
sus clustering strategy thus suggests looking at the AUC as the function of the number of clusters, or at the
“improvement” in AUC as a function of the number of clusters to identify the highest increase.

Here we calculate the AUC (Figure 25).

auc_scores = moanin:::get_auc_similarity_scores(all_labels)
plot(n_clusters, auc_scores, col="black", type="b", pch=16)

While here we calculate the improvement in the AUC (Figure 26).

delta_auc = diff(auc_scores)/auc_scores[1:(length(auc_scores)-1)]
plot(3:20, delta_auc, col="black", type="b")

Figure 24. Plot of the consensus clustering.

Figure 25. Plot of area under the curve AUC vs number of clusters.

Page 32 of 42

F1000Research 2020, 9:1447 Last updated: 04 OCT 2021

Figure 26. Plot of improvement in AUC vs number of clusters.

The consensus clustering method suggest that the most stable is k = 2, which separates over-expressed genes
from under-expressed genes. While it is indeed a very stable clustering, it does not capture the range of gene
expression patterns present in the data. This shows the limitation of such methods on real data, where the
number of clusters is not clearly defined.

Downstream analysis of clusters
Once good clusters are obtained, the next step is to leverage the clustering to ease interpretation. Clas-
sic enrichment analysis can then be performed on the gene set defined by each cluster. Examples include KEGG
pathway enrichment analysis, GO term enrichment analysis, and motif enrichment analysis.

First, let us clean up the genes we work with and only select the genes we are going to use in the enrich-
ment analysis. One can either consider (1) the results of the clustering without any further filtering, (2) only the
set of differentially expressed genes in each cluster, or (3) the subset of genes that fit well to a cluster (based on
some criterion).

Finding enriched pathways using biomaRt and KEGGprofile
Let us first tackle the case of pathway enrichment analysis. We will leverage the packages biomaRt (Durinck
et al., 2005) and KEGGprofile (Zhao et al., 2017) for this step. KEGGprofile is a package that facilitates
enrichment analysis on a set of genes labeled with the Ensembl annotation (Yates et al., 2019) based on
the set of biological pathways described in the KEGG database (Kanehisa et al., 2015).

We thus need to convert the gene names, which are given in the Refseq annotation, into the corresponding
Ensembl name. This is where biomaRt comes in handy: it enables easy conversion from one gene annotation
to another. Here, we will use the function getBM in biomaRt to convert the gene names from cluster 8.

Set up right ensembl database
ensembl = useMart("ensembl")
ensembl = useDataset("mmusculus_gene_ensembl", mart=ensembl)

Get gene names of genes in Cluster 8
cluster = 6
gene_names = names(labels)
genes = gene_names[labels == cluster]

Page 33 of 42

F1000Research 2020, 9:1447 Last updated: 04 OCT 2021

Convert gene names
genes = getBM(attributes=c("ensembl_gene_id", "entrezgene_id"),
 filters="refseq_mrna", values=genes,
 mart=ensembl)["entrezgene_id"]

Then we use the function find_enriched_pathway in the KEGGprofile package to determine whether
any KEGG pathways are enriched in cluster 6, i.e. whether a higher percentage of genes from a single path-
way are found in cluster 6 than we would expect by simply proportional assignment of genes to clusters (see
Table 7).

genes = as.vector(unlist(genes))
pathways = find_enriched_pathway(
 genes, species="mmu",
 download_latest=FALSE)$stastic

Finding enriched GO terms
The Gene Ontology (GO) database (Consortium, 2018), also categorizes genes into meaningful biologi-
cal ontologies and can be used for enrichment analysis via the package topGO (Alexa & Rahnenfuhrer, 2016).
We again use biomaRt to find the mapping between genes and the GO terms to which they match.

genes = getBM(attributes=c("go_id", "refseq_mrna"),
 values=gene_names,
 filters="refseq_mrna",
 mart=ensembl)

The biomaRt query results in a matrix with two columns: gene names and GO term ID. The package
topGO (Alexa & Rahnenfuhrer, 2016) expects the GO term to gene mapping to be a list where each item is
a mapping between a gene name and a GO term ID vector, for example:

$NM_199153
[1] "GO:0016020" "GO:0016021" "GO:0007186" "GO:0004930" "GO:0007165"
[6] "GO:0050896" "GO:0050909"

$NM_201361
 [1] "GO:0016020" "GO:0016021" "GO:0003674" "GO:0008150" "GO:0005794"
 [6] "GO:0005829" "GO:0005737" "GO:0005856" "GO:0005874" "GO:0005739"
[11] "GO:0005819" "GO:0000922" "GO:0072686"

Table 7. 10 most significantly enriched pathways in cluster 6.

Pathway Percentage Adj. p-value

04060 Cytokine-cytokine receptor interaction 31 1.204e-20

04620 Toll-like receptor signaling pathway 39 4.38e-14

04621 NOD-like receptor signaling pathway 45 2.036e-11

04623 Cytosolic DNA-sensing pathway 45 4.619e-11

04630 Jak-STAT signaling pathway 28 2.516e-10

04210 Apoptosis 35 6.279e-10

04380 Osteoclast differentiation 31 6.279e-10

04622 RIG-I-like receptor signaling pathway 38 1.127e-09

05160 Hepatitis C 28 3.436e-09

04940 Type I diabetes mellitus 35 1.158e-07

Page 34 of 42

F1000Research 2020, 9:1447 Last updated: 04 OCT 2021

moanin provides a simple function (create_go_term_mapping) to make this conversion:

Create gene to GO id mapping
gene_id_go_mapping = create_go_term_mapping(genes)

Once the gene ID to GO mapping list is created, moanin provides an interface to topGO to determine enriched
GO terms. In particular, it performs a p-value correction and only returns the significant GO-term enrichment
in an easy to use data.frame object. Here, we show an example of running a GO term enrichment on the
“Biological process” ontology (BP) (see Table 8 for results).

Create logical vector of whether in cluster 6
assignments = labels == cluster

go_terms_enriched = find_enriched_go_terms(
 assignments,
 gene_id_go_mapping, ontology="BP")

Conclusion
This workflow provides a tutorial for the analysis of lengthy time-course gene expression data in R using
the package moanin, which aids in implementing common timecourse analyses. We illustrate the workflow

Table 8. 20 top most significant GO terms in cluster 6.

GO ID Description Annotated Significant Expected P-value Adj. p-value

6 GO:0003002 regionalization 175 159 142.5 0.00044 0.3749

7 GO:0019395 fatty acid oxidation 58 56 47.22 0.00065 0.4747

8 GO:0007224 smoothened signaling
pathway

75 71 61.07 0.00083 0.5304

9 GO:0048562 embryonic organ
morphogenesis

154 139 125.4 0.00175 0.994

10 GO:0009755 hormone-mediated
signaling pathway

76 71 61.88 0.00254 1

11 GO:0006805 xenobiotic metabolic
process

50 48 40.71 0.00257 1

12 GO:0006790 sulfur compound
metabolic process

155 138 126.2 0.00317 1

13 GO:0060173 limb development 90 83 126.2 0.00317 1

14 GO:0018394 peptidyl-lysine acetylation 82 76 66.77 0.00336 1

15 GO:0030166 proteoglycan biosynthetic
process

27 27 21.98 0.00386 1

16 GO:0003206 cardiac chamber
morphogenesis

72 67 58.62 0.00449 1

17 GO:0006633 fatty acid biosynthetic
process

88 79 71.65 0.00580 1

18 GO:0006261 DNA-dependent DNA
replication

71 65 57.81 0.00595 1

19 GO:0090596 sensory organ
morphogenesis

139 124 113.2 0.00637 1

20 GO:0055114 oxidation-reduction
process

541 475 440.5 0.00651 1

Page 35 of 42

F1000Research 2020, 9:1447 Last updated: 04 OCT 2021

through the analysis of mice lung tissue exposed to different influenza strains and measured over time. The
proposed workflow consists of three common analysis main steps generally performed after quality control and
normalization: (1) differential expression analysis; (2) clustering of time-course gene expression data; (3) down-
stream analysis of clusters. We demonstrate how the use of the package moanin allows for easy implementation
of these procedures in the setting of time-course data.

Data availability
Source data
Data used in this workflow are available from NCBI GEO, accession GSE63786. Normalized data can be
found in timecoursedata. Normalization information is provided as supplementary information.

Software availability
Source code is available from GitHub: https://github.com/NelleV/2019timecourse-rnaseq-pipeline.

Archived source code at the time of publication: https://doi.org/10.17605/OSF.IO/U2DQP (Varoquaux & Purdom,
2020)

License: BSD-3

All packages used in the workflow are available on GitHub, CRAN, or Bioconductor.

Finally, we use sessionInfo() to display all packages used in this pipeline and their version numbers.

sessionInfo()

R version 4.0.2 (2020-06-22)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.4 LTS

Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.7.1
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.7.1

locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_GB.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:
[1] stats4 parallel splines stats graphics grDevices utils
[8] datasets methods base

other attached packages:
[1] RColorBrewer_1.1-2 BiocWorkflowTools_1.14.0
[3] ggfortify_0.4.10 timecoursedata_0.99.17
[5] kableExtra_1.2.1 moanin_0.99.0-902
[7] SummarizedExperiment_1.18.2 DelayedArray_0.14.1
[9] matrixStats_0.56.0 GenomicRanges_1.40.0
[11] GenomeInfoDb_1.24.2 topGO_2.40.0
[13] SparseM_1.78 GO.db_3.11.4
[15] AnnotationDbi_1.50.3 IRanges_2.22.2
[17] S4Vectors_0.26.1 graph_1.66.0
[19] viridis_0.5.1 viridisLite_0.3.0
[21] KEGGprofile_1.30.0 NMF_0.23.0

Page 36 of 42

F1000Research 2020, 9:1447 Last updated: 04 OCT 2021

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE63786
https://github.com/NelleV/2019timecourse-rnaseq-pipeline
https://doi.org/10.17605/OSF.IO/U2DQP
https://opensource.org/licenses/BSD-3-Clause

[23] Biobase_2.48.0 BiocGenerics_0.34.0
[25] cluster_2.1.0 rngtools_1.5
[27] pkgmaker_0.31.1 registry_0.5-1
[29] ggplot2_3.3.2 pander_0.6.3
[31] biomaRt_2.44.1 BiocStyle_2.16.0
[33] knitr_1.29 limma_3.44.3
[35] devtools_2.3.1 usethis_1.6.1
[37] rmarkdown_2.3

loaded via a namespace (and not attached):
[1] colorspace_1.4-1 ellipsis_0.3.1 rprojroot_1.3-2
[4] XVector_0.28.0 fs_1.5.0 rstudioapi_0.11
[7] remotes_2.2.0 bit64_4.0.5 fansi_0.4.1
[10] xml2_1.3.2 ClusterR_1.2.2 KEGG.db_3.2.4
[13] codetools_0.2-16 doParallel_1.0.15 pkgload_1.1.0
[16] gridBase_0.4-7 dbplyr_1.4.4 png_0.1-7
[19] BiocManager_1.30.10 compiler_4.0.2 httr_1.4.2
[22] backports_1.1.9 Matrix_1.2-18 assertthat_0.2.1
[25] cli_2.0.2 htmltools_0.5.0 prettyunits_1.1.1
[28] tools_4.0.2 gmp_0.6-0 gtable_0.3.0
[31] glue_1.4.2 GenomeInfoDbData_1.2.3 reshape2_1.4.4
[34] dplyr_1.0.2 rappdirs_0.3.1 Rcpp_1.0.5
[37] vctrs_0.3.4 Biostrings_2.56.0 NMI_2.0
[40] iterators_1.0.12 xfun_0.16 stringr_1.4.0
[43] ps_1.3.4 rvest_0.3.6 testthat_2.3.2
[46] lifecycle_0.2.0 gtools_3.8.2 XML_3.99-0.5
[49] edgeR_3.30.3 zlibbioc_1.34.0 scales_1.1.1
[52] hms_0.5.3 yaml_2.2.1 curl_4.3
[55] memoise_1.1.0 gridExtra_2.3 TeachingDemos_2.12
[58] stringi_1.4.6 RSQLite_2.2.0 desc_1.2.0
[61] foreach_1.5.0 pkgbuild_1.1.0 bibtex_0.4.2.2
[64] rlang_0.4.7 pkgconfig_2.0.3 bitops_1.0-6
[67] evaluate_0.14 lattice_0.20-41 purrr_0.3.4
[70] bit_4.0.4 processx_3.4.3 tidyselect_1.1.0
[73] bookdown_0.20 plyr_1.8.6 magrittr_1.5
[76] R6_2.4.1 generics_0.0.2 DBI_1.1.0
[79] pillar_1.4.6 withr_2.2.0 KEGGREST_1.28.0
[82] RCurl_1.98-1.2 tibble_3.0.3 crayon_1.3.4
[85] BiocFileCache_1.12.1 progress_1.2.2 locfit_1.5-9.4
[88] grid_4.0.2 git2r_0.27.1 blob_1.2.1
[91] callr_3.4.3 webshot_0.5.2 digest_0.6.25
[94] xtable_1.8-4 tidyr_1.1.2 openssl_1.4.2
[97] munsell_0.5.0 sessioninfo_1.1.1 askpass_1.1

Acknowledgments
The authors thank Karthik Ram and the Ropensci community for valuable feedback.

References

	 Abrams ZB, Johnson TS, Huang K, et al.: A protocol to evaluate
RNA sequencing normalization methods. BMC Bioinformatics.
2019; 20(Suppl 24): 679.
PubMed Abstract | Publisher Full Text | Free Full Text

	 Alexa A, Rahnenfuhrer J: TopGO: Enrichment Analysis for Gene
Ontology. 2016.
Reference Source

	 Ben-Hur A, Elisseeff A, Guyon I: A Stability Based Method for

Page 37 of 42

F1000Research 2020, 9:1447 Last updated: 04 OCT 2021

http://www.ncbi.nlm.nih.gov/pubmed/31861985
http://dx.doi.org/10.1186/s12859-019-3247-x
http://www.ncbi.nlm.nih.gov/pmc/articles/6923842
https://rdrr.io/bioc/topGO/

Discovering Structure in Clustered Data. Pac Symp Biocomput.
2001; 6–17.
PubMed Abstract

	 The Gene Ontology Consortium: The Gene Ontology Resource:
20 years and still GOing strong. Nucleic Acids Res. 2018; 47(D1):
D330–D338.
PubMed Abstract | Publisher Full Text | Free Full Text

	 Durinck S, Moreau Y, Kasprzyk A, et al.: BioMart and
Bioconductor: a powerful link between biological databases
and microarray data analysis. Bioinformatics. 2005; 21(16):
3439–40.
PubMed Abstract | Publisher Full Text

	 Fisher RA: Statistical Methods for Research Workers. Edinburgh
Oliver & Boyd. 1925.
Reference Source

	 Habib N, Li Y, Heidenreich M, et al.: Div-Seq: Single-nucleus RNA-
Seq reveals dynamics of rare adult newborn neurons. Science.
2016; 353(6302): 925–28.
PubMed Abstract | Publisher Full Text | Free Full Text

	 Kanehisa M, Sato Y, Kawashima M, et al.: KEGG as a reference
resource for gene and protein annotation. Nucleic Acids Res.
2015; 44(D1): D457–D462.
PubMed Abstract | Publisher Full Text | Free Full Text

	 Love MI, Huber W, Anders S: Moderated Estimation of Fold
Change and Dispersion for Rna-Seq Data with Deseq2. Genome
Biol. 2014; 15(12): 550.
PubMed Abstract | Publisher Full Text | Free Full Text

	 Monti S, Tamayo P, Mesirov J, et al.: Consensus Clustering:
A Resampling-Based Method for Class Discovery and
Visualization of Gene Expression Microarray Data. Mach Learn.
2003; 52(1): 91–118.
Publisher Full Text

	 Park T, Yoo DH, Ahn JI, et al.: Statistical tests for identifying
differentially expressed genes in time-course microarray
experiments. Bioinformatics. 2003a; 19(6): 694–703.
PubMed Abstract | Publisher Full Text

	 Park T, Yi SG, Kang SH, et al.: Evaluation of normalization
methods for microarray data. BMC Bioinformatics. 2003b; 4: 33.
PubMed Abstract | Publisher Full Text | Free Full Text

	 Ritchie ME, Phipson B, Wu D, et al.: limma Powers Differential
Expression Analyses for RNA-Sequencing and Microarray
Studies. Nucleic Acids Res. 2015; 43(7): e47.
PubMed Abstract | Publisher Full Text | Free Full Text

	 Robinson MD, McCarthy DJ, Smyth GK: edgeR: a Bioconductor
package for differential expression analysis of digital gene

expression data. Bioinformatics. 2010; 26(1): 139–40.
PubMed Abstract | Publisher Full Text | Free Full Text

	 Shalek AK, Satija R, Shuga J, et al.: Single-cell RNA-seq reveals
dynamic paracrine control of cellular variation. Nature. 2014;
510(7505): 363–69.
PubMed Abstract | Publisher Full Text | Free Full Text

	 Shoemaker JE, Fukuyama S, Eisfeld AJ: An Ultrasensitive
Mechanism Regulates Influenza Virus-Induced Inflammation.
PLoS Pathog. 2015; 11(6): e1004856.
PubMed Abstract | Publisher Full Text | Free Full Text

	 Storey JD, Xiao W, Leek JT, et al.: Significance analysis of time
course microarray experiments. Proc Natl Acad Sci U S A. 2005;
102(36): 12837–42.
PubMed Abstract | Publisher Full Text | Free Full Text

	 Thorndike RL: Who belongs in the family? Psychometrika. 1953;
18(4): 267–76.
Publisher Full Text

	 Trapnell C, Cacchiarelli D, Grimsby J, et al.: The dynamics
and regulators of cell fate decisions are revealed by
pseudotemporal ordering of single cells. Nat Biotechnol. 2014;
32(4): 381–86.
PubMed Abstract | Publisher Full Text | Free Full Text

	 Varoquaux N, Cole B, Gao C, et al.: Transcriptomic Analysis of
Field-Droughted Sorghum from Seedling to Maturity Reveals
Biotic and Metabolic Responses. Proc Natl Acad Sci U S A. 2019;
116(52): 27124–27132.
PubMed Abstract | Publisher Full Text | Free Full Text

	 Varoquaux N, Purdom E: A pipeline to analyse transcriptomic
time-course data. 2020.
http://www.doi.org/10.17605/OSF.IO/U2DQP

	 Wenguang S, Zhi W: Multiple Testing for Pattern Identification,
with Applications to Microarray Time-Course Experiments.
J Am Stat Assoc. Taylor & Francis. 2011; 106(493): 73–88.
Publisher Full Text

	 Wu S, Wu H: More Powerful Significant Testing for Time Course
Gene Expression Data Using Functional Principal Component
Analysis Approaches. BMC Bioinformatics. 2013; 14: 6.
PubMed Abstract | Publisher Full Text | Free Full Text

	 Yates AD, Achuthan P, Akanni W, et al.: Ensembl 2020. Nucleic Acids
Res. 2019; 48(D1): D682–D688.
PubMed Abstract | Publisher Full Text | Free Full Text

	 Zhao S, Guo Y, Shyr Y: KEGGprofile: An Annotation and
Visualization Package for Multi-Types and Multi-Groups
Expression Data in Kegg Pathway. 2017.
Reference Source

Page 38 of 42

F1000Research 2020, 9:1447 Last updated: 04 OCT 2021

http://www.ncbi.nlm.nih.gov/pubmed/11928511
http://www.ncbi.nlm.nih.gov/pubmed/30395331
http://dx.doi.org/10.1093/nar/gky1055
http://www.ncbi.nlm.nih.gov/pmc/articles/6323945
http://www.ncbi.nlm.nih.gov/pubmed/16082012
http://dx.doi.org/10.1093/bioinformatics/bti525
https://haghish.com/resources/materials/Statistical_Methods_for_Research_Workers.pdf
http://www.ncbi.nlm.nih.gov/pubmed/27471252
http://dx.doi.org/10.1126/science.aad7038
http://www.ncbi.nlm.nih.gov/pmc/articles/5480621
http://www.ncbi.nlm.nih.gov/pubmed/26476454
http://dx.doi.org/10.1093/nar/gkv1070
http://www.ncbi.nlm.nih.gov/pmc/articles/4702792
http://www.ncbi.nlm.nih.gov/pubmed/25516281
http://dx.doi.org/10.1186/s13059-014-0550-8
http://www.ncbi.nlm.nih.gov/pmc/articles/4302049
http://dx.doi.org/10.1023/A:1023949509487
http://www.ncbi.nlm.nih.gov/pubmed/12691981
http://dx.doi.org/10.1093/bioinformatics/btg068
http://www.ncbi.nlm.nih.gov/pubmed/12950995
http://dx.doi.org/10.1186/1471-2105-4-33
http://www.ncbi.nlm.nih.gov/pmc/articles/200968
http://www.ncbi.nlm.nih.gov/pubmed/25605792
http://dx.doi.org/10.1093/nar/gkv007
http://www.ncbi.nlm.nih.gov/pmc/articles/4402510
http://www.ncbi.nlm.nih.gov/pubmed/19910308
http://dx.doi.org/10.1093/bioinformatics/btp616
http://www.ncbi.nlm.nih.gov/pmc/articles/2796818
http://www.ncbi.nlm.nih.gov/pubmed/24919153
http://dx.doi.org/10.1038/nature13437
http://www.ncbi.nlm.nih.gov/pmc/articles/4193940
http://www.ncbi.nlm.nih.gov/pubmed/26046528
http://dx.doi.org/10.1371/journal.ppat.1004856
http://www.ncbi.nlm.nih.gov/pmc/articles/4457877
http://www.ncbi.nlm.nih.gov/pubmed/16141318
http://dx.doi.org/10.1073/pnas.0504609102
http://www.ncbi.nlm.nih.gov/pmc/articles/1201697
http://dx.doi.org/10.1007/BF02289263
http://www.ncbi.nlm.nih.gov/pubmed/24658644
http://dx.doi.org/10.1038/nbt.2859
http://www.ncbi.nlm.nih.gov/pmc/articles/4122333
http://www.ncbi.nlm.nih.gov/pubmed/31806758
http://dx.doi.org/10.1073/pnas.1907500116
http://www.ncbi.nlm.nih.gov/pmc/articles/6936495
http://www.doi.org/10.17605/OSF.IO/U2DQP
http://dx.doi.org/10.1198/jasa.2011.ap09587
http://www.ncbi.nlm.nih.gov/pubmed/23323795
http://dx.doi.org/10.1186/1471-2105-14-6
http://www.ncbi.nlm.nih.gov/pmc/articles/3617096
http://www.ncbi.nlm.nih.gov/pubmed/31691826
http://dx.doi.org/10.1093/nar/gkz966
http://www.ncbi.nlm.nih.gov/pmc/articles/7145704
https://rdrr.io/bioc/KEGGprofile/

Open Peer Review
Current Peer Review Status:

Version 1

Reviewer Report 02 February 2021

https://doi.org/10.5256/f1000research.30124.r77190

© 2021 Love M. This is an open access peer review report distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Michael I. Love
Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, USA

The authors provide an R package and accompanying workflow to analyze time course gene
expression data, with a particular focus toward longer time courses, such that pairwise DE analysis
at each time point is cumbersome. The package and workflow importantly emphasizes quality
control at a number of steps throughout the analysis, to ensure that the results are reliable (e.g.
not due to artifact) and biologically meaningful. I was able to download the workflow and run the
entire workflow using the Make script provided in the GitHub repo. I obtained the same results
and figures using R 4.0.3 and Bioconductor 3.12 (the workflow uses a previous version of R and
Bioconductor). The workflow is easy to read, and the package provides a number of useful
features that are not available in other packages to my knowledge. I found the functions and
section describing the assignment of genes to clusters to be particularly useful.

Major comments:

Having communicated with a number of bioinformatic analysts working with time course
data, I would say the most common approach is a LRT of ~condition + time + condition:time
compared to ~condition + time to obtain a single p-value for the inclusion of the interaction
terms. The current article implies that the most common approach is to perform pairwise
DE at every time point, but in my experience this is not the case. I agree that the methods
and workflow presented here are useful and go well beyond the simple LRT with a single p-
value per gene. I think what "saves" most users when performing the LRT is that most time
course designs have a limited number of replicates (e.g. n=2 or 3), and so they are under-
powered for detecting all of the condition-specific dynamics over time. Otherwise, as
mentioned in the article, as the power increases, it is entirely possible to obtain a large
majority of genes rejecting the null hypothesis.

1.

It wasn't clear to me when or if the differential analyses were controlling for a t0 baseline or
not. E.g. in the M vs VL comparisons, do the comparisons after time point 0 control for the
difference at time point 0? Is this an option? Likewise, for the LFC matrix provided by
estimate_log_fold_change().

2.

Page 39 of 42

F1000Research 2020, 9:1447 Last updated: 04 OCT 2021

https://doi.org/10.5256/f1000research.30124.r77190
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0001-8401-0545

A number of time course packages for RNA-seq are not mentioned, though I thought for
completeness, it would warrant a brief description of how existing methods/workflows
differ from the methods presented here, as part of the Introduction. For example, Spies et
al 2017 compares a number of methods1.

3.

Minor comments:
It would be good for stylistic purposes to maintain consistency between "x = 3", "x=3", and
"x <- 3" throughout the workflow.

○

"bioconductor" should be capitalized

○

"micro-array" is used, elsewhere "microarray"

○

"meta data" and "metadata"

○

"The first steps ... is always to do ..."

○

 The Rmarkdown code is mentioned while the link does not appear until the end of the
article.

○

"samples colored by ... its condition"

○

"model formula" and "basis matrix" are mentioned without much accompanying description
what these terms mean. Many readers may not know what these refer to.

○

How would one provide the basis matrix to the object creation step?

○

May worth noting that if the sum of the estimated LFC is close to 0 for a gene, slight
fluctuations in the data or scaling/normalization could flip the sign of the timecourse value.
It is mentioned that the direction of this estimator may not be accurate, but its variance
could also be mentioned.

○

It is mentioned that 70% of the _genome_ is DE, presumably this is 70% of the genes
passing expression filters.

○

May be worth mentioning that scaling the splines and clustering works in this case because
the genes have been filtered to those with small p-value and large LFC. Otherwise, rescaling
by the range can increase the noise in expression data.

○

In the goodness of fit scoring equation, it wasn't clear the scale of y_ij.

○

"--" instead of en dash in "Assigning cluster labels".

○

Missing period after "...previous scores)"

○

When it is mentioned that "Cluster 6 seems particularly interesting" may be worth referring
back to Figure 12.

○

What is the scale of the data in Figure 18 (left panel)? Log CPM? ○

Page 40 of 42

F1000Research 2020, 9:1447 Last updated: 04 OCT 2021

jar:file:/work/f1000research/webapps/ROOT/WEB-INF/lib/service-1.0-SNAPSHOT.jar!/com/f1000research/service/export/pdf/#rep-ref-77190-1

In the section on choosing a number of clusters, various terms are used to describe what I
imagine is referring to a gene: "data point", "item", "samples". E.g. use of "samples" in
Figure 21 caption. Perhaps only use "gene" throughout.

○

Recommend citation for RefSeq and Ensembl.○

References
1. Spies D, Renz P, Beyer T, Ciaudo C: Comparative analysis of differential gene expression tools
for RNA sequencing time course data. Briefings in Bioinformatics. 2019; 20 (1): 288-298 Publisher
Full Text

Is the rationale for developing the new method (or application) clearly explained?
Yes

Is the description of the method technically sound?
Yes

Are sufficient details provided to allow replication of the method development and its use
by others?
Yes

If any results are presented, are all the source data underlying the results available to
ensure full reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Developer of statistical methods for RNA-seq data analysis

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard, however I have
significant reservations, as outlined above.

Page 41 of 42

F1000Research 2020, 9:1447 Last updated: 04 OCT 2021

https://doi.org/10.1093/bib/bbx115
https://doi.org/10.1093/bib/bbx115

The benefits of publishing with F1000Research:

Your article is published within days, with no editorial bias•

You can publish traditional articles, null/negative results, case reports, data notes and more•

The peer review process is transparent and collaborative•

Your article is indexed in PubMed after passing peer review•

Dedicated customer support at every stage•

For pre-submission enquiries, contact research@f1000.com

Page 42 of 42

F1000Research 2020, 9:1447 Last updated: 04 OCT 2021

mailto:research@f1000.com

