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The fitness of behaving agents depends on their knowledge of the environment, which demands efficient exploration strategies. Active sensing formalizes exploration as reduction of uncertainty about the current state of the environment. Despite strong theoretical justifications, active sensing has had limited applicability due to difficulty in estimating information gain. Here we address this issue by proposing a linear approximation to information gain and by implementing efficient gradient-based action selection within an artificial neural network setting. We compare information gain estimation with state of the art, and validate our model on an active sensing task based on MNIST dataset. We also propose an approximation that exploits the amortized inference network, and performs equally well in certain contexts.

Introduction

Decision making may be seen as a tradeoff between exploitation -maximizing future reward based on past experience, and exploration -getting more information about the environment [START_REF] Sutton | Reinforcement learning: An introduction[END_REF]. Here we focus on active sensing as a particular form of exploration [START_REF] Yang | [END_REF]. Suppose that environment emits observations x with probability p * (x). If an agent intends to plan and evaluate the informativeness of its actions, it needs to form a probabilistic model of the environment -p(x). A canonical functional to measure, and consequently reduce the mismatch of beliefs, in this case between agent's model and the real world, is Kullback-Leibler divergence D KL [p * (x)||p(x)] ≡ E p * (x) log p * (x) -E p * (x) log p(x) [START_REF] Cover | Elements of Information Theory[END_REF]. The first term does not depend on agent's model, and thus can be treated as a constant, leaving only the negative log likelihood (NLL) -E p * (x) log p(x) to minimize. Practically, the model may represent a certain structure, or, more often, hyperparameters that define a particular model within a family with a chosen structure. Furthermore, a given model often contains latent (unknown) variables that can be generally classified into the ones that change on shorter (e.g. observation's hidden causes, denoted by a random variable z) or longer timescales (e.g. model parameters θ): p(x) = E p(z,θ) p(x|z, θ). Therefore, the problem of directed exploration can be formulated as gaining information about the latent variables of the model (Figure 1-a). While active learning [4,[START_REF] Settles | Active learning, Synthesis Lectures on Artificial Intelligence and Machine Learning[END_REF], is focused on resolving uncertainty about parameters θ, reflecting the statistical structure of the environment, we focus on active sensing -gaining information about the hidden causes z, latent variables that change on a trial-by-trial timescale [START_REF] Yang | [END_REF]. Importantly, the latent variable represents the global context (e.g. layout of a maze/location of reward) which the agent wants to figure out, and local context (e.g. compressed current observation/position within the maze), prior belief over which depends on action [START_REF] Huys | [END_REF] (Figure 1-b). Active sensing is an important problem both in pattern recognition (i.e. deciding which features to collect [START_REF] Yu | Active sensing[END_REF]), and in neuroscience, as the pattern of human eye movements during visual exploration has been shown, to optimize resolution of uncertainty about the underlying context [8,[START_REF] Friston | Free-energy minimization and the dark-room problem[END_REF][START_REF] Yang | Active sensing in the categorization of visual patterns[END_REF][START_REF] Hoppe | Multi-step planning of eye movements in visual search[END_REF].

Previous work on active sensing has been focused on tractable but limited scenarios, using kernel methods [START_REF] Yu | Active sensing[END_REF], gaussian mixture models [START_REF] Yang | [END_REF] or entirely discrete domains [START_REF] Friston | Active inference and epistemic value[END_REF]. Here, we set to investigate the case in which both observations x and hidden causes z are continuous. Using the popular linear Gaussian model is not fit for active sensing, since the amount of uncertainty reduction is constant [START_REF] Bishop | Pattern Recoginiton and Machine Learning[END_REF]. In contrast, implementing active sensing with an arbitrary nonlinear relationship could be difficult in part because of statistical limitations of information gain estimation. In particular, it has been shown that in the frequent scenario of intractable p(x), unbiased estimates of mutual information estimated from N samples cannot be larger than O(log N ) [START_REF] Mcallester | Formal Limitations on the Measurement of Mutual Information[END_REF][START_REF] Poolel | On variational bounds of mutual information[END_REF].

The main idea of this paper is to rely on the insight that neural networks with rectifying activations implement piecewise linear functions over the input space [START_REF] Park | Variational laplace autoencoders[END_REF][START_REF] Hanin | Complexity of linear regions in deep networks[END_REF]. Thus, we can both learn flexible representations [START_REF] Lecun | Deep learning[END_REF] and compute a sensible (sampling-free) measure of information gain. First, we illustrate that the structure of the relation between z and x -p(x|z) -has a key role in the potential information gain. Then, we describe how Laplace approximation could be effectively used to quantify information gain in piece-2 wise linear networks, complete the model by specifying dynamics, and apply the approach to an active sensing (saccade simulation) task based on the MNIST dataset. The key intuition is that in this scenario, the amount of information gain largely depends on the location of the prior p(z + ) and the slope of likelihood around zs that have high probability under such prior. In the example shown in the first row, the mutual information between future x and z is small since the posterior over z depends very little on x, whereas the opposite is true in the example illustrated in the second row.

Materials and Methods

Suppose that agent's beliefs about the next observation x, given a hypothetical action a, have the following structure: p(x|a) = E p(z|a) p(x|z) (we omit the time-index and non-essential variables in the conditioning sets for clarity). In active sensing, information gain is quantified as the mutual information I(z; x|a) ≡ H[p(z|a)]-E p(x|a) H[p(z|x, a)] (leaving the conditioning on model parameters θ implicit). A detailed intuition on using I in the context of active sensing as well as comparison with other uncertainty functionals for decision making can be found in [START_REF] Friston | Active inference and epistemic value[END_REF]. It can be shown that I(z; x|a) is symmetric and so is also equal to H[p(x|a)] -E p(z|a) H[p(x|z)]. This provides a dual interpretation of information gain. On the one hand, the action a with the highest exploration value I(z; x|a), is the one that leads to an uncertain (high variance) prior p(z|a), i.e. high H[p(z|a)], but also to a certain Given that the posterior p(z|x) ∝ p(x, z) = p(x|z)p(z), by Bayes' rule, we could get an insight on the potential information gain by analyzing the mapping p(x|z). In case of a classical linear model with additive Gaussian noise:

p(z) = N (µ z , Λ -1 z ), p(x|z) = N (Cz, Λ -1 x|z )
, the posterior precision does not depend on the observation:

Λ z|x = Λ z + C T Λ x|z C [13].
Conveniently, entropy has a particularly simple form for a D-dimensional Gaussian distribution:

H[N (µ, Λ -1 )] = D 2 (1 + log 2π) + 1 2 log |Λ -1 |.
Since information gain is the difference of entropies, and the posterior precision only depends on the prior precision and a constant term, it cannot be affected by actions, and thus cannot be used for exploration optimization. In contrast, in case of arbitrary nonlinear relationship between x and z, information gain becomes sensitive to the geometry of p(x|z) around values of z that have high probability under the prior. First, as we will show, under the simplifying assumption of constant Λ x|z , information gain depends on the steepness of p(x|z), i.e. the derivative of µ x|z as a function of z. Second, in case of heteroscedastic likelihood, i.e. when Λ x|z depends on z, information gain will also depend on the amount of aleatoric noise at the z values that are probable under prior p(z|a).

The key idea we will exploit is that mean and variance of p(x|z) can be flexibly modeled by neural networks with piecewise linear activations [START_REF] Park | Variational laplace autoencoders[END_REF][START_REF] Hanin | Complexity of linear regions in deep networks[END_REF].

As noted in [START_REF] Glorot | Deep sparse rectifier neural networks[END_REF], a network with rectifying activations splits the input domain into regions over which it effectively implements a linear function. While theoretical analysis suggested that the number of such regions scales exponentially with the network depth (i.e. number of layers) and polynomially with the width [START_REF] Montúfar | On the number of linear regions of deep neural networks[END_REF][START_REF] Raghu | On the expressive power of deep neural networks[END_REF], later studies showed that, in models actually used in practice, the number of linear regions is far fewer -linear in the number of neurons [START_REF] Hanin | Complexity of linear regions in deep networks[END_REF]. Even more importantly for our approach, [START_REF] Hanin | Complexity of linear regions in deep networks[END_REF] showed that the size of these regions typically scales as the inverse of number of neu-rons. This means that if a significant fraction of density of the prior p(z|a)

is over a part of z that produces linear p(x|z), we can compute information gain using Laplace approximation [4] (see Figure 1-b for intuition), by which curvature of the joint p(x, z) corresponds to the precision of the posterior p(z|x) [START_REF] Park | Variational laplace autoencoders[END_REF][START_REF] Bishop | Pattern Recoginiton and Machine Learning[END_REF]. Laplace approximation has been pioneered for estimating posterior distributions of neural network weights in [4], but has not been frequently used because the number of weights encountered in neural networks today would put a prohibitive computational demand to compute the curvature of the joint distribution. In contrast, the latent state z typically has much fewer dimensions (e.g. 2-256), which makes the approach tractable as recently shown in [START_REF] Park | Variational laplace autoencoders[END_REF].

Homoscedastic noise

Assuming homoscedastic (i.e. constant for all z) observation noise, conditionally independent dimensions of x ∈ R D , and computing the curvature at the mean of p(z|a), we get:

p(z|a) = N (µ z|a , Λ -1 z|a ) (1) 
p(x|z) = N (µ(z), diag(λ -1 )) (2) 
-log p(z, x|a) ∝ 1 2 D i λ i (x i -µ i (z)) 2 + 1 2 (z -µ z|a ) T Λ z|a (z -µ z|a ) (3) Λ z|x,a ≈ -∇ 2 log p(z, x|a)| µ z|a (4) = D i λ i (x i -µ i (z))∇ 2 µ i (z) + D i λ i ∇µ i (z)(∇µ i (z)) T + Λ z|a (5) 
We find that posterior precision equals to the prior precision augmented with a term that depends on the observation x and a term that depends on the squared gradients of the function µ(z) that predicts the mean of p(x|z). The term that depends on the observation would disappear if µ(z) is a neural network with relu activations, since in that case ∇ 2 µ(z) is zero.

However, we can also neglect this term in a more general scenario, noting that if the model is sufficiently trained, the errors will be near zero, or, if µ(z) is approximately linear, the multiplicative second derivative term will be near zero ( [START_REF] Bishop | Pattern Recoginiton and Machine Learning[END_REF], Ch. 5.4.2). This has a desirable practical aspect in that we eschew the expectation over x in I(z; x|a), which is an important desideratum for online decision making -fast evaluation of the exploration value. Thus, information gain based on Laplace approximation I L , simplifies to:

I L = 1 2 (log |Λ -1 z|a | -log |Λ -1 z|x,a |), (6) 
where Λ z|x,a ≈ D i λ i ∇µ i (z)(∇µ i (z)) T + Λ z|a .

Heteroscedastic noise

Properly 

λ i (z)∇µ i (z)(∇µ i (z)) T +
Λ z|a , ignoring the higher order terms, which allows us to downweight the expected information gain from noisy dimensions (low λ i (z)) at the most likely z values (µ z|a ). It is important to note that this relies on the assumption that the function λ(z) can correctly fit aleatoric noise, since there is a considerable chance of overfitting, as discussed in [START_REF] Nix | Estimating the mean and variance of the target probability distribution[END_REF]. One needs to ensure the dataset is sufficiently large, and to regularize both µ(z) and λ(z) [START_REF] Bishop | Regression with input-dependet noise: A bayesian treatment[END_REF].

This is because the more µ(z) overfits the training data -the more optimization will favour small λ(z). At the same time, an interesting side-effect of modelling observation noise is that once the datapoint x is observed, the prediction error that drives learning of network parameters is weighted by λ(z).

Such a modulation of the learning rate means that the network weights will be affected more by the observations with lower aleatoric uncertainty [START_REF] Nix | Estimating the mean and variance of the target probability distribution[END_REF],

and thus active sensing, by favouring such low-variance observations through action selection, could also lead to faster learning.

Dynamical model implementation

So far we have only focused on the link between z and x, neglecting environmental dynamics. In order to model how the prior over z depends on actions and the past, we will use a nonlinear Bayesian model that combines the latent variables z with a recurrent neural network (RNN) with state h [START_REF] Hafner | Learning Latent Dynamics for Planning from Pixels[END_REF][START_REF] Buesing | Learning and Querying Fast Generative Models for Reinforcement Learning[END_REF] (Figure 2-a):

h t+1 = RN N (h t , z t , a t-1 ), h 1 = f h1 θ (1) (7) 
p θ (z t |h t , a t-1 ) = N (f µz θ (h t , a t-1 ), f σz θ (h t , a t-1 )) (8) 
p θ (x t |z t ) = N (f µx θ (z t ), f σx θ (z t )) (9) 
Because of nonlinear f θ s, the exact posterior p(z|x, a) is intractable, but can be approximated with an auxiliary distribution q φ by using the framework of stochastic gradient variational inference [START_REF] Kingma | Auto-Encoding Variational Bayes[END_REF][START_REF] Rezende | Stochastic Backpropagation and Approximate Inference in Deep Generative Models[END_REF]. Crucially, observation x includes both image and patch (attended portion of the image) x = {x im , x π }, while q φ only receives the patch. Finally, we need to specify the planning algorithm that will select actions that maximize information gain: a * = arg max a I(x π ; z|a) While it is possible to use black box Monte Carlo methods [START_REF] De Boer | A tutorial on the cross-entropy method[END_REF], here we opted to directly optimize actions with a gradient based approach. We added Gaussian noise (µ = 0, σ = 0.1) to the patches π fed to the network in order to avoid discontinuity in the objective, following the work of [START_REF] Henaff | Model-Based Planning with Discrete and Continuous Actions (may 2017)[END_REF]. Since with relu nonlinearity ∇ a I L is zero, we replace relu with its differentiable surrogate sof tplus(x) = log(1 + e x ) [START_REF] Glorot | Deep sparse rectifier neural networks[END_REF], which, similarly to relu, consists of a linear and saturation pieces (also see Appendix).

q φ (z t ) = N (f µ φ (x π t , h t , a t-1 ), f σ φ (x π t , h t , a t-1 )) (10) θ * , φ * = arg min θ,φ F = E q φ (z 1:T ) [-log p θ (x 1:T , z 1:T |a 1:T -1 ) + log q φ (z 1:T )] (11) 
Although entire action sequences can [START_REF] Werbos | Backpropagation Through Time: What It Does and How to Do It[END_REF] and should be [START_REF] Hoppe | Multi-step planning of eye movements in visual search[END_REF] optimized, here we focused only on the next action for simplicity, i.e. optimizing an approximation to I(x π t+1 ; z t+1 |a t ). Also, while using active sensing to collect the training data could be beneficial for model learning as discussed above, here we first learned the model on a dataset collected by random actions, and then used active sensing on a test dataset.

Results

Unbiased information gain estimates

We first validated our approach by comparing it with other popular information gain measures on a benchmark proposed by Belghazi et al [START_REF] Belghazi | Mutual information neural estimation[END_REF][START_REF] Poolel | On variational bounds of mutual information[END_REF]: two 20-dimensional random variables z, x, correlated across corresponding

dimensions: p(z) = N (0, I d ); p(x) = N (0, I d ); p(x|z) = N (ρI d z, (1 -ρ) 2 I d ).
Additionally, we implemented a nonlinear problem by following the same setup but applying a transformation x → x 3 in the end [START_REF] Song | Understanding the Limitations of Variational Mutual Information Estimators[END_REF]. In both cases, the true mutual information is known: I(x; z) = -d 2 log(1 -ρ 2 ). We compared our method with several commonly used lower bounds on information gain. First, we computed 2 simple Monte Carlo (MC) estimators (also known as InfoNCE bounds with tractable conditionals [START_REF] Poolel | On variational bounds of mutual information[END_REF]): one using the ground truth p(x|z), and the other one using a q(x|z) that was fitted by training (for 10k iterations) a neural network that predicts both mean µ(z) (2 relu layers with 64 neurons and identity output) and precision λ(z) (2 relu layers with 64 neurons and exponential output):

I M Cp ≈ 1 K i log p(x i |z i ) 1 K j p(x i |z j ) , I M Cq ≈ 1 K i log q(x i |z i ) 1 K j q(x i |z j )
.

(12) Additionally, we implemented the non-parametric bound proposed by Kolchinsky et al. [START_REF] Kolchinsky | Estimating mixture entropy with pairwise distances[END_REF][START_REF] Kolchinsky | Nonlinear information bottleneck[END_REF]:

I K = - 1 K i log 1 K j e -D[p(x|z i )||p(x|z j )] (13) 
where lower bound on information gain is achieved if D is chosen to be Chernoff α divergence (α = .5 was used as suggested in [START_REF] Kolchinsky | Estimating mixture entropy with pairwise distances[END_REF]), and which in case of multivariate Gaussians p i = N (µ i , Σ i ) takes the following form:

C α (p 1 ||p 2 ) = (1 -α)α 2 (µ 1 -µ 2 ) T ((1-α)Σ 1 +αΣ 2 ) -1 (µ 1 -µ 2 )+ 1 2 log( |(1 -α)Σ 1 + αΣ 2 | |Σ 1 | (1-α) |Σ 2 | α ) (14) 
As for our method, using equation 6, plugging the true Λ z = I, using the fitted heteroscedastic q(x|z) (and computing the gradient at µ z = 0), we arrive at:

I L = 1 2 (log | D i λ i (z)∇µ i (z)(∇µ i (z)) T + I|) (15) 
For all methods, as well as for training the neural network parameters, the batch size has been set to 1000. The results show that in contrast to our method, the baseline approaches are upper bounded by logarithm of the batch size, which is consistent with previous theoretical [START_REF] Mcallester | Formal Limitations on the Measurement of Mutual Information[END_REF] and experimental [START_REF] Poolel | On variational bounds of mutual information[END_REF] findings (Figure 3). It is not surprising that our approach works well on the linear version of the problem, as in this case Laplace approximation can be exact. We also achieve good performance on the nonlinear problem, but more generally, our information gain approximation would be accurate if µ(z) is approximately linear at the mean of p(z|a) and if the variance of p(z|a) is small (see Figure 1-b).

A toy active sensing task

We then tested our approach on a toy active sensing paradigm based on the MNIST dataset (see Figure 2 was optimized to maximize I L , the approximation to the mutual information between the latent variable and the patch, I(x π ; z|a)(Adam [START_REF] Kingma | A method for stochastic optimization[END_REF], α = 0.1). For comparison, we also implemented a policy that only maximized H[p(z)],

and two heuristic methods, both of which relied on taking the mean of the prior over latent variable given the action µ z|a , passing it through the patch decoder p θ (x π |z) and then passing the mean of this distribution (i.e. the most likely patch) to the encoder predicting variational approximation q φ (z). We could then either compute the divergence between the prior and posterior

KL[q||p],
or the difference of entropies dH(q, p) = H[q] -H[p]. Finally, we also evaluated a naive policy, that for every time step, made a random selection of patch location. The squared errors averaged over 512 images are shown in Figure 4-a. Note that relatively small errors in image reconstruction can lead to large perceptual differences (as shown in the second and the last row of Figure 5). Thus, as an alternative measure, we also included the accuracy of a classifier trained to discriminate between MNIST digits (Figure 4-d). The classifier included two hidden layers with 64 neurons each, and was fitted on the same training data as the dynamical model, to 97 % accuracy. We then evaluated its performance on the reconstructed images (mean of the decoder p(x im |z), with z being the mean of the approximate posterior given the patch) at every step of the active sensing task. We found that optimizing an information gain measure based on Laplace approximation had the best performance in the active sensing task. This effect was especially strong in the first time step, in which the model has not received vergence leads to actions that put q in the portion of the latent space which are unfamiliar to the decoder, resulting in prediction of unrealistic images.

We then modified the task to implement the noisy TV problem in order to validate the heteroscedastic version of our approach. To this end, in the left upper corner of each image, we added a 10*10 pixels area in which the value of every pixel was independently sampled from U(0, 10) noise distribution. All other experimental details remained the same. We found that explicitly modelling heteroscedastic noise helped to counteract the tendency of the model to select a patch location within the noisy TV (Figure 4-b,c

and Figure 5). Note that a separate classifier was trained for the noisyTV version of the task in order to discriminate between the reconstructed images (Figure 4-e,f). The notebook with code for reproducing our simulations can be found at https://github.com/solopchuk/ASNN. 

Discussion

Active sensing has been recently studied within the 'planning as inference' framework [START_REF] Botvinick | Planning as inference[END_REF][START_REF] Levine | Reinforcement Learning and Control as Probabilistic Inference: Tutorial and Review (may 2018)[END_REF] in the context of discrete domains [START_REF] Friston | Active inference and epistemic value[END_REF][START_REF] Schwartenbeck | Computational mechanisms of curiosity and goaldirected exploration[END_REF]. In contrast, we focused on continuous states and observations, leveraging the recent advances in probabilistic dynamical models [START_REF] Chung | A Recurrent Latent Variable Model for Sequential Data[END_REF][START_REF] Gemici | Generative Temporal Models with Memory[END_REF] that were successfully used for building model-based reinforcement learning agents. For example, [START_REF] Hafner | Learning Latent Dynamics for Planning from Pixels[END_REF] used a world model similar to ours as an environment simulator while using evolutionary-based planning algorithm for reward optimization. Also, [START_REF] Buesing | Learning and Querying Fast Generative Models for Reinforcement Learning[END_REF] used a similar model, highlighting the importance of having both stochastic and deterministic components in the dynamical model. An important feature of our model in contrast to these methods is that the 'decoder' mapping p(x|z) did not have access to the state of the recurrent neural network h, as this has been shown to cause the decoder to ignore latent variable z [START_REF] Park | A Hierarchical latent structure for variational conversation modeling[END_REF]. Another difference of our work with past literature [START_REF] Silver | The Predictron: End-To-End Learning and Planning[END_REF][START_REF] Guez | Learning to Search with MCTSnets[END_REF] is that we focused on full model-based planning at inference time. We took advantage of a differentiable world model, optimizing the actions with gradient ascent, which has been shown to be as efficient but much faster than using tree-search methods [START_REF] Henaff | Model-Based Planning with Discrete and Continuous Actions (may 2017)[END_REF].

In general, many curiosity functionals can be described as mutual information, either between actions and observation (empowerment, [START_REF] Klyubin | Empowerment: A Universal Agent-Centric Measure of Control[END_REF]), model parameters and observation (active learning [4]), or hidden state and observation as in active sensing. Whereas, to our knowledge, the present work is the first to implement active sensing within deep reinforcement learning framework, empowerment [START_REF] Mohamed | Variational Information Maximisation for Intrinsically Motivated Reinforcement Learning[END_REF] and active learning [START_REF] Houthooft | VIME: Variational Information Maximizing Exploration[END_REF][START_REF] Mirchev | Approximate Bayesian Inference in Spatial Environments[END_REF][START_REF] Sekar | Planning to explore via self-supervisedworld models[END_REF] have been implemented using bounds on mutual information and with amortized planning.

Also, simpler approaches based on the error of predicting next observations [START_REF] Burda | Large-Scale Study of Curiosity-Driven Learning[END_REF][START_REF] Burda | Exploration by Random Network Distillation[END_REF] showed the benefits of curiosity signal in environments with sparse rewards.

In sum, we found that both the proposed Laplace approximation method and the approach based on difference of entropies obtained by inputting the most likely observation to the inference network (i.e. dH(q, p)) are effective methods for implementing active sensing within modern neural networks.

The former relies on the piecewise linear nature of popular neural network activation functions, while the latter is essentially an approximation to the former for inference networks restricted to unimodal Gaussians. Here we trained both the generative and inference part of the model until convergence. However, we expect that the advantage of the Laplace approximation method would show particularly at the early stages of learning, when the approximating accuracy of inference networks is low [START_REF] He | Lagging inference networks and posterior collapse in variational autoencoders[END_REF]. Additionally, the difference of entropies method is not appropriate if one wants to maximize mutual information with a variable to which q(z|a) does not have access to (e.g. the entire image, or in the information bottleneck setup as in [START_REF] Alemi | Deep Variational Information Bottleneck[END_REF]).

We anticipate that this work will be interesting to the reinforcement learning community, and leave the integration of active sensing with utility maximiza-tion for future work. It would also be interesting to study the relationship between different exploration functionals and how they contribute to reward maximization, i.e. exploitation. Finally, it is important to note that online active sensing as implemented here relies on an accurate model p θ (x, z), so it might not be an efficient strategy early on, when the model has not yet been sufficiently trained. Understanding the efficiency of different curiosity functionals with respect to model accuracy is another useful venue for future research.

Funding sources. This research was funded by FNRS Belgium, IDEX Bordeaux and ANR JCJC (ANR-18-CE37-0009-01). The funders had no involvement in study design; collection, analysis and interpretation of data; writing of the report; and in the decision to submit the article for publication. , and then for each point, assigning a unique code by concatenating codes for each neuron in the hidden layers of the decoder, where the code for each neuron is 1 if pre-activation activity is above zero (linear part of softmax), and 0 if the pre-activation activity is below zero (nonlinear part). This way the points on the grid that have the same code identify a linear region, and thus the contour plot shows the boundaries of these regions [START_REF] Novak | Sensitivity and generalization in neural networks: An empirical study[END_REF]. (b) As the procedure in a is overconservative, we also quantify linearity in an alternative way. We apply the decoder for each point on the grid over z, creating a new grid of size nZ x nZ x nPatch, where nZ is the number of points over each dimension of z and nPatch is the number of pixels in the patch. We then create a 3x3 'linearity kernel', with ones in all entries except the center which has -8, apply this kernel over the new grid for each pixel, and sum over pixels. The intuition is that this kernel will output zero when the function is linear in a small neighbourhood of a point. Thus, the further the output is from zero, the more nonlinear the neighbourhood region is. (c). Histograms of the linearity measure described in b evaluated in the neighbourhoods of 512 test patches for different size of δz that were used to construct the 3 x 3 linearity kernel. measure as a proxy for information gain, where p is the prior distribution given gaze location, and q is the approximate posterior given the patch. Note that optimizing this measure often leads to numerical instability, and standard deviation across models was computed by removing N aN values.
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 1 Figure 1: Active sensing as information gain. (a) A schematic POMDP with transiton T and likelihood L, parameters of a model M . Active exploration can be formalized as maximizing mutual information between (predicted) observations x + and other model variables, as in empowerment I(x + ; a), active learning I(x + ; T ), or active sensing I(x + ; z + ) as in the present work. (b) A toy example with 2 hypothetical actions (rows). The columns show (left to right): the prior over the hidden context p(z + |a), the likelihood p(x + |z + ), the joint p(x + , z + |a) and the posterior p(z + |x + , a) all calculated over a discretized grid in [-5,5]. Colours in the last column correspond to different values of x, and match the line colours shown in the third column. The usage of a rectifier function in the relationship between x and z has been chosen to exemplify the piecewise linearity of rectified linear units (relu).The key intuition is that in this scenario, the amount of information gain largely depends on the location of the prior p(z + ) and the slope of likelihood around zs that have high probability under such prior. In the example shown in the first row, the mutual information between future x and z is small since the posterior over z depends very little on x, whereas the opposite is true in the example illustrated in the second row.

(

  expected) posterior, i.e. low H[p(z|x, a)]. On the other hand, maximizing information gain means striving for diverse sensory input (high H[p(x|a)]) and a confident belief about x given the hidden context z (low expected H[p(x|z)], i.e. noise). These alternative interpretations stem from the definition of information gain as a divergence between the joint distribution and the product of the marginals: I(x; z|a) = D KL [p(x, z|a)||p(x|a)p(z|a)] [3].
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 2 Figure 2: Dynamical model and schematic illustration of the task. (a) At every time step, observationsx are assumed to depend on an underlying latent variable z, which itself depends on the history h (RNN state) and the previous action a -. The approximate posterior over the hidden variable is predicted by an inference network that takes as input history, action and a fragment of the image, called the patch π (red arrows). (b) Schematic of the active sensing task. 1) action and memory lead to a prior belief over the latent variable that encodes both images and patches; 2, 3) approximated mutual information between the latent variable and the patch is used for action selection; 4, 5) the mean image decoded from the mean of approximate posterior over the latent variable is used for active sensing evaluation. The image is taken from the experiment of Yarbus et al. that studied the context sensitive nature of human saccades[8].

  -b for a schematic description). The probabilistic dynamical model was based on the Gated Recurrent Unit [36], with the size of memory state h set to 128. The model was trained to reconstruct the full 28*28 pixels image based on a limited view (4*4 pixels patch) π. Each trial (i.e. image) lasted for 5 time steps, and both the image and the patch had to be reconstructed at every step. The model was trained by optimizing the variational free energy (the negative log likelihood upper bound) functional (equation 11), by sampling batches of training sequences of size 128. For the training dataset (60000 images), patch locations (i.e. actions) were selected randomly for every epoch, and the model was trained for 200 epochs. During the test time, patch location at every time step a t

Figure 3 :

 3 Figure 3: (a) Comparison of our approach with several baseline methods on a problem of estimating information gain between 2 Gaussian variables with correlation ρ, in the range from 0.5 to 0.999. The advantage of our method over the ones based on sampling is that mutual information estimates are not upper bounded by the log of the batch size. Estimates from our method are superimposed on the ground truth values. (b) Performance on information gain estimation in the nonlinear version of the same problem, in which the observation x has been cubed: x → x 3 .

Figure 4 :

 4 Figure 4: Performance of our method in an active sensing paradigm. (a) The mean square error (MSE) of image reconstruction has been baseline corrected by subtracting the minimal MSE across all possible patch selections. The results optimizing mutual information approximation are shown together with the results when only entropy H(z) is optimized. Additionally, the MSE of a random saccade (rand) is shown for reference. The performance is averaged across 512 test images, and the standard deviation is computed by retraining and evaluating 10 randomly initialized models for each condition. (b) The noisy TV task, in which a noisy TV area has been added, while the observation noise of the decoder p(x|z) is fixed as identity. (c) The noisy TV task, but now the model explicitly accounts for heteroscedastic aleatoric noise. (d-f ) Same as panels (a-c), but instead of image reconstruction, we measure performance of a classifier fitted on the training set, and evaluated on the reconstructed image given the patch location (i.e. mean of p(x|z)).

Figure 5 :

 5 Figure 5: Qualitative performance on an example image. Columns show different time steps (1 to 5). The top row shows the image and patch location chosen at the previous time step using our active sensing objective, as well as the trajectory of patch optimization. The second row shows image reconstruction based on the patch at the corresponding patch location. The third row shows the prospective information gain as a function of patch location. The forth row shows the squared error of image reconstruction (summed over pixels) as a function of patch location. A "noisy TV" area has been added at the left upper corner. Explicitly modelling heteroscedastic noise (right panel) helps the model to avoid being trapped in the noisy TV area (left panel).
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 6 Figure A.6: Piecewise linearity of softplus activation function.Here we fit a standard variational autoencoder (VAE) with a 2-layer (64 neurons in each) decoder and a 2-dimensional latent space on the same patches as those used in the main text, for 200 epochs. (a) Boundaries of linear regions of the latent space, computed by making a grid with 100k points in [-4, 4] 2 , and then for each point, assigning a unique code by concatenating codes for each neuron in the hidden layers of the decoder, where the code for each neuron is 1 if pre-activation activity is above zero (linear part of softmax), and 0 if the pre-activation activity is below zero (nonlinear part). This way the points on the grid that have the same code identify a linear region, and thus the contour plot shows the boundaries of these regions[START_REF] Novak | Sensitivity and generalization in neural networks: An empirical study[END_REF]. (b) As the procedure in a is overconservative, we also quantify linearity in an alternative way. We apply the decoder for each point on the grid over z, creating a new grid of size nZ x nZ x nPatch, where nZ is the number of points over each dimension of z and nPatch is the number of pixels in the patch. We then create a 3x3 'linearity kernel', with ones in all entries except the center which has -8, apply this kernel over the new grid for each pixel, and sum over pixels. The intuition is that this kernel will output zero when the function is linear in a small neighbourhood of a point. Thus, the further the output is from zero, the more nonlinear the neighbourhood region is. (c). Histograms of the linearity measure described in b evaluated in the neighbourhoods of 512 test patches for different size of δz that were used to construct the 3 x 3 linearity kernel.
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 7 Figure A.7: (a-f ) Same as Figure4, but giving all methods a observation at the first time step. (g-i) Same as Figure4 a-c, but also including the performance of optimizing KL[q||p] measure as a proxy for information gain, where p is the prior distribution given gaze location, and q is the approximate posterior given the patch. Note that optimizing this measure often leads to numerical instability, and standard deviation across models was computed by removing N aN values.
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