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Abstract

One of the types of hexahedral grids that is the most commonly used for the subsurface is 3D
structured grids. It is computational efficient, honoring the geometry of the faults and horizons of
the geological model and the standard format of most of the current standard flow simulators. To
build the grid, it requires that the faults to be distinguishable in two principal directions U and V.

When it is not the case, the current technologies require that the fault network be either sim-
plified structure-wise or approximated geometry-wise by a stair-step representation, both at the
expense of honoring the complexity and precision of the input geological model.

We propose a new method of building structured hexahedral grids without compromising the
complexity of the structural model. Unlike current methods that generate the gridding based on a
3D parameterization UVW in which the U and V coordinates are constrained by separate families
of surfaces respectively, our method does not have the limitation of classifying faults in U and V
families. Our method uses a pair of parameterizations for the UV coordinates that can have local
frame transformations (rotation+translation). Thus offering additional degrees of freedom during
the gridding process to honor the geometry of faults on a larger family of complex geological models.
These transformations are defined by transition functions that “glue” the local parameterizations
back into a global one in a non-trivial way, called Global Parameterization. A hexahedral grid
built this way might have singular vertices, which have valence not equal to eight. It can be used
directly in next-generation unstructured flow simulators. We show through a simple treatment how
to convert efficiently such a grid into a structured representation that is compatible with standard
flow simulators. We call such grid Singular Structured Hexahedral (SSHex) Grid.

We present the results of simulations on SSHex grids using standard flow and geomechanical
simulation software. Then, we discuss the interesting potential of this new grid in the development
of coupled flow-geomechanical simulation techniques.

Figure 1: Classic pillar structured grid with corner point geometry.



Figure 2: A ”complex” fault network that cannot be meshed as a classic pillar grid.

Introduction

In order to run reservoir simulations, one needs a volume grid on which mathematical equations
describing physics can apply. Grids comprising hexahedral elements are often preferred thanks to the
three axes being aligned naturally with the stratigraphic column and two principal directions of the
fault network, and it gives a good calculation of the transmissibility between cells if provided good
orthogonality and low distortion of the cells.

One of the types of hexahedral grids that is the most used in the industry are 3D structured grids
with corner point geometry (commonly known as UVW, IJK or Pillar Grids), i.e. each hexahedral
cell is indexed by a integer tuple [U,V,W]. This kind of grids are straight-forward to build. They are
of low memory footprint and computational efficient to use. Most of the standard flow simulators
(ECLIPSE, TEMPEST, PUMA, IMEX, tNavigator and MRST etc.) support it.

When the fault network of the model is simple, one trivial way of building it is by distinguishing
the faults and the domain-boundaries in two U and V families and using them as geometric constraints
to guide the gridding of intermediate layers in the respective direction. Typically, the U-family (V-
family) constraints are used to build the U (V) parameterization defined on the domain volume mesh.
The level-set of the U (V) parameterization is then used to define the gridding of the U (V) axis.
The gridding in the W direction is computed similarly using the horizons in stratigraphic order as
constraints.

This trivial way of structured grid building is interesting since one can use the same grid for coupled
flow-geomechanical simulations using standard proprietary/open-source mechanical solvers such as
VISAGE, ABAQUS (Monaco et al., 2011) and CODE-ASTER etc. One of the main advantages of
using a single grid is that upscaling can be avoided.

The problem we solve

When the fault network becomes more complex with intersections between the faults and domain-
boundaries, it is sometimes impossible to separate the faults and domain-boundary surfaces into two
U and V families. This makes it impossible to build a classic structured grid in the trivial way described
above and thus not automatically benefiting from the simple flow-geomechanics coupling that such a
grid offers.

Previous methods, described in the following, are proposed to solve the structured grid building
problem on complex 2.5D fault networks. Although they all present interesting ideas, none of them of-
fers a full hexahedral grid that is suitable to be used with standard off-the-shelf flow and geomechanical
simulators at the same time.
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Figure 3: Our solution (right) uses rotation invariant UV basis to smoothly honor faults.

Previous works

� Structured:

Methods like (Gringarten et al., 2009) approximates faults using stair-step approximations to
represent faults with a mix of U and V faces. The built grid is compatible with most of the
current common flow simulators that substantially only accept structured hexahedral cells.

Drawbacks: When one wants to use the same grid to couple flow with mechanical simulations,
the stair-step approximation of the faults is not suitable for applying mechanical boundary
conditions that requires smooth approximation of the geometry. Typically, this means that two
grids (or more) would have to be built. One stair-step grid for the flow and one tetrahedral mesh
(or other unstructured grids) with smooth approximation of the geological features’ geometry for
the mechanical simulation. The coupling requires the transfer of petrophysical and mechanical
properties between the two grids, which is an error-prone and time-consuming process. It also
almost doubles the memory storage because there are two grids.

� Partially unstructured:

Some use mixed strategies: a majority of structured hexahedral elements in the non-faulted zones
combined with the faulted zones modeled by arbitrary polyhedrons (Mallison et al., 2013) or
other predefined non-hexahedral elements like tetrahedrons and pyramids, prisms (Gringarten
et al., 2017; Klemetsdal et al., 2017) near faults.

Drawbacks: Not compatible with standard flow simulators that accept only structured hexahe-
dral grids. A new generation of flow simulators (INTERSECT, GEOSX) that accepts unstruc-
tured grids has to be used.

� Fully unstructured:

For simulators using unstructured grids, one can also use tetrahedral mesh or fully unstruc-
tured topology such as Voronoi or PEBI grids (Klemetsdal et al., 2017; Merland, Levy, &
Caumon, 2011; Palagi & Aziz, 1994).

Drawbacks: In addition to those of partially unstructured grids, fully unstructured grids are
even more memory consuming and computationally inefficient since the topology and geometry
of the cells can be very different and not predefined and need explicit costly storage.

Our contributions

Current structured and partially structured methods mentioned above generate the gridding based on
a 3D parameterization UVW in which the U and V coordinates (or axes) are following two different
sets of surfaces as constraints, i.e. the UV basis is fixed (Figure 3-left).

In order to deal with models with complex 2.5D fault network, we introduce the idea of using
a pair of parameterizations for the UV coordinates that allows local frame transformations (rota-
tion+translation), which offers additional degrees of freedom during the gridding process to honor the
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Figure 4: Main steps of generating a SSHex grid.

geometry of faults and horizons and domain-boundaries on a larger family of complex geological mod-
els. These transformations are defined by transition functions that “glue” the local parameterizations
back a continuous global one in a non-trivial way. For instance, along the line L1 in (Figure 3-right),
(U2, V2) = rotπ/2(U1, V1). This kind of parameterizations is called Global Parameterization (Ray et
al., 2006).

Based on this concept of Global Parametrization, we propose a method of building full hexahedral
grids from geological models with complex 2.5D fault network like the one shown in Figure 2. A
hexahedral grid built this way might have singular vertices, which have valence not equal to eight.
It can be used directly in next-generation unstructured flow simulators. We show through a simple
treatment to convert efficiently such a grid into a structured representation that is compatible with
standard flow simulators. We call such a grid Singular Structured Hexahedral (SSHex) Grid.

The rest of the paper is organized as follows: we start with presenting the main method in Section
1 to build SSHex grids from geological models with complex 2.5D fault network. Then, we discuss
some results in Section 2, followed by conclusions.

1 Method of generating a singular structured hexaheral grid

In this section, we explain the major steps (Figure 4).

1.1 Compute 3D tetrahedral tessellation

A 3D tetrahedral mesh is computed from the input B-Rep (Boundary Representation) structural
model using Constrained Delaunay Tessellation (Si, 2015) using the model’s faults, horizons and
domain-boundaries as surface constraints. These surfaces are typically represented as triangulated
meshes.

1.2 Compute UV gridding

In order to build the quad gridding for the UV axes, a UV global parameterization is first computed on
the tetrahedral mesh using the faults and domain-boundaries as geometric constraints. Although one
can compute the UV global parameterization using a 3D formulation (Sokolov et al., 2016), for the
sake of minimizing the number of singularities, better controling the placement of the singularities and
achieving better computational efficiency and memory footprint, we propose an algorithm that solves
the problem in a 2.5D approach. Namely, we reduce the original 3D problem to a 2D one (Section

Singular Structured Hexahedral (SSHex) Grid
Li Wan-Chiu et al.



1.2.1), solve the 2D Global Parameterization (Section 1.2.2) and compute the UV gridding (Section
1.2.3) in 2D. This 2D solution is then extruded in the third W dimension (Sections 1.3 and 1.4).

1.2.1 Verticalize constraint surfaces

The reduction of the computation of the UV global parameterization from a 3D problem to a 2D
problem is through a process of verticalization of the surface constraints, i.e. fault and domain-
boundary surfaces. This way, the UV global parameterization can be solved merely on a 2D section of
the volume, for instance, a horizon surface of the model. The verticalization is achieved by computing
a new deformed geometry of the original tetrahedral mesh in a consistent way using the verticalized
version of the fault and domain-boundary surfaces as geometry constraints. The following two-step
algorithm is applied to compute the deformed model Ω(T ):

a) For each fault and domain-boundary surfaces Si, which is a triangulated mesh comprising
a subset of triangles that are faces of the underlying tetrahedral mesh T , a new geometry
(XΩ(Si), YΩ(Si), ZΩ(Si)) of each of the vertices of the triangulated mesh Si is computed in such
a way that Si is verticalized. This is achieved by a numerical optimization process minimizing
an energy defined using the distance between the original and new geometry of Si, subject to
the verticality constraint requiring that the z-component of the normal of all the triangles in the
resulting geometry to be zero.

b) The vertical geometry of the surfaces is then used to compute the deformed geometry on the
vertices of the tetrahedral mesh (XΩ(T ), YΩ(T ), ZΩ(T )) by means of interpolation. This is done
by a numerical optimization process minimizing the distance between the original and deformed
geometry of T , subject to the verticality constraints defined on the vertices of the surfaces Si.

1.2.2 Compute Global Parameterization

This step computes the UV global parameterization on a chosen horizon in the deformed model. We
illustrate this by identifying as the reference surface the top horizon Wref that has a flat geometry
in this case but it could be of any curved horizon in the model, such as the one in Figure 3. The
reference surface is a triangulated mesh comprising a subset of triangles that are faces of the underlying
tetrahedral mesh Ω(T ). To compute the global parameterization, we adapt a classic two-step frame
field approach (Bommes, Zimmer, & Kobbelt, 2009; Kälberer, Nieser, & Polthier, 2007; Ray
et al., 2006).

a) Interpolate frame field

A smooth frame field (field of sets of 4 unit vectors invariant by a π/2 rotation) is computed
on Wref . In order that the UV gridding follows precisely the input geometry of faults and
domain-boundary surfaces, this field is constrained using the curve given by δWref (see Ray et
al., 2006). Such strong geometric constraint can generate sometimes singularities in the frame
field and consequently in the global parameterization (red dot in Figure 3). These singularities
correspond to the extraordinary vertices (i.e. valence not equal to 4) in the UV quad gridding
extracted from the global parameterization.

b) Integrate frame field

The global parameterization is obtained by integrating the computed frame field, while imposing
integer constraints at δWref and singularities (see Bommes, Zimmer, & Kobbelt, 2009). The
global parameterization Φ is represented on Wref as a pair of real number coordinates (U, V )
stored on each of the three corners of each triangle of Wref . The coordinates are defined on
the whole triangle through a piece-wise linear interpolation scheme. By integration, we mean
finding two scalar functions U, V whose gradients are as close as possible to the input frame
field under the integer constraints. Due to the 4-symmetry characteristic of the input frame
field, non-identity transfer function between pair of adjacent triangles is allowed: (U2, V2) =
rotiπ/2(U1, V1) + (j, k), where i, j, k can be non-zero integers.
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1.2.3 Extract quadrilateral grid

The U and V level-sets of iso-lines with integer coordinate values define a quadrilateral grid on Wref

such that it boundary δWref is entirely represented by a subset of boundary edges of the quadrilateral
mesh, namely, honoring the geometry constraint given by δWref . These level-sets and their inter-
sections in each triangle of Wref are computed as pre-image of the regular grid defined in the local
parametric space. Vertices are created for the intersections of U and V integer iso-lines. Edges are
created between two vertices if they have the same coordinate on one axis and an absolute difference of
one on the other axis (see Li, Lévy, & Paul, 2005). Quadrilaterals are then identified and extracted
from these pre-images with particular care when handling neighboring triangles with non-trivial tran-
sition functions and triangles around the singularities. All quadrilaterals are stored as a single grid
Qref that defines the gridding for the UV axes. The size of the quadrilaterals can be determined by
the user-defined density of the iso-lines.

1.3 Compute W gridding

In order to build the gridding for the W axis, a W parameterization is first computed on the tetrahedral
mesh from Section 1.1 using the horizons as geometric constraints. The W parameterization is a scalar
function of the coordinate W defined on the vertices of the tetrahedral mesh. The horizons are first
sorted in a stratigraphic order and assigned a real number in function of its stratigraphic depth. All
the vertices of the same horizon are constrained to have same assigned value. The parameterization is
then obtained by interpolating from the assigned values on the vertices of all the horizons by solving
a system of linear equations. The W gridding is then given by the level-set of iso-surfaces Wi.

1.4 Build hexahedral grid

By combining the UV gridding given by the quadrilateral mesh Qref and the W gridding given by the
level-sets of the W parameterization Wi, for each of the quadrilateral elements Qi,j in the quadrilateral
grids except the last one, a hexahedron Hi,j is built using it and the quadrilateral element immediately
below it, i.e. Qi+1,j (see Figure 4-d). The hexahedrons Hi,j built in this deformed space Ω(T ) are
transformed back to the original space using the inverse of the deformation Ω−1(T ) (see Figure 4-e).
All the hexahedrons built constitute a hexahedral grid honoring all the faults, horizons and domain-
boundary constraints in the input model (Figure 4-f is an exploded view of the hexahedral grid showing
this).

1.5 Convert from unstructured to structured grid format

The built hexahedral grid can be unstructured if there are singular vertices, namely, the cells cannot
be indexed in a trivial way using a tuple [U,V,W] in a single index space. Such a grid is compatible
with flow simulators using unstructured grid such as INTERSECT.

We propose a method that allows such grids with singularities to be compatible with standard flow
simulators accepting only structured grids.

1.5.1 Partition hexahedral grid

We first partition the grid into sub-grids. Each of them can be indexed locally in a trivial way using a
tuple [U,V,W]. Since all the W planes of cells share the same UV gridding or topology, the partitioning
only needs to be done on the quadrilateral grid Qref . First, the singularities are identified, a cut line
starts from each of the edges departing from a singularity and stops when it intersects the boundary
δQref or another cut line (see Figure 5-left). These cut lines segment Qref into a set of sub-grids in
which each quadrilateral can be indexed using a pair [U,V] in a trivial way. Through an extrusion in
the W axis, these cut lines become cut planes that similarly segment the final hexahedral grid into a
set of hexahedral sub-grids in which each hexahedron can be indexed using a tuple [U,V,W].
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Figure 5: Converting a singular hexahedral grid into a structured grid.

1.5.2 Pack sub-grids

Each of the sub-grids has its own local index space that can potentially conflict with other sub-grids.
In order to make the grid compatible with standard flow simulators using a global structured grid
indexing, the individual local index spaces of the sub-grids have to be packed into a global index
space. Again, we only have to do the packing on the UV index space once and propagate the result to
the third dimension. The packing is a NP-complete problem. We propose a Tetris-inspired packing
algorithm (see Figure 5-right) in order to minimize the number of unoccupied indices in the global
index space.

1.5.3 Compute non-neighbor connections

After the packing process, along the fault surfaces and cut planes, pairs of geometrically touching or
connecting hexahedrons are given [U,V,W] indices in such a way that they might not be immediate
neighbors in the index space. Namely, neither of the absolute value of the difference of the U or V
coordinates equals to one. For standard flow simulators, these geometric contacts have to be explicit
given. To do so, we compute explicitly these connections for the packed grid, along all the faults and
created cut planes (see Figure 5-right).

2 Results and discussions

The SSHex grid (9260 cells in Figure 4-e) generated using the proposed method is used to run tests
of pressure and oil saturation using ECLIPSE-100 flow simulator. The fault transmissibility is set
to zero. By comparing the flow patterns of an injection well (A) placed in the vicinity of the only
singularity in the 2D topology and one (B) placed in an area with ordinary gridding, we observe that
both gave similar expected results (see Figure 6-top).

Then, through a run of 3D restoration (see Figure 6-middle) using Kine3D-3, we compute the
stress and strain properties (see Figure 6-bottom) of the present-day model usingRudkiewicz (2021).
This demonstrates that thanks to the smooth approximation of the fault geometry, the SSHex grid is
suitable for mechanical simulation purposes.

In Figure 7, we show another example of a similar flow simulation on a more complex model. The
generated SSHex (70760 cells) has 3 singularities in the 2D topology. We place in their vicinity a
production well each. A fourth production well is placed as reference in an area where the gridding is
ordinary. Each such well is paired with an injection well. Expected pressure and oil saturation values
are observed as shown in Figure 7. In particular, one can observe 1) the source-sink effect on the
injection-production well pairs; 2) the interesting effect of the production well P1 under the influence
of two neighboring injection wells; 3) the constant value in the compartiments sealed off by faults
containing no wells.

On the performance side, the grid generation for the two models took less than 3 minutes each on
a 6-core 2.6GHz laptop with 16GB RAM. The method scales well with the complexity of the faults.
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Figure 6: Pressure and oil saturation simulated in ECLIPSE (top); different stages of 3D
restoration obtained in Kine3D-3 (middle); strain property derived from the 3D restoration

displayed as ellipses on faults and a horizon (bottom).

Conclusions

This paper introduces a new hexahedral grid building method for reservoirs by using the concept of
Global Parameterization. A simple processing can be done to make this grid, which is unstructured by
nature due to the singularities, compatible with standard flow simulators. This enlarges considerably
the family of fault networks that one can handle using structured hexahedral grids without recourse
to stair-step fault approximation or unstructured grids.

Encouraging results of flow and geomechanical simulations respectively show that we are on a good
path towards a powerful framework of coupled flow-geomechanical simulation. The next step would
be to couple flow and geomechanics to fully leverage the benefit of our single-grid approach where
upscaling is not needed. Testing using commonly available tools such as ECLIPSE and ABAQUS
would show the benefit of our method on treating much more complex fault network by capitalizing
existing infrastructure in a cost-effective way.
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Figure 7: Pressure and oil saturation simulated in ECLIPSE on a model with 13 faults.
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