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ct

collapse/expansion of a spherical bubble in a Newtonian fluid filled with non-Brownian fibers is numerically investigat
rimental test was conducted to observe that the spherical geometry of the bubble is maintained during the foaming proce
stitutive equation for the fiber suspension arises from the slender body theory and is coupled with an evolution equati
ng the fiber dynamics. First solutions are proposed using steady fiber orientation distributions and the effect of the coupli
nt on the bubble radius is examined. Later the condition of fixed microstructure is relaxed and the fibers are able
ong with bubble expansion. Starting with a 3D random orientation, fibers close to the interface orient randomly in plan
al to the radial direction, depending on the level of fiber-fiber interactions. For interaction coefficients encountered
processing, fibers exhibit a closely 2D random planar orientation in a plane tangent to the cavity surface which preve
le to collapse, as observed experimentally.

s: Single bubble dynamics; Fiber suspensions; Theoretical modeling; Fiber orientation.

oduction

demand for lighter and stronger materials has generated tremendous interest in the development of polyme
Polymeric foams are composites consisting of at least two phases, fabricated using blowing agents to atta
cellular morphology. They have properties such as high strength to weight ratio, excellent insulation, hi
life, great impact strength and toughness [1] along with cost-effective manufacturing process which has ma
ive in the packaging, automobile, marine, and sporting equipment industries. To further enhance desired pro
foams various methods such as blending of polymers, addition of reinforcements, and innovative fabricati

ue [2] have been tested by many researchers. Yang et al. [3] investigated a hybrid polypropylene (PP) foa
ing mass fraction of short glass fiber (SGF) content. The average cell diameter was reduced along with bet
neous dispersion by addition SGF, also the impact and flexural strength were found to improve by increasi
content up to 20%. Similarly, Wang and Ying [4] investigated the cellular structure of PP foams manufa

y batch process using carbon fiber (CF) reinforcement as a nucleating agent and supercritical carbon dioxi
wing agent to study the effects of pressure saturation, depressurisation and CF content on the cell morpholog
d Huang [5] fabricated a high-density nanostructured thermoplastic polyurethane (TPU) foams by increasi

uced graphene oxide volume fraction from 0.25 to 0.75 which also improved the cell diameter distributio
h et al. [6] tested the piezoelectric properties of TPU foams manufactured using thermally expandable m
res as a foaming agent reinforced with lead zirconate titanate (PZT). The dielectric permittivity was found

e with increasing the PZT content, along with a decrease in cell size with increasing PZT content.
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ot of work has been devoted to investigate the problem of bubble growth and cavitation because of its
ent in many applications and process [7]. Rayleigh [8] was the pioneer to explore and solve the problem
apse of an empty cavity in a large mass of incompressible media. This work was then extended by Ples
orkers [9, 10] to include the effects of surface tension and fluid viscosity. Street et al. [11] considered
ubble growth in a power-law fluid and the diffusion of the blowing agent. When dealing with viscoelas
ding fluids, Arefmanesh and Advani [12, 13] used an upper convected Maxwell (UCM) model to describe t
hermal bubble growth in polymeric foams. Allen and Roy [14] investigated the nonlinear oscillations of sph
ustically forced gas bubbles in linear viscoelastic fluids which obey to the linear Maxwell and Jeffreys mode
rast to their previous work, Allen and Roy [15] examined the large-amplitude excursions of a bubble in no
iscoelastic media modeled by a UCM constitutive equation. Recently, Kawaguchi and his coworkers [16, 1
d a complete mathematical model for thermally expandable microcapsules growth surrounded by polyme
pproach considers mass and transfer equations including diffusion, as well as the viscoelastic properties
ric microballoon using the UCM model.
r the past decades, researchers developed numerical strategies to perform fiber orientation predictions f
side complex geometries with addressing the coupling between the flow field and the fiber orientation dist
18, 19, 20]. To the best of our knowledge, the problem of bubble growth and cavitation in a fiber suspensi

ly been investigated by Evans [21, 22]. The reinforcement quantity has a clear effect on the cell size in t
ric foams, and it is well known that the fiber orientation affects the mechanical properties in a composi
s very little study done on the effect of fiber orientation on the expansion or collapse of the cells in polyme
Therefore, this paper aims to fill the latter gap.
s paper presents a numerical model that captures a bubble dynamics in a fiber suspension as well as the kinet
orientation for collapsing/expanding the cavity. In Section 2 some experimental observations are present

g the SEM characterisation for a fiber filled system with unexpanded and expanded microspheres. Section
es the theoretical modeling, in which the extra stress resulting from the fiber hydrodynamics is considered an
4 examines the model predictions for bubble collapsing and expanding. This paper focuses particularly on t
f the fiber orientation distribution close to the bubble cavity. Finally,a short conclusion and perspectives e
er.

erimental observation

w Materials

polymer matrix used for preparing the fiber-reinforced foam samples were polypropylene heterophasic copo
C 10642 supplied by Total and glass fiber reinforced polypropylene ISPLEN PG370AS Supplied by Reps
ing 30wt% glass fiber. The most crucial component for manufacturing of foams is the blowing agent whi
the foam. Classically blowing agents such as hollow spheres, CO2, CFC’s, etc, are used in manufacturi
s. In this paper the foam was manufactured using thermally expandable microspheres (TEM) as the blowi
EM’s consists of polymeric shell encapsulating an aliphatic hydrocarbon, which on subjecting to heat, soft

moplastic shell, and as the gas inside the shell expands the TEM expand. This results in a dramatic volumet
e of the microsphere size which on a larger scale produces the foaming effect. The TEM’s were produc
plied by Kureha GmbH under the trade name Kureha microspheres. The tests were conducted using S gra
ha microspheres, available in masterbatch pellets form know as MB-S6LB S2640 which constitute 60 w

grade TEM’s and 40 wt% polyethylene acting as a polymer carrier for the TEM’s. The S2640 grade TEM
average initial particle diameter of 15 µm with a high initial expansion temperature Ts of 208 ◦C and ha

aximum expansion temperature at 249 ◦C.

mple preparation

his paper, a simple methodology was used to prepare some preliminary foam samples to validate the assum
the mathematical model. The microsphere masterbatch and polymer pellets were first dry mixed to prepa

d composition of 12 wt% microspheres and 20 wt% glass fibers. The mixture was then fed into a convergi
rew Haake MiniLab-3 and used to extrude a composite filament at 75 rpm at 180 ◦C which was later chopp
mm pellets. The composite pellets constitute of 20 wt% glass fibers, 68 wt% PP, and 12 wt% unexpand
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Cross-sectional SEM image of the composite pellet be-
treatment showing unexpanded microspheres and some Figure 2. Cross-sectional SEM image of the composite pellet a

heat treatment showing expanded microspheres and some fiber

ig. 1). Further, these composite pellets were used to prepare the foam samples by heat treatment in an ov
inutes at 240 ◦C. When the pellets are heated the polymeric shell of the TEM softens and the liquid alipha
rbon within the shell vaporises thereby expanding the microsphere and producing the foamed sample (Fig.

M characterization

microstructure of the two samples was characterized in a scanning electron microscope (SEM) to obser
morphology and fiber orientation before and after expansion of the TEM. The samples were prepared usi
-fracture technique by immersing the samples in a liquid nitrogen bath for at least 5 minutes and fracturi
ately after removal from the bath. These samples were then sputter-coated with silver before the SEM analys
M analysis was done under a high vacuum with an acceleration voltage of 3kV, and spatial resolution
0 µm depending on the magnification (x100 to x500).
he SEM analysis, it was observed that the composite pellet sample compounded with the unexpanded TE
ned their closed cell spherical geometry with an average diameter of 15 µm (see Fig. 1) even after the compo
t preparation process. After the heat treatment of the composite samples the TEM rapdily increase in volum
size increases to an average diameter of 78 µm. In most cases of foam manufacturing processes (other th

g TEM, synthetic hollow rubber, and hollow glass beads) the foam produced are open cell structures which a
erical in nature and cell sizes are not constant and highly vary depending on the processing parameters [4,
erified that although there were few ruptured TEM’s observed as an effect of the cryo-fracture, it was evide
produced foams maintained their closed cell spherical geometry in the fibrous system as well (see Fig. 2).

he following section, a mathematical model has been developed to investigate the effects of expansion a
e of a spherical bubble on the fiber suspensions and vice-versa.

hematical modeling

mathematical modeling of a gas bubble dynamics in a fiber suspension is now investigated. This proble
rs a spherical cavity of radius R (t), whose center O is located at r = 0. Due to the symmetry, it is suitab
the spherical coordinates (r, θ, φ), such as the velocity at a point M with a distance r from O is given
(r, t) er. er represents the unit vector in the outward radial direction at M, as illustrated in Fig. 3. In th
ration, the vorticity tensor is Ω = 0 and the strain rate tensor is given by D = ∂vr

∂r
erer + vr

r eθeθ + vr
r eφeφ (t

ng notation is used: 2D = ∇v + ∇v†). Furthermore, it is assumed that the medium surrounding the bubb
pressible and therefore ∇ · v = 0. From this result, the trace of the strain rate tensor leads to the followi

n of continuity
3
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Figure 3. Coordinate systems for the collapsing/expanding bubble problem.

∂vr

∂r
+ 2

vr

r
= 0, (

ives the solution

vr =
R2Ṙ
r2 . (

e above expression and for clarity, the t-dependency for R has been removed and the upper dot symbol deno
vative with respect to time. In the spherical coordinate system, only the radial component is of interest, a
re the momentum balance equation takes the form

ρ

(
∂vr

∂t
+ vr

∂vr

∂r

)
= −∂P

∂r
+
∂τrr

∂r
+

2τrr − τθθ − τφφ
r

, (

and P refer to the density and the pressure in the surrounding fluid, respectively. The components τii (i = r
represent the diagonal terms of the extra-stress tensor for the fluid surrounding the bubble. Further, the bubb
med to be immersed in a fiber suspension that is considered to be a continuous medium.

ber stress contribution

eneral expression for the stress tensor of a suspension made with rigid and cylinder fibers is given by [23, 2
ing the slender body approximation and the assumption of non-Brownian particles, the constitutive equati

written as [26, 27, 28, 29]

τ = 2η0D + 2η0Npa4 : D. (

he above relationship, the suspending fluid displays a Newtonian behavior characterized by the viscosity p
, η0. Np is the particle number [30] and increases with increasing the particle volume fraction, φ f , and t
pect ratio, ar. Note that the slender fibers assume that ar = L/D � 1 that its length, L, is much larger th
eter, D. Based on these considerations, the parameter Np, also called the coupling coefficient, measures t

of how far the fiber suspension behavior differs from the Newtonian one (given by Np = 0). Typical values f
be found in the Dinh and Armstrong theory [28]. a4 represents the fourth-order orientation tensor [31] and
d from the fourth-order moment of ψ, the probability distribution function, such as a4 =

∫
p ppppψdp, where

t vector directed along the fiber axis. In details,
∫

p ...ψdp refers to an average over all possible fiber orientatio
refore, a4 describes the fiber orientation statistics in a representative elementary volume with an efficient a

4
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way. The second-order orientation a2 is commonly used and is defined such as a2 =
∫

p ppψdp. The non-ze
ents of the extra-stress tensor are found using Eq. (1) and Eq. (4) as

τrr = −4η0
vr

r
− 2η0Np

vr

r

(
2arrrr − arrθθ − arrφφ

)
, (5

τθθ = 2η0
vr

r
− 2η0Np

vr

r

(
2arrθθ − aθθθθ − aθθφφ

)
, (5

τφφ = 2η0
vr

r
− 2η0Np

vr

r

(
2arrφφ − aθθφφ − aφφφφ

)
. (5

substitution of Eq. (5) into Eq. (3) leads to

ρ

(
∂vr

∂t
+ vr

∂vr

∂r

)
= −∂P

∂r
− 2η0Np

vr

r2 (1 − 3arr) + 2η0Np
vr

r
∂

∂r
(arr − 3arrrr) . (

se note that in obtaining the above equation, the r-dependency for orientation tensor components and the fa
: δ = a2 and a2 : δ = 1 have been taken into account, where δ is the identity tensor [31]. If Eq. (2) and
onding derivatives are substituted in the above relationship, one obtains

2RṘ2 + R2R̈
r2 − 2R4Ṙ2

r5 = −1
ρ

∂P
∂r
− 2η0Np

ρ

R2Ṙ
r4 (1 − 3arr) +

2η0Np

ρ

R2Ṙ
r3

∂

∂r
(arr − 3arrrr) , (

grating both sides of Eq. (7) with respect to r from r to the infinity gives

˙2 + R2R̈
r

+
R4Ṙ2

2r4 = −P − P∞
ρ

+
2η0Np

ρ

R2Ṙ
3r3 +

2η0Np

ρ

∫ r

∞

3R2Ṙ
r4 arrdr +

2η0Np

ρ

∫ r

∞

R2Ṙ
r3

∂

∂r
(arr − 3arrrr) dr, (

∞ is the pressure at a distance far from the bubble center. In this study, all the pressures are absolute pressur

undary conditions

σrr |r=R be the normal stress in the fiber suspension that points radially outward from the center of the micr
At some small portion of the bubble surface, the net force per unit area is zero since there is no mass trans
he boundary. Hence,

σrr |r=R + Pint − 2T
R

= 0, (

is the surface tension. Therefore, Eq. (9) becomes

P|r=R = Pint − 4η0
Ṙ
R

+ 2η0Np
Ṙ
R

(arr − 3arrrr) − 2T
R
, (1

int is the pressure inside the cavity. Upon eliminating the pressure P from Eqs. (8) and (10), the equati
ing the time dependence of the bubble radius is found to be

RR̈ +
3
2

Ṙ2 +
P∞ − Pint

ρ
+

2T
ρR

+
4η0

ρ

Ṙ
R

+
2η0Np

ρ

Ṙ
R

[
1
3

+

∫ ∞

R

3R3

r4 (3arrrr − 2arr) dr
]

= 0. (1

us introduce the bubble radius at the initial instant R0. By noting that R = R̃R0 and t = t̃
√
ρR2

0/P∞, t
ionless form of Eq. (11) becomes

R̃ ¨̃R +
3
2

˙̃R2 + 1 − Pint

P∞
+

2
WeR̃

+
4
Re

˙̃R
R̃

[
1 +

Np

2

(
1
3

+ Ia

)]
= 0, (1
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T corresponds to the Weber number and Re =

√
ρR2

0P∞
η0

is a Reynolds number. The remaining integra

ed such as Ia =
∫ ∞

R̃
3R̃3

r4 (3arrrr − 2arr) dr. Due to the existence of Ia in Eq. (12), the bubble dynamics depen
fiber orientation and hence on the flow history. When Np = 0, Eq. (12) reduces to the standard equation
dynamics in a Newtonian viscous fluid [32]. When the viscous term is neglected (Re → ∞), it simplifies
leigh–Plesset equation [33]. Rayleigh [8] derived a relationship for the collapse time of a spherical cavity
0 in an infinite fluid with pressure P∞ and density ρ, considering the time it takes for the fluid to fill the cavi
ivation is obtained by equating the kinetic energy of the fluid with the work performed by the bubble. Th
is defined as

tc =
Γ (5/6)
Γ (1/3)

√
3π
2
≈ 0.9147

√
ρR2

0

P∞
, (1

(x) is the incomplete Gamma function.

ber dynamics

en the fibers are not aligned along the radial streamlines but are initially randomly oriented for instan
rostructural changes with the flow have to be considered. It is therefore necessary to describe the dynam
r of the fiber orientation. An efficient way to represent the fiber orientation distribution is to use the secon

rientation tensor, a2. The material derivative (D/Dt) of a2 can be obtained from the expression of ṗ establish
ry [34] for ellipsoidal forms in the dilute state. Since fiber interactions may occur in non-dilute suspensio
and Tucker [35] introduced a randomizing effect of interactions by adding a diffusion term to the Jeffe
n. For slender bodies suspended in a Newtonian fluid, the evolution equation for a2 is given by

Da2

Dt
= (Ω · a2 − a2 ·Ω) + (D · a2 + a2 ·D − 2a4 : D) + 2CI |D| (δ − 3a2) , (1

D| =
√

2D : D is the generalized deformation rate and CI is the interaction coefficient. If interactions b
eighboring fibers are neglected, the interaction coefficient CI in Eq. (14) is equal to zero and the case

uspensions is recovered. The problem for the fiber dynamics was resolved using a relation called the closu
mation, from which is was possible to express a4 in term of a2. The Invariant-Based Optimal Fitting (IBO
[36], which is constructed based on the invariants of a2, is used in this work. By considering the velocity fie
tered until now in the analysis, Eq. (14) reduces to

ȧrr +
R2Ṙ
r2

∂arr

∂r
= 6

R2Ṙ
r3 (arrrr − arr) + 4

√
3CI

∣∣∣∣∣∣
R2Ṙ
r3

∣∣∣∣∣∣ (1 − 3arr), (1

rrrr = f (arr) is obtained from the IBOF closure. The dimensionless form of Eq. (15) is simply obtained
g R, Ṙ and r by R̃, ˙̃R and r̃, respectively.

erical results

bble collapsing for fixed fiber orientation

a first approach, the bubble collapse for various steady distributions of fiber orientation was investigated. Wh
rs are aligned radially, they remain aligned with the streamlines and Ia = 1. On the contrary, when the fibers a
lane perpendicular to the radial direction, the integrand is found to be Ia = 0. Finally a 3D random distributi
s leads to arr = 1/3 and arrrr = 1/5 and therefore Ia = −1/15. All these values are summarized in Table 1.
. 4 depicts the bubble radius variation with time for a collapsing bubble (i.e., Pint = 0) in a fiber suspensi
he particles are aligned along the radial streamlines (i.e., Ia = 1). To obtain these results, the time integrati
(12) is performed by using the Matlab ODE solvers. The accuracy of the numerical method was noted,
ng a dimensionless collapse time of unity for the simplified Rayleigh-Plesset equation. It can be notic
large particle stresses inhibit the collapse of the cavity and can dominate the inertial terms when the radi

6
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Radially aligned 1
Orthoradially aligned 0
3D random -1/15

Table 1. Integral values for Ia for different fiber orientation distribution

4. Collapse of a spherical bubble in a fiber suspension where the particles are aligned along the radial streamlines (Ia = 1 and We = 0)

s small. The shoulder behaviors observed when the micro-sphere radius becomes small is a result of the ve
tensional viscosities when Np is large, and therefore this mechanism could reduce the bubble damage.
ce the coalescence is slowed down by increasing the viscosity of the surrounding fluid, bubble dynam
ly viscous fiber suspensions may be of interest to obtain. For low values of Reynolds numbers, viscos
tes over fluid inertia in retarding the bubble growth. Thus, asymptotic solutions can be recovered from Eq. (1
ult in

R̃ = exp


−

1 − Pint
P∞

4
Re

[
1 +

Np

2

(
1
3 + Ia

)]


, (1

re plotted in Fig. 5. It is worth mentioning that inertial effects can be neglected for Np > 2.5 when Re = 4.

bble expanding for fixed fiber orientation

rder to explore the bubble expanding in a fiber suspension under isothermal conditions, the bubble pressure
to the amount of gas within the bubble at time t according to the ideal gas law, P0R3

0 = PR3, where P0 and
pressures inside the bubble at initial time and time t, respectively. To avoid under-pressure in the bubble d
ncrease of the radius, the bubble pressure is bounded by the pressure at a distance far from the bubble cent
re, one can define the following expression for the pressure inside the bubble

7
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0. The blue line refers to the blue line in Fig. 4 for which Re → ∞ and Np = 0.

Pint = max
P0

R3
0

R3 ; Pinf

 . (1

en the bubble expands, the steady fiber orientation distribution corresponds to the configuration where all t
re orthoradially aligned (i.e., Ia = 0). Fig. 6 shows the bubble radius evolution with time. It can be notic
bubble radius increases continuously with no viscous contribution (i.e., Re → ∞), the change of slope comi
e inertial term at short times. When the surrounding fluid is Newtonian (i.e., Re = 4 and Np = 0), the bubb
on is reduced due to viscous forces. The addition of fibers (i.e., Np , 0) further increases viscous forces a
re reducing the bubble expansion. A steady-state regime can be observed for Re = 4 and Np = 2.5.

effect of the surface tension have not yet been taken into account. For longer duration, the inertial forc
ligible compared with the viscous and surface tension forces. Hence, the bubble expansion is the result o
ition between these two last forces. Fig. 7 presents the expansion of a spherical bubble in a fiber suspensi
he particles remain orthoradially aligned (i.e., Ia = 0). It can be noticed that surface tension reduces the fin
size. For high Weber number, the viscous forces initially dominate during the bubble expansion. Thereaf
uence of the surface tension forces become important leading to reduce the bubble size. By continuing
e the Weber number, the characteristic times for the viscous and surface tension forces scale each other a
scillations for the bubble radius are observed (i.e., We = 10).

bble expanding with changing fiber orientation
bubble dynamics in a fiber suspension for which the microstructure can change is governed by Eq. (12) co
th Eq. (15) through the integrand Ia. The problem posed by this set of equations is not so trivial to sol
cally since the movement of the micro-sphere boundary in the suspension must be tracked. Lagrangian coor
e generally introduced to immobilize the boundary [37] but this approach is not applicable in the present fo
he r dependence of Ia. Therefore, the problem is computationally addressed by a finite element discretizati
out in COMSOL Multiphysics with using the arbitrary Lagrangian-Eulerian (ALE) moving mesh method. T
DEs and DAEs interface is used to implement the ordinary differential equation (ODE) given by Eq. (12) a

8
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coupling ing
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Figure 7. 0,
P0 = 4, R
Expansion of a spherical bubble in a fiber suspension where the particles are orthoradially aligned: effects of Reynold number a
coefficient (Ia = 0, P0 = 4 and We = 0). Results represented by circles are obtained by solving a coupled ODE-PDE system us

L Multiphysics.

Expansion of a spherical bubble in a fiber suspension where the particles are orthoradially aligned: effect of surface tension (Ia =

e = 4 and Np = 2.5).
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Time evolution of the pressures inside the bubble (Pint) and a distance far from the bubble center (P∞), the bubble radius (R) and
Ṙ) (Re = 4, Np = 2.5 and CI = 0.001).

fficient form PDE interface is used to describe the partial differential equation (PDE) specified by Eq. (15). F
r, the shape function type is Lagrange and the order of finite element is sextic. The 1D mesh consists of 8
ts with an initial size of 150R0. This coupled ODE-PDE system is subsequently integrated with the impli
rd differentiation formulas (BDF) method with a prescribed time step of 0.1 s. A domain probe is defined f
ting the integral values of Ia. For a fixed fiber orientation where all the particles are aligned in the orthorad
n (i.e., arr = 0 and CI = 0), the obtained results from this coupled ODE-PDE system are depicted in Fig. 6 f
ison with the previous numerical method. Good accuracy is observed across a range of system parameters a
g conditions.
the suspension is considered as an isotropic material with a 3D random fiber orientation distribution (i.
/3). Thus, when the bubble expands because of a higher internal pressure as compared to pressure of t
ding fluid, it is expected that fiber orientation evolves close to the bubble surface. Fig. 8 depicts these pressur
ction of time. In the time range of 0 to 1.3t/tc, the internal bubble pressure remains higher than the pressure
e cavity, starting with Pint = 4P∞ at t/tc = 0. As previously, the Reynolds number remains unchanged as w
oupling coefficient and the interaction coefficient is set to CI = 0.001. This force combined with the inert
crease the bubble radius R until reaching a steady value once the viscous force balances the whole syste
ady-state regime is found to be achieved after t/tc > 20 since the velocity of the bubble radius Ṙ is close

ed on this bubble dynamics, the fiber orientation distribution is examined and is reported in Fig. 9. Indee
components of the second-order orientation tensor are plotted at different time, the latter time corresponds
si-steady-state regime. Only results close to the bubble interface are shown since far from it, i.e. r/R0 > 2
r orientation distribution remains unchanged to the initial and isotropic orientation state (i.e., arr = 1/
re from 20 < r/R0 < 150R0, arr is constant and this guarantees the validity of the upper boundary of Ia.

observed in Fig. 9 that the fibers close to the cavity tend to orient randomly in planes with normal er when t
adius increases. Away from the bubble surface, the fibers reach their 3D random orientation since the rad
decreases inversely with the square of r (See Eq. 2). For long times (i.e., t/tc > 20), a quasi-steady-sta

is established. Thus, in planes tangent to the bubble surfaces, aθθ = aφφ = (1 − arr)/2 ≈ 0.5. The biaxial flo
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Figure 9. Fiber orientation distribution (arr) along the r− direction at different times (Re = 4, Np = 2.5 and CI = 0.001).

alignment of fibers along the cavity boundaries. It results that the local viscosity will increase leading to avo
apse of the bubble, as observed in Fig. 2.
effect of fiber interactions is presented in Fig. 10 through the variation of the coefficient CI . The 3D rando

ion of the fibers increases, with the increase in interaction coefficient. For dilute fiber suspensions, CI is clo
and it can been observed in Fig. 10 that the model will predict that fibers exhibit a 2D random planar orientati
ne tangent to the bubble surface. Since the viscosity in a biaxial flow depends on the fiber orientation, bubb
and more in a suspension where fibers depicts a 3D random orientation than in a suspension where fibers a
d in a 2D random orientation.

cluding remarks

s study reveals several new and interesting features about gas bubble collapse/expansion in fiber suspensio
erimental work showed that the TEM maintain their closed-cell spherical geometry throughout the foami
which was the initial assumption of the mathematical model. To investigate the effects that the fiber orientati

s with the collapse/expansion of the TEM’s at a micro-scale level, a system of coupled ODE-PDE has be
for describing the spherical bubble and the fiber orientation dynamics. Introduction of fiber fillers considerab
s the bubble dynamics. Among others, fibers prevent bubbles to collapse due to an increase of the elongati
y with fiber orientation close to the bubble surface. The proposed approach can be used in further wor
ider the intermediate polymeric viscosity of the micro-sphere shell. Thus, the viscoelastic properties of t
r shell, the evaporation of hydrocarbons in the microsphere and the diffusion behavior of the blowing age
the polymer shell can also be taken into account. In addition, it is scheduled to develop 2D and 3D numeric
to investigate a bubble growth in a fiber suspension which exhibits micro-structural anisotropies in the po
muthal directions. Another, the future perspective is to stabilize the foaming process and have an in-dep
ental study on the effects of the bubble expansion as a function of time and temperature at a macroscop

nd then study the effect of fibers in the foaming process.
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