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Abstract—Unmanned Ground Vehicles (UGVs) are the next
step to human safety by placing the human outside of the
vehicle. They not only provide human safety but also have
greater speed, mobility and can survive atmospheres that are life-
threatening to humans. The proposed vehicle has the capability
of changing its ride height and traveling in rough terrains. In
order to get the most precise structure and more precision, the
following tests were performed for making the UGV optimum
(i) sinkage which was done for heavy clay and sand, (ii) torque
was tested on rubber and plane surface, (iii) projectile motion
and impact force, (iv) diameter required for the shaft. Further,
we identify an electromechanical transfer function connecting
electrical input to mechanical output by finding equivalent inertia
and damping. Finally, a simple PD controller is proposed to keep
the actual output as close to the target as possible and proven to
guarantee good performance. The simulation results show that
the controller can satisfy tracking specifications.

Index Terms—UGV, modelling, identification, control

I. INTRODUCTION

Unmanned Ground Vehicles (UGVs) are developed to per-
form activities for both military and civilians. These vehicles
not only provide human safety but are effective in a number
of circumstances where human labor is expensive. Detailed
mathematical modelling of all-terrain UGV obtained from
various subsystems is presented by Dave and Patil [1]. A
proportional–integral (PI) and proportional–integral–derivative
(PID) controllers are designed using two different tuning
techniques i.e. Ziegler Nichols open loop-set point tacking
(ZNOL-SP), Ziegler-Nichols open loop-load distribution rejec-
tion (ZNOL-LDR) and applied to the non-linear model which
is obtained by merging the subsystems. The simulated results
indicate that the performance of PI controller is better than the
PID controller even with the disturbance. It is further observed
that the performance with ZNOL-SP PI controller is better than
ZNOL-LDR PI controller. De Simone and Guida [2] identified
a dynamic model of a UGV using numerical algorithms for
subspace state-space system identification (N4SID). Further,
open-loop and closed-loop control algorithms were executed
using the Atmel Atmega 2560 controller. The obtained results
showed the effectiveness of the proposed method. A detailed

and complete dynamic model of Argo-J5 UGV by adding
a vertical load on each wheel is presented by Alghanim et
al. [3]. The vehicle modeling details include motor torque,
wheel torque, vehicle-terrain interaction analysis, and vertical
load distribution. A proportional–derivative (PD) controller
is, then, designed to demonstrate the tracking capabilities of
the vehicle. Moreover, the velocity, wheel rolling resistance,
wheel turning moment resistance, and shear stress on different
terrains of the vehicle are illustrated through simulations.
Abdelhafid et al. [4] proposed the design of a remotely
controlled teleoperated prototype UGV for security applica-
tions where several design configurations were developed and
evaluated. Tran et al. [5] presented mathematical modelling of
an autonomous amphibious vehicle developed at the Australian
Centre for Field Robotics, Sydney. The driveline of the vehicle
is divided into subsystems that include gearbox, differential
(in a gearbox), chains, and wheels. The numerical results are
compared to experimental ones in order to validate and demon-
strate the viability and consistency of the proposed model.
The obtained results show that these models can be used for
control purposes. Haytham et al. [6] presented modelling of
a four-wheel steering Unmanned Ground Vehicles. Moreover,
PID controllers are designed and optimal genetic algorithm
is developed to tune the controllers of vehicle. Experimental
and simulated results showed that controller rapidly adjusts
the heading of vehicle to follow the specified mission.

In this paper, a UGV is designed that is capable of moving
through the following urban terrains: road surface, polished
floor surface, grassy ground, sand, fine gravel, and mud (non-
liquefied). Several mathematical tests were performed in order
to get a more precise structure and precision. The major ob-
jective of this study is to identify an electromechanical model
connecting electrical input to mechanical output by finding
equivalent inertia and damping. Additionally, a PD controller
is designed and proven to guarantee good performance.

The remainder of this paper is organized as follows: math-
ematical tests i.e. sinkage, torque, projectile motion, impact
force, and diameter required for the shaft are presented in
section II(A). In section II(B), an electromechanical model



Fig. 1: Cross-sectional view of motors from top.

is developed that is a hybrid of electrical and mechanical
variables and relates angular displacement and voltage. In
section III, a simple PD controller is designed to ensure that
the output reaches the desired setpoint. Finally, the paper ends
with conclusions in section IV.

II. MODELLING

A. Mathematical Tests

Modern Engineering is based on modelling and simulation
and most of the manufacturing is based on this technology.
Therefore, UGV’s are generally based on mathematical tests
in order to get the most precise structure and precision in par-
ticular. Following tests were performed for making the UGV
optimum. These tests include sinkage which was done for
heavy clay and sand. The exact tire width can be used in order
to get avoid sink by finding the sinkage on different surfaces
i.e. road surface, polished floor surface, grassy ground, sand,
fine gravel, and mud (non-liquefied). Torque was tested on
rubber and plane surface, motors give different values and by
proving it mathematically required torque for each worm gear
motor is approximately 0.98 Nm whereas the torque required
for DC motor is approximately 3 N.m. Stress tests were done
to find maximum shearing stress within the shaft and on the
basis of the stress test, the diameter of the shaft is 0.48 cm
with a safety factor of 1.5. Each panel including inner structure
and tires were made in the 3D model shown in Fig. 8.

1) Sinkage: Sinkage is the measure of immersion into the
surface on which the wheel is rolling or static after the weight
is applied on it. The sinkage Z can be written as [7]:

Z = n

√√√√ P

kc
b

+ kφ

, (1)

where P is ground pressure, n is sinkage exponent, b is the

Surface P kc kφ n Z (cm)
Sand 3034 990 1528430 1.1 0.347

Heavy Clay 3034 12700 1555950 0.73 0.0178

TABLE I: Sinkage for sand and heavy clay.

width of tyre, kc is cohesive modulus of soil deformation

Fig. 2: Free body diagram of vehicle on inclined surface.

(N/m2), and kφ is frictional modulus of soil deformation
(N/m3). The ground pressure is respectively given by:

P =
F

A
=

mg

4WR
, (2)

where F is the load, m is the mass of the UGV, A is the
area of tyre and is the product of width W and radius R of the
tyre. Since, UGV contains four tyres so the area is multiplied
by four times. The sinkage values for different surfaces are
provided in Table 1. As the sinkage depth comes out to be
very minor i.e. 0.0178 – 0.347 cm for different surfaces. It
would be appropriate to use the tires with the above mentioned
width.

2) Torque: In this section torque for DC motor (inclined
and plane surface) and worm gear motor is calculated. There
are two DC motors used in the vehicle, left DC motor controsls
the left tires whereas the right DC motor controls the right
tires. The height control motors produce moment which is
transferred to the arms through a mechanism of sprockets
and chains. The front two arms and the back two arms are
connected to the worm gear height control motors as presented
in Fig. 1.

• torque for DC motor (inclined surface):

R = mgCosθ (3)

θ is the angle between the force vector and the arm vector as
shown in Fig. 2. The slope assumed for the inclined surface
is θ = 20o and rolling resistance (rubber) µ = 0.75, force fw
acting on the vehicle is written as [8]:

fw = µR+mgSinθ (4)

Since, two DC motors are used so the torque τ for one
motor can be written as:

τ =
rfw
2
, (5)

where r is the vehicles position vector (a vector from the

Surface τ (N.m)
inclined surface 3.13

plane surface 2.99

TABLE II: Torque for inclined and plane surface.



Fig. 3: Schematic diagram for height control motors.

point about which the torque is being measured to the point
where the force is applied).

• torque for DC motor (plane surface):

τ =
rF

2
, (6)

where F is the force acting on the vehicle. The required torque
for each motor is provided in Table 2 for both inclined and
plane surfaces.

• worm gear DC motor for height control:
Torque τ by the worm gear motor is 0.9867 N.m and Ft is
the forward thrust as shown in Fig. 3.

Mt =
Ftx

2
, (7)

where x is the width of the vehicle. The moment for a single
motor is half of Mt and is approximately equal to 3.43 N.m.
This moment is enough to overcome the frictional force of
tires and ground.

3) Impact force: An explorer UGV must be compliant with
rough terrains which may encounter bumps and sometimes
drops. Keeping this in mind, a limit is set to which the UGV
can be dropped which is an average height of the stair as shown
in Fig. 4. This will enable the UGV to travel at 2.3 m/s with the
mass of 8 kg and drop down on the ground forming a projectile
motion. The UGV has its center of gravity in the direct center
so it should theoretically follow a projectile motion.

• along y-axis
The time of flight can be calculated using

−h = vi,y −
gt2

2
, (8)

where vertical height h is known, vi,y = 0 and the time of
flight using (8) is 0.28 sec.

• along x-axis
Now by using time of flight, the distance covered along the
x-direction can be calculated by the following equation [8]:

Sx = vf,xt (9)

horizontal distance traveled during the flight time is 0.64 m.
The impact force or the resulting force which will oppose

the vehicle when it will jump from a certain height can be
determined as follows:

Fig. 4: Projectile motion.

The vertical velocity component vf,y is:

vf,y =
√
2gh, (10)

where h is the height from where the vehicle is launched and
is assumed as 0.381 m . The horizontal velocity component
vf,x is known and is 2.3 m/sec.

vf =
√
v2f,y + v2f,x (11)

Kinetic energy possessed by the object can be written as
follows:

K.E =
1

2
mv2f , (12)

where the change in kinematic energy is the product of average
impact force Favg and the total distance travelled d.

Favg =

1

2
mv2f

d
, (13)

where the distance travelled can be calculated using the
equation given below.

d =
√
Sx + h2 (14)

The Favg is 68.4 N with d equal to 0.75 m.
4) Diameter required for the shaft: The diameter required

for the shaft with this much force to bear the shock when
vehicle jumps from a certain height is calculated as follows:

The torque τ for one motor shaft is

τ =
rFavg
2

(15)

The shear stress T (for steel 430 MPa) can be written as [9]:

T =
τr

Jr
, (16)

where r is radial distance from the center and can be expressed
as dr/2, Jr is polar second moment of area and can be
expressed for a solid circular cross section as:

Jr =
πr4

2
=
π(dr/2)

4

2
(17)

(17) can be expressed as:

dr =
3

√
16τ

πT
(18)

Diameter of shaft dr is a critical component, so factor of safety
is assumed as 1.5. The diameter required for the shafts is
approximately equal to 0.48 cm and this diameter is enough
to bear the shock when vehicle jumps from a certain height.



Fig. 5: DC motor (a) schematic, (b) block diagram.

B. Electromechanical Identification

In this part, the main purpose is to construct a model that
approximates the behavior of a system using input and output
data. Electromechanical transfer function connecting electrical
input to mechanical output is determined by finding equivalent
inertia and damping. The following equation is obtained by
appling Kirchhoff’s Voltage Law (KVL) [10] around the loop
in clockwise direction in Fig. 5.

RaIa(s) + La
dIa(s)

dt
+ Vb(s) = Ea(s), (19)

where La is armature inductance, Ra is armature resistance,
Ia is armature current, Vb is the back electromotive force (emf)
and the armature voltage Ea. Since the current-carrying arma-
ture is rotating in a magnetic field, its voltage is proportional
to speed. Thus,

Vb(s) = Kb
dθm(t)

dt
, (20)

where Kb is a constant of proportionality called the back emf
constant. By taking the Laplace transfor, yields

Vb(s) = Kbsθm(s) (21)

Torque developed by motor Tm is proportional to the armature
current: thus,

Tm(s) = KtIa(s), (22)

where Kt is constant of proportionality called motor torque
constant. All the details for this section are provided in
Appendix section. By rearranging (22), we get

Fig. 6: Typical equivalent mechanical loading on a motor [10].

Ia(s) =
Tm(s)

Kt
(23)

Fig. 7: DC motor driving a rotational mechanical load.

By substituting (20) and (22) in (19), we get

(Ra + Las)Tm(s)

Kt
+Kbsθm(s) = Ea(s) (24)

Fig. 6 presents typical equivalent mechanical loading on a
motor and Tm can be written in terms of θm;

Tm(s) = (Jms
2 +Dms)θm(s), (25)

where Jm is the equivalent inertia and Dm is equivalent
viscous damping at the armature. By assuming armature
inductance La to be small as compared to armature resistance
Ra, so La = 0. Now, substituting (25) in (24), yields

Ra(Jms
2 +Dms)θm(s)

Kt
+Kbsθm(s) = Ea(s) (26)

Using (26), desired transfer function θm/Ea can be written
as;

θm(s)

Ea(s)
=

Kt/(RaJm)

s

(
s+

1

Jm
(Dm +

KtKb

Ra
)

) (27)

Now, consider Fig. 7, which shows a motor with inertia Ja
and damping Da at the armature driving a load consisting
of inertia (J1 − J8) and damping (D1 −D8). The equivalent
inertia, Jm, and equivalent damping, Dm, at the armature are

Jm = Ja+J1+J2+(J3+J4)

(
N2

N3

)2

+(J5+J6)

(
N1

N5

)2

+ (J7 + J8)

(
N1N6

N5N7

)2

(28)

Similarly,

Dm = Da +D1 +D2 + (D3 +D4)

(
N2

N3

)2

+ (D5 +D6)(
N1

N5

)2

+ (D7 +D8)

(
N1N6

N5N7

)2

, (29)

where N is the number of teeths of the gear, a gear with
radius r and teeth N is rotated through angle θ due to a torque



Fig. 8: Isometric view of the vehicle.

τ . As the gears turn, the distance traveled along each gear’s
circumference is the same [10]. Thus, the rotation of two gears,
yields

θ1/θ2 = N2/N1 = r2/r1 = τ2/τ1 (30)

Thus, ratio of the angular displacement of the gears is inversely
proportional to the torques. Where, the values for N are N1

= 15, N2 = 30, N3 = 30, N5 = 15, N6 = 30 and N7 = 30.
Similarly, inertia’s in kg.m2 are: Ja = 0.5, J1 = J5 = 0.000125,
J2 = J3 = J6 = J7 = 0.001, J4 = J8 = 0.0014 and damping in
N.m.s/rad are Da = 0.2, D1 = D5 = 0.01, D2 = D3 = D6 =
D7 = 0.008. Now, the mechanical constants Jm and Dm are
evaluted, the electrical constants are solved in the appendix
section with Kt = 2.616 N.m/A and Kb = 2.952 V.s/rad. The
transfer function is found to be

G(s) =
θm(s)

Ea(s)
=

0.16

s(s+ 0.97)
(31)

The 3D model presented in Fig. 8 was designed using
Solid Works 2013. The height control motors produce moment
which is transferred to the arms through a mechanism of
sprockets and chains.

III. CONTROLLER DESIGN

In this section, the PD controller is designed and proven to
guarantee good performance. The electromechanical transfer
function obtained in (31) can be re-written as:

G(s) =
a

s(s+ p)
(32)

In terms of plant and controller parameters, the loop gain is

G(s) =
a(Kds+Kp)

s(s+ p)
(33)

The closed-loop transfer function F (s) from reference to
output is

F (s) =
aKds+ aKp

s2 + (p+ aKd)s+ aKp
(34)

This transfer function F (s) denominator which is closed
loop characteristic polynomial is compared with the second
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Fig. 9: Response of PD controller.

order general equation, assuming that desired characteristic
polynomial is

s2 + 2ζωns+ ω2
n (35)

giving design equations

Kd =
2ζωn − p

a
(36)

Kp =
ω2
n

a
(37)

The parameter ωn determines the response speed while ζ
relates to the damping [11]. The controller parameters are Kp

= 2.25 and Kd = 0.69 with ζ = 0.9 and ωn is taken as 0.6. It can
be observed in Fig. 9 that the controller tracks the reference
point.

IV. CONCLUSION

In this study, several tests i.e. sinkage, the torque required,
diameter needed for the shaft were performed. Sinkage depth
comes out to be 0.0178 cm which is very small and it would be
appropriate to use 0.085 m width of tires. The torque required
by the motors is an important design parameter, influencing the
performance of the vehicle. It was found that torque required
by a single DC motor is approximately 3 N.m. The diameter
required by the shaft is 0.48 m assuming a factor of safety of
1.5. Further, we have presented an electromechanical model
of the vehicle connecting electrical input to mechanical output
and its modelling is derived. A PD controller is developed
for the proposed model to ensure that the output reaches
the desired setpoint. Moreover, there is a need for physical
experimentation of the vehicle to get a better knowledge of its
feasibility and efficiency in real conditions.

APPENDIX

For (20), dθm(t)/dt = ωm(t) is the angular velocity of the
motor. Taking the Laplace transform, we get

dθm(t)

dt
= sθm(s)

Taking the inverse Laplace transform of (24) with La = 0,
yields

RaTm(t)

Kt
+Kbωm(t) = Ea(t)



by dropping the functional relationship based on time as motor
will turn at a constant angular velocity with a constant torque.
By solving above for Tm, we get

Tm = −KbKt

Ra
ωm +

Kt

Ra
Ea

Using torque-speed curve, the torque axis intercept occurs
when the angular velocity reaches zero and that is stall torque,
Thus,

Tstall =
Kt

Ra
Ea

By solving above for Kt we can calculate motor torque
constant with Ea = 24 V, Ia = 750 mA and Tstall = 20
kg.cm. The angular velocity occurring when the torque is zero
is called the noload speed, ωno,load, Thus,

ωno,load =
Ea
Kb

By solving above for Kb we can calculate back emf constant
with ωno,load = 8.13 rad/sec.
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