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ON GROUND STATES FOR THE 2D SCHR ÖDINGER EQUATION WITH COMBINED NONLINEARITIES AND HARMONIC POTENTIAL

We consider the nonlinear Schrödinger equation with a harmonic potential in the presence of two combined energy-subcritical power nonlinearities. We assume that the larger power is defocusing, and the smaller power is focusing. Such a framework includes physical models, and ensures that finite energy solutions are global in time. We address the questions of the existence and the orbital stability of the set of standing waves. Given the mathematical features of the equation (external potential and inhomogeneous nonlinearity), the set of parameters for which standing waves exist in unclear. In the twodimensional case, we adapt the method of fundamental frequency solutions, introduced by the second author in the higher dimensional case without potential. This makes it possible to describe accurately the set of fundamental frequency standing waves and ground states, and to prove its orbital stability.

Introduction

We consider the nonlinear Schrödinger (NLS) equation with harmonic potential and combined power-type nonlinearities (1.1) i∂ t ψ + ∆ψ = |x| 2 ψ -µ|ψ| p-2 ψ + |ψ| q-2 ψ, (t,

x) ∈ R + × R N ,
where ψ is a complex-valued function of (t, x), p, q ∈ (2, +∞) (p = q), N ≥ 1 and µ > 0 (homogeneity considerations show that the positive coefficient in front of the last nonlinearity can be chosen equal to one). For 2 < p, q < 2N (N -2) + =: 2 * , the Cauchy problem for (1.1) with the initial value ψ 0 ∈ Σ is locally well-posed and has a unique local solution ψ ∈ C([0, T (ψ 0 )), Σ) ∩ C 1 ([0, T (ψ 0 ), Σ * ), for some T (ψ 0 ) > 0, where Σ denotes the domain of the harmonic oscillator,

Σ = {f ∈ H 1 (R N ), x → xf (x) ∈ L 2 (R N )}, characterized by the norm u 2 Σ = R N (1 + |x| 2 )|u| 2 + |∇u| 2 = u 2 L 2 + -∆ + |x| 2 u, u .
See e.g. [15]. In view of the uncertainty principle (see e.g. [52]),

(1.2) u 2 L 2 ≤ 2 N xu L 2 ∇u L 2 ,
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we may remove the L 2 norm of u from the definition of u Σ . In physics, the potential in (1.1) corresponds to some confinement (see e.g. [22]), and the nonlinearity is typically cubic-quintic: the quintic part is defocusing (q = 6), and the cubic part is focusing (p = 4 and µ > 0); see e.g. [START_REF] Abullaev | Gap-Townes solitons and localized excitations in lowdimensional Bose-Einstein condensates in optical lattices[END_REF]44]. The combination of the harmonic potential and the cubic-quintic nonlinearity can be found e.g. in [START_REF] Dai | Quasi-two-dimensional Bose-Einstein condensates with spatially modulated cubic-quintic nonlinearities[END_REF]51]. From a mathematical point of view, the combination of a nonlinearity which is not homogeneous, and of the presence of an external potential, requires a specific approach. In the case where the external potential is smooth and decaying at infinity, the large time behavior of ground states was described precisely under smallness assumptions, and possibly for specific nonlinearities and/or potentials; see e.g. [START_REF] Cuccagna | On small energy stabilization in the NLS with a trapping potential[END_REF][START_REF] Deng | Soliton-potential interactions for nonlinear Schrödinger equation in R 3[END_REF][START_REF] Gang | Relaxation of solitons in nonlinear Schrödinger equations with potential[END_REF]45,49] and references therein. The heart of the present paper addresses the two-dimensional case N = 2. Solutions to (1.1) obey the energy conservation law :

E ≡ H µ (ψ(t)) := R N 1 2 |∇ψ| 2 + |x| 2 2 |ψ| 2 - µ p |ψ| p + 1 q |ψ| q dx,
and the mass (charge, particle numbers) conservation law :

α ≡ Q(ψ(t)) := 1 2 R N |ψ| 2 dx.
The assumption 2 < p < q < 2 * ensures global well-posedness in Σ for (1.1), since the defocusing nonlinearity dominates the focusing one (see also Lemma 4.1 below).

We shall mainly consider this assumption regarding p and q, an assumption which includes the cubic-quintic nonlinearity in 2D. We mention in passing that on the other hand, the Cauchy problem for the 3D cubic-quintic equation with harmonic potential is not straightforward, and the cubic nonlinearity is energy-critical; see [39] for the Cauchy problem when µ = 0, and [56] for the 3D cubic-quintic equation without harmonic potential. On the other hand, if 2 + 4 N < p ≤ 2 * and 2 < q < p, then finite time blow-up is possible, as shown in [50] (see also e.g. [START_REF] Cheng | Global well-posedness and scattering for nonlinear Schrödinger equations with combined nonlinearities in the radial case[END_REF]25]), and the issue of stability or instability of solitary waves in that case was studied in [27,[START_REF] Hayashi | Sharp thresholds for stability and instability of standing waves in a double power nonlinear Schrödinger equation[END_REF].

We study the existence and stability of standing waves ψ λ (t, x) = e iλt u(x) of (1.1), where the amplitude function u satisfies

(1.3) -∆u + |x| 2 u + λu -µ|u| p-2 u + |u| q-2 u = 0, x ∈ R N .
Here λ ∈ R is the frequency of the standing wave.

There are at least two motivations to study (1.3), apart from the fact that (1.1) appears in some physical models (e.g. [START_REF] Abullaev | Gap-Townes solitons and localized excitations in lowdimensional Bose-Einstein condensates in optical lattices[END_REF]44]). First, due to the fact that the nonlinearity in (1.3) is not homogeneous, the range of possible values of the parameters λ and µ, in order for (1.3) to have nontrivial solutions, is not clear. This aspect is explained in more details below. In particular, we could not find any reference addressing the existence of ground state solutions to (1.3). Second, in the case without potential, the set of stationary solutions was studied recently in [35] by using a generalization of the Rayleigh quotient to the nonlinear framework [START_REF] Ilyasov | On extreme values of Nehari manifold method via nonlinear Rayleigh's quotient[END_REF]. However, the approach presented in [35] excludes the two-dimensional case (as well as the one-dimensional case, a situation where many specific techniques are available, see e.g. [8,[START_REF] Iliev | Stability and instability of solitary waves for one-dimensional singular Schrödinger equations[END_REF]). As we will see, the introduction of the harmonic potential removes this restriction. In principle, Equation (1.3) can be studied via the nonlinear generalized Rayleigh quotient method in any space dimension N , but computations are more explicit in the 2D case, this is why we choose to focus on that case here.

The orbital stability of the ground states of many equations can be often investigated using a Lyapunov functional, determined by the action functional S λ,µ (u) restricted to the manifold of functions u with fixed mass integral m = Q(u). Such an approach was first applied to Korteweg-de Vries (KdV) solitons by Benjamin [START_REF] Benjamin | The stability of solitary waves[END_REF], and later, to three-dimensional ion-acoustic solitons in strongly magnetized plasma by Zakharov and Kuznetsov [START_REF] Zakharov | On threedimensional solitons[END_REF]. The general theorem on orbital stability of the so-called (set of) mass-prescribed solutions of nonlinear problems based on this idea was proved by T. Cazenave and P.-L. Lions [START_REF] Cazenave | Orbital stability of standing waves for some nonlinear Schrödinger equations[END_REF]. However, the orbital stability of mass-prescribed solutions does not always entail the orbital stability of ground states of nonlinear Schrödinger equations, typically when the nonlinearity is not homogeneous, or in the presence of an external potential. In other words, the notions of orbital stability of (the set of) mass-prescribed solutions and orbital stability of (action minimizing) ground states coincide in the case of homogeneous nonlinearities without potentials, as explained in [START_REF] Cazenave | Orbital stability of standing waves for some nonlinear Schrödinger equations[END_REF] (see also [15]), but apart from this case (and the very singular case of a logarithmic nonlinearity, where the role of the mass is specific, see [START_REF] Ardila | Orbital stability of Gausson solutions to logarithmic Schrödinger equations[END_REF]14]), the approaches introduced to prove orbital stability differ; see [31,[START_REF] Iliev | Stability and instability of solitary waves for one-dimensional singular Schrödinger equations[END_REF][START_REF] Weinstein | Modulational stability of ground states of nonlinear Schrödinger equations[END_REF][START_REF] Weinstein | Lyapunov stability of ground states of nonlinear dispersive evolution equations[END_REF], and also [23], in the case of orbital stability of ground states.

We emphasize that even in the case without potential, the notion of ground state solutions to (1.3) requires some care. The notion which seems to be privileged in physics consists in minimizing the energy under the constraint of a fixed mass M > 0, (1.4) inf{H µ (u);

Q(u) = M }.
The other approach consists in seeking a minimizer of the action

S λ,µ (u) := H µ (u) + λQ(u),
for a prescribed frequency λ ∈ R; see [7,8]. In this article, we consider the following notion (see also [START_REF] Berestycki | Équations de champs scalaires euclidiens non linéaires dans le plan[END_REF] and references therein):

Definition 1.1. For a given λ ∈ R, a solution ûλ of (1.3) is said to be a ground state if S λ,µ (û λ ) ≤ S λ,µ (w), for any w ∈ Σ \ {0} such that DS λ,µ (w) = 0. For µ > 0, we denote by

G λ,µ := u ∈ Σ \ {0} : S λ,µ (u) = Ŝλ,µ , DS λ,µ (u) = 0
the set of the ground states of (1.3), where

Ŝλ,µ := min {S λ,µ (u) : DS λ,µ (u) = 0, u ∈ Σ \ {0}}
is called the ground level.

The relation between the two notions is not clear in general: if u is a minimizer for (1.4), then there exists a Lagrange multiplier so that u solves (1.3) for some λ ∈ R. In the case of an homogeneous nonlinearity (typically -|ψ| p-2 ψ), a scaling argument shows that any λ > 0 can be obtained, and the solution is also a minimizer of the action, see [START_REF] Cazenave | Orbital stability of standing waves for some nonlinear Schrödinger equations[END_REF] (see also [15]). In the case of combined power nonlinearities, that is (1.1) without potential, it is known that not every minimizer of the action is a solution to (1.4), see [START_REF] Carles | On soliton (in-)stability in multidimensional cubic-quintic nonlinear Schrödinger equations[END_REF][START_REF] Lewin | The double-power nonlinear Schrödinger equations and its generalizations: uniqueness, non-degeneracy and applications[END_REF]. It has been proven recently that for a large class of nonlinearities (much larger than the sum of two power nonlinearities), every solution to (1.4) minimizes the action; see [START_REF] Berestycki | Équations de champs scalaires euclidiens non linéaires dans le plan[END_REF].

We now discuss more precisely why it is not obvious to describe the set of accessible values of λ and µ to solve (1.3). Solutions to

(1.5) -∆u + V (x)u + λu = f (|u| 2 )u,
were constructed in [START_REF] Lions | The concentration-compactness principle in the calculus of variations. The locally compact case[END_REF] for potentials V having a finite limit as |x| → ∞. In [26], the case N = 1 with V bounded and a cubic nonlinearity (f (y) = y) was considered, thanks to Lyapunov-Schmidt method, allowing to invoke perturbation arguments near the ground state associated to the case V = 0. These results were extended in [START_REF] Rose | On the bound states of the nonlinear Schrödinger equation with a linear potential[END_REF], again in the case of a bounded potential, going to zero at infinity, for an homogeneous nonlinearity f (y) = y σ . By bifurcation arguments, the authors show that for λ near λ * > 0 ground state eigenvalue of ∆ -V , (1.5) has a solution.

The case of an harmonic potential V (x) = |x| 2 was considered in [38] for the case of an L 2 -critical nonlinearity f (y) = y 2/N , thanks to a mountain pass lemma. Additional results were obtained regarding the existence and stability of standing waves for unbounded potentials V in e.g. [28,29]. The following result is very similar to [38, Theorems 1.3 and 1.4], and is proven in Appendix A.

Proposition 1.2. Let N ≥ 1 and 2 < p < 2 * = 2N (N -2)+ . 1. If λ > -N , then there exists a solution u ∈ Σ \ {0} to (1.6) -∆u + |x| 2 u + λu = |u| p-2 u.
2. If λ < -N , then there exists a solution u ∈ Σ \ {0} to

(1.7) -∆u + |x| 2 u + λu = -|u| p-2 u.
3. If λ > -N , then there exists µ > 0 and a solution u ∈ Σ \ {0} to (1.3).

Apart from the existence of standing wave, and their classification, the standard question is their dynamical stability: due to the invariances of the equation, the relevant notion is the notion of orbital stability, see e.g. [15,23]. In the present case, the harmonic potential removes the "usual" space-translation invariance, and, along with time-translation invariance, only the gauge invariance remains: if ψ solves (1.1), then so does ψe iθ , for any constant θ ∈ R. Like for the existence of standing waves, at least two approaches are commonly used in order to study the question of orbital stability: the stability of a set of standing waves (typically, the minimizers associated to (1.4), as in [START_REF] Cazenave | Orbital stability of standing waves for some nonlinear Schrödinger equations[END_REF]), and the stability of a given standing wave (as in [31,[START_REF] Iliev | Stability and instability of solitary waves for one-dimensional singular Schrödinger equations[END_REF][START_REF] Weinstein | Modulational stability of ground states of nonlinear Schrödinger equations[END_REF][START_REF] Weinstein | Lyapunov stability of ground states of nonlinear dispersive evolution equations[END_REF]; see also [23]). Like in [35], our main result is in the spirit of the former notion: we prove the orbital stability of the set of fundamental frequency solutions, defined below. Note that by resuming the approach of e.g. [12] in the 2D case (the 3D case is different, as the quintic nonlinearity becomes energy-critical), based on the method introduced in [START_REF] Cazenave | Orbital stability of standing waves for some nonlinear Schrödinger equations[END_REF], it is easy to prove that the set of energy minimizers under a mass constraint (the minimizers of (1.4)) is orbitally stable. But then again, we do not know for which values of µ this set is nonempty, and which are the corresponding Lagrange multipliers λ. One of the main features of this article is to define quantities that make it possible to characterize the set of µ's and λ's for which ground states exist, and their set is stable.

Let us state our main result. Introduce,

(1.8) μ0 = C p,q inf u∈Σ\{0} |∇u| 2 • |x| 2 |u| 2 q-p 2(q-2) ( |u| q ) p-2 (q-2) |u| p .
for some C p,q > 0 introduced in Section 2: μ0 > 0 (see Proposition 2.6 below).

Theorem 1.3. Let N = 2, 2 < p < q < ∞, and µ > μ0 . Then there exists λ * µ > 0 such that:

(1 o ) For any λ ∈ [0, λ * µ ], Equation (1.3) has a ground state ûλ ∈ Σ. (2 o ) S λ,µ (û λ ) < 0 for λ ∈ [0, λ * µ ) and S λ,µ (û λ )| λ= λ * µ = 0.
(3 o ) Up to a gauge transform (replace ûλ by e iθ ûλ for some constant θ ∈ R), ûλ is positive, radially symmetric, and non-increasing in r = |x|.

(4 o ) For any λ ∈ [0, λ * µ ], the set of ground states G λ,µ of (1.3) is orbitally stable: for any ε > 0, there exists δ > 0 such that if

ψ 0 ∈ Σ, satisfies inf φ∈G λ,µ ψ 0 -φ Σ < δ, then sup t∈R inf φ∈G λ,µ ψ(t) -φ Σ < ε,
where ψ is the solution to (1.1) such that ψ |t=0 = ψ 0 .

The proof of the theorem is based on development of the method of fundamental frequency solutions, introduced by the second author in [35] in the higher dimensional case without potential. We deal with the so-called prescribed action solution of (1.3), i.e., a function u S ∈ Σ which for a given action S ∈ R satisfies (1.9) S λ,µ (u S ) = S and DS λ,µ (u S ) = 0, with some λ ≥ 0. As mentioned above, an alternative formulation which has also been actively investigated over the last decades consists in finding the solution u to (1.3) having prescribed mass, via (1.4), while λ and S are unknown. Note that the frequency λ can be also considered as a value of the following conserved quantity

(1.10) λ = Λ S µ (ψ(t)) := S -H µ (ψ) Q(ψ) .
Definition 1.4. For a given S ∈ R, a solution ûS of (1.3) is said to be a fundamental frequency solution (respectively, e i λt û is said to be a fundamental frequency standing wave of (1.1)) with a fundamental frequency λS

µ if λS µ = Λ S µ (û) ≥ Λ S µ (w) for any w ∈ Σ \ {0} such that DΛ S µ (w) = 0.
For S ∈ R, µ > 0, we denote by

F S µ := u ∈ Σ \ {0} : Λ S µ (u) = λS µ , DΛ S µ ( 
u) = 0 the set of the fundamental frequency solutions of (1.3), where

λS µ := max Λ S µ (u) : DΛ S µ (u) = 0, u ∈ Σ \ {0} is called the fundamental frequency.
We have the following result on the existence and orbital stability of the set of fundamental frequency solutions: Theorem 1.5. Let N = 2 and 2 < p < q < ∞. Then for any given action value S ∈ R, there exists an extremal value μS ≥ 0 such that:

(1 o ) For any µ > μS , Equation (1.3) has a fundamental frequency solution ûS µ ∈ Σ \ {0}. In the case S ≤ 0, the same is true under the relaxed assumption µ ≥ μS .

(2 o ) Up to a gauge transform (replace ûS µ by e iθ ûS µ for some constant θ ∈ R), ûS µ is positive, radially symmetric, and non-increasing in r = |x|.

(3 o ) If S ≤ 0, then μS > 0, and for any µ ≥ μS , the fundamental frequency solution ûS µ is a ground state of (1.3)

with λ = Λ S µ (û S µ ). Moreover, λ ∈ [0, λ * µ ). ( 4 
o ) If S ≤ 0, then for any µ ≥ μS , the set of fundamental frequency solutions F S µ of (1.3) is orbitally stable: for any ε > 0, there exists δ > 0 such that if

ψ 0 ∈ Σ, satisfies inf φ∈F S µ ψ 0 -φ Σ < δ, then sup t∈R inf φ∈F S µ ψ(t) -φ Σ < ε,
where ψ is the solution to (1.1) such that ψ |t=0 = ψ 0 .

We obtain the existence of the fundamental frequency solutions by applying the nonlinear generalized Rayleigh quotient method (NG-Rayleigh quotient method) [START_REF] Ilyasov | On extreme values of Nehari manifold method via nonlinear Rayleigh's quotient[END_REF][35][START_REF] Il'yasov | Rayleigh quotients of the level set manifolds related to the nonlinear PDE[END_REF] to (1.3) with Λ S µ (u) as the Rayleigh quotient.

Remark 1.6. We conjecture that Equation (1.3) has no ground state solution with positive action S > 0. Furthermore, we anticipate the fundamental frequency solutions ûS µ of Equation (1.3) for S > 0 are not orbitally stable. Notations. Let (α n ) n∈N and (β n ) n∈N be two families of positive real numbers.

• We write α n ≪ β n if lim sup n→+∞ α n /β n = 0.

• We write α n β n if lim sup n→+∞ α n /β n < ∞.

• We write α n ≈ β n if α n β n and β n α n .

The nonlinear generalized Rayleigh quotients

For u ∈ Σ and σ > 0, we denote u σ (x) := u(x/σ), x ∈ R N , and

T (u) := |∇u| 2 , L(u) := |x| 2 |u| 2 , Q(u) := 1 2 |u| 2 , A(u) := |u| p , B(u) := |u| q .
With these notations we have

S λ,µ (u) := 1 2 T (u) + 1 2 L(u) + λQ(u) -µ 1 p A(u) + 1 q B(u).
and

T (u σ ) = σ N -2 T (u), L(u σ ) = σ N +2 L(u), Q(u σ ) = σ N Q(u), A(u σ ) = σ N A(u), B(u σ ) = σ N B(u).
By a weak solution of (1.3) we mean a critical point u ∈ Σ of S λ,µ (u) on Σ.

Observe that if u ∈ Σ is a weak solution of (1.3), then the Brézis-Kato Theorem [START_REF] Brézis | Remarks on the Schrödinger operator with singular complex potentials[END_REF] and the L γ estimates for the elliptic problems [2] yield u ∈ W 2,γ loc (R N ), for any γ ∈ (1, ∞), and whence by the regularity theory of the solutions of the elliptic problems u ∈ C 2 (R N ) ∩ H 1 (R N ) (see e.g. [2]). This implies that any weak solution u of (1.3) satisfies the Pohozaev identity [46] (2.1)

P (u) := N -2 2 T (u) + N + 2 2 L(u) + λN Q(u) -µ N p A(u) + N q B(u) = 0.
See e.g. [8, Section 2.1] for details (the assumption u ∈ Σ makes it possible to adapt the proof in order to include the harmonic potential, by repeating the argument on top of p. 321 in [8]). For S ∈ R, introduce the so-called action-level Rayleigh quotient

(2.2) Λ S µ (u) := S -1 2 T (u) -1 2 L(u) + µ 1 p A(u) -1 q B(u) Q(u)
.

Notice that for any S ∈ R and λ ∈ R,

• Λ S µ (u) = λ ⇔ S λ,µ (u) = S, • DΛ S µ (u) = 0 with Λ S µ (u) = λ ⇔ DS λ,µ (u) = 0, i.e., u satisfies (1.3). Let u ∈ Σ \ {0}, S ∈ R, σ > 0, consider (2.3) λ u (σ) := Λ S µ (u σ ) = σ -N S -σ -2 1 2 T (u) -σ 2 1 2 L(u) + µ 1 p A(u) -1 q B(u) Q(u)
.

Then for u ∈ Σ,

d dσ λ u (σ) = 0 ⇔ -N S + σ N -2 T (u) -σ N +2 L(u) = 0.
The last equation,

• For N > 2, has a unique solution σ S (u) > 0 for any u ∈ Σ and S < 0. There are two positive solutions if S > 0 is not too large. • For N = 2, has a unique solution σ S (u) > 0 for any u ∈ Σ and S ≤ 1 2 T (u). • For N = 1, has a unique solution σ S (u) > 0 under suitable relations between T (u), L(u) and S.

Note that for N = 2, the formula(s) for σ S (u) may not be easy to write, when possible.

From now on, we assume

N = 2. Then σ S (u) = T (u) -2S L(u) 1/4 , ∀u ∈ Σ \ {0}, such that S ≤ 1 2 T (u).
Hence, in accordance with [35], we have the following nonlinear generalized Rayleigh quotient (NG-Rayleigh quotient) (2.4)

λ S µ (u) := Λ S µ (u σ )| σ=σS (u) = - (T (u) -2S) 1/2 L(u) 1/2 -µ 1 p A(u) + 1 q B(u) Q(u)
.

Observe, when T (u) > 2S,

λ S µ (u) = max σ>0 Λ S µ (u σ ), when T (u) = 2S, λ S µ (u) = sup σ>0 Λ S µ (u σ ) = µ p A(u) -1 q B(u) Q(u) ,
and when T (u) < 2S (a case which may occur only for S > 0),

sup σ>0 Λ S µ (u σ ) = ∞.
Denote, for S ∈ R,

Σ S := {u ∈ Σ; T (u) > 2S}. Corollary 2.1. If u ∈ Σ satisfies (1.
3) and S := S λ,µ (u), then σ S (u) = 1 and

d dσ λ u (σ)| σ=1 = 0.
Proof. The equalities d dσ λ u (σ)| σ=1 = 0 and σ S (u) = 1 are consequences of Pohozaev identity (2.1). Indeed, S λ,µ (u)-1 2 P (u) = 1 2 T (u)-1 2 L(u) and therefore, T (u)-2S = L(u), i.e., σ S (u) = 1. The second equality follows similarly.

Lemma 2.2. Let S ∈ R. Then Dλ S µ (u) = 0, λ S µ (u) = λ, σ S (u) = 1 if and only if u ∈ Σ is a weak solution of (1.3) with prescribed action S.

Proof. Since λ S µ (u) = λ, σ S (u) = 1, we have Λ S µ (u) = λ, and consequently, S λ,µ (u) = S. From (2.4), by direct calculations of Dλ S µ (u) it follows

(2.5) Dλ S µ (u) = - 1 Q(u) DS λ,µ (u), ∀u ∈ Σ\{0} such that Λ S µ (u) = λ, σ S (u) = 1,
and thus, DS λ,µ (u) = 0. Conversely, assume that u is a weak solution of (1.3) such that S = S λ,µ (u). Then Λ S µ (u) = λ and DΛ S µ (u) = 0. Moreover, by Corollary 2.1, σ S (u) = 1, and hence, λ S µ (u) = Λ S µ (u) = λ. Consequently, (2.5) yields Dλ S µ (u) = 0. Remark 2.3. Lemma 2.2 implies that if u is a weak solution of (1.3) with prescribed action S, then the strong inequality T (u) > 2S holds, and thus, (1.1) has no standing wave ψ λ = e iλt u with action value S := S λ,µ (u) ≥ T (u)/2. Remark 2.4. In view of the homogeneity of λ S µ (u), we may always assume that any critical point u of λ S µ (u) satisfies σ S (u) = 1. From now on, we assume 2 < p < q < ∞. We look for solutions of Equation (1.3) in the case λ > 0. Therefore we are interested in knowing when the condition λS µ := sup u∈ΣS \{0} λ S µ (u) > 0, S ∈ R, is satisfied. The feasibility of this condition depends on parameter µ. The limit point of µ where λS µ > 0 is satisfied will be called extreme value of µ. To find this value, we reapply the NG-Rayleigh quotient method to the functional λ S µ (u) (see [13]) and therefore introduce

µ S (u) := (T (u) -2S) 1/2 L(u) 1/2 + 1 q B(u) 1 p A(u) , u ∈ Σ S ,
which is characterized by the fact that µ S (u) = µ ⇔ λ S µ (u) = 0, and µ S (u) < µ ⇔ λ S µ (u) > 0. For S ∈ R, define (2. [START_REF] Benjamin | The stability of solitary waves[END_REF] μS := inf u∈ΣS µ S (u).

Obviously, μS ≥ 0.

Proposition 2.5. Let N = 2, 2 < p < q < ∞, S ∈ R. Then μS is an extreme value of µ, that is for any µ > μS condition λS µ > 0 holds, whereas if µ ≤ μS , then λS µ ≤ 0.

Proof. Let µ > μS . Then by (2.6), there exists u ∈ Σ S such that μS < µ S (u) < µ, and therefore, λ S µ (u) > 0 and λS µ > 0. The converse follows immediately.

Observe that (2.6) can be written in an equivalent form. Indeed, consider for S ∈ R,

(2.7) M S (u) := -S + 1 2 T (u) + 1 2 L(u) + 1 q B(u) 1 p A(u) , u ∈ Σ S .
Observe that M S (u σ ) → +∞ as σ → 0 and M S (u σ ) → +∞ as σ → +∞. An analysis similar to that for Λ S µ (u) shows that

(2.8) min σ>0 M S (u σ ) = (T (u) -2S) 1/2 L(u) 1/2 + 1 q B(u) 1 p A(u) = µ S (u). Hence μS = inf u∈ΣS M S (u).
Proposition 2.6. Assume that S ≤ 0. Then μS > 0.

Proof. Since for S ≤ 0, M S (u) ≥ M 0 (u),

(2.9) μS ≥ inf u∈Σ\{0} M 0 (u), ∀S ≤ 0.

In view of (2.7), it is easily seen that for any u ∈ Σ \ {0} the minimum of min t>0 M 0 (tu) is attained at the unique minimizing point t m (u) given by

t m (u) = c p,q T (u) + L(u) 2B(u) 1/(q-2) , c p,q = (p -2)q q -p 1/(q-2)
.

Hence by (2.9) we have

μS ≥ inf u∈Σ\{0} M 0 (t m (u)u) = C p,q inf u∈Σ\{0} (T (u) + L(u)) q-p q-2 B(u) p-2 q-2 A(u) , ∀S ≤ 0. for C p,q = q -2 p -2 × p q × 1 2 q-p q-2 × c q-p p,q = (q -2)p (2(q -p)) q-p q-2 ((p -2)q) p-2 q-2
.

By (1.2), Sobolev and Hölder inequalities, we have

u L p ≤ C 0 ( xu L 2 ∇u L 2 ) (q-p) p(q-2) u q(p-2) p(q-2) L q , ∀u ∈ Σ \ {0},
where C 0 > 0 is a constant, and thus, μS > 0 for any S ≤ 0.

which is absurd, since it would imply that λ S µ (u n ) becomes negative for large n. Hence by (3.3), u n L p and u n L q are bounded. In view of (3.3),

λ S µ (u n ) ≤ C u n q L q u n 2 L 2 p-2 q-2 - 1 q u n q L q u n 2 L 2
. This shows that u n q L q / u n 2 L 2 is bounded: if we had u n L 2 → 0, then we would have u n L q → 0, hence u n L p → 0. Therefore,

λS µ = lim n→+∞ -1 Q(u n ) (T (u n ) -2S) 1/2 L(u n ) 1/2 -µ 1 p u n p L p + 1 q u n q L q ≤ 0,
in contradiction with Lemma 3.1, so u n L 2 1. We readily infer that (T (u n ) -2S) 1/2 L(u n ) 1/2 is bounded. Recall the inequality, found in e.g. [3, Lemma 4.1], in the two-dimensional case,

(3.5) f L 2 2 ) ≤ C f θ L p (R 2 ) xf 1-θ L 2 (R 2 ) , θ = p ′ 2 ∈ (0, 1), where 1 p + 1 p ′ = 1.
This implies that we cannot have L(u n ) → 0, and so

T (u n ) is bounded: (u n ) n is bounded in H 1 (R 2 ). If we had L(u n ) → ∞, then consider v n (x) := u n xL(u n ) 1/4 .
By the homogeneity of λ S µ with respect to dilations,

λ S µ (v n ) = λ S µ (u n ), and v n is a maximizing sequence. It is such that T (v n ) = T (u n ) is bounded, L(v n ) = 1, and v n 2 L 2 = L(u n ) -1/2 u n 2 L 2 -→ n→∞ 0,
while we have seen that this is impossible for a maximizing sequence. Therefore, (u n ) n is bounded in Σ. By the Banach-Alaoglu and Sobolev embedding theorems, there exists a subsequence, which we again denote by (u n ) n , such that

u n ⇀ ûS µ in Σ u n → ûS µ in L γ (R 2 ), 2 ≤ γ < ∞, u n → ûS µ a.e. on R 2 , for some ûS µ ∈ Σ, as Σ is compactly embedded into L γ (R 2
) for such values of γ (see e.g. [47, Theorem XIII.67]). We show that ûS µ = 0. To this end, it is sufficient to show that the sequence u n p L p is separated from zero. Indeed, if u n p L p → 0 as n → +∞, then

λS µ = lim n→+∞ -1 Q(u n ) (T (u n ) -2S) 1/2 L(u n ) 1/2 -µ 1 p u n p L p + 1 q u n q L q ≤ 0.
This is impossible, since λS µ > 0. From this we have

lim n→+∞ u n p L p = ûS µ p L p , lim n→+∞ u n q L q = ûS µ q L q , lim n→+∞ u n 2 L 2 = ûS µ 2 L 2 .
Recall the Brézis-Lieb lemma (see e.g. [42]):

Lyapunov stability of the set of fundamental frequency solutions

We first show why local Σ solutions of (1.1) are global. In view of e.g. [15, Theorem 9.2.6], it suffices to prove that any solutions is bounded in Σ. For the following result, we consider the general case N ≥ 1, with combined energy-subcritical nonlinearities.

Lemma 4.1. Let N ≥ 1. Assume 2 < p < q < 2 * and µ > 0. Let ψ ∈ C([0, T ); Σ)∩ C 1 ([0, T Σ * ) be a solution of (1.1). Then ψ is bounded in Σ: there exists C depending on ψ |t=0 Σ such that for all t ∈ [0, T ), ∇ψ(t) 2 L 2 + xψ(t) 2 L 2 ≤ C, and therefore we can take T = ∞.

Proof. The conservations for (1.1) yield Q(ψ(t)) = Q(ψ(0)), H µ (ψ(t)) = H µ (ψ(0)) for all t ∈ [0, T ). Recall that from (3.3), there exists θ ∈]0, 1[ such that

ψ(t) L p ≤ ψ(t) 1-θ L 2 ψ(t) θ L q ψ(t) θ
L q , since the L 2 -norm of ψ is independent of time. We infer

H µ (ψ(0)) = H µ (ψ(t)) ≥ 1 2 ∇ψ(t) 2 L 2 + 1 2 xψ(t) 2 L 2 -C ψ(t) θp L q + 1 q ψ(t) q L q .
Now from (3.3), θp < q: this entails that all terms in the above inequality are bounded.

We now prove (recall that F S µ is defined in Definition 1.4): Lemma 4.2. Let N = 2, 2 < p < q < ∞, S ≤ 0, and µ > 0 such that F S µ = ∅. Then the set of fundamental frequency solutions F S µ is orbitally stable. Proof. Suppose that F S µ is not orbitally stable: there exist ε > 0, a sequence of initial data ψ n (0) ∈ Σ such that (4.1) inf

φ∈F S µ ψ n (0) -φ Σ -→ n→∞ 0,
and a sequence of times t n ≥ 0 along which the solution to (1.1) emanating from ψ n (0) satisfies

(4.2) inf φ∈F S µ ψ n (t n ) -φ Σ > ε, ∀n ≥ 1.
The convergence (4.1) implies that

Λ S µ (ψ n (0)) -→ n→∞ λS µ ,
and therefore the conservation for Λ S µ yields (4.3)

Λ S µ (ψ n (t n )) -→ n→∞ λS µ . Lemma 4.1 shows that (ψ n (t n )) n is bounded in Σ.
Consequently, there exists a subsequence which we again denote by (ψ n (t n )) n such that

ψ n (t n ) ⇀ u weakly in Σ, ψ n (t n ) → u, strongly in L p (R 2 ), 2 ≤ p < ∞.
for some u ∈ Σ. Observe that T (u) -2S ≥ 0 since S ≤ 0. This and (4.3) imply that we can proceed like in the proof of Lemma 3.2, to obtain that we actually have ψ n (t n ) → u strongly in Σ, and

λ S µ (ψ n (t n )) -→ n→∞ λS µ .
Hence we get Λ S µ (u) = λS µ , that is u ∈ F S µ . But this contradicts (4.2).

Existence of a minimizer of µ S (u)

Assume that S ≤ 0. Notice that in this case we always have Σ S = Σ. Consider the minimization problem (2.6), i.e. μS := inf u∈ΣS \{0}

µ S (u).

Lemma 5.1. If S ≤ 0, then there exists a minimizer vS of (2.6).

Proof. By Proposition 2.6, 0 < μS < ∞. Let (v n ) n be a minimizing sequence of (2.6), i.e., µ

S (v n ) → μS as n → ∞ and v n ∈ Σ S , n ≥ 1. We show that (v n ) n is bounded in Σ. Since µ S (v) = µ S (v σ ) for any dilation parameter σ > 0, we may assume L(v n ) = 1. Since µ S (v n ) is bounded, we readily have 0 ≤ ∇v n 2 L 2 -2S v n 2p L p , (5.1) v n q L q v n p L p . (5.2)
In view of (3.3) and (3.5),

v n p L p v n p ′ L p q-p q-2 ( v n q L q ) p-2 q-2 , hence ( v n p L p ) q-1 p-1 v n q L q v n p L p
, where we have used (5.2) for the last inequality. As 2 < p < q, we infer that (v n ) n in bounded in L p (R 2 ), and in L q (R 2 ), again from (5.2). Now, (3.5) implies that (v n ) n in bounded in L 2 (R 2 ), and (5.1) that (∇v n ) n in bounded in L 2 (R 2 ). Therefore, (v n ) n is bounded in Σ.

Like in the proof of Lemma 3.2, there exists a subsequence, which we again denote by (v n ) n , and vS ∈ Σ, such that

v n ⇀ vS in Σ v n → vS in L γ (R 2 ), 2 ≤ γ < ∞, v n → vS a.e. on R 2 .
Observe that vS = 0. Indeed, by the proof of Proposition 2.6, we have

(5.3) µ S (v n ) ≥ µ 0 (t m (v n )v n ) = C p,q (T (v n ) + L(v n )) q-p q-2 B(v n ) p-2 q-2 A(v n ) ,
where t m and C p,q were computed in the proof of Proposition 2.6.

Since µ 0 (t m (su σ )su σ ) = µ 0 (t m (u)u) for any σ > 0, s > 0, u ∈ Σ \ {0}, we may assume that T (v n )L(v n ) = 1, B(v n ) = 1,
for all n. Hence if vS = 0, we get a contradiction: µ S (v n ) → +∞. Now arguing as in the proof of Lemma 3.2 we obtain μS = lim

n→+∞ µ S (v n ) ≥ 1 A(v S ) T (v S ) -2S 1/2 L(v S ) 1/2 + 1 q B(v S ) = µ S (v S ),
which implies that vS is a minimizer of (2.6).

Observing that since µ S (u) is a homogeneous functional with respect to spatial dilations, we may always assume that the minimizer vS of (2.6) satisfies σ S (v S ) = 1.

Lemma 5.2. Let S ≤ 0 and vS be a minimizer (2.6) such that σ S (v S ) = 1. Then (i): vS weakly satisfies (1.3) with λ = 0 and µ = μS ; (ii): maximizing problem (3.1) for µ = μS attains its maximizer at vS , i.e., ûS μS = vS , and λS μS = λ S μS (v S ) = 0.

Proof. First we prove (i).

If vS is a minimizer of (2.6), then Dµ S (v S ) = 0. The assumption σ S (v S ) = 1 implies that μS = µ S (v S ) = M S (v S ). Using this it is easy to check by direct calculations of Dµ S (v S ) that if µ S (u) = µ, σ S (u) = 1 for u Σ S , then

Dµ S (u) = p A(u) DS λ,µ (u)| λ=0 ,
and thus, we get DS 0,μ S (v S ) = 0, that is vS weakly satisfies (1.3) with λ = 0 and µ = μS . We now show (ii). If vS is a minimizer of (2.6), then the equality μS = M S (v S ) implies that λ S μS (v S ) = 0. By Proposition 2.5, λS μS ≤ 0, and therefore λS μS = λ S μS (v S ) = 0.

Proposition 5. Similarly we have

-∆S p A(v S+∆S )
T (v S+∆S ) -2(S + ∆S) -1/2 + o(S + ∆S, ∆S) ≤ μS+∆S -μS .

Thus, μS+∆S -μS → 0 as ∆S → 0. Observe μS2 = µ S2 (v S2 ) < µ S2 (v S1 ) < µ S1 (v S1 ) = μS1 for any S 1 < S 2 ≤ 0. Thus, μS is monotone decreasing. Moreover, it is clear that μS → μ0 := μS | S=0 as S → 0. By Proposition 2.6, μS | S=0 > 0 .

Let us show that μS → +∞ as S → -∞. From the monotonicity of µ S (v S ) it follows µ S (v S ) → C as S → -∞ for some C ∈ (0, +∞]. Suppose, contrary to our claim, that C < +∞. As above, we may assume L(v S ) = 1, S < 0. Then (5.4) µ S (v S ) := T (v S ) -2S 1/2 + 1 q vS q L q 1 p vS p L p → C < +∞ as S → -∞.

Then vS q L q vS p L p . (5.5)

In view of (3.3) and (3.5), vS p L p vS p ′ L p q-p q-2 vS q L q p-2 q-2 , hence by (5.5), vS p L p q-1 p-1 vS q L q vS p L p . Since 2 < p < q, we infer that (v S ) in bounded in L p (R 2 ). However, (T (v S )-2S) → +∞ as S → -∞ and thus, (5.4) implies a contradiction.

3 .

 3 The function (-∞, 0] ∋ S → μS is continuous and monotone decreasing. Moreover, μS → +∞ as S → -∞ and μS → μ0 := μS | S=0 > 0 as S → 0.Proof. Let S < 0, ∆S > 0 such that S + ∆S ≤ 0. Proceeding like in the proof of Lemma 5.1, we see that (v S ) S∈(a,0] is bounded in Σ for any bounded a < 0. Using this it is not hard to show that the following Taylor expansion holdsT (v S ) -2(S + ∆S) 1/2 = T (v S ) -2S 1/2 -∆S T (v S ) -2S -1/2 + o(S, ∆S),where o(S, ∆S)/|∆S| → 0 as ∆S → 0 uniformly in S ∈ (a, 0]. Hence,μS+∆S ≤ µ S+∆S (v S ) = μS -∆S p A(v S ) T (v S ) -2S -1/2 + o(∆S),and consequently, μS+∆S -μS ≤ -∆S p A(v S ) T (v S ) -2S -1/2 + o(S, ∆S).
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Existence of a fundamental frequency solution with prescribed action

Recall that N = 2 and 2 < p < q < ∞. Consider (3.1) λS µ := sup λ S µ (u); u ∈ Σ \ {0}, T (u) -2S ≥ 0 , with µ ≥ μS . By construction, we may also write (3.2) λS µ = ΛS µ := sup Λ S µ (u); u ∈ Σ \ {0}, T (u) -2S ≥ 0 . In the sequel, we use (3.1) when we want to take advantage of the invariance of λ S µ with respect to spatial dilations, λ S µ (u σ ) = λ S µ (u) for all σ > 0.

Proof. By Proposition 2.5, λS µ ≥ 0. Hölder inequality yields

where we have used Sobolev embedding to ensure the finiteness of each term.

Suppose that λS µ = ∞: there exists a sequence (u n ) n in Σ\{0}, with

In particular, (3.4)

Since λ S µ (u) = λ S µ (u σ ) for any dilation parameter σ > 0, we may assume u n 2 L 2 = 1 for all n. Then (3.3) and (3.4) yield

which is impossible, since θp < q, and so λ S µ < ∞. It follows from Proposition 2.5 that for all µ > μS , λS µ > 0.

We first assume that (u n ) n is bounded in L 2 , u n L 2 1 (and then show that this is necessarily the case). Suppose that u n L q → +∞. Then, in view of (3.3),

We infer

In the case ∇û S µ 2

which implies that ûS µ is a maximizer of (3.1). Suppose, on the contrary, that 0 < ∇û S µ 2

.

The last term is equal to λ 

Again due to the positivity of λS µ , for sufficiently large n, u n p L p u n q L q , and (3.3) now yields

: from the previous arguments (where we had considered a maximizing sequence, bounded

From Lemmas 3.1 and 3.2, we get:

Remark 3.5. For the existence of a maximizer of (3.1) in the case µ = μS see Lemma 5.2 below.

Lemma 3.6. Assume that ûS µ is a maximizer of (3.2), i.e., λS µ = Λ S µ (û S µ ). Then ûS µ is a fundamental frequency solution of (1.3) with fundamental frequency λS µ .

Proof. Let û be a maximizer of (3.2). By the Lagrange multiple rule, there exist

Evidently, we may assume that µ 0 = 1. If T (û) -2S > 0, then by (3), we have µ 1 = 0, and consequently, DΛ S µ (û) = 0, and thus û satisfies (1.3). To obtain a contradiction, suppose that T (û) -2S = 0. Using the Pohozaev identity for the equality DΛ S µ (û) + µ 1 DT (û) = 0, we obtain

, and dT (û σ ) dσ = 0. Thus, T (û) -2S > 0 and û satisfies (1.3). The equality λS µ = Λ S µ (û) entails that it is a fundamental frequency solution.

We can now infer: Corollary 3.7. The maximizers ûS µ of (3.2) satisfy T (û S µ )-2S > 0. Up to a gauge transform, ûS µ is radially symmetric, nonnegative, and a non-increasing function of |x|.

Proof. We explain the last point of the statement. In view of [18, Lemma 2.3], up to replacing ûS µ by e iθ ûS µ for some θ ∈ R, we may assume that ûS µ is real-valued. Using Schwarz symmetrization (see e.g. [42, Chapter 3]), we see that maximizers can be chosen as radially symmetric, nonnegative, and non-increasing as a function of |x|. It is indeed standard that symmetric rearrangements leave Lebesgue norms unchanged, and do not increase T (u). They do not increase L(u) either, as shown in [5, Appendix A], and more precisely, in the present case of a harmonic potential |x| 2 , [5, Theorem 4] asserts that if u is not equal to its Schwarz symmetrization u * , then L(u * ) < L(u). Since maximizers satisfy T (û S µ ) > 2S, we see that if they do not satisfy the announced properties, then considering their Schwarz symmetrization (strictly) increases the value of λ S µ , hence a contradiction.

Proposition 5.3 yields that the range of the function (-∞, 0] ∋ S → μS coincides with [μ 0 , +∞) and thus we have:

Corollary 5.4. There exists an inverse function S(µ) of μS so that μS(µ) = µ for any µ ∈ [μ 0 , +∞).

6. Existence of a ground state Proposition 6.1. Assume µ > 0, |S 2 -S 1 | is sufficiently small, and

, and we get the second inequality in (6.1). The proof of the first one may be handled in the same way. We only have to notice that Corollary 3.7 implies that µ is continuous and strictly monotone increasing on (S(µ), 0], i.e., λS2 µ > λS1 µ , for any S(µ

Lemma 6.4. Assume that µ > μ0 . Suppose S ∈ (S(µ), 0] such that ûS µ is a fundamental frequency solution of (1.3) with λ = λS µ , then ûλ,µ := ûS µ is a ground state of (1.3) with ground level S.

Proof. Suppose the assertion of the lemma is false. Then there exists a solution w of (1.3) with λ = λS µ such that

The equality S 1 := S λS µ ,µ (w) implies Λ S1 µ (w) = λS µ . Moreover, since DΛ S1 µ (w) = 0, Lemma 2.2 (see also Remark 2.3) implies that T (w) -2S 1 > 0. Lemma 3.1 implies that λS1 µ < +∞. Furthermore, we have

Thus 0 < λS1 µ < +∞, and by Lemma 3.2, F S1 µ = ∅. Hence, the inequality S > S 1 by Proposition 6.1 implies that λS1 µ < λS µ , which contradicts (6.2).

Lemma 6.5. Assume that µ > μ0 . Then lim S→S(µ) λS µ = 0 and 0

Proof. Since μS(µ) = µ, Lemma 5.2 implies that lim S→S(µ) λS µ = λS(µ) µ = 0. By the monotonicity of λS µ it follows that there exists lim S→0 λS µ = λ * µ ≤ ∞. Suppose, contrary to our claim, that λ * µ = ∞. By (6.1) and since

An analysis similar to that in the proof of Lemma 5.1 shows that (û S µ ) S∈(δ,0) is bounded in Σ for any δ ∈ (S(µ), 0), and thus there exists a subsequence (û Sn µ ) n , such that S n → 0 and ûSn µ ⇀ w in Σ, ûSn µ → w in L γ (R 2 ), 2 ≤ γ < ∞, ûSn µ → w a.e. on R 2 , for some w ∈ Σ. As in proof of Lemma 3.2, it follows that w = 0. However, this contradicts the convergence Q(û Sn µ ) → 0.

Corollary 6.3 implies that the function S → λS µ is invertible so that for any λ ∈ [0, λ * µ ] there exists a unique S λ ∈ [S(µ), 0] such that λS λ µ = λ. Hence, by Lemmas 6.4, 6.5 we have:

and ûλ is a ground state of (1.3) with the corresponding ground level S = S λ,µ (û λ ) ≤ 0. Then ûλ is a fundamental frequency solution of (1.3) with fundamental frequency λ.

Proof. Suppose that λ ∈ [0, λ * µ ] and ûλ is a ground state of (1.3) with S = S λ,µ (û λ ). Then Λ S µ (û λ ) = λ S µ (û λ ) = λ, and thus λ ≤ λS µ . Suppose, contrary to our claim, that λ < λS µ . It follows from the above that there exists S λ ∈ (S(µ), 0] and a fundamental frequency solution ûS λ µ such that λ = λS λ µ = Λ S λ µ (û S λ µ ) and S λ,µ (û S λ µ ) = S λ . Since λS λ µ = λ < λS µ , Corollary 6.3 implies that S λ < S ≤ 0, which contradicts the assumption that ûλ is a ground state.

Proof of Theorems 1.3 and 1.5

Proof of Theorem 1.3. Let N = 2, 2 < p < q < ∞ and µ > μ0 . Take λ * µ ∈ (0, +∞) defined by Lemma 6.5.

Let λ ∈ [0, λ * µ ]. Then Corollary 6.6 yields that Equation (1.3) has a ground state ûλ ∈ Σ, and thus we have (1 o ). Moreover, S λ,µ (û λ ) < 0 for λ ∈ [0, λ * µ ) and S λ,µ (û λ )| λ= λ * µ = 0, and thus (2 o ) holds. By Lemma 6.7, ûλ is a fundamental frequency solution of (1.3) with fundamental frequency λ. This by Corollaries 3.7 implies (3 o ). Moreover, we have F S µ = G λ,µ , and thus, by Lemma 4.2 we obtain assertion (4 o ).

Proof of Theorem 1.5. Let N = 2, 2 < p < q < ∞, S ∈ R. Proposition 2.5 implies that the value μS ≥ 0 given by (2.6) is an extremal value. By Lemmas 3.4 and 3.6, it follows that Equation (1.3) has a fundamental frequency solution ûS µ ∈ Σ \ {0} for any µ > μS .

In addition, if µ = μS , the existence of the fundamental frequency solution ûS µ ∈ Σ \ {0} follows from Lemma 5.2, (ii). Thus, assertion (1 o ) is satisfied. Assertion (2 o ) follows from Corollary 3.7. If S ≤ 0, then by Proposition 2.6, μS > 0. Take µ ≥ μS , then Proposition 5.3 implies that S ∈ (S(µ), 0], and µ ≥ μ0 . Hence Lemma 6.4 yields that the fundamental frequency solution ûS µ is a ground state of (1.3) with λ = Λ S µ (û S µ ) = λS µ . Moreover, by the monotonicity of λS µ and Lemma 6.5 it follows λ ∈ [0, λ * µ ). Thus we obtain (3 o ).

Since (1 o ), F S µ = ∅ for S ≤ 0, µ ≥ μS , and thus, Lemma 4.2 yields that the set of fundamental frequency solutions F S µ is orbitally stable.

Appendix A. Proof of Proposition 1.2

We resume the approach introduced in [19] (see also [8]), and, more precisely, the proof of [10, Proposition 3.1]. In all cases, we consider the constraint u ∈ B p , where

For the homogeneous nonlinearity, we introduce the functional

We know the spectrum of H, σ p (H) = N + 2N, and that Hermite functions provide an L 2 -eigenbasis; see e.g. [START_REF] Landau | Quantum mechanics: non-relativistic theory[END_REF]. The uncertainty principle also reads Hφ, φ ≥ N φ 2 L 2 , ∀φ ∈ Σ. First case: λ > -N . We show that 0 < δ < ∞. The finiteness is obvious, and the uncertainty principle implies, for all u ∈ Σ, (A.1)

If we had δ = 0, then there would exist a minimizing sequence u n ∈ B p such that u n → 0 in L 2 . The definition of F implies that u n → 0 in Σ too. Our assumption on p implies Σ ⊂ H 1 (R N ) ֒→ L p (R N ), and thus u n leaves B p for n sufficiently large, leading to a contradiction: δ > 0.

In view of (A.1), and minimizing sequence is bounded in L 2 , and again from the definition of F , it is bounded in Σ. The Banach-Alaoglu theorem implies that up to a subsequence, u n converges weakly to some function ũ ∈ Σ. The presence of the harmonic potential makes the embedding Σ ֒→ L r (R N ) compact for all 2 ≤ r < 2 * (see e.g. [47, Theorem XIII.67]): u n → ũ strongly in L 2 ∩ L p , and ũ ∈ B p solves (H + λ)ũ = ν|ũ| p-2 ũ, for some Lagrange multiplier ν ∈ R. Since δ > 0, taking the inner product with ũ in the above equation shows that ν > 0. The function u = ν 1/(p-2) ũ ∈ Σ \ {0} then solves (1.6).

Second case: λ < -N . For any c, u c (x) = ce -|x| 2 /2 satisfies Hu c = N u c , so picking c > 0 so that u c ∈ B p shows that δ < 0.

Suppose δ = -∞: there would exists a sequence

We remark that (xu n ) n∈N and (∇u n ) n∈N are also unbounded in L 2 (R N ), with norms of the same order as u n L 2 . Indeed, if we had ∇u n L 2 ≫ u n L 2 and/or xu n L 2 ≫ u n L 2 , then we would have F (u n ) ≥ 0 for n sufficiently large. In view of (1.2), the three terms ∇u n L 2 , xu n L 2 and u n L 2 go to infinity with the same order of magnitude. Set ũn = 1 u n L 2 u n .

This is a bounded sequence in Σ, whose L 2 norm is equal to one. Up to extracting a subsequence, ũn converges weakly in Σ, and strongly in L 2 ∩ L p (as we have seen in the first case), to some ũ ∈ B p such that ũ L 2 = 1. We infer

Therefore, u n cannot remain in B p , hence the finiteness of δ.

Knowing that -∞ < δ < 0, we infer that any minimizing sequence is bounded in Σ, and we conclude like in the first case. The only difference is that now the Lagrange multiplier ν < 0, and we set u = |ν| 1/(p-2) ũ.

Third case: combined nonlinearities, λ > -N . The proof in the inhomogeneous case follows the same lines as the first case. We now consider

and the minimization problem

The uncertainty principle yields

and it is easy to check that the proof of the first case can be repeated, up to the final homogeneity argument: there exists a Lagrange multiplier µ, which is positive, but we have essentially no information regarding its value.