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Université Claude Bernard Lyon 1
Ecole Centrale de Lyon

CNRS, Ampère, UMR5005
69621 Villeurbanne, France

xuefang.shi@insa-lyon.fr

Tanguy Simon
Univ Lyon, INSA Lyon
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Abstract—The Power flow controller (PFC) is a key element
for meshed DC micro-grids. Indeed, this device is able to balance
the electric power between the lines of a node in the mesh, which
is required to maintain the stability and prevent the overloading
of some lines. This paper presents a differential flatness based
nonlinear control for this device. The chosen converter topology
is modelled by a modular state-space nonlinear system. The
primary control objective is to achieve power control on the line
connected to each terminal of the PFC despite the uncertainty
of the grid. The considered PFC is equipped with a reservoir
capacitor. Voltage regulation of this capacitor is also addressed,
as a secondary control objective. Simulation results for a 3-
terminal PFC show the effectiveness of the proposed control. The
extension to a 5-terminal PFC demonstrates that the control for
an m-terminal PFC is easily implemented thanks to the modular
structure of the proposed control scheme.

Keywords—Meshed DC microgrid, Power flow controller,
Power converter, Flatness-based control, Nonlinear control

I. INTRODUCTION

Micro-grids are currently being build throughout the world
to meet with local energy demands with low carbon emissions
[1]. Two of the reasons are their ability to increase the penetra-
tion of small renewable energy generators [2] [3] and reduce
the transport losses by ensuring that the energy produced is
consumed locally. The use of direct current (DC) in micro-
grids brings various advantages: It removes the problem of
reactive power and skin effects. It increases power efficiency
by reducing the number of power converters since most
generators and loads already have a DC link [4].

Meshed microgrids are another research issue to enhance
the reliability, modularity and efficiency of the system while

Fig. 1. Micro-grid with a 5-terminal PFC
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Fig. 2. PFC at an m-terminal node in the grid

reducing the amount of copper used [5]. Moreover, a mesh
is the natural structure when loads and generation units are
randomly distributed in an area following the argument of Dr.
Rik W. De Doncker. In this context, the Power Flow Controller
(PFC) must be introduced (Fig. 1). Here, it is a multi-terminal
DC/DC converter located at a node of the mesh. It allows to
control the power flow in each line of the node (Fig. 2).

The state-of-the-art on the subject can be listed as follows.
In [6], the authors propose the use of two split-pi converters
where the RST technique with hysteresis switching is used
to perform a current-limited voltage controller. The reservoir
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Fig. 3. m-terminal topology for PFC proposed in [7]

voltage is properly controlled but power flow control is not
achieved. [7] proposed another topology (Fig. 3) consisting
of a modified split-pi with m half-bridge legs connected
to the same reservoir (or link) capacitor CR. This enables
power flow control on a multi-terminal node. However, the
control proposed in [7] is open-loop and therefore does not
guarantee control performances against parameter uncertain-
ties and disturbances. Finally, the reservoir voltage has to be
maintained by an additional branch that compensates for the
power imbalance. In [8], a new control law is proposed to
improve the power control during fluctuations of the reservoir
voltage. Unfortunately, the controller regulates the current
rather than the power, and the computation of the current
reference depends on the voltage at the end of the line. Thus,
a fluctuation in the loads or generation units of the grid
would lead to a steady-state error of the power. Furthermore,
the reservoir voltage remains uncontrolled and therefore the
physical boundaries cannot be guaranteed. Moreover, in the
three latter articles, no dynamic model of the system is given,
and no mathematical guarantee for stability is found.

In the authors’ previous work [9], the topology of Fig. 3
with a 3-terminal PFC is investigated. It is first modelled as
a nonlinear multivariable system. Then, this state model is
augmented with integrators on the tracking errors. This aug-
mented model is linearised and a multivariable Proportional-
Integral control law is derived by pole placement. It achieves
simultaneous direct balancing control of the power in each
line and of the voltage across the reservoir capacitor. The
main drawbacks of this latter technique is the dependency
of the control gain matrices to parameter variations, resulting
in a limited robustness, as well as the linearisation process
which only ensures local stability in the state-space. To the
knowledge of the authors, no feedback control law for a PFC
with more than 3 terminals has been published in the literature.

In this paper, the m-terminal PFC topology shown in Fig. 3
is studied. It is made of m identical buck-boost converters
connected in parallel to a unique reservoir capacitor noted
CR. Each branch (buck-boost) is connected to a part of the
grid as shown in Fig. 1 and 2. The objective of the PFC is
to control the electric power in the lines it is connected to.
This can be performed only if vR is controlled. To achieve
simultaneous direct balancing control of the power in each line

and the control of the capacitor voltage, a nonlinear two-level
control scheme based on the differential flatness theory [10]
is proposed. This principle has been applied to many power
electronics systems [11]. In the present case, the dynamics of
each control loop are defined by a trajectory planning where
each power control loop can be considered as “decentralized”
and is easy to be duplicated. This facilitates the control
design and its implementation. Thanks to the modularity of
the proposed control law, the extension to an m-terminal PFC
becomes trivial.

The paper is organized as follows. In the second section,
the dynamical equations of an m-terminal PFC are provided.
The third section is devoted to the design of the differential
flatness-based control laws. The flatness differential theory is
first recalled. Then, the flat outputs are chosen to demonstrate
the flat property of the line power part and capacitor energy
part. A flatness-based control law is designed for each part.
The fourth section focuses on simulation results on a three-
terminal PFC and on an extended five-terminal one.

II. PFC MODELLING

To derive the control law, a simplified averaged model over
a switching period is adopted for the chosen PFC topology of
Fig. 3, by taking the following assumption:

Assumption 1. The line voltage Vk is considered as a strictly
positive measurable constant, and the reservoir voltage vR is
always strictly positive. 4

This assumption is justified knowing that, in practice, the
line voltage of a grid always stays in a neighbourhood of the
nominal voltage, a positive value well above zero. Moreover,
as can be seen on Fig. 3, if vR < Vk, the anti-parallel diode of
each high-side IGBT opens, charging the reservoir capacitor
until vR ≈ maxk(Vk) > 0.

The components are assumed to be ideal. By neglected
converter losses and grid element dynamics, an m-terminal
node PFC can be modelled as:

Pk = Vkik (1a)
dik
dt

=
1

L
(Vk − vRdk) (1b)

dvR
dt

=
1

CR

m∑

k=1

ikdk =
1

CR

m∑

k=1

Pk

Vk
dk (1c)

where Pk, Vk and ik are respectively the averaged power,
voltage and current of the k-th branch, dk is the corresponding
pulse width modulation (PWM) duty ratio, vR is the averaged
reservoir voltage across the reservoir capacitor CR.

By assuming that the reservoir capacitor dynamic is slower
than that of the currents in each line, the dynamical system
(1) can be seen as a two-time scale system. A mathematical
formalism has been developed for two time-scale systems
(corresponding to the so-called ”frequency separation” in the
linear system framework). It is called Singular Perturbations
and is well explained in [12, Ch.11]. The idea is that if both
the fast and slow subsystems are exponentially stable under
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Fig. 4. Concept of flatness-based control

time-scale separation assumptions, then the global system is
also exponentially stable for sufficient time-scale separation.
The fast time-scale subsystem is composed of the current of
each branch ik, and the slow time-scale system is composed
of the reservoir voltage vR.

The control objective is to track the power reference for
every branch k and to control the reservoir voltage to ensure
the proper operation of the PFC [9]. The strategy proposed in
this paper is to use a differential flatness-based control law [13]
for the both fast and slow subsystems to track respectively the
power reference P r

k for all k ∈ {1, . . . ,m} and the capacitor
voltage vR. Among the k power references, k−1 are given by
a higher-layer control algorithm while the last one is defined
by the reservoir voltage controller, as shown in Fig. 5.

III. FLATNESS-BASED CONTROL DESIGN

A. Brief Recall of Differential Flatness Theory

The concept of flat systems was introduced by Fliess et al.
using the formalism of differential algebra [10]. Consider a
nonlinear system of the form:

ẋ(t) = f(x(t), u(t)), (2)

where x(t) ∈ Rn, u(t) ∈ Rm and m ≤ n. This system is
considered differentially flat if there exists a flat output. An
output y is flat if there exists the following smooth functions
[14, Ch2]

h : Rn × (Rm)p+1 → Rm

η : (Rm)p → Rn

ϑ : (Rm)p+1 → Rm

such that

y = h(x, u, u̇, . . . , u(p))

x = η(y, ẏ, . . . , y(p−1))

u = ϑ(y, ẏ, . . . , y(p))

(3)

where p can be arbitrarily large [14, p82]. This means that
all the state vector x of the differentially flat system and its
control inputs u can be expressed as a function of the flat
output and flat output’s derivatives.

The flat system dynamic behaviour is determined by its
output. If the output vector y can be demonstrated to be flat,
the design of a control law capable of tracking every desired
trajectory of the flat output ytraj becomes straightforward,
see Fig. 4 and [13]). It is easy to demonstrate that the

following feedback control law ensures that the tracking errors
e = (y − ytraj) asymptotically vanish [14, p81]:

y(p) − y(p)traj +Kp−1(y(p−1) − y(p−1)
traj )

+ · · ·+K0(y − ytraj) = 0, (4)

where the set of controller parameters Kp−1, . . . ,K0 are
chosen such that the closed-loop characteristic polynomial is
Hurwitz. Unlike input–output linearization control for non-
linear dynamical systems, differential flatness-based control
does not lead to zero dynamics [15, Ch.4]. As a consequence,
the stability of the whole closed-loop system of Fig. 4 is
guaranteed.

Trajectory planning is an important step in the implemen-
tation of a flatness-based control. Since all the state and input
variables are to be written as functions of a chosen flat output
y, the flat output trajectory ytraj defines the trajectories of all
the state or input variables. Therefore, a well-known waveform
can be considered such that all the transient state behaviors can
be predicted.

B. Design of the Power Control Loop

The power control applies for the fast time-scale subsystem
(1b) with the state vector x := [i1, i2, . . . , im]ᵀ, and the control
vector u := [d1, d2, . . . , dm]ᵀ. Before designing this control
loop for the fast subsystem, the following assumption has to
be considered:

Assumption 2 (time-scale separation I). The dynamic of the
slow subsystem (reservoir capacitor voltage vR) is infinitely
slow compared to the fast one, i.e. it can be neglected for the
fast subsystem (current of each line ik) control loop design.

4
Note that this assumption is only taken for the fast control

loop design. The flat output candidate is chosen as the power
of each branch noted y := [P1, P2, ..., Pm]ᵀ. Indeed, (3) is
verified since for all k ∈ {1, . . . ,m}:

yk = xkVk = h(xk), (5a)
xk = yk

Vk
= η(yk), (5b)

uk =

(
Vk −

Lẏk
Vk

)
1

vR
= ϑ(ẏk). (5c)

Note that in under Assumptions 1 & 2, Vk and vR are strictly
positive, constant and measurable.

Thus, subsystem (1b) can be considered as a flat system
with y = [P1, P2, ..., Pm]ᵀ as the flat output.

Then, to track the k-th power trajectory Pk,traj for all k ∈
{1, . . . ,m}, a feedback control law is given as follows:

Ṗk = Ṗk,traj −Kpk(Pk − Pk,traj)

−Kik

∫ t

0

(Pk(τ)− Pk,traj(τ))dτ (6)

where the integral action is added to eliminate the disturbances
and to compensate for model errors. The control parameters
Kpk and Kik are chosen to ensure the appropriate k-th power



Fig. 5. Differential flatness-based control scheme for an m-branch PFC

reference tracking dynamics, i.e. the dynamics of the tracking
errors ek = (Pk − Pk,traj).

C. Design of the Reservoir Capacitor Voltage Control Loop
The capacitor voltage dynamics corresponds to the slow

time-scale subsystem (1c). For the sake of simplicity, only the
power in the m-th branch is adjusted to regulate the reservoir
voltage: while P r

1 to P r
m−1 are defined by the microgrid

supervising algorithm, P r
m is defined by the reservoir voltage

control loop. (see Fig. 5).

Assumption 3 (time-scale separation II). The regulation of the
power in each branch is fast enough to consider that Pk = P r

k

for all k ∈ {1, . . . ,m}. The current dynamics can therefore
be neglected. 4

The previous assumption is only taken for the design of the
slow-scale time control loop (section III-C). This assumption
is also known as the quasi steady state of the fast subsystem.
Under this assumption, (1b) gives Vk = vRdk. (1c) can thus
be written as:

dvR
dt

=
1

CRvR

(
m−1∑

k=1

P r
k + P r

m

)
(7)

= f(xe) + g(xe)ue,

where the new state variable is defined as xe = vR and the new
control input as ue = P r

m. The proposed flat output candidate
is the energy of the capacitor ye = 1

2CRv
2
R. Since

ẏe = CRvR
dvR

dt =

m−1∑

k=1

P r
k + P r

m =

m−1∑

k=1

P r
k + ue,

and under Assumption 3, (3) is verified:

ye = 1
2CRx

2
e, (8a)

xe =
√

2ye

CR
, (8b)

ue = P r
m = ẏe −

m−1∑

k=1

P r
k . (8c)

Thus, the differential flatness conditions expressed in (3) are
verified, and system (1c) is a flat system with ye = 1

2CRv
2
R

as the flat output and ue defined in (8c) as the flatness-based
control (inverse dynamics) which will be applied to generate
the last power reference for the fast time-scale subsystem.

As for the power control, to track the desired energy
trajectory ye,traj which can be generated from the desired
capacitor voltage vrR, the feedback control law is given as
follows:

ẏe = ẏe,ref −Kpe(ye − ye,traj)

−Kie

∫ t

0

(ye(τ)− ye,traj(τ))dτ, (9)

where Kpe and Kie define the dynamics of the reservoir
energy tracking error (ye−ye,traj). They are chosen to ensure
the stability and robustness of the energy tracking which drives
the capacitor voltage vR to its reference vrR.

D. Trajectory Planning and Global Control Scheme

As underlined in subsection III.A, the flat output trajectory
defines the trajectories of all the state or input variables.
Physical constrains and time-scale separation assumptions can
be taken into account in the trajectory planning. To limit the
derivative terms in the control laws (6) and (9), two low-
pass second-order filters are used to generate the desired
trajectories respectively for the flat outputs ye,traj (energy)
and Pk,traj (power) components. The transfer functions are
given respectively by

ye,traj(s)

yre(s)
=

ω2
te

s2 + 2ξteωtes+ ω2
te

(10a)

Pk,traj(s)

P r
k (s)

=
ω2
tk

s2 + 2ξtkωtks+ ω2
tk

(10b)

where ξte (respectively ξtk) and ωte (respectively ωtk) are the
desired dominant damping ratio and natural frequency, respec-
tively. These parameters fix the dynamics of the trajectories
to be tracked, and the two time-scale properties (time-scale
separation assumptions) are ensured by choosing ωte << ωtk.
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Fig. 5 shows the functional diagram summarising the global
control algorithm. Note that the measured currents ik are only
used in (6) to determine Pk for power trajectory tracking, but
not in the inverse dynamic which may be sensitive to measured
noises.

IV. SIMULATION RESULTS

To validate the proposed control law, simulations have been
made through Matlab/Simulink. The averaged model chosen
for the simulation is the one given by the equation (2) of [9],
where each terminal is cabled as in Fig. 6 by added to (1)
the dynamics of Vk and the grid model. This grid is modelled
as a constant voltage source VGk and a line modelled by an
inductance LGk with a resistance RGk. Different LGk, RGk

and VGk can be considered for each terminal. Each branch
of the PFC (Fig. 6) has identical parameters L = 0.75 mH,
C = 20 µF with reservoir capacitor CR = 60 µF.

As explained in III.D, ξte and ωte fix the dynamic behavior
of the energy trajectory (i.e. capacitor voltage dynamics). ξtk
and ωtk define the dynamics of the power trajectories. ξte
and ξtk are taken equal to 1. ωte = 100 rad.s−1 and ωtk =
2000 rad.s−1 are chosen to ensure the time-scale separation
assumptions 2 & 3. The control parameters for error tracking
of (6) and (9) are chosen as: Kpk = 2ξpωp, Kik = ω2

p, Kpe =
2ξeωe and Kie = ω2

e , where ξp = ξe = 0.7, ωp = 1000
rad.s−1 and ωe = 100 rad.s−1. These control parameters
ensure an asymptotic convergence of the power and energy
errors to zero.

A. 3-terminal simulation

Firstly, the control of a 3-terminal PFC is simulated. The
line parameters are LG1,2,3 = [18 18 18] µH, RG1,2,3 =
[2.6 30.3 1.4] Ω, VG1,2,3 = [400 383 402] V.

At t = 0.04 s, the references are changed from [P r
1 , P

r
2 , v

r
R]

= [−600 W,−200 W, 500 V] to [−900 W, 100 W, 500 V]. To
assess the robustness of the proposed control law against the
grid uncertainty, the voltage VG1 at the end of the line 1 is
changed form 400 V to 300 V at t = 0.06 s.

The simulation results are given in Fig. 7. It can be seen
that the capacitor voltage vR and the powers P1, P2, P3

converge from the initial condition to their reference (blue
curves) without static error. The transition performance of the
power tracking can be appreciated, notably at t = 0.04 s when
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Fig. 7. Simulation results for a three -terminal PFC : reservoir voltage and
power in each line with their references
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Fig. 8. Simulation results for a three -terminal PFC : duty cycles

the power references change. At t = 0.06 s, the grid variation
induces a little oscillation of vR and P1, but return quickly
to their reference. This demonstrates some robustness of the
proposed control, especially since the perturbation is very large
(100 V). Fig. 8 displays the control signal (duty ratio) of each
branch. It can be verified that they are do not saturate.

B. 5-terminal simulation

Secondly, the simulation is extended to a five-terminal
PFC. The converter parameters are unchanged, with L =
0.75 mH, C = 20 µF and CR = 60 µF. The line
parameters are LG1,2,3,4,5 = [18 18 18 18 18] µH,
RG1,2,3,4,5 = [2.6 30.3 2.6 30.3 1.4] Ω, VG1,2,3,4,5 =
[400 383 400 383 402] V. The same set of con-
trol parameters is kept. As for the 3-terminal PFC,
the references are changed from [P r

1 , P
r
2 , P

r
3 , P

r
4 , v

r
R]

= [−600 W,−200 W,−600 W,−200 W, 500 V] to
[−900 W, 100 W,−200 W,−600 W, 500 V] at t = 0.04 s.
To assess the robustness of the proposed control law against
the grid uncertainty, the voltage VG1 at the end of the line 1
is changed form 400 V to 300 V at t = 0.06 s.

The simulation results are given in Fig. 9. As for the 3-
terminal PFC, same transition and steady-state performances
can be observed for 5-terminal PFC since the same trajectory
planning and control parameters are applied. Note that the
steady-state value of the last power P5 corresponds to the
balanced power of all the other line powers. For the same grid
variation at t = 0.06 s, the overshoot of vR is about 506 V
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Fig. 10. Simulation results for a five-terminal PFC : duty cycles

instead of 502 V for 3-branch. The control signals, pictured
in Fig. 10, are all unsaturated (dk ∈ [0, 1]). The big change of
d1 can be observed at t = 0.06 s due to the grid perturbation
on line 1.

V. CONCLUSIONS

In this paper, a differential flatness-based control law has
been proposed both for line power control and for the converter
capacitor reservoir energy (i.e. voltage) control in a PFC for
mesh DC microgrids. The proposed control scheme has been
successfully validated in the case of a three-terminal PFC and
a five-terminal PFC. This last case shows that it is easy to
extended the control scheme to any m-terminal PFC. Despite
the demanding assumptions on the modelling and on the time-
scale separation, the transition and steady state performances
as well as the robustness of the control law against grid
disturbances are asserted through simulations. Few control
parameters are required (two for capacitor energy control,

two for each terminal power control) and are easily tuned.
Experimental validation of the theoretical results will be made
in a laboratory test bench for future work.
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