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Robust Output Set-Point Tracking
for a Power Flow Controller via Forwarding Design

Tanguy Simona, Mattia Giaccaglib, Jean-François Trégouëta, Daniele Astolfib, Vincent Andrieub,
Xuefang Lin-Shia and Hervé Morela

Abstract— This paper tackles the problem of robust output
set-point tracking for a power flow controller (PFC) for meshed
DC micro-grids. The PFC is a power electronics device used
to control the power (or current) flow in the lines of the grid
and act as a DC circuit breaker. The state-space model of this
system is bilinear with uncertain dynamics and a polynomial
output. In the proposed design, the plant is first extend with
an integral action on the tracking error. The cascade model
composed by the plant and the integrator is then stabilised by
means of a state-feedback law, with a forwarding approach.
If the plant parameters are sufficiently close to their nominal
value, robust regulation is then achieved. Simulations are given
to validate the results.

I. INTRODUCTION

Direct current (DC) micro-grids are a type of electrical
network developed to enhance the penetration of renewable
energy sources while lowering the energy losses and assisting
the transition to a more energy-frugal lifestyle (see [1], [2]
and references therein). Meshed micro-grids improve this
result by requiring less copper for their wiring (since multiple
paths between two points are allowed) as well as improving
the modularity, reliability and efficiency of the energy system
[3]. In this context, a DC power flow controller (PFC) is
a multi-terminal converter located at a node of a meshed
micro-grid, sometimes called a smart-node [4]. Its purpose
is to regulate the power or the current in each of the lines
connected to its terminals to make a better use of the meshed
structure and prevent overloading.

PFCs, also denoted as current flow controllers in literature,
have been widely studied for high voltage DC applications
(HVDC) (see the recent survey [5]), but very little for low-
voltage applications (LVDC). Among them, recall a multi-
terminal PFC with a compensation node [6] improved by
removing the compensation node [7], a PFC made of two
separate Split-PI converters [8], and a three-terminal PFC
[2]. The main difference between HVDC and LVDC PFCs
resides in the topology of the converters. The latter can be
designed to withstand the full line voltage and therefore they
can also act as DC circuit breakers or line-voltage regulators.
The main shortcomings of [6]–[8] are the absence of dynamic
model and their control strategies, which fail to give any
proofs of stability or robustness. No direct control of the
power is achieved, and the control laws are applied to two-
terminal devices, which do not constitute a node. In [6],
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the control law is a constant ratio determined by a look-
up table, based on the knowledge of the voltage at the end
of the line, an uncertain parameter in practice. In [7], a
PI controller is used to regulate the current instead of the
power, whose reference is again computed using the voltage
at the end of the line. Moreover, the reservoir voltage is
not controlled and can drift outside the physical boundaries.
Finally, in [8], authors propose a current-limited voltage
controller using the RST technique with hysteresis switching.
The reservoir voltage is properly controlled but power flow
control is not achieved. In our first approach of the problem
[2], direct power flow control is achieved on a three-terminal
PFC, using a state feedback on the linearised dynamics after
adding integrators. This only gives local stability results in
the state-space, and although its robustness has been tested,
no proofs are given for local stability in the parametric space.

In this work, a PFC which is modelled as a finite dimen-
sional state space bilinear system is studied (see Section II-
A). Note that while for this class of nonlinear systems, many
stabilisation techniques have been proposed (see, among
them, [9]–[12] and the references therein), very few works
addressed the more general problem of output regulation,
e.g., [13] and more recently [14], [15]. Despite this lack of
literature on output regulation, bilinear systems are a class
of systems commonly employed to model physical systems
(see [14], [16], [17] and many others).

In this paper, a new approach is presented for the control
of the PFC. Its main improvement from existing solutions
in the literature such as the multi-variable PI-controller of
[2] is that the domain of attraction is semi-global in the
initial conditions and local in the parametric space and that
formal proofs of stability of the closed-loop system under
parameters perturbations are given. The system is extended
with an integral action processing the tracking error. Then, a
stabiliser for the extended system is derived with a forward-
ing approach (see, e.g., [18], [19] or [20] for an incremental
version). This control law inherits stability properties with
respect to small parameter variations as shown in [19], [21],
i.e., semi-global stability with regard to initial conditions
holds locally in the parametric space. A similar result has
been shown for DC/DC converters in [22].

The paper is organised as follows. In Section II, the
model of the power flow controller is presented and the
control problem is formalised. In Section III, the forwarding
control design [19] is specialised for bilinear systems having
a second-order polynomial output. The main results of this
work are provided in Section IV. A simulation is given in
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Fig. 1: The PFC at a three-terminal node in the grid, where Gridk

represents the grid as seen by branch k

Section V, supporting the theoretical results. Conclusions
are drawn in Section VI.

Notation. The symbol Im stands for the identity matrix of
size m × m. The null matrix of size m × n is denoted
by 0m×n while 0m denotes column vectors. Dimensions
are omitted when obvious from the context. The operator
“diag {}” builds a diagonal matrix from entries of the input
vector argument. Given a vector a ∈ Rn, the notation ak
refers to the k-th element of a, with 1 being the index of
the first element. Given a square matrix A, det(A) indicates
its determinant. The notation A � 0 (≺ 0) is used if A is
a positive (negative) definite matrix. Finally, given a set S,
card(S) denotes its cardinality and int(S) its interior.

II. PROBLEM STATEMENT

The objective of the PFC is to control the electric power
in the lines it is connected to. As shown in Fig. 1, the
study is here restricted to a three-terminal version and the
components are assumed to be ideal to design the control law.
From this illustration and knowing the PFC cannot consume
or generate power, it appears clearly that the steady-state
sum of powers should be zero. The chosen electrical circuit
to achieve this function is made of three identical buck-boost
converters connected in parallel on their high-side to a unique
reservoir capacitor noted CR. Each branch (buck-boost) is
drawn on the left of Fig. 2, with the corresponding grid
model on the right. This grid model is simplified in order
to derive the control law.

This circuit cannot operate properly if the reservoir voltage
is not controlled1. Although this adds a fourth control objec-
tive, this problem is easily solved by noting the fact that this
voltage is constant if and only if the sum of powers equals
zero. Consequently, if all lines except one are regulated to
constant power references P r1 and P r2 ; and the reservoir
voltage is regulated to a constant value vrR, the power in the
last line will naturally converge to the overall power balance,
i.e. P r3 tends to −P r1 − P r2 .

The objective of this study is to design a feedback
controller delivering the duty ratios for the pulse width
modulation (PWM) switching of the transistors to achieve
power control in the line connected to each terminal of
the PFC while maintaining the reservoir voltage to a fixed
value, despite the uncertainty of the grid. Indeed, to ensure
flexibility and modularity, limited knowledge is assumed on
the grid model at the end of each line.

1If vR < vk , the current flows freely through the diode in SHk , which
cannot be controlled by the switching of the transistors (see Fig. 2)
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Fig. 2: Detail of the k-th branch of the PFC (left) and the proposed
grid model as seen by this terminal (right)

A. Model of The Power Flow Controller

In Fig. 2, the currents are denoted by an i and measured in
Amps and the dynamic voltages by v and measured in Volts.
The components parameters are denoted by LGk/Lf , CR/Cf ,
RGk and VGk for, respectively, inductors (Henry), capacitors
(Farad), resistors (Ohm) and constant voltages (Volts). A
synchronous PWM switching is assumed, and the dynamics
are averaged over a switching period. The input vector u =[
u1 u2 u3

]ᵀ ∈ R3 is made of the three duty ratios. The
dynamic variables are all gathered in the state vector x ∈ R10

and the uncertain model parameters are gathered in the vector
θ ∈ R9, as shown in Tab. I. The output vector corresponds
to the control objectives y = [P1 P2 vR]ᵀ ∈ R3 (with
Pk = iGkvk) and the corresponding vector of references is
r = [P r1 P r2 vrR]ᵀ. The dynamic model of the system can be
found using the electrical laws for the current and voltage in
inductors and capacitors respectively while assuming ideal
components (see [2] for a more detailed construction of the
PFC’s model). The state-space model then writes:

ẋ = A(θ)x + N(x)u + q(θ), (1a)
y = Cx + H(x)x, (1b)

with

A(θ) = J(θ)−1




0 0ᵀ
3 0ᵀ

3 0ᵀ
3

03 0 I3 0
03 −I3 0 I3

03 0 −I3 −diag {θ4, θ5, θ6}


 (2a)

N(x)u =

3∑

j=1

(Njuj)x = J(θ)−1




0 uᵀ 0ᵀ
6

−u 0 0
06 0 0


x, (2b)

q(θ) = J(θ)−1[0ᵀ
7 θ7 θ8 θ9]ᵀ, (2c)

J(θ) = diag {CR, Lf , Lf , Lf , Cf , Cf , Cf , θ1, θ2, θ3} ,
(2d)

C =




0 0ᵀ
9

0 0ᵀ
9

1 0ᵀ
9


 , (2e)

H(x) =



0ᵀ

4
x8

2 0 0 x5

2 0 0
0ᵀ

4 0 x9

2 0 0 x6

2 0
0ᵀ

4 0 0 0 0 0 0


 . (2f)

Note that the Nj can be deduced from (2b). Name Θ ⊂ R9

the non-empty set of admissible system parameters that are



TABLE I: State vector and uncertain parameter vector.

x
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

vR i1 i2 i3 v1 v2 v3 iG1 iG2 iG3

θ
θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9
LG1 LG2 LG3 RG1 RG2 RG3 VG1 VG2 VG3

compatible with the physics of the system, defined as

Θ :=
{
θ ∈ R9 :θi > 0, i ∈ {1, . . . , 6},

θj ≥ 0, j ∈ {7, 8, 9}
}
. (3)

There is no loss of generality in these constraints since the
first six parameters (θ1, . . . , θ6) represent physical properties
(inductance and resistance), which are always strictly posi-
tive. The voltages VG on the line (represented by θ7, θ8, θ9)
must always be non-negative. The non-empty set of admis-
sible references is denoted R ⊆ R3 and defined as

R :=
{
r = (P r1 , P

r
2 , v

r
R) ∈ R3 : (P r1 , P

r
2 ) 6= (0, 0), vrR > 0

}

(4)
As stated before, vrR should be sufficiently high for the device
to operate properly. The case of all zero power references is
not considered because it makes the control of vR impossible,
as shown later.

B. Control problem

The issue tackled in this paper is a robust output set-point
tracking problem for system (1). To this end, the system (1)
is extended with an integral action of the form

ż = y − r, (5)

and the aim is to stabilise the cascade formed by (1a) and
(5). Indeed, as show in [19], the use of the integral action (5),
is necessary and sufficient to achieve asymptotic tracking in
presence of perturbations of the parameters θ, when these
are not perfectly known. The problem is summarised below

Problem 1. Given nominal parameters θnom ∈ Θ and
references rnom ∈ R, find a state feedback control law of
the form u = α(x, z) for the extended system (1), (5) such
that the following holds.

1) (Global set-point tracking): When (θ, r) =
(θnom, rnom), for any initial condition x0 in R10,
the resulting trajectory of the closed-loop system is
bounded forward in time and limt→∞ y(t) = r.

2) (Robustness): For any arbitrary compact set D ⊂ R10,
there exists δ > 0 such that, for any (θ, r) ∈ Θ × R
verifying |θ − θnom| ≤ δ and |r − rnom| ≤ δ, and for
any initial condition x0 ∈ D, the resulting trajectory of
the closed-loop system is bounded forward in time and
limt→∞ y(t) = r.

The key feature of the integral action is that if there
exists an equilibrium for the closed loop, at this equilibrium
the tracking error is equal to 0. To design the control law,
the full knowledge of the state is assumed. This is a rea-
sonable assumption knowing that voltages and currents are

easily measured. Among the different state-feedback control
techniques that can be used to solve Problem 1, this work
relies on forwarding-based control laws (see [19]–[21] and
the references therein). In the following, such control design
is specialised for bilinear systems having a second-order
polynomial output. Note that the variables in the following
section are in error coordinates, as in all theoretical results
(Throughout the paper, a variable can be written in absolute
or in error coordinates : a 6= a).

III. FORWARDING DESIGN FOR A CLASS OF BILINEAR
SYSTEMS WITH POLYNOMIAL OUTPUT

Consider a general bilinear system having a second-order
polynomial output feeding an integrator of the form

ẋ = Ax+ (N(x) +B)u, ż = Cx+H(x)x, (6)

where (x, z) ∈ Rn+p is the state, u ∈ Rm is the control in-
put, A,B,C are matrices of suitable dimensions and H(x) =[
Hᵀ

1 x . . . Hᵀ
p x
]ᵀ

and N(x) =
[
N1x . . . Nmx

]
. As-

sume m ≥ p. The following proposition gives a state-
feedback control law able to stabilise the origin of (6) with
a global domain of attraction.

Proposition 1. Consider system (6) and suppose that A is
Hurwitz and that the matrix CA−1B is full rank. Pick any
Q = Qᵀ � 0, and select P = P ᵀ � 0, Mi = Mᵀ

i such that
the following equations hold

PA+AᵀP = −Q, (7)
MiA+AᵀMi = 1

2 (Hi +Hᵀ
i ) , ∀i ∈ {1, . . . , p}, (8)

and let M0 = CA−1. Then, for any tuning parameter κ > 0,
the origin of system (6) in closed loop with u = ψ(x, z), with
the function ψ : Rn+p → Rm defined as

ψ(x, z) = −κ
[
2xᵀP (N(x) +B)

− 2(z −M(x))ᵀ (M0 + 2R(x)) (N(x) +B)
]ᵀ
, (9)

with R(x) :=
[
M1x . . . Mpx

]ᵀ
, M(x) := M0x+R(x)x,

is globally asymptotically stable and locally exponentially
stable.

Proof. The proof is based on a Lyapunov function construc-
tion which follows the results presented in [21, Section I].
Let W : Rn+p → R be the function

W (x, z) = xᵀPx+ (z −M(x))ᵀ(z −M(x)) , (10)

where M is defined in the statement of the proposition. Note
that W is proper and positive definite. Moreover, M satisfies

∂M

∂x
(x)Ax = M0Ax+



xᵀ(M1A+AᵀM1)x

...
xᵀ(MpA+AᵀMp)x


 ,

= Cx+
1

2



xᵀ(H1 +Hᵀ

1 )x
...

xᵀ(Hp +Hᵀ
p )x




= Cx+H(x)x .



Hence, the time derivative of W along the solutions of
System (6) satisfies,

Ẇ (x, z) = 2xᵀP [Ax+ (N(x) +B)u]

+ 2(z −M(x))ᵀ
[
−∂M∂x (x)(N(x) +B)u

]

≤ −xᵀQx+ [2xᵀP (N(x) +B)

− 2(z −M(x))ᵀ ∂M
∂x (x)(N(x) +B)

]
u.

Together with the definition of function M and the control
law (9), this gives

Ẇ (x, z) ≤ −xᵀQx− 1
κψ

ᵀ(x, z)ψ(x, z) .

Note that

{(x, z) : Ẇ (x, z) = 0} ⊂ {(x, z) : x = 0, ψ(x, z) = 0} .
On the other hand, ψᵀ(0, z) = 2κzᵀCA−1B. Since by
assumption, CA−1B is full rank and κ > 0, it yields that
(x, z) 7→ Ẇ (z, x) is negative definite. Consequently, W is a
Lyapunov function of the closed loop system and the origin
is globally and asymptotically stable. Finally, employing the
same method, note that the quadratic function

W0(x, z) = xᵀPx+ (z −M0x)ᵀ(z −M0x),

is a Lyapunov function for the first order approximation

ẋ = Ax+Bψ0(x, z), ż = Cx,

with ψ0(x, z) being the first order approximation of ψ.
Hence, local exponential stability of the equilibrium is ob-
tained.

IV. MAIN RESULTS

A. Set of solutions

Problem 1 may not be solvable for all θnom ∈ Θ and
references rnom ∈ R. Indeed, the admissible parameters and
references should be restricted to those for which there exists
an equilibrium point x? on which the output y reaches the
reference r. In the most general case, such x? does not exist
for any possible value of (θ, r) due to the nonlinear behaviour
of the model. For a given (θ, r) ∈ Θ × R, let us define
beforehand the set E(θ, r) of controlled equilibrium points,
namely the set of steady state solutions for which output
tracking is obtained, as

E(θ, r) :=
{

(x?,u?) ∈ R10 × R3 : A(θ)x?

+ N(x?)u? + q(θ) = 0, Cx? + H(x?)x? = r
}
. (11)

S is then defined as the set of admissible parameters and
references (θ, r) for which there exists such equilibrium
points:

S :=
{

(θ, r) ∈ Θ×R : card(E(θ, r)) > 0
}
. (12)

The following proposition (whose proof has been omitted
for space reasons) shows that it is possible to obtain a
characterisation of S and an expression of E through model
inversion.

r ∫+

−
u

α(·)
z y

xPFC

Fig. 3: Proposed control structure for the PFC

Proposition 2. Consider system (1). Then

S =
{

(θ, r) ∈ Θ×R : ∆k(θ, r) ≥ 0, k ∈ {1, 2, 3}
}
, (13)

where
∆k(θ, r) := θ2

k+6 − 4θk+3P
r
k (14)

with P r3 := −P r1 − P r2 . Moreover, for a given (θ, r) ∈ S,
there exists from one to six pairs (x?,u?) ∈ E(θ, r), where

E(θ, r) =





x?k+4 = 1
2

(
θk+6 ±

√
∆k(θ, r)

)
(15a)

x?k+1 = x?k+7 = 1
θk+3

(θk+6 − x?k+4) (15b)

x?1 = vrR (15c)

u?k =
x?
k+4

vrR
(15d)

B. Controller design

The aim of this section is to solve the output set-point
tracking problem presented in Section II-A for the PFC (1)
using the control structure presented in Fig. 3. The controller
will be designed for some known nominal parameters and
references (θnom, rnom). Furthermore, it is assumed that this
pair belongs to int(S) rather then the whole set S for
robustness reasons. Indeed the robustness of the proposed
control law will be proven by showing that the output set-
point tracking still admits a solution for (θ, r) distinct from
(θnom, rnom) but sufficiently close to it, as specified later on.

Theorem 1. Consider system (1) with (θ, r) ∈ int(S). Then,
for any (θnom, rnom) ∈ int(S) and any (x?nom,u

?
nom) ∈

E(θnom, rnom), the control law

ż = y − r

u = α(x, z) := u?nom + ψ(x− x?nom, z)
(16)

solves Problem 1, where the function ψ is designed according
to Proposition 1, namely of the form (9) and with the matrices
A,B,C and functions N,H defined as

A := A(θnom) +

3∑

j=1

Nju
?
nom,j, B := N(x?nom)

C := C + 2H(x?nom), N(x) := N(x), H(x) := H(x),

and P,M defined as in (7), (8) and any κ > 0 .

Proof. The proof is divided into two parts. First, it is shown
that the controller (16) achieves output set-point tracking
for (θ, r) = (θnom, rnom) and therefore satisfies the item
1 of Problem 1. Then, it is shown that the design is robust
to model parameter variations, namely, for any compact set
D ⊂ R10, if (θ, r) is sufficiently close to (θnom, rnom) (as
specified later on), set-point tracking is obtained for any



initial condition x(0) ∈ D, thus addressing the item 2 of
Problem 1.
Part 1: Global set-point tracking. Consider (θ, r) =
(θnom, rnom) ∈ int(S) and (x?,u?) ∈ E(θ, r). The sys-
tem (1) can then be rewritten in error coordinates u 7→ u :=
u − u?, x 7→ x := x − x? and z 7→ z := z − z?, where
z? = 0. In these coordinates, the system reads

ẋ = A(θ)(x+ x?) + N(x+ x?)(u+ u?) + q(θ),

=
(
A(θ) +

3∑

j=1

Nju
?
j

)
x+ N(x+ x?)u

(17)

while the z-dynamics read

ż = (C + 2H(x?))x+ H(x)x.

where the relations Cx? + H(x?)x? = r and H(x)x? =
H(x?)x have been used. By selecting the matrices A,B,C
and the functions N,H as in the statement of the theorem,
a system in the form (6) can be obtained. Before directly
applying the result of Proposition 1, the following two
technical lemmas are required, showing that A is Hurwitz
and that the non-resonance condition CA−1B full rank
holds. The proofs are omitted for space reason.

Lemma 1. Pick any (θ, r) ∈ int(S). Then for all (x?,u?) ∈
E(θ, r), the matrix A = A(θ) +

∑3
j=1 Nju

?
j is Hurwitz.

Lemma 2. Pick any (θ, r) ∈ int(S). Then for all (x?,u?) ∈
E(θ, r) the matrix CA−1B is full rank.

Remark 1. Lemma 1 can be understood as the natural
stability of the system: in practice, for any constant duty
ratio, the system stabilises to a steady-state. Concerning
Lemma 2, it has been shown in [19] that such condition
is necessary to achieve output set-point tracking. Since the
linearized model around the equilibrium point is stabilizable,
this condition implies the controllability of the extended
linearised plant and it is commonly referred to as “non-
resonance condition”. It can be proven that the points
(θ, r) ∈ ∂S := S \ int(S) do not satisfy such condition.

Hence, given (θ, r) ∈ int(S), any (x?,u?) ∈ E(θ, r)
can be selected. Since all the assumptions are verified, the
results of Proposition 1 can be applied and the control law
(16) where ψ is defined as in (9) for system (6), makes
the equilibrium globally asymptotically stable and locally
exponentially stable for the closed loop system. Moreover, on
the equilibrium (x?,u?), y = r. Hence item 1 of Problem 1
is solved.
Part 2: Robust set-point tracking. Let w = (x, z) in R13 and

ẇ = ϕ(w, θnom, rnom) (18)

be the system (1) in closed-loop with the control law (16).
From item 1, system (18) admits a globally asymptotically
stable and locally exponentially stable equilibrium denoted as
w?. For each compact set D in R10, there exists two compact
sets of initial condition containing the origin and denoted C
and C̄ both in R13 with w? ∈ C ( C̄, D × {0} ⊆ C̄, such

that C̄ is forward invariant2 for the system (18). Therefore,
by [19, Lemma 5] there exists ρ > 0 such that, for each C1

vector field ϕp : R13 → R13 satisfying

|ϕp(w)− ϕ(w, θnom, rnom)| ≤ ρ, ∀w ∈ C̄, (19)
∣∣∂ϕp

∂w (w)− ∂ϕ
∂w (w, θnom, rnom)

∣∣ ≤ ρ, ∀w ∈ C, (20)

there exists an exponentially stable equilibrium of

ẇ = ϕp(w) ,

the basin of attraction of which contains the compact set C̄.
Let us define now the function ρ̄ : Θ×R → R+ as

ρ̄(θ, r) := max
w∈C̄,

{
|ϕ(w, θ, r)− ϕ(w, θnom, rnom)| ,
∣∣ ∂ϕ
∂w (w, θ, r)− ∂ϕ

∂w (w, θnom, rnom)
∣∣
}
.

Such a function is continuous and ρ̄(θnom, rnom) = 0. Select
now δ > 0, as any positive real number such that, if |θ −
θnom| ≤ δ and |r − rnom| ≤ δ, then ρ̄(θ, r) ≤ ρ. This
parameter δ > 0 is a solution to the second part of Problem 1.
Indeed, for each (θ, r) such that |θ − θnom| ≤ δ and |r −
rnom| ≤ δ then the closed loop system

ẇ = ϕ(w, θ, r) ,

satisfies (19) and (20) and consequently admits an exponen-
tially stable equilibrium with a basin of attraction containing
D × {0}. On this equilibrium, thanks to the integral action,
output set-point tracking is achieved and this concludes the
proof.

V. SIMULATIONS

In the following, simulation results of model (1)
in closed-loop with controller (16) are shown, where
the matrices P,M1,M2 and M3 in Proposition 1 are
numerically computed. Since the input u is made of
duty ratios, in practice, ui ∈ [0, 1]. To this end and
after different simulations, a good value for the tuning
parameter has been found as κ = 10−5. This leads to a
very slow regulation for vR, which can then be corrected
by modifying the output equation with the factor ε = 5
so that the objective becomes εvR → εvrR instead of
vR → vrR. The converter components CR, Lf and Cf
have values 60 µF, 680 µH and 20 µF, respectively. The
simulation is initialised with the set-point (θnom, rnom)
(see Tab. II), which gives the desired equilibrium states x? =
[500,−0.1,−1.24, 2.26, 402.6, 400.8, 398.8,−1,−1.25, 2.26].
The initial states correspond to the converter with pre-
charged capacitors: x(0) = [500, 01×3, 400 · 11×3, 01×3].
The set-point is arbitrarily changed to (θa, rnom) at
t = 40 ms and then to (θa, ra) at t = 80 ms. Parameters
variation are highlighted in bold in Tab. II. The resulting
outputs are displayed in Fig. 4, with the inputs in Fig. 5
to check that the duty ratios are well contained in [0, 1],
including during the start-up phase. It can be seen that each

2Simply pick C̄ = {(x, z) : W (x, z) ≤ c0} for sufficiently large c0
where W is a Lyapunov function for system (18).



TABLE II: Set-point numerical values

Parameter Test value Unit Parameter Test Value Unit
k = 1 k = 2 k = 3

LGk 60 30 15 µH P r
1 -400 W

θnom RGk 2.6 30.3 1.4 Ω rnom P r
2 -500 W

VGk 400 363 402 V vrR 500 V

θa

LGk 60 30 30 µH P r
1 -100 W

RGk 2.6 30.3 0.5 Ω ra P r
2 -250 W

VGk 400 363 420 V vrR 500 V
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Fig. 4: Simulation of the PFC model (1) in closed loop with control
(16). Reservoir voltage and power in each line with their references

reference is properly tracked. The power in the third line is
also displayed to show that it is tracked properly as well,
in accordance with the discussion in the introduction of
Section II.

VI. CONCLUSION

A robust output set-point tracking control law has been
proposed for a 3-branch power flow controller modelled as
a bilinear system with second order polynomial outputs. The
control law is composed of an integral action processing
the regulation error and a stabiliser for the resulting cascade
system designed via forwarding techniques, ensuring a semi-
global domain of attraction and robustness to small param-
eters variation. Future work will concern a generalisation of
the control law for any m-branch model, the formalisation
of an input saturation, a deeper analysis of the robustness
properties in the parametric space and the validation of the
control scheme with experimental results.
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Fig. 5: Duty ratios during the simulation
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