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Large deviations of energy transfers in nonequilibrium CFT and
asymptotics of non-local Riemann-Hilbert problems

Karol K. Kozłowski 1, Krzysztof Gawȩdzki2

Univ Lyon, ENS de Lyon, Univ Claude Bernard Lyon 1, CNRS, Laboratoire de Physique, F-69342 Lyon, France

Abstract

A wide class of 1 + 1 dimensional unitary conformal field theories allows for an explicit construction of
nonequilibrium "profile states" interpolating smoothly between different equilibria on the left and on the right.
It has been recently established that the generating function for the full counting statistics of energy transfers in
such states may be expressed in terms of the solution to a non-local Riemann-Hilbert problem. Following earlier
works on the statistics of energy transfers, in particular the ones of Bernard-Doyon on the "partitioning protocol"
in conformal field theory, the full counting statistics of energy transfers in the profile states was conjectured to
satisfy a large deviation principle in the limit of long transfer-times. The present paper establishes rigorously
this conjecture by carrying out the long-time asymptotic analysis of the underlying non-local Riemann-Hilbert
problem.
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1 Introduction

The aim of the paper is to establish a large auxiliary-parameter behaviour of certain biholomorphisms that pro-
vide the holomorphic structure on conformally welded cylinders. Such cylinders are obtained by identifying the
boundaries of an infinite strip in the complex plane after the composition with a line-diffeomorphism. The original
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motivation for this investigation came from specific questions, described below, related to a rigorous character-
isation of certain correlation functions pertaining to non-equilibrium situations in a large class of unitary 1+1
dimensional conformal field theories (CFTs). The CFT problem was first addressed, on heuristic grounds, in [2]
in a closely related but more singular framework. More recently, it was reformulated in a rigorous non-singular
setup in [10] where a closed formula was proven for the correlator of interest. The non-trivial building block of
the obtained expression was a biholomorphism realising the rectification of a cylinder conformally-welded from
a strip. What is important for the applications is the dependence of this biholomorphism on certain auxiliary pa-
rameters describing the line-diffeomorphism used to weld together the boundaries of the strip. A precise control
on that dependence constitutes the main result of this work.

1.1 Asymptotics of conformal maps on the welded cylinders

In order to state the results, we first need to introduce a few notations so as to make the setting explicit. Let α > 0
and let

Sα =
{
z ∈ C : −α < ℑ(z) < 0

}
. (1.1)

refer to the strip of width α in C located below R. Endow the upper and the lower boundaries of the closure Sα
of Sα with the orientation of increasing real parts as depicted in Figure 1. These boundaries are parameterised
by p1(x) and p2(x), where p1 : R → R − iα and p2 : R → R are smooth diffeomorphisms. The welded cylinder
is then defined as the manifold obtained from Sα by identifying the points of ∂Sα parameterised by p1(x) and
p2(x). It comes with the complex structure such that local holomorphic functions on it are the smooth ones that
are holomorphic when restricted to Sα [12]. Clearly, it is enough to parameterise the boundaries of the strip by
taking

p1(x) = g(x) − iα and p2(x) = x (1.2)

with g a smooth diffeomorphism of R. The corresponding welded cylinder will be denoted as Sα,g. For example,
when g(x) = x then the welded cylinder is tautologically equivalent to the standard cylinder of circumference α.
More generally, it is of interest to consider the case where g is smooth and such that g − id is constant on the two
connected components of the complement of some large enough segment [−M ; m] of R, viz.

g(x) =


x + κ− x ≤ −M

g(x) −M ≤ x ≤ m

x + κ+ x ≥ m

, (1.3)

for some constants κ±. The welded cylinder Sα,g for any such g is biholomorphically equivalent to the standard
cylinder. The biholomorphism realising this equivalence may be constructed by means of solving a scalar, non-
local Riemann-Hilbert problem with a jump.

Proposition 1.1. Assume that g satisfies (1.3), and consider the scalar non-local Riemann-Hilbert problem with
a shift consisting in finding a holomorphic function z 7→ Ω(z | κ+, κ+) on Sα having smooth −, resp. +, boundary
values on R, resp. R − iα, such that

• Ω−, resp. Ω+, is a bijection from R, resp. R − iα, onto Ω−(R | κ+, κ−), resp. Ω+(R − iα | κ+, κ−);

• Ω+(g(x) − iα | κ+, κ−) = Ω−(x | κ+, κ−) − iα for x ∈ R;

• Ω(z | κ+, κ−) = γ̃±z + CΩδ±,− + O
(
e∓

2π
α γ̃±z

)
asℜ(z)→ ±∞,
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for γ̃± =
−iα
κ± − iα

and some constant CΩ ∈ C.

Then, the above problem admits a unique solution. Moreover, the latter is a biholomorphism from Sα onto its
image Ω(Sα | κ+, κ−).

When κ+ = κ− = 0, viz. when the welding diffeomorphism is such that g − id has compact support, then the
above proposition may be seen, after composing with obvious biholomorphisms, as a direct consequence of the
material discussed in [9]. However, for general κ±, the techniques of [9] are not sufficient to establish this result
and one has to rely on the setting developed in the core of this paper. The proof of the above proposition is given
in Appendix A.
Ω( · | κ+, κ−) induces a biholomorphism from Sα,g onto the standard cylinder Sα,id upon identifying the

endpoints Ω−(R | κ+, κ−) ∋ z ≡ z − iα ∈ Ω+(R − iα | κ+, κ−).

R

R − iα

p2(x)

p1(x)−
+

−
+

Ω−(R | 0, 0)

Ω+(R − iα | 0, 0)

1

Figure 1: The strip Sα, parametrisation of its boundary along with its orientation and image thereof through the
biholomorphism Ω in the case when κ± = 0.

The main interest of the present work lies in accessing the behaviour of the biholomorphismΩ in the case when
the diffeomorphism of the line g is such that g − id has compact support, viz. κ± = 0, and is constructed from two
diffeomorphisms gL and gR of the line in such a way that g has a non-trivial behaviour only in the neighbourhood
of the points −w and +w. In order to insist on the vanishing of the constants κ±, we shall henceforth denote this
biholomorphism by χ, viz. χ(z) = Ω(z | 0, 0). Such a situation is depicted in Figures 2-3. To be more precise
about the structure of g, pick MR,ML > 0 and let κ ∈ R. Then, let gL/R be smooth diffeomorphisms of the real line
taking the piecewise form

gL(x) =


x x ≤ −ML

gL(x) −ML < x < ML

x + κ ML ≤ x

and gR(x) =


x + κ x ≤ −MR

gR(x) −MR < x < MR

x MR ≤ x

. (1.4)

Then, the diffeomorphism g of interest is defined as

g(x) =



x x < −ML − w

gL(x + w) − w −ML − w ≤ x ≤ ML − w

x + κ ML − w ≤ x ≤ w − MR

gR(x − w) + w w − MR < x < w + MR

x MR + w < x

(1.5)

The non-local Riemann-Hilbert problem of Proposition 1.1 takes for such a g the slightly simpler form below.
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1

Figure 2: Diffeomorphisms gL (on the left, blue curve) and gR (on the right, orange curve).

Definition 1.2. Given a smooth diffeomorphism g of R such that g − id has compact support, the non-local
Riemann-Hilbert problem for χ consists in finding a holomorphic function z 7→ χ(z) on Sα such that

• it has smooth −, resp. +, boundary values on R, resp. R − iα;

• χ+(g(x) − iα) = χ−(x) − iα for x ∈ R;

• χ(z) = z + Cχδ±,− + O
(
e∓

2π
α z

)
asℜ(z)→ ±∞,

for some constant Cχ ∈ C.

As will be discussed in the following, the interest in this specific form of the diffeomorphism g and in the w→
+∞ behaviour it begets to χ stems from certain questions occurring in 1+1 dimensional unitary conformal field
theories. In order to state the main technical achievement of this work, Theorem 1.3 below, we need to introduce
two auxiliary non-local Riemann-Hilbert problems with shift that are associated with the welding diffeomorphisms
gL and gR. First, however, define

γ =
−κ
κ − iα

and γ̃ = γ + 1 =
−iα
κ − iα

. (1.6)

and denote by O(Sα) the space of holomorphic functions on Sα. The left Riemann-Hilbert problem consists in
finding χ(L) ∈ O(Sα) that admits smooth −, resp. +, boundary values on R, resp. R − iα, and such that

• for some constant Cχ(L) , χ(L)(z) = Cχ(L) + O
(
e

2π
α z

)
whenℜ(z)→ −∞ and up to the boundary;

• χ(L)(z) = γ · z + O
(
e−

2πγ̃
α z

)
whenℜ(z)→ +∞ and up to the boundary;

• χ(L)
+ (gL(x) − iα) = χ(L)

− (x) + x − gL(x).

The right Riemann-Hilbert problem consists in finding χ(R) ∈ O(Sα) that admits smooth −, resp. +, boundary
values on R, resp. R − iα, and such that

• χ(R)(z) = O
(
e−

2π
α z

)
whenℜ(z)→ +∞ and up to the boundary;

• for some constant Cχ(R) , χ(R)(z) = γz + Cχ(R) + O
(
e

2πγ̃
α z

)
whenℜ(z)→ −∞ and up to the boundary;
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x

x + κ

x

b b
−w

w

1

Figure 3: Diffeomorphism g constructed from the gluing of gL and gR.

• χ(R)
+ (gR(x) − iα) = χ(R)

− (x) + x − gR(x).

One may readily convince oneself that χ(L)(z) = Ω(z | κ, 0) − z while χ(R)(z) = Ω(z | 0, κ) − z, where in the first
case, Ω is constructed out of the diffeomorphism gL and in the second case out of gR.

Theorem 1.3. Let g be as given above in terms of gL and gR. Then, the left/right non-local Riemann-problems
for χ(L/R) are uniquely solvable and the unique solution to the non-local Riemann-Hilbert problem with a shift for
χ described in Definition 1.2 admits the large w asymptotic expansion which takes the patch-wise form given in
Fig. 4. There, c = 2γw −Cχ(R) and δχ(R/L) are holomorphic in the domains where they appear and enjoy there the
uniform estimates, in z ∈ Sα and in w:

δχ(L)(z) = δc + O
(
e−ηw+η′z

)
and δχ(R)(z) = O

(
e−ηw−η′z) with δc = O

(
e−ηw

)
. (1.7)

Above, η, η′ > 0 are some constants just as δc. The remainder functions δχ(R/L) are such that χ is indeed smooth
across the separating segment Γ0 = [0 ; κ− iα]. Finally, all estimates appearing above are differentiable uniformly
on Sα and up to its boundary.

The presence of the two biholomorphisms χ(L/R)+ id appearing in the leading behaviour of χ to the left/right of
Γ0 is certainly natural in that with w growing the two non-trivial pieces of g should cease to interact so that, locally,
the overall biholomorphism should only "feel" the effect of gL or gR. The hardest part of the proof Theorem 1.3
consists in establishing the differentiable control on the remainder given in (1.7). It is the proof of this property,
crucial for the application of Theorem 1.3 to conformal field theories, that occupies most of this work.
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Γ0

b

b

κ − iα

0R

R − iα

x

g(x) − iα

χ(z) = z + χ(L)(z + w) − c + δχ(L)(z) χ(z) = z + χ(R)(z − w) + δχ(R)(z)

1

Figure 4: Piecewise expression for the solution χ.

1.2 Large deviation principle for the full counting statistics of energy transfers in 1+1 dimen-
sional conformal field theories

Let x 7→ β(x) be an inverse temperature profile, viz. a smooth function bounded from below by a strictly positive
constant such that β′(x) has compact support and constant sign. Furthermore, consider a 1+1 dimensional unitary
conformal field theory in a finite interval [−L/4 ; L/4] with boundary conditions that assure no energy flux through
the endpoints of the interval. Such a theory is described by a representation of the Virasoro algebra on some Hilbert
space h generated by the energy-momentum tensor of the form [5, 10]

T(x) =
2π
L2

∑
n∈Z

e
2iπn

L (x+ L
4 ) ·

(
Ln −

c
24
δn,0

)
, (1.8)

in which Ln are generators of the Virasoro algebra. Out of these quantities one constructs the operator

GL(t) = v

L
4∫

− L
4

dx β(x)E(t, x) for E(t, x) = T(x − vt) + T(−x − vt − L
2 ) (1.9)

(E(t, x) is the energy density). It was proven in the work [10] that the Fourier transform of the probability mea-
sure which describes the energy transfers in time t between two baths at inverse temperatures β(−∞) and β(+∞)
connected by the interpolating inverse temperature profile β(x) takes the form

Ψt,L(λ) =
trh

[
e

iλ
∆βGL(t)e−( iλ

∆β+1)GL(0)
]

trh
[
e−GL(0)

] with ∆β =

∫
R

β′(x)dx . (1.10)

More details on the well-definiteness of the above expression can be found in the above mentioned work. Ref.
[10] studied the thermodynamic limit of Ψt,L(λ) and it was rigorously proven there that

lim
L→+∞

Ψt,L(λ) =
∏
ε=±
Ψ

(ε)
t (λ) , (1.11)

uniformly in λ belonging to compact subsets of R, where

Ψ
(ε)
t (λ) = exp

{
ϕ(ε)(t) − ic

24π

λ
∆β∫

0

ds
∫
R

dx ξ(ε)
t (x) ·

{
S[ χ(ε)

s,t;−
]
(x) − 2π2

α2

(
∂xχ

(ε)
s,t;−(x)

)2}}
. (1.12)
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The last formula contains several ingredients. First of all,

S[ f ] =
f ′′′(x)
f ′(x)

− 3
2

( f ′′(x)
f ′(x)

)2
(1.13)

is the Schwartzian derivative, α is a constant built up from the ±∞ limits of the inverse-temperature profile and
ϕ(ε)(t) is an explicit, smooth and bounded function of t. Furthermore, ξ(ε)

t is a smooth compactly supported
function depending on the auxiliary time parameter t. One is also given two smooth diffeomorphism of the line
g(ε)

s,t such that g(ε)
s,t − id has compact support. These depend smoothly on two auxiliary parameters: the time t and

a real variable s. To each diffeomorphism g(ε)
s,t one then associates the corresponding solution χ(ε)

s,t to the non-local
Riemann-Hilbert problem of the strip Sα, as introduced in Definition 1.2. Then, χ(ε)

s,t;− stand for its − boundary
values on R. This concludes the description of the building blocks of the thermodynamic limit Ψ(ε)

t (λ).
The explicit construction of the functions ξ(ε)

t and g(ε)
s,t can be found in [10]. Here, we only remind the properties

which are crucial for establishing the results given in Theorem 1.4 below. Namely, there exist real parameters κε

and segments I(ε)
L , I(ε)

bk and I(ε)
R having disjoint interiors such that:

• supp
[
ξ(ε)

t

]
⊂ I(ε)

L ∪ I
(ε)
bk ∪ I

(ε)
R ;

• supp
[
g(ε)

s,t − id
]
⊂ I(ε)

L ∪ I
(ε)
bk ∪ I

(ε)
R ;

• diam
(I(ε)

L
)

and diam
(I(ε)

R
)

are t independent;

• diam
(I(ε)

bk
)
= ℓεt −C for some ℓε,C > 0 ;

• ξ(ε)
t |I(ε)

bk
= −κε and (g(ε)

s,t − id)|I(ε)
bk
= κεs;

• ξ(ε)
t |I(ε)

L,R
and (g(ε)

s,t − id)|I(ε)
L,R

have t-independent shape on those intervals.

As it is apparent from (1.12), the thermodynamic limit of Ψt,L(λ) depends on time t. One is interested in
obtaining a large deviation principle, when t → +∞, for the thermodynamic limit of the associated probability
measure. The rate function governing this large deviation principle may be deduced from the Legendre transform
in iλ of the limiting functions lim

t→+∞
{
t−1 lnΨ(ε)

t (λ)
}
, ε = ±. In order to control this limit and compute it, one needs

all the information that have been established in Theorem 1.3 given above. In fact, a direct application of this
theorem shows that the Schwarzian derivative term contributes as O(1) when t → +∞ while the only linear in t
behaviour of the integral giving rise to lnΨ(ε)

t (λ) is generated from the constant term in the behaviour of ∂xχ
(ε)
s,t;−(x)

for x ∈ I(ε)
bk sufficiently far away from the endpoints of that segment. After straightforward calculations, one gets

Theorem 1.4.

lim
t→+∞

{
t−1 lnΨ(ε)

t (λ)
}
= − cπ

12α
· κεℓελ

κελ − iα∆β
. (1.14)

This theorem concludes the proof of the large deviation principle stated in [10]. The above form of large
deviations for the energy transfers coincides with the one anticipated in [2], see also [3].

Remark. An examination of the arguments leading to Theorem 1.3 shows that the convergence in (1.14) is
uniformly differentiable in λ belonging to compact subsets of R.
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1.3 Outline of the paper

The paper is organised as follows. Section 2 establishes the unique solvability of a class of non-local Riemann-
Hilbert problems on welded cylinders. Subsection 2.1 provides the definition of a class of Riemann-Hilbert
problems that will be considered there. Then, various technical results relative to the original setting of the
Riemann-Hilbert problems are established, in particular an improvement of the decay at ∞, the correspondence
with solutions to linear integral equations and the existence of smooth boundary values for the solution. The non-
local Riemann-Hilbert problem in the optimal setting is then outlined in Subsection 2.2. Finally, Subsection 2.3
establishes the unique solvability of the non-local Riemann-Hilbert problems of interest. This is done by proving
the invertibility of the operator id − K which drives the linear integral equations that are satisfied by the boundary
values of the solution. The preliminary notations for this result are established in Subsubsection 2.3.1. The reduc-
tion of the operator id − K to id − M with compact M is carried out in Subsubsection 2.3.2 and, finally, the sought
invertibility is established in Subsubsection 2.3.3.

Section 3 studies three auxiliary special non-local Riemann-Hilbert problems which play a role in the large-w
asymptotic analysis of the solution to the Riemann-Hilbert problem stated in Proposition 1.1 in the presence of the
w-dependent welding diffeomorphism g as described above. Subsection 3.1 discusses properties of the Cauchy
transform on a welded cylinder, Subsection 3.2 establishes the existence of the solution to the Riemann-Hilbert
problem for the function χ(L) described above while Subsection 3.3 does it for the one associated with χ(R).

Section 4 establishes Theorem 1.3. The proof given there heavily relies on technical results, relative to the
uniform in large w invertibility of the integral operator id− Ktot which drives the integral equations satisfied by the
boundary values of the solution χ. Those are established throughout Section 5. Subsection 5.1 provides a con-
venient decomposition of the integral kernel of Ktot. Various technical properties issuing from this decomposition
are then established throughout Subsections 5.2, 5.3, 5.4, 5.5 and 5.6. Finally, the uniform in w invertibility of
id − Ktot is established in Subsection 5.7.

Several auxiliary results are postponed to the appendices. Appendix A briefly outlines the proof of Proposi-
tion 1.1. Appendix B provides details on the inversion of certain Wiener-Hopf equations on the half-line while
Appendix C discusses the inversion of a truncated Wiener-Hopf operator arising in the analysis of Section 4. This
last result is achieved by solving a local 2 × 2 matrix Riemann-Hilbert problem. Finally, Appendix D establishes
a technical Lemma useful for certain estimates obtained in Section 4.

1.4 Notations

• Given an open subset U ⊂ C, O(U) stands for the ring of holomorphic functions on U.

• Given an open subset U ⊂ C, and a function f defined on U \ γ, with γ an oriented curve in U, we denote
by f±(s) the boundary values - if these exists in an appropriate sense - of f (z) on γ when the argument
z approaches the point s ∈ Σ non-tangentially and from the left (+) or the right (−) side of the curve.
Furthermore, if one deals with vector or matrix-valued function, then this notation is to be understood
entry-wise.

• H± = {z ∈ C : Im (±z) > 0} is the upper/lower half-plane, and R± = {x ∈ R : ±x ≥ 0} is the
positive/negative real axis.

• Given a set A, A stands for its closure and 1A stands for the indicator function of A.

• Given a ring R, Mn(R) stands for the space of n × n matrices over this ring.

• Given two functions f , g defined in an open neighbourhood U of a point y = (y1, . . . , yn), the relation
f (x) = O

(
g(x)

)
means that there exists M > 0 such that | f (x)| ≤ M|g(x)| holds in a neighbourhood of y.
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The O-relation is said to be differentiable if, for all ka ≥ 0,

∂k1
x1
. . . ∂kn

xn f (x) = O
(
max

{|∂m1
x1
. . . ∂mn

xn g(x)| : 0 ≤ ma ≤ ka
})

(1.15)

holds in a neighbourhood of y.

• For matrix valued functions, a relation M(x) = O
(
N(x)

)
is to be understood entrywise, viz. Mab(x) =

O
(
Nab(x)

)
.

• Let Γ be Euler’s Γ-function. We use the shorthand convention

Γ

(
a1, . . . , an

b1, . . . bm

)
=

n∏
k=1
Γ(ak)

m∏
k=1
Γ(bk)

. (1.16)

2 Non-local Riemann–Hilbert problems on welded cylinders

2.1 General definitions and considerations

Throughout this section, we shall focus on the "affine at∞" setting, viz. a situation where there exist reals κ± such
that the diffeomorphism g appearing in the welding of the strip Sα (1.1), c.f. Fig. 1, behaves as g(x) = x+κ± when
±x > M, for M large enough, namely

g(x) =


x + κ− x ≤ −M

g(x) |x| ≤ M

x + κ+ x ≥ M

. (2.1)

The main purpose of this section is to establish the unique solvability, along with certain other properties, of a
class of non-local Riemann-Hilbert problems that arise in later subsections. Thus, we start by introducing the class
of problems of interest.

The diffeomorphisms p1, p2 realising the welding of the strip Sα as in Fig. 1 are denoted as in (1.2). Next, we
assume being given a smooth function GΞ on R which has the structure:

GΞ(x) = G(c)
Ξ

(x) + GΞ(x) − GΞ(g(x) − iα) . (2.2)

There G(c)
Ξ

is smooth with compact support and supp[G(c)
Ξ

] ⊂ [−M ; M]. Furthermore,

GΞ is smooth on Sα and analytic on Sα ∩
{
z ∈ C : |ℜ(z)| > M/2

}
(2.3)

and vanishes exponentially fast at ℜ(z) → ±∞, viz. there exists ϱ > 0 such that GΞ(z) = O
(
e∓ϱz

)
uniformly on

Sα ∩
{
z ∈ C : |ℜ(z)| > M/2

}
.

One may associate with this setting the following non-local Riemann-Hilbert problem on the strip Sα. Find
Ξ ∈ O(Sα) such that

• Ξ+ ◦ p1 ∈ L2
loc(R) , Ξ− ◦ p2 ∈ L2

loc(R) ;

• Ξ+
(
p1(x)

)
= Ξ−

(
p2(x)

)
+ GΞ(x) for x ∈ R;

• there exist constants CΞ,C−1 such that

Ξ(z) = CΞ · δ±;− +
C−1

z
+ O(z−2) when ℜ(z)→ ±∞ (2.4)

uniformly up to the boundary of Sα.
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• Improved asymptotic decay at infinity

Lemma 2.1. Any solution to the above Riemann-Hilbert problem decays exponentially fast at infinity as

Ξ(z) = CΞ · δ±;− − GΞ(z) + O
(
e∓

2π
α γ̃±z

)
when ℜ(z) → ±∞ , with γ̃± =

−iα
−iα + κ±

(2.5)

this uniformly up to the boundary.

Proof — To improve the bounds on the asymptotic behaviour, we first introduce the curve built out of oriented
segments

Cr,α = [−r + κ− − iα ; r + κ+ − iα] ∪ [r + κ+ − iα ; r] ∪ [r ;−r] ∪ [−r ;−r + κ− − iα] . (2.6)

For any z ∈ Sα, it holds

Ξ(z) = lim
r→+∞

∫
Cr,α

γ̃+ ds
iα

Ξ(s)

1 − e
2πγ̃+
α (z−s)

. (2.7)

Writing explicitly the various integrations and using that g([−r ; r]) = [−r + κ− ; r + κ+] provided that r is large
enough, leads to

Ξ(z) = lim
r→+∞

[ r∫
−r

γ̃+ ds
iα

[
Ξ+(g(s) − iα)g′(s)

1 − e
2πγ̃+
α (z−g(s)+iα)

− Ξ−(s)

1 − e
2πγ̃+
α (z−s)

]

+

{ −r+κ−−iα∫
−r

+

r∫
r+κ+−iα

}
γ̃+ ds

iα
Ξ(s)

1 − e
2πγ̃+
α (z−s)

]
. (2.8)

One may now take the r → +∞ limit. The contribution from [−r ;−r+κ−− iα] goes to zero because the numerator
is bounded while the denominator blows up exponentially fast in r. The contribution from [r + κ+ − iα ; r] goes to
zero because the denominator approaches 1 while the numerator goes to zero uniformly on this bounded segment.
Finally, the integral over [−r ; r] converges in the limit since, for s → ±∞, the integrand is a O

(
s−2) owing to the

form of the uniform up to the boundary asymptotic expansion of Ξ, c.f. (2.4). This thus yields

Ξ(z) =
∫
R

γ̃+ ds
iα

{
Ξ+(g(s) − iα)g′(s)

1 − e
2πγ̃+
α (z−g(s)+iα)

− Ξ−(s)

1 − e
2πγ̃+
α (z−s)

}
. (2.9)

Then, by using the jump condition, the fast decay of GΞ at infinity and the fact that, for x > M

g(x) = x + κ+ while γ̃+(−iα + κ+) = −iα , (2.10)

one gets the representation

Ξ(z) =

M∫
−∞

γ̃+ ds
iα
Ξ+(g(s) − iα)

{
g′(s)

1 − e
2πγ̃+
α (z−g(s)+iα)

− 1

1 − e
2πγ̃+
α (z−s)

}
+

∫
R

γ̃+ ds
iα

GΞ(s)

1 − e
2πγ̃+
α (z−s)

. (2.11)
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The last integral may be recast in a form which allows one to readily extract the asymptotic behaviour atℜ(z)→
+∞. For that purpose, one observes that

∫
R

γ̃+ ds
iα
GΞ(s) − GΞ(g(s) − iα)

1 − e
2πγ̃+
α (z−s)

=

M∫
−∞

γ̃+ ds
iα
GΞ(s) − GΞ(g(s) − iα)

1 − e
2πγ̃+
α (z−s)

−
M∫

M+κ+−iα

γ̃+ ds
iα

GΞ(s)

1 − e
2πγ̃+
α (z−s)

+

∫
C ′M

γ̃+ ds
iα

GΞ(s)

1 − e
2πγ̃+
α (z−s)

(2.12)

where

C ′M = ] +∞− iα ; M + κ+ − iα] ∪ [M + κ+ − iα ; M] ∪ [M ;+∞[ . (2.13)

The last integral can be taken by residues, hence leading to

Ξ(z) = −GΞ(z) +

M∫
−∞

γ̃+ ds
iα
Ξ+(g(s) − iα)

{
g′(s)

1 − e
2πγ̃+
α (z−g(s)+iα)

− 1

1 − e
2πγ̃+
α (z−s)

}
+

∫
R

γ̃+ ds
iα

G(c)
Ξ

(s)

1 − e
2πγ̃+
α (z−s)

+

M∫
−∞

γ̃+ ds
iα
GΞ(s) − GΞ(g(s) − iα)

1 − e
2πγ̃+
α (z−s)

−
M∫

M+κ+−iα

γ̃+ ds
iα

GΞ(s)

1 − e
2πγ̃+
α (z−s)

. (2.14)

The form of the asymptotic expansion atℜ(z)→ +∞ is readily deduced from this representation.
Quite similarly to the previous case, one infers the integral representation

Ξ(z) = lim
r→+∞

∫
Cr,α

γ̃− ds
iα

Ξ(s)

e
2πγ̃−
α (s−z) − 1

= lim
r→+∞

[ r∫
−r

γ̃− ds
iα

[
Ξ+(g(s) − iα)g′(s)

e
2πγ̃−
α (g(s)−z−iα) − 1

− Ξ−(s)

e
2πγ̃−
α (s−z) − 1

]
+

{ −r+κ−−iα∫
−r

+

r∫
r+κ+−iα

}
γ̃− ds

iα
Ξ(s)

e
2πγ̃−
α (s−z) − 1

]
.

(2.15)

The integral over the segment [−r ;−r+κ− − iα] produces CΞ plus terms vanishing when r → +∞ due to the form
of theℜ(z)→ −∞ asymptotics of Ξ, c.f. (2.4). The integral over [r+κ+−iα ; r] vanishes since Ξ is bounded in that
direction and the denominator blows up exponentially fast. Finally, the integrand of the first integral appearing in
(2.15) is in L1(R) due to the asymptotic behaviour of Ξ at infinity.

Then, proceeding analogously as in theℜ(z)→ +∞ case one gets

Ξ(z) = CΞ +

+∞∫
−M

γ̃− ds
iα
Ξ+(g(s)− iα) ·

{ g′(s)

e
2πγ̃−
α (g(s)−z−iα) − 1

− 1

e
2πγ̃−
α (s−z) − 1

}
+

∫
R

γ̃− ds
iα

GΞ(s)

e
2πγ̃−
α (s−z) − 1

. (2.16)
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Furthermore, one has

∫
R

γ̃− ds
iα
GΞ(s) − GΞ(g(s) − iα)

e
2πγ̃−
α (s−z) − 1

=

+∞∫
−M

γ̃− ds
iα
GΞ(s) − GΞ(g(s) − iα)

e
2πγ̃−
α (s−z) − 1

−
−M+κ−−iα∫
−M

γ̃− ds
iα

GΞ(s)

e
2πγ̃−
α (s−z) − 1

+

∫
C ′′M

γ̃− ds
iα

GΞ(s)

e
2πγ̃−
α (s−z) − 1

(2.17)

where

C ′′M = [−∞ ;−M[∪] − M ;−M + κ− − iα] ∪ [−M + κ− − iα ;−∞ − iα] . (2.18)

This yields

Ξ(z) = CΞ − GΞ(z) +

+∞∫
−M

γ̃− ds
iα
Ξ+(g(s)−iα)·

{ g′(s)

e
2πγ̃−
α (g(s)−z−iα) − 1

− 1

e
2πγ̃−
α (s−z) − 1

}
+

∫
R

γ̃− ds
iα

G(c)
Ξ

(s)

e
2πγ̃−
α (s−z) − 1

+

+∞∫
−M

γ̃− ds
iα
GΞ(s) − GΞ(g(s) − iα)

e
2πγ̃−
α (s−z) − 1

−
−M+κ−−iα∫
−M

γ̃− ds
iα

GΞ(s)

e
2πγ̃−
α (s−z) − 1

. (2.19)

Thus, the asymptotic behaviour atℜ(z)→ −∞ follows, along with its uniformness up to the boundary.
One should note that the representation (2.14) clearly indicates that the ± boundary values Ξ±(x) for x ≥ M

only depend on the boundary values Ξ+(g(y) − iα), with y < M. The fact that the boundary values Ξ+(x − iα)
and Ξ−(x) are smooth when x ≥ M is also clear from this representation. A similar property can be inferred from
(2.19) relatively to the properties of the boundary values when x < −M.

• Correspondence with integral equations

We now establish a one-to-one correspondence between solutions to the non-local Riemann Hilbert problem for
Ξ and solutions to certain linear integral equations on the space

E(R) =
{

f ∈ L2
loc(R) ; ∃ C f and η > 0 f (x) = C f δ±;− + O

(
e∓ηx

)
for x→ ±∞

}
. (2.20)

Lemma 2.2. Let Ξ be a solution to the non-local Riemann-Hilbert problem for Ξ. Then Ξ has smooth boundary
values on ∂Sα. Moreover, given any τ > α, the function θ(x) = Ξ+(g(x) − iα) belongs to E(R) and solves the
linear integral equation on E(R)

(
id − K)[θ](x) =

1
2

{
GΞ(x) + HR

[
GΞ

]
(x)

}
− K12[GΞ](x) , (2.21)

where

HR
[
f
]
(x) =

?
R

dy
iτ

f (y)

sinh
[π
τ

(y − x)
] , (2.22)
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with the principal value prescription for the integral, is the sinh-Hilbert transform on L2(R) and

K = K12 + K21 + K11 (2.23)

is built up in terms of the three integral operators

K12[h](x) = −
∫
R

dy
2iτ

h(y)

sinh
[
π
τ (y − g(x) + iα)

] , K21[h](x) =
∫
R

dy
2iτ

h(y)g′(y)

sinh
[
π
τ (g(y) − x − iα)

] (2.24)

and

K11[h](x) =
∫
R

dy
2iτ

h(y)
{ g′(y)

sinh
[
π
τ (g(y) − g(x))

] − 1

sinh
[
π
τ (y − x)

]} . (2.25)

Reciprocally, any solution θ ∈ E(R) to the linear integral equation (2.21) gives rise to a solution to the non-
local Riemann–Hilbert problem for Ξ.

Proof —
The asymptotic behaviour of Ξ at infinity ensures that, for any z ∈ Sα, one has:

Ξ(z) =
∫
∂Sα

dy
2iτ

Ξ(y)

sinh
[
π
τ (y − z)

] . (2.26)

Then, by setting θ1(x) = Ξ+
(
p1(x)

)
and θ2(x) = Ξ−

(
p2(x)

)
, one gets

Ξ(z) = −
∫
R

dy
2iτ

θ2(y)

sinh
[
π
τ (y − z)

] + ∫
R

dy
2iτ

θ1(y)g′(y)

sinh
[
π
τ (g(y) − z − iα)

] . (2.27)

Furthermore, the above integral representation leads to the following relations for the −, resp. +, boundary values
on R, resp. R − iα:

1
2θ2(x) = K21[θ1](x) −

?
R

dy
2iτ

θ2(y)

sinh
[
π
τ (y − x)

]
1
2θ1(x) = K12[θ2](x) +

?
R

dy
2iτ

θ1(y) g′(y)

sinh
[
π
τ (g(y) − g(x))

] . (2.28)

Then, adding up the two above equations and using explicitly the form of the jump conditions θ1(x) = θ2(x) +
GΞ(x), one gets the linear integral equation (2.21). The latter allows one to represent θ1 as

θ1(x) = K[θ1](x) +
1
2

{
GΞ(x) + HR

[
GΞ −GΞ(x)

]
(x)

}
− K12[GΞ](x) (2.29)

from which the smoothness of Ξ+(g(x)− iα) on R is manifest. The latter ensures that Ξ+(x− iα) is smooth as well.
The smoothness of Ξ− follows from Ξ−(x) = θ1(x) − GΞ(x). Finally, one has that θ1 ∈ E(R) as can be inferred
from the asymptotic behaviour (2.5) established in Lemma 2.1 and the hypotheses on GΞ that are outlined after
(2.3).
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Reciprocally, let θ be a solution to the linear integral equation (2.21) on E(R). Then, since the integral kernels
Kab and GΞ are all smooth, so is θ. Next, one defines a holomorphic function Ξ̃ on Sτ−α as

Ξ̃(z) = −
∫
R

dy
2iτ

θ(y)g′(y)

sinh
[
π
τ (g(y) − z)

] + ∫
R

dy
2iτ

θ(y) − GΞ(y)

sinh
[
π
τ (y − z + iα)

] . (2.30)

It is direct to check that Ξ̃ admits smooth −, reps. +, boundary values on R, resp. R − i(τ − α). Furthermore, the
asymptotic behaviour of θ at infinity ensures that

Ξ̃(z) = C
Ξ̃
δ±;− + O

(
e∓ηz

)
as ℜ(z)→ ±∞ (2.31)

for some η > 0 and some constant C
Ξ̃

. Moreover, direct calculations using the linear integral equation satisfied by
θ ensure that Ξ̃−(g(x)) = Ξ̃+(x − i(τ − α)). Hence, Ξ̃ satisfies the non-local Riemann-Hilbert problem outlined in
the beginning of Subsection 2.1 under the replacement g ↪→ g−1 and corresponding to a vanishing shift function
G
Ξ̃
= 0. As established below, such homogeneous non-local Riemann-Hilbert problems admit only zero solutions.

In particular, this entails that Ξ̃−(g(x)) = Ξ̃+(x− i(τ−α)) = 0. These two equations provide one with an additional
set of two singular linear integral equations satisfied by θ, namely

1
2
θ(x) =

?
dy
2iτ

θ(y)g′(y)

sinh
[
π
τ (g(y) − g(x))

] + K12[θ −GΞ](x) (2.32)

1
2
θ(x) − 1

2
GΞ(x) = −

?
dy
2iτ

θ(y) − GΞ(y)

sinh
[
π
τ (g(y) − g(x))

] + K21[θ](x) . (2.33)

This being settled, one introduces the holomorphic function Ξ on Sα such that

Ξ(z) = −
∫
R

dy
2iτ

θ(y) − GΞ(y)

sinh
[
π
τ (y − z)

] + ∫
R

dy
2iτ

θ(y)g′(y)

sinh
[
π
τ (g(y) − z − iα)

] . (2.34)

As before, Ξ admits smooth ± boundary values on Sα and enjoys the asymptotic behaviour at infinity

Ξ(z) = CΞδ±;− + O
(
e∓ηz

)
as ℜ(z)→ ±∞ (2.35)

for some η > 0 and some constant CΞ. The two equations (2.32)-(2.33) ensure that θ(x) = Ξ+(g(x) − iα) and
Ξ−(x) = θ(x) − GΞ(x). All in all, this ensures that Ξ is indeed a solution of the non-local Riemann-Hilbert
problem for Ξ.

2.2 Non-local Riemann-Hilbert problem in a smooth setting

The results obtained in Lemmata 2.1 and 2.2 ensure that the original Riemann-Hilbert problem for Ξ may be
equivalently formulated in a setting which involves much better behaved function.

The Riemann-Hilbert problem for Ξ of interest consists in finding

• Ξ ∈ O(Sα) having smooth −, resp. +, boundary values on R, resp. R − iα, in particular, Ξ+(p1(x)) and
Ξ−

(
p2(x)

)
are both smooth on R.

• Ξ+
(
p1(x)

)
= Ξ−

(
p2(x)

)
+ GΞ(x), with x ∈ R;

• there exists a constants CΞ and η > 0 such that

Ξ(z) = CΞδ±;− + O
(
e−η|ℜ(z)|) when ℜ(z)→ ±∞ (2.36)

with an asymptotic expansion that is valid uniformly up to the boundary.
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2.3 Unique solvability of the homogeneous non-local Riemann-Hilbert problem and invertibility
of id − K

Lemma 2.2 established that any solution to the non-local Riemann-Hilbert problem for Ξ gives rise to a solution
to the linear integral equation driven by id− K on E(R). In fact, given two solutions Ξ1,Ξ2 to the Riemann-Hilbert
problem for Ξ, their difference δΞ = Ξ1 − Ξ2 satisfies the Riemann-Hilbert problem for Ξ associated with a
vanishing shift function and thus δθ(x) = δΞ−(x) = δΞ+(g(x) − iα) gives rise to a solution to the homogeneous
integral equation(

id − K
)
[δθ] = 0 . (2.37)

Thus, the unique solvability of the non-local Riemann-Hilbert problem for Ξ, or, equivalently, the fact that only
0 solves the non-local Riemann-Hilbert problem associated with the zero shift function, is ensured once that
invertibility† of id − K on E(R) is satisfied. The arguments developed in the literature which allow to establish
this property, see [9] for the details, build strongly on the compactness of the operator K, which, however, does
not hold in the present setting. Consequently, one has to recourse to a more sophisticated reasoning in order to
establish the invertibility of id − K.

The main idea in the present case consists in splitting the operator K introduced in (2.23) into three pieces

K = L++ + L−− + B . (2.38)

This splitting is such that the operators L±± have a purely continuous spectrum while B is compact and hence
has a pointwise spectrum. Upon establishing the invertibility of the operators id − L±±, the decomposition (2.38)
reduces the question of invertibility of id−K to the invertibility of an auxiliary operator id−M, where M is compact.
Once this stage of the analysis is reached, the remainder of the reasoning will be carried out within the standard
techniques outlined in [9].

In the decomposition (2.38), the operator B is defined as

B = K11 + δK12 + δK21 . (2.39)

The integral kernels of the operators δK12 and δK21 are given by

δK12(x, y) = − 1
2iτ

{
1

sinh
[
π
τ (y − g(x) + iα)

] − ∑
υ=±

1Rυ×Rυ(x, y)

sinh
[
π
τ (y − x − κυ + iα)

]} (2.40)

and

δK21(x, y) =
1

2iτ

{
g′(y)

sinh
[
π
τ (g(y) − x − iα)

] − ∑
υ=±

1Rυ×Rυ(x, y)

sinh
[
π
τ (y + κυ − x − iα)

]} . (2.41)

Finally, the operators L±± appearing in (2.38) are integral operators on L2(R±) with integral kernels Lυυ(x, y) =
Lυ(x − y) · 1Rυ×Rυ(x, y) for the difference-dependent

Lυ(x − y) =
1

2iτ

{
1

sinh
[
π
τ (y + κυ − x − iα)

] − 1

sinh
[
π
τ (y − κυ − x + iα)

]} . (2.42)

We now establish that B is a compact, Hilbert-Schmidt operator.
†In fact, it is enough that (2.37) does not admit solutions in the class of functions corresponding to boundary values of holomorphic

functions solving the zero shift non-local Riemann-Hilbert problem for Ξ. However, as shown below, this is in fact equivalent to the
invertibility.
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Proposition 2.3. B is a Hilbert-Schmidt operator on L2(R). Its integral kernel B(x, y) is smooth on Rυ × Rυ′ ,
υ, υ′ ∈ {±} and enjoys the bounds

B(x, y) = O
(
e−

π
τ

(
|x|+|y|

))
. (2.43)

The remainder appearing above is differentiable in the sense that ∂k
x∂
ℓ
yB(x, y) = O

(
e−

π
τ

(
|x|+|y|

))
on Rυ × Rυ′ for

integers k, ℓ ∈ N. The control is however not uniform with respect to the order of the derivatives.

Proof —
Smoothness of B(x, y) on Rυ × Rυ′ is evident from (2.39)-(2.41). The Hilbert-Schmidt nature of B is a direct

consequence of the bounds (2.43). Finally, in order to establish (2.43) one bounds each of the three building
blocks of the operator B separately.

First of all consider K11(x, y). For |y| ≤ M and x → ±∞ one obviously gets K11(x, y) = O
(
e−

π
τ |x|

)
. A similar

bound holds for |x| ≤ M and y → ±∞: K11(x, y) = O
(
e−

π
τ |y|

)
. Finally, observe that, if |x| ≥ M and |y| ≥ M and

xy > 0 then obviously K11(x, y) = 0. While, for xy < 0, one gets that K11(x, y) = O
(
e−

π
τ |x−y|

)
= O

(
e−

π
τ (|x|+|y|)

)
. All

in all,

K11(x, y) = O
(
e−

π
τ

(
|x|+|y|

))
. (2.44)

Regarding to δK12(x, y). Assume that (x, y) ∈ (R±)2 then, by construction δK12(x, y) = 0 if |x| ≥ M, while for
|x| ≤ M, δK12(x, y) = O

(
e−

π
τ |y|

)
. It remains to focus on the situation when xy < 0. Then, taken the difference form

of the kernel, for large arguments one gets that δK12(x, y) = O
(
e−

π
τ |x−y|

)
= O

(
e−

π
τ (|x|+|y|)

)
. Thus, all in all

δK12(x, y) = O
(
e−

π
τ

(
|x|+|y|

))
. (2.45)

Finally, regarding to δK21(x, y) the reasoning is quite analogous. Assume that (x, y) ∈ (R±)2. Then, by
construction δK12(x, y) = 0 if |y| ≥ M, while for |y| ≤ M, δK12(x, y) = O

(
e−

π
τ |x|

)
. When xy < 0 the difference form

of the kernel leads to δK12(x, y) = O
(
e−

π
τ (|x|+|y|)

)
. Thus

δK21(x, y) = O
(
e−

π
τ

(
|x|+|y|

))
. (2.46)

Furthermore, it is clear from the reasonings above that the remainders are differentiable on Rυ × Rυ′ .
Taken all together, this yields the claimed bounds on the integral kernel B(x, y).

2.3.1 Preliminary notations

It will appear useful, at various instances, to introduce the basic building block function

mζ(x) =
1

2iτ sinh
[π
τ

(x − iζ)
] so that F [

m±ζ
]
(k) =

±e∓kζ

1 + e∓kτ , (2.47)

provided that 0 < ℜ(
ζ
)
< τ. Here and in the following, we define the Fourier transform, whenever it makes sense,

with the convention

F [ f ](k) =
∫
R

dx f (x)eikx . (2.48)
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Since one can express the difference dependent integral kernels appearing in K as

Lυ(x) = mα+iκυ(x) − m−α−iκυ(x) , (2.49)

with υ ∈ {±}, one infers that

F [
Lυ

]
(k) =

cosh
[
k( τ2 − α − iκυ)

]
cosh

[ kτ
2
] (2.50)

so that

1 − F [
Lυ

]
(k) = 2

sinh
[ k

2 (α + iκυ)
] · sinh

[ k
2 (τ − α − iκυ)

]
cosh

[ kτ
2
] . (2.51)

Consider the function k 7→ 1 − F [
Lυ

]
(k) on R+ iυv with 0 < v ≪ 1. It is non-vanishing on this line. Furthermore,

introduce

B(±)
↑ =

{
z ∈ C : ℑ(z) > ±v

}
and B(±)

↓ =
{
z ∈ C : ℑ(z) < ±v

}
. (2.52)

Then, 1 − F [
Lυ

]
admits the Wiener-Hopf factorisation

1 − F [
Lυ

]
(k) =

α(υ)
↑ (k)

α(υ)
↓ (k)

(2.53)

such that

• α(υ)
↑ ∈ O

(
B(υ)
↑

)
and α(υ)

↓ ∈ O
(
B(υ)
↓ \ {0}

)
;

• α(υ)
↑/↓(k) → 1 when k → ∞ with k ∈ B(υ)

↑/↓ .

The Wiener-Hopf factors are given explicitly in terms of Gamma functions as

α(υ)
↑ (k) = −ik

√
2πAυBυ · [Cυ]ikCυ[
Aυ

]ikAυ · [Bυ]ikBυ
Γ

( 1
2 − iCυk

1 − iBυk , 1 − iAυk

)
(2.54)

and

α(υ)
↓ (k) = ik

√
AυBυ

2π

[
Cυ]ikCυ[

Aυ
]ikAυ · [Bυ]ikBυ

Γ

(
iAυk , iBυk

1
2 + iCυk

)
. (2.55)

There, we adopted the conventions introduced in (1.16) and made use of the following shorthand notations:

Aυ =
α + iκυ

2π
, Bυ =

τ − α − iκυ

2π
and Cυ =

τ

2π
. (2.56)

Note that α(υ)
↑/↓ admit meromorphic continuations to B(υ)

↓/↑. Furthermore, α(υ)
↑ has a simple zero at k = 0 and this

is its only zero in some open neighbourhood of R. Also, α(υ)
↓ admits a simple pole at k = 0 and it is its only simple

pole in some open neighbourhood of R. For further convenience, we parameterise this local behaviour as

α(υ)
↑ (k) ∼

k→0
k α(υ)

0 and α(υ)
↓ (k) ∼

k→0

α̃ (υ)
0

k
. (2.57)

One has

α(υ)
0 α̃ (υ)

0 = −1 . (2.58)
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2.3.2 Preparatory decomposition for id − K

We are now in position to discuss the invertibility of the operator id−K on the space E(R) as defined in (2.20), with
K as introduced in (2.23) and rewritten in (2.38). Assume that one is given a solution f ∈ E(R) to

(
id − K)[ f ] = h

with h having an exponential fall-off at ±∞, viz. h(x) = O
(
e−η|x|

)
for some η > 0. Then, one may recast the

equation in a matrix form relatively to the decomposition E(R) = E(R−) ⊕ E(R+) with

E(Rσ) =
{
f · 1Rσ : f ∈ E(R)

}
, (2.59)

as (
id − L−− − B−− −B−+

−B+− id − L++ − B++
)
·
(

f −

f +

)
=

(
h−

h+

)
. (2.60)

Or, more explicitly (
id − L−−

)
[ f −] = B−+[ f +] + B−−[ f −] + h− ≡ H− , (2.61)(

id − L++
)
[ f +] = B++[ f +] + B+−[ f −] + h+ ≡ H+ . (2.62)

It follows from the above and Proposition 2.3 that the functions f ± and H± do belong to the classes considered in
Subsections B.1-B.2 of the Appendix. Then, the results from these sections entail that, for v > 0 and small enough

F [
f −

]
(k) = −

∫
R+iv

ds
2iπ

α(−)
↓ (k) · F [

H−
]
(s)

α(−)
↑ (s) · (s − k)

, k ∈ R − iv , (2.63)

F [
f +

]
(k) =

∫
R−iv

ds
2iπ

α(+)
↓ (s) · F [

H+
]
(s)

α(+)
↑ (k) · (s − k)

, k ∈ R + iv . (2.64)

One may recast the system of equations subordinate to (2.63)-(2.64) as a matrix integral equation on
L2(R − iv) ⊕ L2(R + iv) on the unknown vector

u =
(

u−

u+

)
with uσ = F [ fσ] , σ = ± . (2.65)

For that purpose one observes that

F
[
Bϵσ[ fσ]

]
(k) =

∫
R+iσv

dk B̂ϵσ(k, s)F [ fσ](s) (2.66)

in which

B̂ϵσ(k, s) =
∫

Rϵ×Rσ

dxdy
2π

eikx−isyB(x, y) . (2.67)

The fact that the Fourier transforms B̂ϵσ(k, s) are well-defined for (k, s) ∈ {
R−iϵv

}×{R+iσv
}

is a direct consequence
of Proposition 2.3. In fact, one has that B̂ϵσ(k, s) is analytic in k, s belonging to a tubular neighbourhood of R2.
Moreover, the asymptotics established in Proposition 2.3 entail that, for some constant C > 0,∣∣∣∣B̂ϵσ(k, s)

∣∣∣∣ ≤ C
(1 + |s|) · (1 + |k|) (2.68)
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uniformly throughout this tubular neighbourhood. Taken (2.63)-(2.64), it appears convenient to introduce

M+σ(k, t) =
1

α(+)
↑ (k)

·
∫
R−iv

ds
2iπ

α(+)
↓ (s)

s − k
B̂+σ(s, t) (2.69)

and

M−σ(k, t) = −α(−)
↓ (k) ·

∫
R+iv

ds
2iπ

{
α(−)
↑ (s)

}−1

s − k
B̂−σ(s, t) . (2.70)

It is direct to check that Mϵσ is smooth on
{
R + iϵv

} × {
R + iσv

}
. Furthermore, it follows from Lemma D.1 that

there exists a constant C such that∣∣∣Mϵσ(k, t)
∣∣∣ ≤ C · ln(1 + |k|)

(1 + |k|) · (1 + |t|) for (k, t) ∈ {
R + iϵv

} × {
R + iσv

}
. (2.71)

This entails that the operator M on L2(R − iv) ⊕ L2(R + iv) given in matrix form

M =

(
M−− M−+

M+− M++

)
(2.72)

is Hilbert-Schmidt. Indeed, the Hilbert-Schmidt norm of interest takes the form

||M||2HS =
∑
ϵ,σ

∫
R+iϵv

dk
∫
R+iσv

ds
∣∣∣Mϵσ(k, s)

∣∣∣2 (2.73)

and its finiteness follows from the bounds (2.71).
Then, introducing

d
+[h](k) =

∫
R−iv

ds
2iπ

α(+)
↓ (s) · F [

h+
]
(s)

α(+)
↑ (k) · (s − k)

, (2.74)

d
−[h](k) = −

∫
R+iv

ds
2iπ

α(−)
↓ (k) · F [

h−
]
(s)

α(−)
↑ (s) · (s − k)

, (2.75)

one ends up with the linear integral equation(
id − M

)[
u
]
= d[h] with u =

(
u−

u+

)
and d[h] =

(
d−[h]
d+[h]

)
. (2.76)

Reciprocally, given any solution u to the above equation, by using the analyticity properties of the functions
dσ[h] and the integral kernels Mσυ(k, s), it is direct to infer from the representation

uσ(k) = Mσ+[u+](k) + Mσ−[u−](k) + dσ[h](k) (2.77)

that uσ ∈ O(Hσ) and that uσ(k) = Cσ/k + O(k−2) on Hσ. This entails that the functions

ψ(σ)(x) =
∫
R+iσv

dk
2π

e−ikxuσ(k) (2.78)
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are supported on Rσ and enjoy the asymptotic behaviour when x→ σ∞:

ψ(σ)(x) = Cψ(σ) + O
(
e−σvx

)
, (2.79)

for some constants Cψ(σ) . Then, by carrying backwards the reasonings described in Subsections B.1-B.2, one
infers that(

id − Lσσ
)
[ψ(σ)](x) = Bσ+[ψ(+)](x) + Bσ−[ψ(−)](x) + hσ(x) (2.80)

for σ = ± and x ∈ Rσ. Upon setting ψ = ψ(+)+ψ(−), one gets that equation (2.80) can be recast as
(
id − K)[ψ] = h.

As a consequence, since constants are in the kernel of id − K, it follows that the function θ = ψ −Cψ(+) solves(
id − K)[θ] = h with θ(x) = Cθδ±,− + O

(
e−v|x|) when x→ ±∞ . (2.81)

2.3.3 Invertibility of id − K and unique solvability of the Riemann-Hilbert problem

Proposition 2.4. The operator M on L2(R − iv) ⊕ L2(R + iv) defined through (2.69),(2.70) and (2.72) satisfies
det[id − M] , 0. Moreover, the non-local Riemann-Hilbert problem for Ξ is uniquely solvable and the operator
id − K on E(R) is invertible.

Once that developments of Sub-Section 2.3.2 have been laid down, the proof closely follows the reasoning
outlined in [9].

Proof —
We first establish that the non-local Riemann-Hilbert problem for Ξ associated with a zero shift function, viz.

corresponding to GΞ = 0, has only the trivial solution Ξ = 0. Let Ξ be a non-vanishing solution to this zero shift
problem. Thus, Ξn also solves this problem for any n ∈ N. Setting θ = Ξ+ ◦ p2, one infers from Lemma 2.2
that θn has the asymptotic behaviour when x → ±∞ : θ(x) = Cn

θδ±,− + O
(
e−v|x|

)
for some v > 0 and solves(

id − K)[θn] = 0. Since Ξ is non-identically vanishing, θ is non-identically vanishing as well. By building on the
earlier considerations, one infers that

un =

 F [(
θn)−]

F [(
θn)+]  ∈ ker

(
id − M

)
. (2.82)

We now establish that the u1, . . . ,uk are linearly independent for any k. Let ca be such that
∑k

n=1 cnun = 0.
Component-wise this yields

∑k
n=1 cnF

[(
θn)±] = 0. Hence, by taking the inverse Fourier transform of the sum of

these two relations, one gets that
∑k

n=1 cnθ
n = 0. Since the function θ is non-zero, it also cannot be constant owing

to its asymptotics at +∞. Since θ is non-constant, there exists x0 such that θ′(x0) , 0. Thus, θ is a diffeomorphism
in the neighbourhood of x0. This entails that there exist a sequence x1, x2, . . . of pairwise distinct reals such that
θ(xa) , θ(xb) for any a , b. One then infers from the relation

∑k
n=1 cnθ

n = 0 the system of equations

k∑
n=1

cnθ
n(xs) = 0 , s = 1, . . . , k . (2.83)

However, the latter has only trivial solutions owing to the invertibility of the associated Vandermonde matrix
which stems from the condition θ(xa) , θ(xb).

The linear independence of u1, . . . , uk for any k thus entails that ker[id − M] cannot be finite dimensional
contradicting the compactness of M. Thus the non-local Riemann-Hilbert problem for Ξ associated with a zero
shift has only the trivial solution Ξ = 0.
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We now establish that, ker[id−M] = 0. If not, then let u ∈ ker
(
id−M

)
, u , 0. Since u ∈ L2(R− iv)⊕L2(R+ iv),

the large-k asymptotic expansion of B̂σϵ(k, s) which follows from integration by parts and differentiability of the
remainder in Proposition 2.3

B̂σϵ(k, s) ≃
∑
ℓ≥0

φℓ(s)
kℓ

with
∣∣∣φℓ(s)

∣∣∣ ≤ Cℓ

1 + |s| , (2.84)

entails that uσ(k) admits the asymptotic expansion

uσ(k) ≃
∑
ℓ≥0

k−ℓc(σ)
ℓ

for ℜ(k)→ ±∞ . (2.85)

Furthermore, the very structure of the integral kernels of the operator M ensures that u+ ∈ O(B(−)
↑ \ {0}

)
, resp.

u− ∈ O(B(+)
↓ \ {0}

)
. Also, uσ admits a simple pole at 0. Thus, by taking the inverse Fourier transform, one gets

a solution θ to (2.81) with h = 0. By following the reasoning outlined in the proof of Lemma 2.2, this solution
gives rise to a solution Ξ̃ to the non-local Riemann-Hilbert problem for Ξ having zero shift and subordinate to the
replacement g ↪→ g−1 in the welding diffeomorphism. But then, by the above, this Riemann-Hilbert problem has
only trivial solutions. This allows one to introduce, following the proof of Lemma 2.2, a holomorphic function Ξ
on Sα solving the non-local Riemann-Hilbert problem for Ξ with a zero shift and such that θ(x) = Ξ+(g(x) − iα).
Since this problem has only trivial solutions, θ = 0 and thus, by going backwards, u = 0 as well, which is a
contradiction.

We have just established that ker[id − M] = 0. Thus, since M is compact, id − M is invertible and in particular
det[id − M] , 0. The latter, by virtue of the construction described earlier on, ensures that id − K is invertible as
well.

3 Special non-local Riemann-Hilbert problems

In the following, we shall consider two smooth diffeomorphisms of R, gL and gR which both satisfy g′L/R > 0 and
such that

gL(x) =


x x < −ML

gL(x) −ML < x < ML

x + κ ML < x

and gR(x) =


x + κ x < −MR

gR(x) −MR < x < MR

x MR < x

, (3.1)

for some ML,MR > 0. The purpose of this section is to establish the unique solvability of two non-local Riemann-
Hilbert problems with shifts associated with the diffeomorphisms gL/R. Prior to that, however, we shall establish
some properties of the Cauchy transform on a welded strip which will play some role in later steps of the analysis.

3.1 Cauchy transform on a welded strip

In the following, we shall set

γ =
−κ
κ − iα

and γ̃ = γ + 1 =
−iα
κ − iα

(3.2)

where κ ∈ R. Observe that the constant γ is such that f (z) = γz satisfies to the jump condition

f+(x + κ − iα) = f−(x) − κ x ∈ R . (3.3)

In this subsection, we establish the main properties of a Cauchy transform which has the appropriate symmetry
to deal properly with the welding diffeomorphims p1;sev(x) = x + κ − iα from R onto R − iα.

22



Lemma 3.1. Let Υ be a holomorphic function on {z ∈ C : −α < ℑ(z) < 0 y − 2|κ| < ℜ(z) < y + κ + 2|κ|} for
some y ∈ R, having continuous −, resp. +, boundary values on the upper, resp. lower, pieces of this domain and
satisfying Υ+(x + κ − iα) = Υ−(x). Then, the Cauchy transform

CΓ[Υ](z) =
∫
Γ

γ̃ ds
iα

Υ(s)

e
2πγ̃
α (s−z) − 1

, (3.4)

with Γ = [y ; y − iα + κ] satisfies the following non-local Riemann-Hilbert problem on Sα:

• CΓ[Υ] ∈ O(Sα \ Γ) and has holomorphic −, resp. +, boundary values on Γ;

• CΓ;+[Υ](s) − CΓ;−[Υ](s) = Υ(s) for s ∈ Γ;

• CΓ[Υ](x + κ − iα) = CΓ[Υ](x) for x ∈ R;

• up to the boundary ∂Sα, it holds

CΓ[Υ](z) = −δ±,+
∫
Γ

γ̃ ds
iα
Υ(s) + O

(
e∓

2πγ̃
α z

)
when ℜ(z)→ ±∞ . (3.5)

Proof —
Most of the statements are rather evident, the non-local jump condition on the boundary following from

CΓ[Υ](x + κ − iα) − CΓ[Υ](x) =
∫
Γ

γ̃ ds
iα
Υ(s) ·

{
1

e
2π
α [̃γ(s−x)−γ̃(κ−iα)] − 1

− 1

e
2πγ̃
α (s−x) − 1

}
= 0 , (3.6)

owing to γ̃(κ − iα) = −iα.
Furthermore, observe that CΓ[Υ] has cuts on C along the curves Γ + iα

γ̃
Z, viz. at the points

z = y + (−iα + κ)t + inα − nκ with t ∈ [0 ; 1] , n ∈ Z , (3.7)

which form the line in C passing through Γ. For n , 0, none of these points is contained in Sα, thus Γ is indeed
the sole discontinuity curve for CΓ[Υ] in the strip Sα.

The fact that z 7→ CΓ;±[Υ](z) are holomorphic in a neighbourhood of Γ follows, for z ∈ Int(Γ), from a contour
deformation in (3.4) made possible by the fact that Υ is analytic in the neighbourhood of Γ. Holomorphicity in the
vicinity of the endpoints of Γ needs an extra care.

In the domain depicted in Figure 5, one defines, in the neighbourhood of the curve Γext an analytic function Υ̂.
The fact that it is analytic follows from the jump conditions on ∂Sα satisfied by Υ.

The curve Γ may be parameterised as

y + (−iα + κ)t with t ∈ [0 ; 1] , namely y − i
αt
γ̃
, with t ∈ [0 ; 1] . (3.8)
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Γext

b

b

b

b

y − κ + iα

y

y + κ − iα

y + 2κ − 2iα

R + iα

R

R − iα

R − 2iα

Υ̂(z) = Υ(z + κ − iα)

Υ̂(z) = Υ(z)

Υ̂(z) = Υ(z − κ + iα)

1

Figure 5: The extended strip with the extended curve Γext such that Γ = Γext ∩ Sα.

Then, one has that

CΓ[Υ](z) = −
1∫

0

dt
Υ
(
y + (−iα + κ)t

)
e

2πγ̃
α (y−z)e−2iπt − 1

(3.9)

= −

1
2∫

0

dt
Υ(y +

( − iα + κ)t
)

e
2πγ̃
α (y−z)e−2iπt − 1

−
0∫

− 1
2

dt
Υ
(
y + (−iα + κ)t + (−iα + κ)

)
e

2πγ̃
α (y−z)e−2iπt − 1

(3.10)

=

∫
Γ̂

γ̃ ds
iα

Υ̂(s)

e
2πγ̃
α (s−z) − 1

(3.11)

in which Γ̂ = [y + (iα − κ)/2 ; y − (iα − κ)/2]. The above representation produces manifestly holomorphic ±
boundary values around z = 0. A similar analysis allows one to conclude relatively to the point y + κ − iα.

3.2 Left Riemann-Hilbert problem

The problem consists in finding χ(L) ∈ O(Sα) such that χ(L) admits smooth −, resp. +, boundary values on R, resp.
R − iα, such that

• χ(L)(z) = Cχ(L) + O
(
e

2π
α z

)
whenℜ(z)→ −∞ and up to the boundary;

• χ(L)(z) = γ · z + O
(
e−

2πγ̃
α z

)
whenℜ(z)→ +∞ and up to the boundary;

• χ(L)
+ (gL(x) − iα) = χ(L)

− (x) + x − gL(x).
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Above, γ and γ̃ are as introduced in (3.2) while gL is as given by (3.1).

Proposition 3.2. The left non-local Riemann-Hilbert problem stated above admits a unique solution.

Proof —
First, introduce the holomorphic function on an open neighbourhood Sα

ω(L)(z) =
γz

e−
2π
τ z + 1

, (3.12)

where τ > 2α. The function ω(L)(z) may be decomposed as

ω(L)(z) = γz + ω(L)
R (z) with ω(L)

R (z) = − γz

e
2π
τ z + 1

. (3.13)

As a consequence, the following estimates hold

ω(L)(z) =


O
(
ze

2π
τ z

)
ℜ(z)→ −∞

γz + O
(
ze−

2π
τ z

)
ℜ(z)→ +∞

. (3.14)

The decomposition (3.13) entails that ω(L) satisfies

ω(L)(x + κ − iα) − ω(L)(x) = −κ + ω(L)
R (x + κ − iα) − ω(L)

R (x) for x ∈ R . (3.15)

Then, one makes the substitution in the Riemann-Hilbert problem for χ(L) as described in Figure 6.

R

R − iα

x

gL(x) − iα

χ(L) = Υ(L) + ω(L)

1

Figure 6: The substitution for the Riemann-Hilbert problem for χ(L).

What results is the following Riemann-Hilbert problem for Υ(L):

• Υ(L) ∈ O(Sα) ;

• Υ(L)(z) = −ω(L)
R (z) + O

(
e−

2πγ̃
α z

)
whenℜ(z)→ +∞ and up to the boundary;

• Υ(L)(z) = Cχ(L) − ω(L)(z) + O
(
e

2π
α z

)
whenℜ(z)→ −∞ and up to the boundary;

• Υ(L) admits smooth −, resp. +, boundary values on R, resp. R − iα;

• Υ(L)
+ (gL(x) − iα) = Υ(L)

− (x) + GΥ(L)(x), where the jump function takes the form

GΥ(L)
(
x
)
=


ω(L)(x) − ω(L)(x − iα) x < −ML

x − gL(x) + ω(L)(x) − ω(L)(gL(x) − iα) −ML ≤ x ≤ ML

ω(L)
R (x) − ω(L)

R (x + κ − iα) ML < x

. (3.16)
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It follows from the stated properties of ω(L) that GΥ(L) has the form (2.2) for g = gL, M = ML and

GΥ(L)(z) = ω(L)
R (z) + φL(ℜ(z)) γz , (3.17)

where φL(x) is a smooth interpolating function equal to 1 for x < −ML/2 and to 0 for x > ML/2 so that GΥ(L) is
analytic on Sα for |ℜ(z)| > ML/2 with exponential falloff at infinity. By virtue of Proposition 2.4 the non-local
Riemann-Hilbert problem for Υ(L) is uniquely solvable, and hence, so is the one for χ(L).

We point out that χ(L) readily allows one to build the solution to the non-local Riemann-Hilbert problem
associated with a shifted function. Namely, for any w ∈ R, let

GL(x) = gL(x + w) − w =


x x < −ML − w

gL(x + w) − w −ML − w < x < ML − w

x + κ ML − w < x

. (3.18)

Then Ξ(L)(z) = χ(L)(z + w) solves the Riemann-Hilbert problem:

• Ξ(L) ∈ O(Sα) and admits smooth −, resp. +, boundary values on R, resp. R − iα;

• Ξ(L)(z) = CΞ(L) + O
(
e

2π
α (z+w)

)
whenℜ(z)→ −∞ and up to the boundary;

• Ξ(L)(z) = γ · (z + w) + O
(
e−

2πγ̃
α (z+w)

)
whenℜ(z)→ +∞ and up to the boundary;

• Ξ(L)
+ (GL(x) − iα) = Ξ(L)

− (x) + x − GL(x).

We stress that the remainders atℜ(z)→ ±∞ appearing above are uniform in w.

3.3 Right Riemann-Hilbert problem

The right Riemann-Hilbert problem consists in finding χ(R) ∈ O(Sα) such that

• χ(R) admits smooth −, resp. +, boundary values on R, resp. R − iα;

• χ(R)(z) = O
(
e−

2π
α z

)
whenℜ(z)→ +∞ and up to the boundary;

• χ(R)(z) = γ · z + Cχ(R) + O
(
e

2πγ̃
α z

)
whenℜ(z)→ −∞ and up to the boundary;

• χ(R)
+ (gR(x) − iα) = χ(R)

− (x) + x − gR(x).

We remind that γ and γ̃ have been introduced in (3.2) while gR is given by (3.1).

Proposition 3.3. The Riemann-Hilbert problem for χ(R) admits a unique solution.

Proof — Let

ω(R)(z) =
γz

1 + e
2π
τ z

, (3.19)

where τ > 2α. The function ω(R)(z) may be decomposed as

ω(R)(z) = γz + ω(R)
L (z) with ω(R)

L (z) = − γz

e−
2π
τ z + 1

. (3.20)
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As a consequence, one has

ω(R)(z) =


γz + O

(
ze

2π
τ z

)
ℜ(z)→ −∞

O
(
ze−

2π
τ z

)
ℜ(z)→ +∞

. (3.21)

The decomposition (3.13) entails that ω(R) satisfies

ω(R)(x + κ − iα) − ω(R)(x) = −κ + ω(R)
L (x + κ − iα) − ω(R)

L (x) . (3.22)

R

R − iα

x

gR(x) − iα

χ(R) = Υ(R) + ω(R)

1

Figure 7: The substitution for the Riemann-Hilbert problem for χ(R).

Upon implementing the substitution in the Riemann-Hilbert problem for χ(R) as described in Figure 7, one
gets that Υ(R) ∈ O(Sα) solves the Riemann-Hilbert problem

• Υ(R)(z) = −ω(R)(z) + O
(
e−

2π
α z

)
whenℜ(z)→ +∞ and up to the boundary;

• Υ(R)(z) = Cχ(R) − ω(R)
L (z) + O

(
e

2πγ̃
α z

)
whenℜ(z)→ −∞ and up to the boundary;

• Υ(R) admits smooth −, resp. +, boundary values on R, resp. R − iα;

• Υ(R)
+ (gR(x) − iα) = Υ(R)

− (x) + GΥ(R)(x), where the jump function takes the form

GΥ(R)
(
x
)
=


ω(R)

L (x) − ω(R)
L (x + κ − iα) x < −MR

x − gR(x) + ω(R)(x) − ω(R)(gR(x) − iα) −MR ≤ x ≤ MR

ω(R)(x) − ω(R)(x − iα) MR < x

. (3.23)

It follows from the stated properties of ω(R) that GΥ(R) has the form (2.2) for g = gR, M = MR and

GΥ(R)(z) = ω(R)
L (z) + φR(ℜ(z)) γz , (3.24)

where φR(x) is a smooth interpolating function equal to 0 for x < −MR/2 and to 1 for x > MR/2 so that GΥ(R) is
analytic on Sα for |ℜ(z)| > MR/2 with exponential falloff at infinity. Again, these properties entail by virtue of
Proposition 2.4 that the non-local Riemann-Hilbert problem for Υ(R) is uniquely solvable, and hence, so is the one
for χ(R).

The solution χ(R) gives rise to the solution of the non-local Riemann-Hilbert problem associated with a shifted
function. Namely, for any w ∈ R, let

GR(x) = gR(x − w) + w =


x + κ x < −MR + w

gR(x − w) + w −MR + w < x < MR + w

x MR + w < x

(3.25)
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Then Ξ(R)(z) = χ(R)(z − w) solves the Riemann-Hilbert problem:

• Ξ(R) ∈ O(Sα) and admits L2(R) −, resp. +, boundary values on R, resp. R − iα,

• Ξ(R)(z) = O
(
e−

2π
α (z−w)

)
whenℜ(z)→ +∞ and up to the boundary;

• Ξ(R)(z) = γ · (z − w) + CΞ(R) + O
(
e

2πγ̃
α (z−w)

)
whenℜ(z)→ −∞ and up to the boundary;

• Ξ(R)
+ (GR(x) − iα) = Ξ(R)

− (x) + x − GR(x).

4 Asymptotic behaviour of the global non-local Riemann-Hilbert problem

From now on we fix two positive reals ML,MR > 0 and consider the function g defined as

g(x) =



x x < −ML − w

gL(x + w) − w −ML − w ≤ x ≤ ML − w

x + κ ML − w ≤ x ≤ w − MR

gR(x − w) + w w − MR < x < w + MR

x MR + w < x

(4.1)

where gL and gR correspond to the functions introduced in (3.1).
Below, we shall establish the main theorem of this work, Theorem 1.3.

Proof of Theorem 1.3.
The substitution χ(z) = χ̃(z) + z turns the non-local Riemann-Hilbert problem with shift for χ into the one of

finding χ̃ ∈ O(Sα) such that

• χ̃ has smooth −, resp. +, boundary values on R, resp. R − iα;

• χ̃(z) = Cχδ±,− + O
(
e∓

2π
α z

)
forℜ(z)→ ±∞, this up to the boundary and for some constant Cχ;

• χ̃+
(
g(x) − iα

)
= χ̃−

(
x
)
+ x − g(x), with x ∈ R.

The unique solvability of the Riemann-Hilbert problem for χ̃ is a direct consequence of Proposition 2.4. This
thus establishes the unique solvability of the non-local Riemann-Hilbert problem with shift for χ. However, the
approach that was adopted for establishing Proposition 2.4 does not allow one for a uniform in w control on the
solution. To achieve it, first introduce

Ψ(z) = CΓ0

[
δΞ

]
(z) (4.2)

in which Γ0 = [0 ;−iα + κ] while δΞ = Ξ(L) − Ξ(R) where Ξ(L/R) are the unique solutions to the left/right shifted
Riemann–Hilbert problems that were discussed in Subsections 3.2-3.3. Note that, owing to the large z asymptotics
of the solutions χ(L/R), it holds

δΞ(s) = γ(s + w) + O
(
e−

2πγ̃
α (s+w)

)
− γ(s − w) − CΞ(R) − O

(
e

2πγ̃
α (s−w)

)
= 2γw − CΞ(R) + O

(
e−

2πγ̃
α w

)
(4.3)

uniformly in s ∈ Γ0 and where γ̃ is as defined in (3.2). Furthermore, the jump condition δΞ+(x+κ− iα) = δΞ−(x),
valid in some fixed, w-independent, neighbourhood of x = 0, ensures that one can invoke Lemma 3.1 so as to
conclude that Ψ satisfies
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• Ψ ∈ O(Sα \ Γ) and has holomorphic −, resp. +, boundary values on Γ0;

• Ψ+(x) − Ψ−(x) = δΞ(x) for x ∈ Γ0;

• Ψ(x + κ − iα) = Ψ(x) for x ∈ R;

• Ψ(z) = δ±,+c(w) + O
(
we∓

2πγ̃
α z

)
whenℜ(z)→ ±∞ this up to the boundary ∂Sα, and uniformly in w with

c(w) = −
∫
Γ0

γ̃ ds
iα

δΞ(s) = 2γw − CΞ(R) + O
(
e−

2πγ̃
α w

)
. (4.4)

Finally, the asymptotic expansion (4.3) for δΞ which holds uniformly on Γ0 allows one to get uniform in w
estimates for Ψ. Indeed, this entails that

Ψ(z) =
(
2γw − CΞ(R)

)
1DR(z) + CΓ0

[
δΞ − 2γw + CΞ(R)

]
(z) (4.5)

whereDR is the domain depicted in Fig. 8 and we used that CΓ0

[
1
]
(z) = 1DR(z). The second term may be estimated

as

CΓ0

[
δΞ − 2γw + CΞ(R)

]
(z) =

 O
(
e−

2πγ̃
α w(

1 + e−
2πγ̃
α z)) z ∈ DR

O
(
e−

2πγ̃
α (w−z)

)
z ∈ DL

. (4.6)

These estimates are uniform up to the boundary of Sα and up to Γ0, as follows from the local holomorphicity of
δΞ around Γ0 and the fact that it satisfies in this neighbourhood δΞ+(s + κ − iα) = δΞ−(s).

Γ0DL DR

b

b

κ − iα

0R

R − iα

x

g(x) − iα

χ̃ = Ξ(L) + Ψ + Υ − c(w) χ̃ = Ξ(R) + Ψ + Υ − c(w)

1

Figure 8: The substitution for the Riemann-Hilbert problem for χ.

Then, one makes the substitution in the Riemann–Hilbert problem for χ̃ as described in Figure 8. One gets
that, by construction, Υ is continuous across Γ0. It thus solves the non-local Riemann-Hilbert problem

• Υ ∈ O(Sα) having L2(R) −, resp. +, boundary values on R, resp. R − iα;

• Υ(z) = CΥδ±;− + O
(
e−η|ℜ(z)|

)
forℜ(z)→ ±∞, this up to the boundary for some CΥ and η > 0;

• Υ+
(
g(x) − iα

)
= Υ−

(
x
)
+ GΥ(x), with x ∈ R,

where the jump function reads GΥ(x) = Ψ(x) − Ψ(g(x) − iα). Observe further that for x ∈ [ML − w ;−MR + w]
it holds g(x) = x + κ and thus GΥ(x) = 0 by virtue of the periodicity of Ψ. Furthermore, the estimates for Ψ at
infinity entail that for x ∈ R \ [ML − w ;−MR + w]

GΥ(x) = O
(
we∓

2πγ̃
α x

)
± x > 0 (4.7)
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which is uniformly exponentially small in w and has an exponential fall-off in x at infinity. This will allow to
control the behaviour of the function Υ both in z and in w. The argument goes as follows.

By Proposition 2.4 and Lemma 2.2, the function Y1(x) = Υ+(g(x) − iα) corresponds to the unique solution to(
id − Ktot

)
[Y1] =

1
2

{
GΥ +H[GΥ]

}
− Ktot;12

[
GΥ

]
(4.8)

where Ktot, Ktot;12 andH are the integral operators introduced in Lemma 2.2 whose integral kernels are expressed
in terms of the function g given in (4.1). Due to the properties of GΥ, the results that will be established in Section
5, in particular Theorem 5.5, ensure that

Y1(x) = CY1δ±,− + O
(
e−wη′−η|x|) as x→ ±∞ (4.9)

uniformly in w and for some η, η′ > 0 and with CY1 = O
(
e−wη′

)
. Moreover, it holds ||Y1||L∞(R) = O

(
e−wη′

)
. Thus,

since

Υ(z) = −
∫
R

dy
2iτ

Y1(y) −GΥ(y)

sinh
[
π
τ (y − z)

] + ∫
R

dy
2iτ

Y1(y)g′(y)

sinh
[
π
τ (g(y) − z − iα)

] , (4.10)

one gets that

Υ(z) = CY1δ±,− + O
(
e−wη′−η|z|) as ℜ(z)→ ±∞ , (4.11)

uniformly throughout Sα and in w. The comparison of the decompositions of Figures 4 and 8 permits then to end
the proof of Theorem 1.3.

5 Invertibility of an auxiliary integral operator

Let Ktot be the integral operator, introduced in (2.23), and associated with the function g given in (4.1). It follows
from the analysis in Subsection 2.3 that the operator id − Ktot is invertible on an appropriate functional space.

The goal of this section is to establish, uniformly in w→ +∞, bounds on the inverse of id − Ktot. This will be
done by relying on the various results established in the previous sections.

5.1 Decomposition of Ktot

To start with, it is convenient to introduce three intervals

I−w = ] −∞ ;−w] , I0
w = ] − w ; w[ , I+w = [w ;+∞[ . (5.1)

Next, introduce three operators on L2(R), L++w , L0
w, L−−w with integral kernels

L±±w (x, y) = L(e)(x − y) · 1I±w×I±w (x, y) (5.2)

L0
w(x, y) = L(0)(x − y) · 1I0

w×I0
w
(x, y) , (5.3)

where

L(e)(x − y) =
1

2iτ

{
1

sinh
[π
τ

(y − x − iα)
] − 1

sinh
[π
τ

(y − x + iα)
]} , (5.4)

L(0)(x − y) =
1

2iτ

{
1

sinh
[π
τ

(y + κ − x − iα)
] − 1

sinh
[π
τ

(y − κ − x + iα)
]} . (5.5)
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From now on we agree to denote by KR and BR, resp. KL and BL, the operators K as introduced in (2.23) and B
as introduced in (2.39) which are subordinate to the function gR, resp. gL, introduced in (3.1).

Define the operator Btot on L2(R)

Btot(x, y) = 1R+(x)1]−w ;+∞[(y) · BR(x − w, y − w) + 1R−(x)1]−∞ ;w[(y) · BL(x + w, y + w)

+ 1R+(x)GR(x, y) + 1R−(x)GL(x, y) . (5.6)

Upon using the function mα introduced in (2.47), the functions GR/L are expressed as

GL(x, y) =
{
mα

(
gR(y − w) + w − x

)
g′R(y − w) + m0

(
gR(y − w) + 2w − gL(x + w)

)
g′R(y − w) − m0(y − x)

+ KL;12(x + w, y + w)
}
1]w−MR ;+∞[(y) − KL(x + w, y + w)1]w−MR ;w[(y) (5.7)

and

GR(x, y) =
{
mα

(
gL(y + w) − w − x

)
g′L(y + w) + m0

(
gL(y + w) − 2w − gR(x − w)

)
g′L(y + w) − m0(y − x)

+ KR;12(x − w, y − w)
}
1]−∞ ;−w+ML[(y) − KR(x − w, y − w)1]−w ;−w+ML[(y) . (5.8)

It is clear that the functions GL/R satisfy the bounds

GL(x, y) = O
(
e−

π
τ |x−y|) · 1]w−MR ;+∞[(y) and GR(x, y) = O

(
e−

π
τ |x−y|) · 1]−∞ ;ML−w[(y) . (5.9)

Moreover, the remainders appearing above also hold for the derivatives, namely, for any (k, ℓ) ∈ N2, one has

∂ℓx∂
k
yGL(x, y) = O

(
e−

π
τ |x−y|) · 1]w−MR ;+∞[(y) and ∂ℓx∂

k
yGR(x, y) = O

(
e−

π
τ |x−y|) · 1]−∞ ;ML−w[(y) . (5.10)

Lemma 5.1. One has

Ktot = L
++
w + L0

w + L
−−
w + Btot (5.11)

Proof —
Recall that g(x) = gL(x + w) − w whenever −∞ < x < w − MR. Hence, for x ≤ w − MR,

Ktot;12(x, y) = KL;12(x + w, y + w) for any y ∈ R . (5.12)

Also, in the same range of x’s,

Ktot;21(x, y) =

 KL;21(x + w, y + w) if y ≤ w − MR

mα

(
gR(y − w) + w − x

)
g′R(y − w) if y ≥ w − MR

(5.13)

and

Ktot;11(x, y) =

 KL;11(x + w, y + w) if y ≤ w − MR

m0
(
gR(y − w) + 2w − gL(x + w)

)
g′R(y − w) − m0(y − x) if y ≥ w − MR

. (5.14)

Thus, adding up the three pieces, one gets that for x ≤ w − MR,

Ktot(x, y) = KL(x + w, y + w)1]−∞ ;w[(y) + GL(x, y) (5.15)
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with GL as defined in (5.7).
Analogously, g(x) = gR(x − w) + w for −w + ML ≤ x. Hence, in this range of x’s,

Ktot;12(x, y) = KR;12(x − w, y − w) for any y ∈ R . (5.16)

Also, in the same range of x’s, one has

Ktot;21(x, y) =

 mα
(
gL(y + w) − w − x

)
g′L(y + w) if y ≤ −w + ML

KR;21(x − w, y − w) if y ≥ −w + ML

(5.17)

and

Ktot;11(x, y) =

 m0
(
gL(y + w) − 2w − gR(x − w)

)
g′L(y + w) − m0(y − x) if y ≤ −w + ML

KR;11(x − w, y − w) if y ≥ −w + ML

. (5.18)

Thus, adding up the three pieces, one gets that for x ≤ w − MR,

Ktot(x, y) = KR(x − w, y − w)1]−w ;+∞[(y) + GR(x, y) (5.19)

with GR as defined in (5.8).
Observe that the kernels KL/R may be further expressed, following (2.38), as

KL(x + w, y + w) = L−−L;w(x, y) + L++L;w(x, y) + BL(x + w, y + w) (5.20)

KR(x − w, y − w) = L−−R;w(x, y) + L++R;w(x, y) + BR(x − w, y − w) . (5.21)

There, one has

L−−L;w(x, y) = L(e)(x − y) · 1I−w×I−w (x, y) and L++L;w(x, y) = L(0)(x − y) · 1]−w ;+∞[×]−w ;+∞[(x, y) . (5.22)

Likewise,

L−−R;w(x, y) = L(0)(x − y) · 1]−∞ ;w[×]−∞ ;w[(x, y) and L++R;w(x, y) = L(e)(x − y) · 1I+w×I+w (x, y) . (5.23)

The rest follows upon straightforward calculations starting from the decomposition, valid almost everywhere,

Ktot(x, y) = 1R+(x) ·
{
KR(x − w, y − w)1]−w ;+∞[(y) + GR(x, y)

}
+ 1R−(x) ·

{
KL(x + w, y + w)1]−∞ ;w[(y) + GL(x, y)

}
. (5.24)

From now on, it appears useful to introduce the following notation for the projections of f ∈ L2(R) subordinate
to the intervals Iαw, α ∈ {+,−, 0}:

f − = f 1I−w , f 0 = f 1I0
w
, f + = f 1I+w . (5.25)

The decomposition of the operator Ktot achieved in Lemma 5.1 allows one to decompose naturally id − Ktot into
a matrix bloc operator relative to the direct sum decomposition of the space E(R) of (2.20) induced by the above
projection operators:

E(R) = L2
C(I−w) ⊕ L2(I0

w) ⊕ L2(I+w) , (5.26)
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where

L2
C(I−w) =

{
f ∈ L2

loc(I−w) : ∃C f andα > 0 f (x) = C f + O
(
eαx

)}
. (5.27)

The main reason for doing so is that the operators id − L−−w , id − L0
w, id − L++w which encapsulate the continuous

part of the spectrum of id − Ktot and arise in the diagonal block subordinate to the splitting (5.26) may be explicitly
inverted. This simplifies the analysis of the original equation

(
id − Ktot

)
[ f ] = h permitting to map it into a one

whose non-trivial piece is governed by a compact operator whose large-w behaviour may be controlled.
Furthermore, denoting by

Bϵσtot(x, y) = Btot(x, y)1Iϵw×Iσw (x, y) with ϵ, σ ∈ {+,−, 0} , (5.28)

the integral kernels of the appropriate projections of the operator Btot, the equation
(
id − Ktot

)
[ f ] = h may be

recast into a block-matrix form subordinate to the direct sum decomposition (5.26) id − L−−w − B−−tot −B−0
tot −B−+tot

−B0−
tot id − L0

w − B00
tot −B0+

tot
−B+−tot −B+0

tot id − L++w − B++tot

 ·
 f −

f 0

f +

 =
 h−

h0

h+

 . (5.29)

The above matrix operator equations may be rewritten as(
id − L−−w

)[
f −

]
= H− = h− +

∑
σ∈{±,0}

B−σtot
[
fσ

]
, (5.30)

(
id − L0

w

)[
f 0] = H0 = h0 +

∑
σ∈{±,0}

B0σ
tot

[
fσ

]
, (5.31)

(
id − L++w

)[
f +

]
= H+ = h+ +

∑
σ∈{±,0}

B+σtot
[
fσ

]
. (5.32)

Since
(
id − Ktot

)
[ f ] = 0 for any constant function, it is convenient, owing to the setting that was analysed in the

previous sections, to extend the equation to the space

E′(R) = L2
C(I−w) ⊕ L2(I0

w) ⊕ L2
C(I+w) , (5.33)

where

L2
C(I+w) =

{
f ∈ L2

loc(I+w) : ∃C f andα > 0 f (x) = C f + O
(
e−αx

)}
. (5.34)

Clearly, any solution obtained in E′(R) gives rise to the solution in E(R) by performing a global translation by a
constant. The main point is that one may apply the results of the previous analysis in the case of E′(R), as the
invertibility of

(
id − L±±w

)
has been formulated on the spaces L2

C(I±w). Hence, considering (5.30), (5.31) and (5.32)
as a system of equations on the space (5.33) and observing that the functions H±,H0 do enjoy the properties stated
in Propositions B.1 and B.2 , as may be inferred from direct bounds and Proposition 2.3, one may apply the results
of Sections B and C of the appendix in order to invert the operators appearing in the lhs of (5.30), (5.31), (5.32)
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so as to get

F [
f −](k) = −α(e)

↓ (k)e−ikw
∫
R+iv

ds
2iπ

{
α(e)
↑ (s)

}−1 · F [
H−

]
(s)

s − k
· eisw with k ∈ R − iv , (5.35)

F [ f 0](k) = F [H0](k) −
∫
R+iv

dµR(k, µ)F [H0](µ) with k ∈ R + iv , (5.36)

F [
f +](k) =

eikw

α(e)
↑ (k)

∫
R−iv

ds
2iπ

α(e)
↓ (s) · F [

H+
]
(s)

s − k
· e−isw with k ∈ R + iv . (5.37)

Here, α(e)
↓/↑ are given by (2.54)-(2.55) upon the substitution κυ 7→ 0 and R is the resolvent kernel of the operator

id + V on L2(R + iv) introduced in (C.1)-(C.2), c.f. Theorem C.1.

5.2 Preliminary estimates for Btot

In this subsection, we provide estimates for the Fourier transform of the ± and 0 projections of the operator Btot
which will then allow to study the large-w behaviour of the solutions to the system (5.35), (5.36), (5.37).

Proposition 5.2. Let

B̂ϵσtot(k, s) =
∫
R

dx
∫
R

dy
2π

eikx−isyBϵσtot(x, y) . (5.38)

with Bϵσtot(x, y) as introduced in (5.28). One has


B̂−−tot (k, s) B̂−0

tot (k, s) B̂−+tot (k, s)

B̂ 0−
tot (k, s) B̂ 00

tot (k, s) B̂ 0+
tot (k, s)

B̂+−tot (k, s) B̂+0
tot (k, s) B̂++tot (k, s)


=


ei(s−k)w · B̂−−L (k, s) ei(s−k)w · B̂−+L (k, s) + B−0(k, s)

B0−(k, s) + ei(s−k)w · B̂+−L (k, s) ei(s−k)w · B̂++L (k, s) + ei(k−s)w · B̂−−R (k, s) + B00(k, s)

B+−(k, s) ei(k−s)w · B̂+−R (k, s) + B+0(k, s)

B−+(k, s)

ei(k−s)w · B̂−+R (k, s) + B0+(k, s)

ei(k−s)w · B̂++R (k, s)

 . (5.39)

Above, the kernels B̂σϵL/R(k, s), with σ, ϵ ∈ {±}, are as introduced in (2.67), under the substitution g 7→ gL/R with
gL/R given by (3.1). The kernels Bσϵ(k, s), with σ, ϵ ∈ {±, 0}, are all holomorphic in an open, w-independent,
neighbourhood of R2 and they satisfy the bounds

B
σϵ(k, s) = O

(
e−2wη(

1 + |k|)(1 + |s|)
)

(5.40)

uniformly in (k, s) ∈ C2 such that |ℑ(k)| < 2v, |ℑ(s)| < 2v, with v small enough, and for some η much larger than
v.
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Proof —
We only discuss the case of the coefficient B̂ 0−

tot (k, s) which already contains all the features of the analysis.
Indeed, one has

B̂ 0−
tot (k, s) =

w∫
−w

dx

−w∫
−∞

dy
2π

eikx−isy
{
1R−(x) · BL(x + w, y + w) + 1R+(x)GR(x, y)

}
= eiw(s−k)B̂+−L (k, s) + B0−(k, s) (5.41)

with

B
0−(k, s) = eisw

w∫
0

dx

0∫
−∞

dy
2π

eikx−isyGR(x, y − w) − ei(s−k)w

+∞∫
w

dx

0∫
−∞

dy
2π

eikx−isyBL(x, y) . (5.42)

Note that all integrals do converge either due to the exponential decay of BL, c.f. (2.43), or to the estimates
(5.9) for the decay of GR(x, y). We now discuss how to estimate the first term appearing in the definition of
B0−(k, s).

For max
{|ℑ(k)|, |ℑ(s)|} < 2v, one sets G̃R(x, y−w) = e3v(x−y+w)GR(x, y−w), so that, by carrying out integrations

by parts,

eisw

w∫
0

dx

0∫
−∞

dy
2π

eikx−isyGR(x, y − w) =
ei(s+3iv)w

2π(s + 3iv)(k + 3iv)

{
ei(k+3iv)wG̃R(w,−w) − G̃R(0,−w)

−
0∫

−∞

dy e−i(s+3iv)y∂y

[
ei(k+3iv)wG̃R(w, y − w) − G̃R(0, y − w)

]
−

w∫
0

dx ei(k+3iv)x∂xG̃R(x,−w)

+

w∫
0

dx

0∫
−∞

dy ei(k+3iv)x−i(s+3iv)y∂x∂yG̃R(x, y − w)
}
. (5.43)

Then, one estimates each term separately by using directly the bounds (5.9), where we remind that the remainder
is differentiable. For instance, one has

∣∣∣∣∣∣ ei(s+3iv)w

(s + 3iv)(k + 3iv)
·

w∫
0

dx

0∫
−∞

dy
2π

ei(k+3iv)x−i(s+3iv)y∂x∂yG̃R(x, y − w)

∣∣∣∣∣∣
≤ Ce−vw

|s + 3iv| |k + 3iv| ·
w∫

0

dx

0∫
−∞

dy e−v(x−y)e−
(
π
τ−3v

)
(x−y+w) = O

(
e−2ηw

(1 + |k|)(1 + |s|)

)
(5.44)

for some η > 0 and for ν small enough. The remaining terms in (5.43) are estimated along the same lines. Finally,
the estimation of the last term appearing in the rhs of (5.41) follows exactly the same philosophy.

5.3 Finer direct sum decomposition of the Hilbert space

While effective for the operator inversion, the direct sum decomposition (5.33) is however not fine enough to
effectively grasp the large-w asymptotics of the integral operators appearing in (5.35)-(5.37). For this, as will
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become apparent in the following, one should further partition the central interval I0
w as

I0
w = IL

w ∪ IR
w with IL

w =] − w ; 0[ and IR
w = [0 ; w[ . (5.45)

Accordingly, we introduce a notation for the projections of f ∈ L2(R) subordinate to the new intervals IL/R
w :

f L = f 1IL
w

and f R = f 1IR
w
. (5.46)

Since the equations (5.35)-(5.37) are already in Fourier space, it is convenient to introduce the projection operators
from F [

L2(I0
w)

] ⊂ L2(R + iv) onto F [
L2(IR/L

w )
]

which, for the moment, we continue to think of as a subspace of
L2(R + iv)

PR[ f ] = C(+)
+ [ f ] and PL[ f ] = −C(+)

− [ f ] (5.47)

in which C(+) is the Cauchy transform on L2(R + iv)

C(+)[ f ](k) =
∫
R−iv

ds
2iπ

f (s)
s − k

. (5.48)

Finally, it will appear convenient to introduce the shorthand notation

uα(k) = F [ f α](k) for α ∈ {±, 0, L,R} . (5.49)

for the Fourier transforms appearing in (5.35)-(5.37). Obviously, u0 = uL + uR. Furthermore, uL/R are entire and,
in particular, analytic in a tubular neighbourhood of R. This makes it possible to identify F [

L2(IL
w)

]
as a subspace

of L2(R + iv) and F [
L2(IR

w)
]

as a subspace of L2(R − iv), even though the splitting u0 = uL + uR would suggest an
identification of F [

L2(IR
w)

]
as being a subspace of L2(R + iv). The former, however, appears to be more useful for

the purposes of the analysis to come. On the practical side, this identification with a subspace of L2(R− iv) simply
means a shift of the integration domain in the terms involving uR from R + iv to R − iv what is possible owing to
the analyticity of the integrand.

5.4 Decomposition in the − sector

In this subsection, we recast the equation in the − sector, viz. (5.35), in a form convenient for the further analysis,
In particular, we explicitly implement the changes issuing from the use of the decomposition u0 = uL + uR.

It is readily seen that

F [H−](k) = F [h−](k) +
∑

α∈{±,0}
B̂
−σ
tot [uσ](k) (5.50)

with

• H− as defined in (5.30);

• B̂−σtot : L2(R + iv)→ L2(R − iv), σ ∈ {0,+}, acting with the integral kernel B̂−σtot (k, s) as defined in (5.38);

• B̂−−tot : L2(R − iv)→ L2(R − iv) acting with the integral kernel B̂−−tot (k, s).
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Observe that, upon using PR[uR] = uR one has

Ψ−R[uR](k) = −α(e)
↓ (k)e−ikw

∫
R+iv

dt
2iπ

{
α(e)
↑ (t)

}−1 eitw B̂−0
tot [u

R](t)

t − k

= lim
ϵ→0+

{
− α(e)
↓ (k)e−ikw

∫
R+iv

dt
2iπ

{
α(e)
↑ (t)

}−1

t − k

∫
R+iv

ds
[
eitw
B
−0(t, s) +

∫
R+iv

dx
2iπ

B̂−+L (t, x)eixw

s − x − iϵ

]
uR(s)

}
(5.51)

Using that uR is entire, and that B−0(t, s) is analytic in a tubular neighbourhood of R2, one may deform the s
integrals to R − iv. Furthermore, the analytic structure of the integrand allows one to deform the x-integrations to
R + iϱ for some fixed ϱ > 0 that is v-independent. This entails that

Ψ−R[uR](k) =
∫
R−iv

Ψ−R(k, s)uR(s) , k ∈ R − iv , (5.52)

with

Ψ−R(k, s) = −α(e)
↓ (k)e−ikw

∫
R+iv

dt
2iπ

{
α(e)
↑ (t)

}−1

t − k

[
eitw
B
−0(t, s) +

∫
R+iϱ

dx
2iπ

B̂−+L (t, x)eixw

s − x

]
. (5.53)

The decay estimates for B̂σϵL (2.68) and Bσϵ (5.40) along with Lemma D.1 readily entail that, for 0 < v small
enough,

Ψ−R(k, s) = O
(
e−ηw ln(1 + |s|) · ln(1 + |k|)

(1 + |s|) · (1 + |k|)

)
with (k, s) ∈ {

R − iv
}2 , (5.54)

where η > 0 is fixed and v independent. To take into account the other quantities arising in (5.50), we introduce
the integral kernels(

Ψ−L(k, s)
Ψ−+(k, s)

)
= −α(e)

↓ (k)e−ikw
∫
R+iv

dt
2iπ

{
α(e)
↑ (t)

}−1eitw

t − k

(
B−0(t, s)
B−+(t, s)

)
(5.55)

which, owing to Lemma D.1 and (5.40), enjoy the bounds, σ ∈ {L,+},

Ψ−σ(k, s) = O
(

e−ηw · ln(1 + |k|)
(1 + |s|) · (1 + |k|)

)
with (k, s) ∈ {

R − iv
} × {
R + iv

}
. (5.56)

The functions Ψ−σ(k, s), σ ∈ {+, L,R}, then allow one to introduce the integral operators Ψ−σ : L2(R + iεσv) →
L2(R + iv) where εσ is defined as

ε− = εR = − and ε+ = εL = + . (5.57)

Also, one introduces

M−σL (k, s) = −α(e)
↓ (k)

∫
R+iϱ

dt
2iπ

{
α(e)
↑ (t)

}−1B̂−σL (t, s)

t − k
, σ = ± (5.58)
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and

d
−
w[h−](k) = −α(e)

↓ (k)e−ikw
∫
R+iv

ds
2iπ

{
α(e)
↑ (s)

}−1 · eisw

s − k
· F [

h−
]
(s) . (5.59)

Furthermore, we introduced the integral operator M−σL : L2(R + iεσv) → L2(R − iv), σ ∈ {±}, characterised by the
integral kernel M−σL (k, s).

Finally, denote by e the operator of multiplication by the function e, viz.

e[ f ](λ) = e(λ) f (λ) with e(λ) = eiλw . (5.60)

Then, by using the decomposition (5.50) one may recast the representation (5.35) in the operator form

u−(k) =
(
e−1M−−L e

)[
u−

]
(k) +

(
e−1M−+L e

)[
uL](k) +

∑
σ∈{L,R,+}

Ψ−σ[uσ](k) + d−w[h−](k) . (5.61)

Note that equation (5.61) may already be interpreted as holding for the first component u− of the vector

u =


u−

uL

uR

u+

 ∈ L2(R − iv) ⊕ L2(R + iv) ⊕ L2(R − iv) ⊕ L2(R + iv) . (5.62)

Finally, by introducing the operators(
Ω−L Ω−R Ω−+

)
=

(
eΨ−Le−1 eΨ−Re eΨ−+e

)
(5.63)

one may recast (5.61) in the form of a line vector of operators times a column vector of functions, which will be
best suited for the later handling:(

id − e−1M−−L e ; −e−1[M−+L +Ω
−L] e ; −e−1Ω−Re−1 ; −e−1Ω−+e−1

)[
u
]
= d−w[h−](k) . (5.64)

5.5 Decomposition in the + sector

In this subsection, we provide the appropriate operator rewriting of the equation in the + sector, viz. (5.37), after
implementing the decomposition u0 = uL + uR.

Analogously to the − sector, one has that

F [H+](k) = F [h+](k) +
∑

α∈{±,0}
B̂
+σ
tot [uσ](k) (5.65)

with

• H+ as defined in (5.32);

• B̂+σtot : L2(R + iv)→ L2(R + iv), σ ∈ {0,+}, acting with the integral kernel B̂+σtot (k, s), c.f. (5.38);

• B̂+−tot : L2(R − iv)→ L2(R + iv) acting with the integral kernel B̂+−tot (k, s).
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The obvious identity PL[uL] = uL leads to

Ψ+L[uL](k) =
eikw

α(e)
↑ (k)

∫
R−iv

dt
2iπ

α(e)
↓ (t) e−itw

t − k
B̂+0

tot [u
L](t)

= lim
ϵ→0+

{
eikw

α(e)
↑ (k)

∫
R−iv

dt
2iπ

α(e)
↓ (t)

t − k

∫
R+iv

ds
[
e−itw
B
+0(t, s) −

∫
R+iv

dx
2iπ

B̂+−R (t, x)e−ixw

s − x + iϵ

]
uL(s)

}
. (5.66)

One then deforms the x-integrations to R − iϱ for some fixed ϱ > 0 that is v-independent leading to

Ψ+L[uL](k) =
∫
R+iv

Ψ+L(k, s) uL(s) (5.67)

with

Ψ+L(k, s) =
eikw

α(e)
↑ (k)

∫
R−iv

dt
2iπ

α(e)
↓ (t)

t − k

[
e−itw
B
+0(t, s) −

∫
R−iϱ

dx
2iπ

B̂+−R (t, x)e−ixw

s − x

]
. (5.68)

The decay estimates for B̂σϵL (2.68) and Bσϵ (5.40) along with Lemma D.1 readily entail that, for 0 < v small
enough,

Ψ+L(k, s) = O
(
e−ηw ln(1 + |s|) · ln(1 + |k|)

(1 + |s|) · (1 + |k|)

)
with (k, s) ∈ {

R + iv
}2 . (5.69)

In order to take into account the other terms present in (5.65), one is lead to introduce the integral kernels(
Ψ+−(k, s)
Ψ+R(k, s)

)
=

eikw

α(e)
↑ (k)

∫
R−iv

dt
2iπ

α(e)
↓ (t) e−itw

t − k

(
B+−(t, s)
B+0(t, s)

)
(5.70)

which enjoy the bounds,

Ψ+σ(k, s) = O
(

e−ηw · ln(1 + |k|)
(1 + |s|) · (1 + |k|)

)
with (k, s) ∈ {

R + iv
} × {
R − iv

}
and σ ∈ {−,R} . (5.71)

The functions Ψ+σ(k, s), σ ∈ {−, L,R}, then allow one to introduce the integral operators Ψ+σ : L2(R + iεσv) →
L2(R + iv) in which εσ has been defined in (5.57).

Finally, one introduces

M+σR (k, s) =
1

α(e)
↑ (k)

∫
R−iv

dt
2iπ

α(e)
↓ (t) B̂+σR (t, s)

t − k
, σ = ± , (5.72)

and

d
+
w[h+](k) =

eikw

α(e)
↑ (k)

·
∫
R−iv

ds
2iπ

α(e)
↓ (s) e−isw F [

h+
]
(s)

s − k
. (5.73)
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At this stage we introduced the integral operator M+σR : L2(R + iεσv) → L2(R + iv), σ ∈ {±}, characterised by the
integral kernel M+σR (k, s).

Altogether, this recasts (5.35) in the following operator form

u+(k) =
(
e M++R e

−1
)[

u+
]
(k) +

(
e M+−R e

−1
)[

uR](k) +
∑

σ∈{L,R,−}
Ψ+σ[uσ](k) + d+w[h+](k) , (5.74)

in which Ψ+σ are integral operators acting with the integral kernels introduced earlier on and the operator e has
been introduced in (5.60). This equation now concerns the last component u+ of the vector appearing in (5.62).

Finally, by introducing the operators(
Ω+− Ω+L Ω+R

)
=

(
e−1Ψ+−e−1 e−1Ψ+Le−1 e−1 Ψ+Re

)
, (5.75)

one may recast (5.74) in the following form that will be best suited for the later handling:(
−eΩ+−e ; −eΩ+Le ; −e [M+−R +Ω

+R] e−1 ; id − e M++R e
−1

)[
u
]
= d+w[h+](k) . (5.76)

Above, u is as given by (5.62).

5.6 Decomposition in the 0 sector

In this subsection, we provide an appropriate rewriting of the equation in the 0 sector, viz. (5.36), after incorporat-
ing the decomposition u0 = uL + uR. In the case of the sector subordinate to the interval I0

w, the Fourier transform
of the function H0 defined in (5.31) takes the form

F [H0](k) = F [h0](k) +
∑

α∈{±,0}
B̂

0σ
tot [uσ](k) (5.77)

with

• B̂ 0σ
tot : L2(R + iv)→ L2(R + iv), σ ∈ {0,+}, acting with the integral kernel B̂ 0σ

tot (k, s), c.f. (5.38);

• B̂ 0−
tot : L2(R − iv)→ L2(R + iv) acting with the integral kernel B̂ 0−

tot (k, s).

It then follows from (5.39) that the latter may be further expressed as

F [H0](k) = F [h0](k) +
(
e−1B̂

+−
L e

)
[u−] +

(
e−1B̂

++

L e + êB
−−
R e

−1
)
[u0]

+
(
êB
−+
R e

−1
)
[u+] +

∑
α∈{±,0}

B
0σ[uσ](k) . (5.78)

Thus equation (5.36) leads to the following expression for u0(k)

u0(k) = d0w[h0](k) +
∑

α∈{±,0}
β0σ[uσ](k) +

∑
α∈{±,0}

(
B̃

0σ + δβ0σ
)
[uσ](k) . (5.79)

There, we have introduced

d
0
w[h0](k) =

(
id − R

)[
F [h0]

]
(k) (5.80)
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while the operators B̃0σ, σ ∈ {±, 0}, act with the integral kernels

B̃
0σ(k, s) =

(
id − R

)[
B

0σ(∗, s)
]
(k) = B0σ(k, s) −

∫
R+iv

dµR(k, µ)B0σ(µ, s) . (5.81)

The expressions for the integral kernels β0σ(k, s) and δβ0σ(k, s) involve the leading R∞(λ, µ) and perturbative
δR(λ, µ) resolvent kernel, as introduced in (C.57) and (C.58). Indeed,

β0−(k, s) =
(
id − R∞

)[
e−1(∗)B̂+−L (∗, s)e(s)

]
(k) , β0+(k, s) =

(
id − R∞

)[
e(∗)B̂−+R (∗, s)e−1(s)

]
(k) , (5.82)

as well as

β00(k, s) =
(
id − R∞

)[
e−1(∗)B̂++L (∗, s)e(s) + e(∗)B̂−−R (∗, s)e−1(s)

]
(k) . (5.83)

Above, ∗ refers to the running variable on which the operator acts. Finally, one has

δβ0−(k, s) = −δR
[
e−1(∗)B̂+−L (∗, s)e(s)

]
(k) , δβ0+(k, s) = −δR

[
e(∗)B̂−+R (∗, s)e−1(s)

]
(k) , (5.84)

as well as

δβ00(k, s) = −δR
[
e−1(∗)B̂++L (∗, s)e(s) + e(∗)B̂−−R (∗, s)e−1(s)

]
(k) . (5.85)

The rewriting of the operators δβ0σ and B̃0σ in a form appropriate for the analysis to come is rather direct
and we shall carry it out first. Then, we focus on the operators β0σ whose large-w asymptotics demand a deeper
investigation.

5.6.1 Perturbing operators Ψστ
B

It follows from the estimates (5.40) and (C.62), direct bounds and the possibility to deform slightly the µ-
integration contour in (5.81) that one has

B̃
0σ(k, s) = O

( e−ηw

(1 + |k|)(1 + |s|)

)
for any |ℑ(k)| ≤ 2v, |ℑ(s)| ≤ 2v , (5.86)

this provided that 0 < v is sufficiently small. Furthermore, one also gets that

B̃
Lσ(k, s) = PL[

B̃
0σ(∗, s)

]
(k) = − lim

ϵ→0+

∫
R+iv

dt
2iπ
B̃0σ(t, s)
t − k + iϵ

= −
∫
R+2iv

dt
2iπ
B̃0σ(t, s)

t − k
= O

(
e−ηw ln(1 + |k|)
(1 + |k|)(1 + |s|)

)
, (5.87)

by virtue of Lemma D.1. Likewise,

B̃
Rσ(k, s) = PR[

B̃
0σ(∗, s)

]
(k) = lim

ϵ→0+

∫
R+iv

dt
2iπ
B̃0σ(t, s)
t − k − iϵ

=

∫
R−2iv

dt
2iπ
B̃0σ(t, s)

t − k
= O

(
e−ηw ln(1 + |k|)
(1 + |k|)(1 + |s|)

)
. (5.88)
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Since the integral kernel B00(k, s) is holomorphic in a tubular neighbourhood of R2, the fact that the resolvent
kernel R is also analytic in such a neighbourhood and the bounds (C.62) entail that B̃00(k, s) is also analytic in
such a tubular neighbourhood. Then, the fact that uL/R are entire allows one to deform the integration contours in
the action below so as to get

B̃
00[u0](k) =

∫
R+iv

dsB̃00(k, s)uL(s) +
∫
R−iv

dsB̃00(k, s)uR(s) . (5.89)

Therefore, upon defining the integral kernels(
Ψσ−
B

(k, s) ΨσL
B

(k, s) ΨσR
B

(k, s) Ψσ+
B

(k, s)
)
=

(
B̃
σ−(k, s) B̃σ0(k, s) B̃σ0(k, s) B̃σ+(k, s)

)
, (5.90)

with σ ∈ {L,R}, one may introduce the associated operators Ψστ
B

: L2(R + iεσv) → L2(R + iετv), with σ ∈ {L,R}
and τ ∈ {±, L,R} and where εσ is as given in (5.57).

By virtue of the previous estimates, one has

Ψστ
B

(k, s) = O
( e−ηw ln(1 + |k|)
(1 + |k|)(1 + |s|)

)
with (k, s) ∈ {

R + iεσv
} × {
R + iετv

}
. (5.91)

5.6.2 Perturbing operators Ψστδβ
It follows from the estimates (2.68) and (C.61), direct bounds and the possibility to deform slightly the integration
contour in the action of δR in (5.84)-(5.85) that one has the bounds

δβ0σ(k, s) = O
( e−ηw

(1 + |k|)(1 + |s|)

)
for any |ℑ(k)| ≤ 2v, |ℑ(s)| ≤ 2v , (5.92)

this provided that v is taken sufficiently small. Moreover, analogously to the previous reasonings

δβLσ(k, s) = PL[δβ0σ(∗, s)
]
(k) = −

∫
R+2iv

dt
2iπ

δβ0σ(t, s)
t − k

= O
( e−ηw ln(1 + |k|)
(1 + |k|)(1 + |s|)

)
, (5.93)

δβRσ(k, s) = PR[δβ0σ(∗, s)
]
(k) =

∫
R−2iv

dt
2iπ

δβ0σ(t, s)
t − k

= O
( e−ηw ln(1 + |k|)
(1 + |k|)(1 + |s|)

)
. (5.94)

Finally, one may present the action of δβ00 on u0 as

δβ00[u0](k) =
∫
R+iv

ds δβ00(k, s)uL(s) +
∫
R−iv

ds δβ00(k, s)uR(s) . (5.95)

Therefore, upon defining the integral kernels(
Ψσ−δβ (k, s) ΨσL

δβ (k, s) ΨσR
δβ (k, s) Ψσ+δβ (k, s)

)
=

(
δβσ−(k, s) δβσ0(k, s) δβσ0(k, s) δβσ+(k, s)

)
, (5.96)

with σ ∈ {L,R}, one gets the associated operators Ψστδβ : L2(R+ iεσv)→ L2(R+ iετv), with εσ as defined in (5.57)
and where τ ∈ {±, L,R}.

By virtue of the previous estimates, one has

Ψστδβ (k, s) = O
( e−ηw ln(1 + |k|)
(1 + |k|)(1 + |s|)

)
with (k, s) ∈ {

R + iεσv
} × {
R + iετv

}
. (5.97)
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5.6.3 Operator β0+

In order to decompose the integral kernel β0+(k, s) into its dominant and sub-dominant in w parts, by using the
explicit expression for the leading resolvent (C.59), one first computes

PL
[(

id − R∞
)[

e(∗)B̂−+R (∗, s)e−1(s)
]
(·)

]
(k) = lim

ϵ→0+

∫
R+iv

dλ
2iπ

e(λ)B̂−+R (λ, s)e−1(s)
k − λ − iϵ

−
∫
R+iv

dλ
2iπ
−F [L(0)](λ)
k − λ − iϵ

×
∫
R+iv

dµ
2iπ

(
− {α(0)

↑ (λ)e(λ)}−1 , α(0)
↓ (λ)e(λ)

)
·
(
I2 +

λ − µ
λµb′(0)

D
)  α(0)

↓ (µ)e2(µ)
{α(0)
↑ (µ)}−1

 B̂−+R (µ, s)e−1(s)
λ − µ (5.98)

where D is as defined in (C.33), b is as defined in (C.43), while α(0)
↑/↓ are as described in Subsection C.2.1.

To proceed further, one splits the integral as follows

PL
[(

id − R∞
)[

e(∗)B̂−+R (∗, s)e−1(s)
]
(·)

]
(k) = e−1(k)ΦL+(k, s)e−1(s) + ΨL+

R∞(k, s) (5.99)

in which, for σ ∈ {
+,R

}
and εσ as in (5.57),

ΨLσ
R∞(k, s) =

∫
R+2iη

dλ
2iπ

e(λ)B̂−εσR (λ, s)e−1(s)
k − λ

+

∫
R+3i η2

dλ
2iπ
F [L(0)](λ)

k − λ

∫
R+2iη

dµ
2iπ

(
0 , α(0)

↓ (λ)e(λ)
)
·
(
I2 +

λ − µ
λµb′(0)

D
)  α(0)

↓ (µ)e2(µ)
{α(0)
↑ (µ)}−1

 B̂−εσR (µ, s)e−1(s)
λ − µ

+

∫
R+2iv

dλ
2iπ
F [L(0)](λ)

k − λ

∫
R+2iη

dµ
2iπ

(
−{α(0)

↑ (λ)e(λ)}−1 , 0
)
·
(
I2 +

λ − µ
λµb′(0)

D
)  α(0)

↓ (µ)e2(µ)
0

 B̂−εσR (µ, s)e−1(s)
λ − µ .

(5.100)

Furthermore, upon using

( − a , b
)
D
( 0

1

)
= a + b , (5.101)

one entails that

ΦLσ(k, s) = e(k)
∫
R+2iv

dλ
2iπ
F [L(0)](λ)e−1(λ)

(k − λ)λα(0)
↑ (λ)

×
∫
R+iv

dµ
2iπ

B̂−εσR (µ, s)

µα(0)
↑ (µ)b′(0)

(5.102)

=

{
e(k)

∫
R+i v

2

dλ
2iπ
F [L(0)](λ)e−1(λ)

(k − λ)λα(0)
↑ (λ)

+
F [L(0)](k)

k α(0)
↑ (k)

}
×

∫
R+iv

dµ
2iπ

B̂−εσR (µ, s)

µα(0)
↑ (µ)b′(0)

. (5.103)

It is direct to check that ΦLσ(k, s), σ ∈ {
+,R

}
enjoys, for some c > 0, the bound

ΦLσ(k, s) = O
(

e−
vw
2

(1 + |k|)(1 + |s|) +
e−c|k|

w(1 + |s|)

)
for (k, s) ∈ {

R + iv
} × {
R + iεσv

}
. (5.104)
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Quite similarly, one has

PR
[(

id − R∞
)[

e(∗)B̂−+R (∗, s)e−1(s)
]
(·)

]
(k) = − lim

ϵ→0+

∫
R+iv

dλ
2iπ

e(λ)B̂−+R (λ, s)e−1(s)
k − λ + iϵ

−
∫
R+iv

dλ
2iπ
F [L(0)](λ)
k − λ + iϵ

×
∫
R+iv

dµ
2iπ

(
− {α(0)

↑ (λ)e(λ)}−1 , α(0)
↓ (λ)e(λ)

)
·
(
I2 +

λ − µ
λµb′(0)

D
)  α(0)

↓ (µ)e2(µ)
{α(0)
↑ (µ)}−1

 B̂−+R (µ, s)e−1(s)
λ − µ

= UR+(k, s) + ΨR+
R∞(k, s) . (5.105)

There, with σ ∈ {
+,R

}
and εσ as in (5.57), we set

URσ(k, s) = e(k)B̂−εσR (k, s)e−1(s) −
∫
R−2iv

dλ
2iπ

∫
R+2iv

dµ
2iπ

F [L(0)](λ)α(0)
↓ (λ)e(λ)

(k − λ)α(0)
↑ (µ)

(
1 +

λ − µ
λµb′(0)

) B̂−εσR (µ, s)e−1(s)
λ − µ . (5.106)

Also,

ΨRσ
R∞(k, s) = −

∫
R+2iη

dλ
2iπ

e(λ)B̂−εσR (λ, s)e−1(s)
k − λ

−
∫
R−2iη

dλ
2iπ
F [L(0)](λ)

k − λ ·
∫
R+2iη

dµ
2iπ

(
− {α(0)

↑ (λ)e(λ)}−1 , 0
)
·
(
I2 +

λ − µ
λµb′(0)

D
)  α(0)

↓ (µ)e2(µ)
{α(0)
↑ (µ)}−1

 B̂−εσR (µ, s)e−1(s)
λ − µ

−
∫
R−2iv

dλ
2iπ
F [L(0)](λ)

k − λ

∫
R+iη

dµ
2iπ

(
0 , α(0)

↓ (λ)e(λ)
)
·
(
I2 +

λ − µ
λµb′(0)

D
)  α(0)

↓ (µ)e2(µ)
0

 B̂−εσR (µ, s)e−1(s)
λ − µ .

(5.107)

Finally, for τ ∈ {L,R} and σ ∈ {
+,R

}
, direct bounds based on Lemma D.1 lead to

ΨτσR∞(k, s) = O
( e−ηw ln(1 + |k|)
(1 + |k|)(1 + |s|)

)
with (k, s) ∈ {

R + iετv
} × {
R + iεσv

}
(5.108)

where εσ are as defined in (5.57). For further convenience, we introduce the integral operators

ΨτσR∞ : L2(R − iεσv)→ L2(R + iετv) , τ ∈ {L,R} and σ ∈ {
+,R

}
, (5.109)

acting with the integral kernels ΨτσR∞
(k, s). We remind that εσ is as in (5.57).

One may push the chain of transformations further for URσ(k, s). Indeed, for k ∈ R− iv and σ ∈ {+,R}, contour
deformations yield

e−1(k)URσ(k, s)e(s) = ΦRσ(k, s) + B̂−εσR (k, s) + F [L(0)](k)α(0)
↓ (k)

∫
R+iη

dµ
2iπ

B̂−εσR (µ, s)

(k − µ)α(0)
↑ (µ)

. (5.110)

There, we have introduced

ΦRσ(k, s) = −e−1(k)
∫
R−i v

2

dλ
2iπ

∫
R+2iv

dµ
2iπ

F [L(0)](λ)α(0)
↓ (λ)e(λ)

(k − λ)α(0)
↑ (µ)

(
1 +

λ − µ
λµb′(0)

) B̂−εσR (µ, s)
λ − µ

+ F [L(0)](k)
α(0)
↓ (k)

k · b′(0)

∫
R+iη

dµ
2iπ

B̂−εσR (µ, s)

µα(0)
↑ (µ)

. (5.111)

44



Then, by observing that F [L(0)](k)α(0)
↓ (k) = α(0)

↓ (k) − α(0)
↑ (k) and setting

M−±R (k, s) = −
∫
R+iη

dµ
2iπ

α(0)
↓ (k) · B̂−±R (µ, s)

(µ − k) · α(0)
↑ (µ)

(5.112)

as well as

V−±R (k, s) = B̂−±R (k, s) +
∫
R+iη

dµ
2iπ

α(0)
↑ (k) · B̂−±R (µ, s)

(µ − k) · α(0)
↑ (µ)

= α(0)
↑ (k)

{ ∫
R−iη

dµ
2iπ

B̂−±R (µ, s)

(µ − k) · α(0)
↑ (µ)

+
B̂−±R (0, s)

k · α(0)
0

}
, (5.113)

with α(0)
0 as defined in (C.14), one gets that, for σ ∈ {

+,R
}

and εσ as in (5.57),

e−1(k)URσ(k, s)e(s) = M−εσR (k, s) + V−εσR (k, s) + ΦRσ(k, s) . (5.114)

It is direct to check that ΦRσ(k, s), σ ∈ {
+,R

}
, enjoy for some c > 0 the bound

ΦRσ(k, s) = O
(

e−
vw
2

(1 + |k|)(1 + |s|) +
e−c|k|

w(1 + |s|)

)
for (k, s) ∈ {

R − iv
} × {
R + iεσv

}
. (5.115)

Similarly as before, we introduce the integral operators

Φτσ
R∞ : L2(R − iεσv)→ L2(R + iετv) , τ ∈ {L,R} and σ ∈ {

+,R
}
, (5.116)

for εσ as in (5.57), whose integral kernels are ΦτσR∞
(k, s). We also introduce the integral operators

M−±R : L2(R ± iσv)→ L2(R − iv) and V−±R : L2(R ± iσv)→ L2(R − iv) (5.117)

having integral kernels M−±R (k, s) and V−±R (k, s), respectively.
All in all, we have established that

βL+(k, s) = e(k)ΦL+(k, s)e−1(s) + ΨL+
R∞(k, s) , (5.118)

βR+(k, s) = e(k)
(
M−+R (k, s) + V−+R (k, s) + ΦR+(k, s)

)
e−1(s) + ΨR+

R∞(k, s) . (5.119)

5.6.4 Operator β0−

In order to decompose the integral kernel β0−(k, s) into its dominant and sub-dominant in w parts, by using the
explicit expression for the leading resolvent (C.59), one first computes

PR
[(

id − R∞
)[

e−1(∗)B̂+−L (∗, s)e(s)
]
(·)

]
(k) = − lim

ϵ→0+

∫
R+iv

dλ
2iπ

e−1(λ)B̂+−L (λ, s)e(s)
k − λ + iϵ

+

∫
R+iv

dλ
2iπ
−F [L(0)](λ)
k − λ + iϵ

×
∫
R+iv

dµ
2iπ

(
− {α(0)

↑ (λ)e(λ)}−1 , α(0)
↓ (λ)e(λ)

)
·
(
I2 +

λ − µ
λµb′(0)

D
)  α(0)

↓ (µ)
{α(0)
↑ (µ)e2(µ)}−1

 B̂+−L (µ, s)e(s)
λ − µ

= e(k)ΦR−(k, s)e(s) + ΨR−
R∞(k, s) . (5.120)
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In this splitting, for σ ∈ {−, L}, we set

ΨRσ
R∞(k, s) = −

∫
R−2iη

dλ
2iπ

e−1(λ)B̂+εσL (λ, s)e(s)
k − λ

−
∫
R−3i η2

dλ
2iπ
F [L(0)](λ)

k − λ

∫
R−2iη

dµ
2iπ

(
− {α(0)

↑ (λ)e(λ)}−1 , 0
)
·
(
I2 +

λ − µ
λµb′(0)

D
)  α(0)

↓ (µ)
{α(0)
↑ (µ)e2(µ)}−1

 B̂+εσL (µ, s)e(s)
λ − µ

−
∫
R−2iv

dλ
2iπ
F [L(0)](λ)

k − λ

∫
R−2iη

dµ
2iπ

(
0 , α(0)

↓ (λ)e(λ)
)
·
(
I2 +

λ − µ
λµb′(0)

D
)  0
{α(0)
↑ (µ)e2(µ)}−1

 B̂+εσL (µ, s)e(s)
λ − µ .

(5.121)

Finally, upon using

( − a , b
)
D
( 1

0

)
= a + b , (5.122)

ΦRσ(k, s), σ ∈ {−, L}, may be recast as

ΦRσ(k, s) = −e−1(k)
∫
R−2iv

dλ
2iπ

F [L(0)](λ)α(0)
↓ (λ)e(λ)

(k − λ)λ b′(0)
×

∫
R−iv

dµ
2iπµ

α(0)
↓ (µ)B̂+εσL (µ, s)

= −
{

e−1(k)
∫
R−i v

2

dλ
2iπ

F [L(0)](λ)α(0)
↓ (λ)e(λ)

(k − λ)λ
−
F [L(0)](k)α(0)

↓ (k)

k

} ∫
R−iv

dµ
2iπ

α(0)
↓ (µ)B̂+εσL (µ, s)

µ b′(0)
. (5.123)

It is direct to check that ΦRσ(k, s), σ ∈ {−, L}
, enjoy for some c > 0 the bound

ΦRσ(k, s) = O
(

e−
vw
2

(1 + |k|)(1 + |s|) +
e−c|k|

w(1 + |s|)

)
for (k, s) ∈ {

R − iv
} × {
R + iεσv

}
. (5.124)

Furthermore, one also has

PL
[(

id − R∞
)[

e−1(∗)B̂+−L (∗, s)e(s)
]
(·)

]
(k) =

∫
R+iv

dλ
2iπ

e−1(λ)B̂+−L (λ, s)e(s)
k − λ − i0+

−
∫
R+iv

dλ
2iπ
−F [L(0)](λ)
k − λ − i0+

×
∫
R+iv

dµ
2iπ

(
− {α(0)

↑ (λ)e(λ)}−1 , α(0)
↓ (λ)e(λ)

)
·
(
I2 +

λ − µ
λµb′(0)

D
)  α(0)

↓ (µ)
{α(0)
↑ (µ)e2(µ)}−1

 B̂+−L (µ, s)e(s)
λ − µ

= UL−(k, s) + ΨL−
R∞(k, s) . (5.125)

There, ULσ(k, s), for σ ∈ {−, L} and εσ as in (5.57), is the integral kernel of the operator ULσ : L2(R + εσiv) →
L2(R + iv):

ULσ(k, s) = e−1(k)B̂+εσL (k, s)e(s) −
∫
R+2iv

dλ
2iπ

∫
R−iη

dµ
2iπ

(
1 − λ − µ

λµb′(0)

)F [L(0)](λ)α(0)
↓ (µ)B̂+εσL (µ, s)e(s)

(k − λ)(λ − µ)α(0)
↑ (λ) e(λ)

. (5.126)
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Moreover, we denote

ΨLσ
R∞(k, s) =

∫
R−2iη

dλ
2iπ

e−1(λ)B̂+εσL (λ, s)e(s)
k − λ

+

∫
R+2iη

dλ
2iπ
F [L(0)](λ)

k − λ

∫
R−2iη

dµ
2iπ

(
0 , α(0)

↓ (λ)e(λ)
)
·
(
I2 +

λ − µ
λµb′(0)

D
)  α(0)

↓ (µ)
{α(0)
↑ (µ)e2(µ)}−1

 B̂+εσL (µ, s)e(s)
λ − µ

+

∫
R+2iv

dλ
2iπ
F [L(0)](λ)

k − λ

∫
R−2iη

dµ
2iπ

(
−{α(0)

↑ (λ)e(λ)}−1 , 0
)
·
(
I2 +

λ − µ
λµb′(0)

D
)  0
{α(0)
↑ (µ)e2(µ)}−1

 B̂+εσL (µ, s)e(s)
λ − µ .

(5.127)

These representations entail, upon invoking Lemma D.1 that, for τ ∈ {L,R} and σ ∈ {−, L} with εσ as defined
in (5.57), one has

ΨτσR∞(k, s) = O
( e−ηw ln(1 + |k|)
(1 + |k|)(1 + |s|)

)
with (k, s) ∈ {

R + iετv
} × {
R + iεσv

}
. (5.128)

Transforming the integral kernel ULσ(k, s) further, one gets for k ∈ R + iv,

e(k)ULσ(k, s)e−1(s) = B̂+εσL (k, s) − F [L(0)](k)

α(0)
↑ (k)

∫
R−iη

dµ
2iπ

α(0)
↓ (µ)B̂+εσL (µ, s)

k − µ + ΦLσ(k, s) , (5.129)

where

ΦLσ(k, s) = −e(k)
∫
R+i v

2

dλ
2iπ

∫
R−iη

dµ
2iπ

(
1 − λ − µ

λµb′(0)

)F [L(0)](λ)α(0)
↓ (µ)B̂+εσL (µ, s)

(k − λ)(λ − µ)α(0)
↑ (λ) e(λ)

+
F [L(0)](k)

k α(0)
↑ (k)b′(0)

∫
R−iη

dµ
2iπµ

α(0)
↓ (µ)B̂+εσL (µ, s) . (5.130)

It is direct to check that ΦLσ(k, s), σ ∈ {−, L}
, enjoy for some c > 0 the bound

ΦLσ(k, s) = O
(

e−
vw
2

(1 + |k|)(1 + |s|) +
e−c|k|

w(1 + |s|)

)
for (k, s) ∈ {

R + iv
} × {
R + iεσv

}
. (5.131)

We now introduce the integral operators

ΨτσR∞ , Φ
τσ : L2(R + iεσv)→ L2(R + iετv) with σ ∈ {−, L} , τ ∈ {L,R} (5.132)

and εσ as in (5.57) with the integral kernels given by ΨτσR∞
(k, s) and Φτσ(k, s), respectively.

Finally, since F [L(0)](k)
{
α(0)
↑ (k)

}−1
=

{
α(0)
↑ (k)

}−1 − {
α(0)
↓ (k)

}−1, one infers that

e(k)ULσ(k, s)e−1(s) = M+εσL (k, s) + V+εσL (k, s) + ΦLσ(k, s) , (5.133)
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where

M+±L (k, s) =
1

α(0)
↑ (k)

∫
R−iη

dµ
2iπ

α(0)
↓ (µ)B̂+±L (µ, s)

µ − k
(5.134)

while

V+±L (k, s) = B̂+±L (k, s) −
∫
R−iη

dµ
2iπ

α(0)
↓ (µ) B̂+±L (µ, s)

α(0)
↓ (k) · (µ − k)

(5.135)

=

{
α̃ (0)

0 B̂+±L (0, s)

kα(0)
↓ (k)

−
∫
R+iη

dµ
2iπ

α(0)
↓ (µ)B̂+±L (µ, s)

α(0)
↓ (k)(µ − k)

}
. (5.136)

α̃(0)
0 appearing above is defined in (C.14).

We introduce the integral operators

M+±L : L2(R ± iv)→ L2(R + iv) and V+±L : L2(R ± iv)→ L2(R + iv) (5.137)

having integral kernels M+±L (k, s) and V+±L (k, s), respectively.
All in all, we have established that

βL−(k, s) = e−1(k)
(
M+−L (k, s) + V+−L (k, s) + ΦL−(k, s)

)
e(s) + ΨL−

R∞(k, s) , (5.138)

βR−(k, s) = e(k)ΦR−(k, s)e−1(s) + ΨR−
R∞(k, s) . (5.139)

5.6.5 Operator β00

One starts by decomposing β00[u0] = (
β00PR)[uR] + (

β00PL)[uL]. Furthermore, one has

(
β00PR)[uR](k) = − lim

ϵ→0+

∫
R+iv

dsdµ
2iπ

β00(k, s)uR(µ)
s − µ + iϵ

=

∫
R−iv

ds β0R(k, s)uR(s) (5.140)

(
β00PL)[uL](k) = lim

ϵ→0+

∫
R+iv

dsdµ
2iπ

β00(k, s)uL(µ)
s − µ − iϵ

=

∫
R+iv

ds β0L(k, s)uL(s) , (5.141)

in which, for k ∈ R + iv and s ∈ R + iεσv, σ ∈ {L,R} and εσ as in (5.57),

β0R(k, s) = −
∫
R+2iv

dµ
2iπ

β00(k, µ)
µ − s

and β0L(k, s) =
∫
R−2iv

dµ
2iπ

β00(k, µ)
µ − s

. (5.142)

This representation allows one to identify the dominant contribution to β0σ(k, s) in that a contour deformation
entails that

β0L(k, s) =
(
id − R∞

)[
e−1(∗)B̂++L (∗, s)e(s)

]
(k) + Ψ0L

1 (k, s) (5.143)

β0R(k, s) =
(
id − R∞

)[
e(∗)B̂−−R (∗, s)e−1(s)

]
(k) + Ψ0R

1 (k, s) (5.144)
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in which

Ψ0L
1 (k, s) =

∫
R+2iη

dµ
2iπ

(
id − R∞

)[
e−1(∗)B̂++L (∗, µ)e(µ)

]
(k)

µ − s
+

∫
R−2iη

dµ
2iπ

(
id − R∞

)[
e(∗)B̂−−R (∗, µ)e−1(µ)

]
(k)

µ − s
(5.145)

while

Ψ0R
1 (k, s) = −

∫
R+2iη

dµ
2iπ

(
id − R∞

)[
e−1(∗)B̂++L (∗, µ)e(µ)

]
(k)

µ − s
−

∫
R−2iη

dµ
2iπ

(
id − R∞

)[
e(∗)B̂−−R (∗, µ)e−1(µ)

]
(k)

µ − s
. (5.146)

Due to (C.60), for µ ∈ R ± 2iη and |ℑ(k)| < 2v with k uniformly away from 0, one has

(
id − R∞

)[
e∓1(∗)B̂±±L/R(∗, µ)

]
(k) = O

(
e5vw

(1 + |k|)(1 + |µ|)

)
. (5.147)

By virtue of Lemma D.1 one infers that, uniformly in (k, s) such that |ℑ(k)| < 2v, |ℑ(s)| < 2v and k uniformly
away from 0

Ψ0σ
1 (k, s) = O

(
e−ηw ln(1 + |s|)
(1 + |k|)(1 + |s|)

)
, σ ∈ {L,R} (5.148)

and thus, uniformly in (k, s) such that |ℑ(k)| ≤ v and |ℑ(s)| ≤ v,

Ψτσ1 (k, s) = Pτ
[
Ψ0σ

1 (∗, s)
]
(k) = O

(
e−ηw ln(1 + |s|) ln(1 + |k|)

(1 + |k|)(1 + |s|)

)
, τ, σ ∈ {L,R} . (5.149)

As earlier on, we introduce the integral operators characterised by the above integral kernels

Ψτσ1 , Φτσ : L2(R + iεσv)→ L2(R + iετv) with σ , τ ∈ {L,R} (5.150)

and εσ as in (5.57).
The R and L projections of the first terms appearing in (5.143)-(5.144) can be computed exactly as in Subsec-

tions 5.6.3-5.6.4. All in all, one gets that βLL(k, s) βLR(k, s)
βRL(k, s) βRR(k, s)

 =  PL[β0L(∗, s)
]
(k) PL[β0R(∗, s)

]
(k)

PR[β0L(∗, s)
]
(k) PR[β0R(∗, s)

]
(k)


=

 e−1(k)
[
M++L + V++L + Φ

LL
]
(k, s)e(s) + ΨLL

1 (k, s) + ΨLL
R∞

(k, s)

e(k)ΦRL(k, s)e(s) + ΨRL
1 (k, s) + ΨRL

R∞
(k, s)

e−1(k)ΦLR(k, s)e−1(s) + ΨLR
1 (k, s) + ΨLR

R∞
(k, s)

e(k)
[
M−−R + V−−R + Φ

RR
]
(k, s)e−1(s) + ΨRR

1 (k, s) + ΨRR
R∞

(k, s)

 . (5.151)
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5.6.6 Matrix equation arising in the 0 sector

In order to write down the final form of the equation associated with the R and L projections of the 0-sector, by
putting together the previous results, one first obtains the relation −e−1[M+−L + V

+−
L +Φ

L−] e −ΨL−
B
−ΨL−

δβ −ΨL−
R∞ ; id − e−1[M++L + V

++
L +Φ

LL] e −ΨLL
B
−ΨLL

δβ −ΨLL
R∞ −Ψ

LL
1

−eΦR−e −ΨR−
B
−ΨR−

δβ −ΨR−
R∞ ; −eΦRL e −ΨRL

B
−ΨRL

δβ −ΨRL
R∞ −Ψ

RL
1

−e−1ΦLRe−1 −ΨLR
B
−ΨLR

δβ −ΨLR
R∞ −Ψ

LR
1 ; −e−1ΦL+e−1 −ΨL+

B
−ΨL+

δβ −ΨL+
R∞

id − e [M−−R + V
−−
R +Φ

RR] e−1 −ΨRR
B
−ΨRR

δβ −ΨRR
R∞ −Ψ

RR
1 ; −e [M−+R + V

−+
R +Φ

R+] e−1 −ΨR+
B
−ΨR+

δβ −ΨR+
R∞

 [u]
=

(
dLw[h0]
dRw[h0]

)
where d

α
w[h0] = Pα

[(
id − R)[h0]

]
. (5.152)

We remind that u appearing above was introduced in (5.62). Then, one defines the operators(
ΩL− ΩLL ΩLR ΩL+

ΩR− ΩRL ΩRR ΩR+

)
=

 ΦL− + e
[
ΨL−
B
+ΨL−

δβ +Ψ
L−
R∞

]
e−1 ; ΦLL + e

[
ΨLL
B
+ΨLL

δβ +Ψ
LL
R∞ +Ψ

LL
1

]
e−1

ΦR− + e−1 [
ΨR−
B
+ΨR−

δβ +Ψ
R−
R∞

]
e−1 ; ΦRL + e−1 [

ΨRL
B
+ΨRL

δβ +Ψ
RL
R∞ +Ψ

RL
1

]
e−1

ΦLR + e
[
ΨLR
B
+ΨLR

δβ +Ψ
LR
R∞ +Ψ

LR
1

]
e ; ΦL+ + e

[
ΨL+
B
+ΨL+

δβ +Ψ
L+
R∞

]
e

ΦRR + e−1 [
ΨRR
B
+ΨRR

δβ +Ψ
RR
R∞ +Ψ

RR
1

]
e ; ΦR+ + e−1 [

ΨR+
B
+ΨR+

δβ +Ψ
R+
R∞

]
e

 . (5.153)

This allows one to rewrite (5.152) in the form(
−e−1[M+−L + V

+−
L +Ω

L−] e ; id − e−1[M++L + V
++
L +Ω

LL] e
eΩR−e ; eΩRLe

e−1ΩLRe−1 ; e−1ΩL+e−1

id − e [M−−R + V
−−
R +Ω

RR] e−1 ; −e [M−+R + V
−+
R +Ω

R+] e−1

 [u]
=

(
dLw[h0]
dRw[h0]

)
, (5.154)

that is best suited for the later handling.

5.7 Final form of the integral equation

By gathering the results of Subsections 5.6.3, 5.6.4, 5.6.5 and 5.6.6, in particular the equations (5.76), (5.64) and
(5.154), one may recast the original system (5.35)-(5.37) into the following form

E
(
id − O − Ω

)
E−1[u]

= dw[h] , (5.155)

in which E = Diag
(
e−1 , e−1 , e , e

)
, dw[h] =

(
d−w[h−](k) , dLw[h0](k) , dRw[h0](k) , d+w[h+](k)

)t
, while

Ω =


0 Ω−L Ω−R Ω−+

ΩL− ΩLL ΩLR ΩL+

ΩR− ΩRL ΩRR ΩR+

Ω+− Ω+L Ω+R 0

 . (5.156)

Finally, one has

O =

(
OL 0
0 OR

)
(5.157)
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in which OL/R are integral operators on L2(R − iv) ⊕ L2(R + iv) having the block-matrix form

OL =

(
M−−L M−+L

M+−L + V
+−
L M++L + V

++
L

)
and OR =

(
M−−R + V

−−
R M−+R + V

−+
R

M+−R M++R

)
. (5.158)

Proposition 5.3. The operators O and Ω appearing in (5.155) are compact Hilbert-Schmidt operators on

L2(R − iv) ⊕ L2(R + iv) ⊕ L2(R − iv) ⊕ L2(R + iv) . (5.159)

Moreover, the operator id − O − Ω is invertible uniformly in w large enough. Its inverse is equal to id+∆, where
the operator ∆ has the block-matrix form

∆ =


∆−− ∆−L ∆−R ∆−+

∆L− ∆LL ∆LR ∆L+

∆R− ∆RL ∆RR ∆R+

∆+− ∆+L ∆+R ∆++

 . (5.160)

The integral kernels associated with this block decomposition enjoy the uniform in w bounds:

∆στ(k, s) = O
(
ln(1 + |k|) · ln(1 + |s|)

(1 + |k|) · (1 + |s|)

)
f or (k, s) ∈ {R + iεσv} × {R + iετv} , (5.161)

with {σ, τ} ∈ {±,R, L} and εσ is as introduced in (5.57).

Proof —
Using Proposition 2.3 and Lemma D.1 one may bound the integral kernels Mσϵ

L/R and Vσϵ
L/R of the operators

ML/R and VL/R building up the operator O as

Mσϵ
L/R(k, s) = O

(
ln(1 + |k|)

(1 + |k|) · (1 + |s|)

)
for (k, s) ∈ {R + iσv} × {R + iϵv} with σ, ϵ ∈ {±} , (5.162)

and

V+ϵL (k, s) = O
(

ln(1 + |k|)
(1 + |k|) · (1 + |s|)

)
for (k, s) ∈ {R + iv} × {R + iϵv} with ϵ ∈ {±} , (5.163)

V−ϵR (k, s) = O
(

ln(1 + |k|)
(1 + |k|) · (1 + |s|)

)
for (k, s) ∈ {R − iv} × {R + iϵv} with ϵ ∈ {±} . (5.164)

Also, upon recalling the definition of various block operators building up Ω, (5.63), (5.75) and (5.153), one may
infer from the bounds (5.54), (5.56), (5.69), (5.71), (5.91), (5.97), (5.104), (5.108), (5.115), (5.124), (5.128),
(5.131), (5.149) the relations

Ωστ(k, s) = O
(

ln(1 + |k|) ln(1 + |s|)
w · (1 + |k|) · (1 + |s|)

)
for (k, s) ∈ {R+iεσv}×{R+iετv} with σ, τ ∈ {±,R, L} , (5.165)

where εσ is as introduced in (5.57).
Put together, these pieces of information ensure that the operators O and Ω appearing in (5.155) are compact,

Hilbert-Schmidt operators having trace and leading to well-defined Fredholm determinants.
Since the Fredholm 2-determinants are continuous in the Hilbert-Schmidt norm [11] in the sense that for any

C′ > 0 there exists C > 0 such that∣∣∣∣det2
[
id − A] − det2

[
id − B]∣∣∣∣ ≤ C · ||A − B||HS for any ||A||HS + ||B||HS < C′ , (5.166)
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and since det2
[
id − O] = det

[
id − O]etr[O], it is enough to show that det

[
id − O] is away from 0 so as to have the

uniform in w invertibility of id − O − Ω. For this purpose, we compute the Fredholm determinant of id − O in
terms of other determinants which we know to be non-vanishing.

Clearly, one has

det
[
id − O] = det

[
id − OL

] · det
[
id − OR

]
. (5.167)

In order to estimate those determinants, one first observes the block operator factorisation

id − OL =

(
id − M−−L −M−+L
−M+−L − V+−L id − M++L − V++L

)
(5.168)

=

(
id − M−−L −M−+L
−M+−L id − M++L

)
·
(

id 0
−V+−L id − V++L

)
. (5.169)

The latter is a consequence of the identities

Mσ+L · V+τL = 0 for σ, τ ∈ {±} . (5.170)

established in Lemma 5.4 below.
Now, it follows from Proposition 2.4 that det[id − ML] , 0 where

ML/R =

(
M−−L/R M−+L/R
M+−L/R M++L/R

)
. (5.171)

Moreover, owing to the identity V++L · V++L = 0 and the Plemelj-Smithies expansion for the determinant [11]:

det
[
id + A

]
=

∑
n≥0

1
n!

detn



tr
[
A
]

n − 1 0 . . . 0
tr
[
A2] tr

[
A
]

n − 2 . . . 0
...

...
...

. . .
...

tr
[
An−1] tr

[
An−2] tr

[
An−3] · · · 1

tr
[
An] tr

[
An−1] tr

[
An−2] · · · tr

[
A
]


, (5.172)

one has

det
(

id 0
−V+−L id − V++L

)
= 1 − tr

[
V++L

]
. (5.173)

The latter trace can be shown to vanish by deforming the integration contours to −i∞ in the expression below

tr
[
V++L

]
=

∫
R+iv

dk
{
α̃ (0)

0 B̂++L (0, k)

kα(0)
↓ (k)

−
∫
R+iη

dµ
2iπ

α(0)
↓ (µ)B̂++L (µ, k)

α(0)
↓ (k)(µ − k)

}
, (5.174)

since the integrand is analytic in H−2v = H
− + 2iv and goes to zero as o(k−3/2) at∞ in that domain.

Thus, all in all, one infers that det
[
id − OL

]
= det[id − ML] , 0.

Very analogous considerations lead to

id − OR =

(
id − M−−R − V−−R −M−+R − V−+R
−M+−R id − M++R

)
(5.175)

=

(
id − M−−R −M−+R
−M+−R id − M++R

)
·
(

id − V−−R −V−+R
0 id

)
(5.176)
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as follows from the identities

Mσ−R · V−τR = 0 for σ, τ ∈ {±} . (5.177)

established in Lemma 5.4 below. Now, Proposition 2.4 implies that det[id − MR] , 0. The identity V−−R · V−−R = 0
and the Plemelj-Smithies formula lead to

det
(

id − V−−R −V−+R
0 id

)
= 1 − tr

[
V−−R

]
. (5.178)

The latter trace can be shown to vanish by deforming the contour to +i∞ in the integral below

tr
[
V−−R

]
=

∫
R−iv

dk α(0)
↑ (k)

{ ∫
R−iη

dµ
2iπ

B̂−−R (µ, k)

(µ − k) · α(0)
↑ (µ)

+
B̂−−R (0, k)

k · α(0)
0

}
, (5.179)

where the integrand is analytic in H+ − 2iv and goes to zero as o(k−3/2) at∞ in that domain.

Thus, all in all, det
[
id − OR

]
= det[id − MR] , 0.

It remains to establish the estimates (5.161) on the entries of the resolvent operator ∆. Set Q = O+Ω for short.
The blocks of the resolvent kernel may be expressed as [11]

∆τσ(λ, µ) =
∆τσn (λ, µ)

det
[
id − Q] (5.180)

in which the numerator is expressed in terms of the Fredholm series

∆τσn (λ, µ) =
∑
n≥0

(−1)n

n!

∑
ς1,...,ςn
∈{±,R,L}

n∏
a=1

∫
R+iεςa v

dλa detn+1

[
Qτσ(λ, µ) Qτςb(λ, λb)

Qςaσ(λa, µ) Qςaςb(λa, λb)

]
. (5.181)

Then, introduce the auxiliary kernel

Q̃τσ(λ, µ) = Qτσ(λ, µ) · (1 + |λ|) · (1 + |µ|)
ln(1 + |λ|) ln(1 + |µ|) (5.182)

which, by virtue of (5.162), (5.163), (5.164) and (5.165) is bounded on {R + iετv} × {R + iεσv}, uniformly in w.
This yields the representation

∆τσn (λ, µ) =
ln(1 + |λ|) ln(1 + |µ|)

(1 + |λ|) · (1 + |µ|)

×
∑
n≥0

(−1)n

n!

∑
ς1,...,ςn
∈{±,R,L}

n∏
a=1

∫
R+iεςa v

dλa

n∏
a=1

{ ln(1 + |λa|)
1 + |λa|

}2
· detn+1

[
Q̃τσ(λ, µ) Q̃τςb(λ, λb)

Q̃ςaσ(λa, µ) Q̃ςaςb(λa, λb)

]
. (5.183)

A direct application of Hadamard’s inequality for determinants allows one to infer that the above series converges
on {R + iετv} × {R + iεσv}, which also yields (5.161).

Lemma 5.4. Let MστR , resp. MστL , be the integral operators L2(R+iτv)→ L2(R+iσv) defined by the integral kernels
(5.72), (5.112), resp. (5.58), (5.134). Furthermore, let V+τL , resp. V−τR , be the integral operators L2(R + iv) →
L2(R + iτv), resp. L2(R − iv)→ L2(R + iτv), defined by the integral kernels (5.136), resp. (5.113). Then

Mσ+L · V+τL = 0 f or any σ, τ ∈ {±} (5.184)

Mσ−R · V−τR = 0 f or any σ, τ ∈ {±} . (5.185)
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Proof —
It follows from equation (5.136) that k 7→ V+τL (k, s) is analytic on H−2v = H

− + 2iv and that it falls-off at infinity
in this domains like O

(
ln(1 + |k|)/|k|

)
. Furthermore, s 7→ Mσ+L (k, s) is also analytic on H−2v and falls-off at infinity

in this domains like O
(
1/|s|

)
. Hence, a direct contour deformation up to R − i∞ entails that∫

R+iv

dsMσ+
L (k, s)V+τL (s, t) = 0 . (5.186)

Similarly, it follows from equation (5.113) that k 7→ V−τR (k, s) is analytic on H+−2v = H
+ − 2iv and that it falls off at

infinity in this domains like O
(

ln(1 + |k|)/|k|
)
. Furthermore, s 7→ Mσ−R (k, s) is also analytic on H+−2v and falls-off at

infinity in this domains like O
(
1/|s|

)
. Hence, a direct contour deformation up to R + i∞ entails that∫

R−iv

dsMσ−
R (k, s)V−τR (s, t) = 0 . (5.187)

Theorem 5.5. The solution u to the integral equation (5.155) satisfies to the bounds

uσ(k) = O
(Che2vw ln(1 + |k|)

1 + |k|

)
with k ∈ R + iεσv , (5.188)

provided that

d
α
w[h](k) ≤ Ch ln(1 + |k|)

1 + |k| . (5.189)

Proof —
This is an obvious consequence of Proposition 5.3.

6 Conclusion

In this paper we have carried out the w → +∞ asymptotic analysis of the solution to a non-local Riemann-
Hilbert problem characterising the conformal map from a welded cylinder onto the standard one in the case where
the welding diffeomorphism is composed of two non-trivial bumps separated from one another by distance w.
This problem was motivated by the study of the large-time behaviour of the generating function of full counting
statistics of energy transfers in 1+1 dimensional non-equilibrium conformal field theories discussed in [10]. Our
results allowed us to establish the large-time asymptotics of the generating function rigorously.

On technical ground, we have developed methods that allow to establish the existence and the uniqueness of
solutions to non-local Riemann–Hilbert problems in the case where the "compact operator" arguments developed
in the literature cannot be applied directly. Our analysis shows that it is still possible to study the asymptotic
behaviour of solutions of such problems even if this is much more involved than in the local case.
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A Conformal map of the welded cylinder

In this section we prove Proposition 1.1. Introduce the functions

ω(L)(z) =
γ̃+ · z

1 + e−
2π
τ z

with ω(R)(z) =
γ̃− · z

1 + e
2π
τ z

, (A.1)

with γ̃± as given in the statement of Proposition 1.1 and where τ > 2α. These admit the decomposition

ω(L)(z) = γ̃+ · z + ω(L)
R (z) and ω(R)(z) = γ̃− · z + ω(R)

L (z) . (A.2)

Let us set Ω(z | κ+, κ−) = Υ(z) + ω(L)(z) + ω(R)(z). Then, Υ solves the non-local Riemann-Hilbert problem: find
Υ ∈ O(Sα) such that

• Υ has smooth −, resp. +, boundary values on R, resp. R − iα;

• Υ+
(
g(x) − iα

)
= Υ−

(
x
)
+ GΥ(x), with x ∈ R;

• there exists a constants CΥ and η > 0 such that

Υ(z) =

 −ω(L)
R (z) − ω(R)(z) + O

(
e−ηℜ(z)

)
when ℜ(z)→ +∞

−ω(L)(z) − ω(R)
L (z) + CΥδ±;− + O

(
eηℜ(z)

)
when ℜ(z)→ −∞

, (A.3)

with an asymptotic expansion that is valid uniformly up to the boundary,

and where

GΥ(x) =


ω(L)(x) − ω(L)(g(x) − iα

)
+ ω(R)

L (x) − ω(R)
L

(
g(x) − iα

)
for x ≤ −M

−iα + ω(L)(x) − ω(L)(g(x) − iα
)
+ ω(R)(x) − ω(R)(g(x) − iα

)
for |x| ≤ M

ω(L)
R (x) − ω(L)

R
(
g(x) − iα

)
+ ω(R)(x) − ω(R)(g(x) − iα

)
for x ≥ M

(A.4)

By virtue of Proposition 2.4, this non-local Riemann-Hilbert problem admits a unique solution. Hence, so
does the one of Ω.

Since Ω ∈ O(Sα), Ω is open and thus ∂Ω(Sα | κ+, κ−) = Ω+(R − iα | κ+, κ−) ∪Ω−(R | κ+, κ−). Thus, clearly,

Ω(Sα | κ+, κ−) ∋ ω 7→ #
{
Ω−1(ω | κ+, κ−)

}
=

∫
{
R−iα}∪−R

ds
2iπ

Ω′(s | κ+, κ−)
Ω(s | κ+, κ−) − ω (A.5)

is continuous in ω on Ω(Sα | κ+, κ−). Being integer valued, it is constant. The asymptotic behaviour of Ω at
infinity entails that #

{
Ω−1(ω | κ+, κ−)

}
= 1 forℜ(ω) large enough and such that ω ∈ Ω(Sα | κ+, κ−). Hence, Ω

is injective and thus a biholomorphism on its image.

B Inversion of the operators id − Lυυ on L2(Rυ)

We now discuss the invertibility of id − Lυυ with the help of the Wiener-Hopf technique, see e.g. [8], as will
be detailed in the two next subsections. The method builds on the solution of a multiplicative Riemann-Hilbert
problem involving the Fourier transform of the kernel Lυ(x).
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B.1 Inversion of the operators id − L++

For the purpose of the present section, we introduce the space

L2
C(R+) =

{
f ∈ L2

loc(R+) : ∃C f andα > 0 f (x) = C f + O
(
e−αx

)}
. (B.1)

Proposition B.1. Let L+ be as defined through (2.42) and consider the integral equation

f (x) −
+∞∫
0

L+(x − y) f (y)dy = h(x) , x ∈ R+ (B.2)

on L2
C(R+) with h such that there exist η > 0 so that

h(x) = O
(
e−ηx

)
, when x→ +∞ . (B.3)

Then equation (B.2) is uniquely solvable on L2
C(R+) and the Fourier transform of the solution takes the form

F [
f ](k) =

1

α(+)
↑ (k)

∫
R−iη−

ds
2iπ

α(+)
↓ (s) · F [

h1R+
]
(s)

s − k
with k ∈ R + iv (B.4)

for any 0 < η− < η and with v > 0.

Proof —
Following the strategy of the Wiener-Hopf method, one starts by extending f and h to R in such a way that

equation (B.2) now holds on R. We shall make the choice

h(x) = 0 and f (x) =

+∞∫
0

L+(x − y) f (y)dy for x < 0 . (B.5)

Given the behaviour of f on R+ and the explicit expression (2.42) for L+(x), it is easy to convince oneself that,
upon reducing η if need be, these extensions satisfy

f (x) = O
(
eηx

)
and h(x) = O

(
eηx

)
, (B.6)

when x → −∞. Actually, for the purpose of the analysis to come, it is convenient to introduce a specific notation
for the restrictions of a function on R to R±: f ± = f 1R± . In particular, by construction, we have that h = h+.
The properties of the extended functions allow one to compute a well-defined Fourier transform provided that
k ∈ R + iv, 0 < v < η. Thus Fourier transforming (B.2) leads to(

1 − F [
L+

]
(k)

)
· F [

f +
]
(k) + F [

f −
]
(k) = F [

h+
]
(k) with k ∈ R + iv . (B.7)

Then, by using the Wiener-Hopf factorisation of 1 − F [
L++

]
given in (2.53), one may recast the equation as

α(+)
↑ (k) · F [

f +
]
(k) + α(+)

↓ (k) · F [
f −

]
(k) = α(+)

↓ (k) · F [
h+

]
(k) . (B.8)
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Given half-planes B(+)
↑/↓ as introduced in (2.52), one may define U ∈ O

(
B(+)
↑ ∪B

(+)
↓ \ {0}

)
and having a simple pole

at 0 by the piecewise formula

U(z) =

 α(+)
↑ (z) · F [

f +
]
(z) − C(+)

[
α(+)
↓ · F

[
h+

]]
(z) , z ∈ B(+)

↑

−α(+)
↓ (z) · F [

f −
]
(z) − C(+)

[
α(+)
↓ · F

[
h+

]]
(z) , z ∈ B(+)

↓

(B.9)

where C(+) is the Cauchy transform on L2(R + iv):

C(+)[u](z) =
∫
R+iv

ds
2iπ

u(s)
s − z

for z ∈ C \ {R + iv
}
. (B.10)

Then, by using the relation valid for any u ∈ Lp(R + iv), +∞ > p > 1,

C(+)
+

[
u
]
(k) − C(+)

−
[
u
]
(k) = u(k) , (B.11)

one gets that U+ = U− on R + iv and hence U extends into a meromorphic function on C whose single pole is
located at 0 and is simple. Moreover, it follows from (B.9) that

U(z) = −
α̃ (+)

0

z
F [ f −](0) + O(1) . (B.12)

It is easy to see that F [
f +/−

]
(k) → 0 when k → ∞ in B(+)

↑/↓ and this up to the boundary. Hence, U(k) → 0 as
k → ∞. Since the constant F [ f −](0) is part of the unknowns in the problem, we conclude that there exists a
constant K (+) such that

U(z) = −
α̃ (+)

0 K
(+)

z
. (B.13)

This explicit expression for U entails that, for any k ∈ B(+)
↑ ,

F [
f +

]
(k) =

1

α(+)
↑ (k)

·
{
C(+)

[
α(+)
↓ · F

[
h+

]]
(k) −

α̃ (+)
0 K

(+)

k

}
. (B.14)

Note that, owing to (B.3), one may meromorphically continue F [
f +

]
(k) from B(+)

↑ up to
{
z ∈ C : ℑ(z) > −η

}
by

the expression

F [
f +

]
(k) =

1

α(+)
↑ (k)

·
{
C(+)

[
α(+)
↓ · F

[
h+

]]
(k) + α(+)

↓ (k) · F [
h+

]
(k) −

α̃ (+)
0 K

(+)

k

}
. (B.15)

Since α(+)
↑ (k) has a simple zero at k = 0, the expression above entails that F [

f +
]

may have a double pole at k = 0,
and that it is its sole pole in the domain ℑ(k) > −η′, for some η′ > 0 and small enough.

Now assume that one is given a meromorphic function w in the tubular neighbourhood |ℑ(z)| < 2η′ of R having
one pole of order r + 1 at k = 0:

w(k) =
r∑

p=0

wp

kp+1 + O(1) k → 0 , (B.16)
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and decaying at least as 1/k at infinity. Then, it is easy to convince oneself that, for x , 0, one has∫
R+iη′

dk
2π

e−ikxw(k) = −i
r∑

p=0

wp

p!
· (−ix)p +

∫
R−iη′

dk
2π

e−ikxw(k) . (B.17)

The integral appearing on the rhs of the above identity produces a O
(
e−η

′x) behaviour when x→ +∞.
f + can be reconstructed from (B.14) by taking the inverse Fourier transform on R+ iv. One infers from (B.17)

that the only way to give rise to a solution f + to (B.2) enjoying the asymptotic behaviour that is compatible with
f ∈ L2

C(R+), c.f. (B.1), is that the meromorphic continuation of F [
f +

]
(k) has at most a simple pole at k = 0. This

entails that

K̃ (+) = F [
h+

]
(0) . (B.18)

Thus, if a solution to (B.2) exists in the class (B.1), then it is unique and necessarily takes the form

F [
f +

]
(k) =

1

α(+)
↑ (k)

·
{
C(+)

[
α(+)
↓ · F

[
h+

]]
(k) −

α̃ (+)
0 F

[
h+

]
(0)

k

}
, (B.19)

with k ∈ B(+)
↑ . By deforming the contour in the Cauchy transform from R + iv to R − iη− with 0 < η− < η one

obtains the representation (B.4).
Reciprocally, it is easy to see that the function f defined as

f ±(x) =
∫
R+iv

dk
2π

e−ikxγ±(k) with


γ+(k) =

1

α(+)
↑ (k)

·
{
C(+)
+

[
α(+)
↓ · F

[
h+

]]
(k) −

α̃ (+)
0 F

[
h+

]
(0)

k

}
γ−(k) =

1

α(+)
↓ (k)

·
{ α̃ (+)

0 F
[
h+

]
(0)

k
− C(+)

−
[
α(+)
↓ · F

[
h+

]]
(k)

}
(B.20)

solves the linear integral equation (B.2) on R+.
Indeed, since γ+, resp. γ−, admits a holomorphic continuation to B(+)

↑ , resp. B(+)
↓ , that decays as O(1/k) at

infinity, one readily shows that, indeed, the function

x 7→
∫
R+iv

dk
2π

e−ikxγ±(k) (B.21)

are supported on R± and that they exhibit the required asymptotic behaviour. The previous reasonings taken
backwards then ensure that(

1 − F [
L+

]
(k)

)
· γ+(k) + γ−(k) = F [

h+
]
(k) for k ∈ R + iv . (B.22)

Upon taking the inverse Fourier transform, the above relation leads to equation (B.2), hence proving the existence
of solutions in L2

C(R+).
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B.2 Inversion of the operators id − L−−

Analogously to the previous setting, we introduce the space

L2
C(R−) =

{
f ∈ L2(R−) : ∃ C f and α > 0 f (x) = C f + O

(
eαx)} . (B.23)

Proposition B.2. Let L− be as defined through (2.42) and consider the integral equation

f (x) −
0∫

−∞

L−(x − y) f (y)dy = h(x) f or x ∈ R− , (B.24)

on L2
C(R−) with h such that there exist η > 0 so that

h(x) = O
(
eηx

)
(B.25)

when x→ −∞.
Then, equation (B.2) is uniquely solvable on L2

C(R−) and the Fourier transform of the solution takes the form

F [
f ](k) = −α(−)

↓ (k)
∫
R+iη−

ds
2iπ

{
α(−)
↑ (s)

}−1 · F [
h1R−

]
(s)

s − k
with k ∈ R − iv (B.26)

for any 0 < η− < η and with v > 0.

Proof —
One extends the functions f and h to R as

f (x) =

0∫
−∞

L−(x − y) f (y)dy and h(x) = 0 for x > 0 , (B.27)

so that, reducing η > 0 if need be, these extensions possess the x→ +∞ asymptotic behaviour

f (x) = O
(
e−ηx

)
and h(x) = O

(
e−ηx

)
. (B.28)

One may then take the Fourier transform of (B.24) extended to R, provided that the Fourier variable k satisfies
k ∈ R − iv, with 0 < v ≪ 1. This leads to

F [
f +

]
(k) +

(
1 − F [

L−
]
(k)

)
F [

f −
]
(k) = F [

h
]
(k) . (B.29)

Using the Wiener-Hopf factorisation of 1 − F [
L−

]
relatively to R − iv, one may recast the last equation as{

α(−)
↑ (k)

}−1
· F [

f +
]
(k) +

{
α(−)
↓ (k)

}−1
· F [

f −
]
(k) =

{
α(−)
↑ (k)

}−1
· F [

h
]
(k) . (B.30)

Define U ∈ O
(
B(−)
↑ ∪ B

(−)
↓ \ {0}

)
by the piecewise formula

U(k) =


C(−)

[{
α(−)
↑

}−1 · F [
h
]]

(k) −
{
α(−)
↑ (k)

}−1
· F [

f +
]
(k) , z ∈ B(−)

↑{
α(−)
↓ (k)

}−1
· F [

f −
]
(k) + C(−)

[{
α(−)
↑

}−1
· F [

h
]]

(k) , z ∈ B(−)
↓

(B.31)
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where C(−) is the Cauchy transform on L2(R − iv):

C(−)[u](z) =
∫
R−iv

ds
2iπ

u(s)
s − z

for z ∈ C \ {R − iv
}
. (B.32)

Since α(−)
↑ (k) admits a simple zero at k = 0, one gets that U is meromorphic on B↑ ∪B↓. Its sole pole is located at

k = 0 and is simple. Moreover U vanishes at ∞ and satisfies U+ = U− on R − iv. All of this allows one to infer
that

U(k) = −F [ f +](0)

kα(−)
0

. (B.33)

However, since F [ f +](0) is part of the unknowns in the problem, it is more convenient to set K (−) = F [ f +](0).
The expression (B.33) allows one to reconstruct the Fourier transform of f − for k ∈ B(−)

↓ as:

F [
f −

]
(k) = −α(−)

↓ (k)
{ K (−)

k · α(−)
0

+ C(−)
[{
α(−)
↑

}−1 · F [
h−

]]
(k)

}
. (B.34)

The meromorphic continuation of F [
f −

]
(k) to B(−)

↑ takes the form

F [
f −

]
(k) = −α(−)

↓ (k)
{ K (−)

k · α(−)
0

− {
α(−)
↑ (k)

}−1 ·F [
h−

]
(k) + C(−)

[{
α(−)
↑

}−1 ·F [
h−

]]
(k)

}
for k ∈ B(−)

↑ . (B.35)

The function α(−)
↓ (k) admits a simple pole at k = 0. For generic K (−), the term under the bracket also admits a

simple pole at k, so that the meromorphic continuation has a double pole at k = 0. As in the case of the Wiener-
Hopf equation on R+, contour displacements in the inverse Fourier transform ensure that if f − has at most constant
asymptotics at −∞ then the meromorphic continuation of F [

f −
]
(k) must have at most a simple pole at k = 0. This

unambiguously fixes the unknown constant as K (−) = F [h−](0), leading to

F [
f −

]
(k) = −α(−)

↓ (k)
{F [h−](0)

k · α(−)
0

+ C(−)
[{
α(−)
↑

}−1 · F [
h−

]]
(k)

}
(B.36)

for any k ∈ B(−)
↓ . Upon deforming the contour in the Cauchy transform C(−) up to R + iη− with 0 < η− < η, one

arrives to (B.26).
It is easy to see, proceeding similarly as before, that the above expression does give rise to a solution to (B.24).

C Inversion of id − L(0)
w

C.1 Characterisation in terms of a Riemann-Hilbert problem

The operator id − L(0)
w on L2(] − w ; w[), as defined through (5.3) and (5.5), is a truncated Wiener-Hopf operator

and, as such, can be explicitly inverted in terms of the solution to an auxiliary Riemann-Hilbert problem. Consider
the operator V on L2(R + iv) with the kernel

V(k, s) = −F [L(0)](k) · ei(k−s)w − e−i(k−s)w

2iπ(k − s)
where F [L(0)](k) =

cosh
[
k(τ/2 − α − iκ)

]
cosh

[
kτ/2

] . (C.1)
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Then, it is easy to see that F −1
(
id + V

)
F = id − L(0)

w or, more precisely, if f solves
(
id − L(0)

w
)
[ f ] = h with

h ∈ L2(] − w ; w[), then(
id + V

)[
F [ f ]

]
(k) = F [h](k) (C.2)

for an appropriate extension of f outside [−w ; w].
Observe that

V(λ, µ) =

(
EL(λ), ER(µ)

)
λ − µ (C.3)

where, upon setting e(λ) = eiwλ,

ER(µ) =
1

2iπ

(
e(µ)

e−1(µ)

)
and EL(λ) = −F [L(0)](λ)

(
−e−1(λ)

e(λ)

)
, (C.4)

so that
(
EL(λ), ER(λ)

)
= 0. This means that V is an integrable integral operator. As such, it can be studied by

means of an associated Riemann–Hilbert problem as first observed in [13].
Assume that id + V is invertible. Then, define the functions FR/L(λ) as the solutions to the linear integral

equations[
FR

](
id + V

)
(λ) = ER(λ) and

(
id + V

)[
FL

]
(λ) = EL(λ) . (C.5)

The first formula is to be understood as an action of the operator to the left and the second one as its action to
the right.

We refer the reader to Subsection 1.4 where the notations used below are introduced.

Theorem C.1. There exists w0 large enough such that the operator id + V acting on L2(R + iv) with the integral
kernel (C.3) is invertible for any w ≥ w0 with inverse given by id−R. The integral kernel of the resolvent operator
R is expressed as

R(λ, µ) =

(
FL(λ), FR(µ)

)
λ − µ . (C.6)

The vectors FR/L(λ) are given by

FR(λ) = χ+(λ) · ER(λ) and FtL(λ) = EtL(λ) · χ−1
+ (λ) . (C.7)

Above, t is the vector transposition while χ corresponds to the unique solution to the matrix Riemann-Hilbert
problem for 3 χ: find χ ∈ M2

(
O(C \ {R + iv

}))
such that

• χ(λ) = I2 + O
(1
λ

)
when λ→ ∞;

• χ admits continuous ± boundary values on R such that χ± − I2 ∈ M2
(
L2(R + iv)

)
. These boundary values

are related by

χ+(λ) Gχ(λ) = χ−(λ) , (C.8)

3In Appendix C, symbols χ, Ξ, Υ, Π, P and G stand for matrix-valued functions defined below.
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where the jump matrix takes the form

Gχ(λ) = I2 + 2iπER(λ) · EtL(λ) =

 1 + F [L(0)](λ) −F [L(0)](λ) e2(λ)

F [L(0)](λ) e−2(λ) 1 − F [L(0)](λ)

 . (C.9)

The unique solution χ takes the explicit form given in Fig. 9. It admits the integral representations

χ(λ) = I2 −
∫
R

FR(µ) · EtL(µ)
µ − λ dµ and χ−1(λ) = I2 +

∫
R

ER(µ) · FtL(µ)
µ − λ dµ . (C.10)

Most results stated in Theorem C.1 are classic and go back to the work [13]. The representation given in Fig. 9
is established throughout Subsection (C.2) to come by a rather standard application of the non-linear steepest
descent method [7]. It is a standard fact, which follows from det Gχ = 1, that the Riemann-Hilbert problem for χ
admits a unique solution, see e.g. [6]. Thus, we will not discuss this question further.

R

R + iv

Γ↑

Γ↓

P(λ)Π(λ)
[
α(0)
↑ (λ)

]σ3

P(λ)Π(λ) M−1
↑ (λ)

[
α(0)
↑ (λ)

]σ3

P(λ)Π(λ) M↓(λ)
[
α(0)
↓ (λ)

]σ3

P(λ)Π(λ)
[
α(0)
↓ (λ)

]σ3

DI

DII

DIII

DIV

1

Figure 9: Piecewise definition of the matrix χ. The curves Γ↑/↓ separate all poles, other that at 0, of λ 7→
F [L(0)](λ) ·

{
1 − F [L(0)](λ)

}−1
from R and are such that dist(Γ↑/↓,R) > ϱ for some ϱ > 0. The piecewise

holomorphic matrix Π appearing in the above figure is as defined through (C.26).

C.2 Asymptotic resolution of the Riemann-Hilbert problem

C.2.1 Riemann-Hilbert problem for Ξ

First, we consider the solution to an auxiliary scalar Riemann-Hilbert problem. Let

B(0)
↑ =

{
z ∈ C : ℑz > v

}
and B(0)

↓ =
{
z ∈ C : ℑz < v

}
. (C.11)
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One introduces the function

α(0) ∈ O(C∗ \ {R + iv}) with α(0)(λ) =

 α(0)
↑ (λ) λ ∈ B(0)

↑

α(0)
↓ (λ) λ ∈ B(0)

↓

(C.12)

in which4 α(0)
↑ ∈ O

(
B(0)
↑

)
, α(0)
↓ ∈ O

(
B(0)
↓ \ {0}

)
, α(0)
↑/↓(λ)→ 1 when λ→ ∞ in B(0)

↑/↓ and such that

α(0)
↑ (λ)

α(0)
↓ (λ)

= 1 − F [L(0)](λ) . (C.13)

α(0)
↑/↓ admit meromorphic continuations to B(0)

↓/↑ such that

α(0)
↑ (k) ∼

k→0
k α(0)

0 and α(0)
↓ (k) ∼

k→0

α̃ (0)
0

k
. (C.14)

Note that k = 0 is the only zero and pole of α(0)
↑/↓ in a fixed v-independent tubular neighbourhood of R.

The functions α(0)
↑/↓ can be read out from equations (2.54)-(2.55) upon the substitution κυ ↪→ κ.

Assume that one is given a solution χ to the Riemann-Hilbert problem for χ, and define

Ξ(λ) = χ(λ) ·
(
α(0)(λ)

)−σ3
. (C.15)

It is clear that the Riemann–Hilbert problem for χ is in one-to-one correspondence with the Riemann–Hilbert
problem for Ξ. The latter consists in finding Ξ ∈ M2

(
O(C∗ \ {R + iv

}))
such that

• Ξ admits a simple pole at 0;

• Ξ(λ) = I2 + O
(1
λ

)
when λ→ ∞;

• Ξ(λ) ·
(
α(0)
↓ (λ)

)σ3
is regular at λ = 0;

• Ξ admits continuous ± boundary values on R + iv such that Ξ± − I2 ∈ M2
(
L2(R + iv)

)
. These boundary

values are related as

Ξ+(λ) GΞ(λ) = Ξ−(λ) , where GΞ(λ) =
(

1 + P(λ)Q(λ) P(λ)e2(λ)
Q(λ)e−2(λ) 1

)
. (C.16)

Note that the jump matrix factorises as GΞ(λ) = M↑(λ) · M↓(λ) in which

M↑(λ) =
(

1 P(λ)e2(λ)
0 1

)
and M↓(λ) =

(
1 0

Q(λ)e−2(λ) 1

)
. (C.17)

The expression for these matrices involve the functions

P(λ) = −α(0)
↑ (λ) · α(0)

↓ (λ) · F [L(0)](λ) and Q(λ) =
F [L(0)](λ)

α(0)
↑ (λ) · α(0)

↓ (λ)
. (C.18)

4Any function holomorphic on a closed set is, in fact understood to be holomorphic on an open neighbourhood thereof
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In particular, Q is analytic on a tubular neighbourhood of R and satisfies

Q(0) =
1

α(0)
0 · α̃

(0)
0

= −1 , (C.19)

see (2.58).
The matrices M↑/↓ are such that their off-diagonal entries are exponentially small in w for λ belonging to H±

and uniformly away from R.

C.2.2 Riemann-Hilbert problem for Υ

Next, one defines Υ as in Fig. 10. The contours Γ↑/↓ are chosen such that it holds Γ↑ = −Γ↓. It is clear that the
Riemann-Hilbert problems for Ξ is in one-to-one correspondence with the one for Υ.

Find Υ ∈ M2
(
O
(
C∗ \ {Γ↑ ∪ Γ↓})) such that

• Υ admits a simple pole at 0;

• Υ(λ) = I2 + O
(1
λ

)
when λ→ ∞;

• Υ(λ) · M↓(λ) ·
(
α(0)
↓ (λ)

)σ3
is regular at λ = 0;

• Υ admits continuous ± boundary values on Γ↑ ∪ Γ↓ such that Υ± − I2 ∈ M2
(
L2(Γ↑ ∪ Γ↓)

)
. These boundary

values are related by

Υ+(λ) GΥ(λ) = Υ−(λ) with GΥ(λ) = M↓(λ) · 1Γ↓(λ) + M↑(λ) · 1Γ↑(λ) . (C.20)

C.2.3 Auxiliary Riemann–Hilbert problem for Π

To continue further, one first introduces Π as the unique solution to the below Riemann-Hilbert problem for Π.
Find Π ∈ M2

(
O(C \ {Γ↑ ∪ Γ↓})) such that:

• Π(λ) = I2 + O
(1
λ

)
when λ→ ∞;

• Π admits continuous ± boundary values on Γ↑ ∪ Γ↓ such that Π± − I2 ∈ M2
(
L2(Γ↑ ∪ Γ↓)

)
. These boundary

values are related by

Π+(λ) GΥ(λ) = Π−(λ) . (C.21)

Again, there exists at most a one solution to the Riemann-Hilbert problem forΠ. Existence may be established
by the singular integral equation method introduced in [1].

Indeed, introduce the singular integral operator on the spaceM2
(
L2(Γ↑∪Γ↓)

)
of 2×2 matrix-valued L2(Γ↑∪Γ↓)

functions by

C(+)
Γ↑∪Γ↓

[
Ψ
]
(λ) = lim

z→λ
z∈+side of Γ↑∪Γ↓

∫
Γ↑∪Γ↓

Ψ(t) · (GΥ − I2)(t)
t − z

· dt
2iπ

. (C.22)
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R

R + iv

Γ↑

Γ↓

Υ(λ) = Ξ(λ)

Υ(λ) = Ξ(λ)M↑(λ)

Υ(λ) = Ξ(λ)M−1
↓ (λ)

Υ(λ) = Ξ(λ)

DI

DII

DIII

DIV

1

Figure 10: Piecewise definition of the matrix Υ in terms of the matrix Ξ. The curves Γ↑/↓ separate all poles, other

than the one at 0, of λ 7→ F [L(0)](λ) ·
{
1−F [L(0)](λ)

}−1
from R and are such that dist(Γ↑/↓,R) > ϱ for some ϱ > 0.

Since GΥ − I2 ∈ M2
((

L∞ ∩ L2)(Γ↑ ∪ Γ↓)) and Γ↑ ∪ Γ↓ is a Lipschitz curve, it follows from [4] that C(+)
Γ↑∪Γ↓ is

continuous onM2
(
L2(Γ↑ ∪ Γ↓)) and fulfils:∣∣∣∣∣∣∣∣∣C(+)

Γ↑∪Γ↓

∣∣∣∣∣∣∣∣∣M2(L2(Γ↑∪Γ↓)) ≤ Ce−ϱw . (C.23)

Hence, since

GΥ − I2 ∈ M2
(
L2(Γ↑ ∪ Γ↓)) and C(+)

Γ↑∪Γ↓[I2] ∈ M2
(
L2(Γ↑ ∪ Γ↓)) , (C.24)

provided that w is large enough, it follows that the singular integral equation(
I2 + C(+)

Γ↑∪Γ↓

)[
Π+

]
= I2 (C.25)

admits a unique solution Π+ such that Π+ − I2 ∈ M2
(
L2(Γ↑ ∪ Γ↓)). It is then a standard fact [1] in the theory of

Riemann-Hilbert problems that the matrix

Π(λ) = I2 −
∫
Γ↑∪Γ↓

Π+(t)(GΥ − I2)(t)
t − λ · dt

2iπ
(C.26)

is the unique solution to the Riemann-Hilbert problem for Π. It is a direct consequence of the Neumann expansion
of the solution to the singular integral equation (C.25) for Π+ and of the local holomorphicity of the jump matrices
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that, for some ϱ > 0,

Π(λ) = I2 + O
( e−ϱw

1 + |λ|

)
(C.27)

uniformly on C and with a differentiable remainder.
The piecewise holomorphic matrix Π thus constructed enjoys a few properties that will be useful below.

Indeed, one readily infers from the identity M↑(−λ) = σx · M−1
↓ (λ) · σx, adjoined to the contour symmetry Γ↑ ={− z : z ∈ Γ↓

}
and the uniqueness of the Riemann–Hilbert problem for Π that the relation Π(λ) = σx ·Π(−λ) ·σx

holds. In particular,

Π(0) = σx · Π(0) · σx and Π′(0) = −σx · Π′(0) · σx . (C.28)

These properties lead to the the λ→ 0 expansion

Π(λ) =
(
Π11(0) Π21(0)
Π21(0) Π11(0)

)
+ λ

(
Π′11(0) −Π′21(0)
Π′21(0) −Π′11(0)

)
+ O(λ2) . (C.29)

In other words, by setting

c1 = Π11(0)Π′11(0) − Π21(0)Π′21(0) and c2 = Π11(0)Π′21(0) − Π21(0)Π′11(0) , (C.30)

since detΠ(λ) = 1, one infers that

Π−1(0)Π(λ) = I2 + λ

(
c1 −c2
c2 −c1

)
+ O(λ2) . (C.31)

C.2.4 Solution of the Riemann–Hilbert problem for Υ

With Π defined, the solution to the Riemann-Hilbert problem for Υ can be constructed as Υ(λ) = P(λ) · Π(λ),
where P(λ) is a meromorphic matrix on C whose only pole is located at λ = 0. Below, we establish that this
meromorphic matrix takes the form

P(λ) = Π(0) ·
(
I2 +

θ

λ
D
)
· Π−1(0) (C.32)

where

D =

(
−1 −1
1 1

)
and θ =

1
(e−2Q)′(0) + 2(c1 + c2)

, (C.33)

with c1, c2 as introduced in (C.30). The matrix P is constructed so that

λ 7→ P(λ)Π(λ)M↓(λ)
(
α(0)(λ)

)σ3
(C.34)

is regular at λ = 0.
When looking for P, it is convenient to parameterise

P(λ) = Π(0)G(λ)Π−1(0) with G(λ) = I2 +
1
λ

(
g11 g12
g21 g22

)
(C.35)
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Then, one has P(λ)Π(λ)M↓(λ)
(
α(0)
↓ (λ)

)σ3
= Π(0)H(λ), with

H11(λ) = α(0)
↓ (λ)

[
G11(λ) + Q(λ)e−2(λ)G12(λ)

]
+ c1λα

(0)
↓ (λ)

[
G11(λ) − Q(λ)e−2(λ)G12(λ)

]
+ c2λα

(0)
↓ (λ)

[
G12(λ) − Q(λ)e−2(λ)G11(λ)

]
+ O(1) , (C.36)

as well as H21 = [H11]|G1a↪→G2a and Ha2(λ) = O(1), when λ→ 0.
In principle, H11 admits a second order pole at λ = 0. By imposing that H11 is regular at λ = 0, one obtains

the system of equations on the coefficients g1a:

g11 = −Q(0)g12 and g12 ·
[
(e−2Q)′(0) − 2c1Q(0) + c2

[
1 + Q2(0)

]]
= −1 . (C.37)

These equations are solvable owing to |c1| + |c2| = O(e−ϱw), what is in itself a consequence of (C.27).
Likewise, by requiring that H21 is regular at λ = 0, one obtains the system of equations on the coefficients g2a:

g21 = −Q(0)g22 and g22 ·
[
(e−2Q)′(0) − 2c1Q(0) + c2

[
1 + Q2(0)

]]
= −Q(0) . (C.38)

All in all, this yields that(
g11 g12
g21 g22

)
=

1
(e−2Q)′(0) − 2c1Q(0) + c2

[
1 + Q2(0)

] · ( Q(0) −1
Q2(0) −Q(0)

)
. (C.39)

The form of P(λ) then follows upon recalling that Q(0) = −1.

By tracing backwards the various transformations, one gets that the unique solution χ to the Riemann-Hilbert
problem for χ takes the piecewise form as depicted in Fig. 9.

C.3 Resolvent kernel of id + V

It follows from the results of Theorem C.1 that the solution to (C.2) takes the form

F [ f ](k) = F [h](k) −
∫
R+iv

dµR(k, µ)F [h](µ) . (C.40)

Since χ+(λ)ER(λ) = χ−(λ)ER(λ), and since the vectors EL/R are analytic in a tubular neighbourhood of R, it
follows that R(λ, µ) is also analytic in some open neighbourhood of R2.

C.3.1 Support restrictions

One may explicitly check that the integral term only involves the values of h inside of [−w ; w]. Indeed, one has∫
R+iv

dµ eiµxR(k, µ) =
∫
R+iv

dµ eiµx

(
EL(k), χ−1

+ (k) · χ+(µ)ER(µ)
)

k − µ (C.41)

If x > w, then eiµxER(µ) is bounded on H+v = H
+ + iv, and so, since the integrand vanishes at∞ in H+v , one obtains

zero by deforming the integration contour to +i∞. One arrives to the same conclusion when x < −w upon using
χ+(µ)ER(µ) = χ−(µ)ER(µ). Hence, for any function h on R with exponential decay at ±∞, one gets, for 0 < v
small enough, that∫

R+iv

dµR(k, µ)F [h](µ) =
∫
R+iv

dµR(k, µ)F [h1[−w ;w]](µ) . (C.42)
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C.3.2 Leading asymptotic form of the resolvent

The resolvent may be approximated, in the large-w limit, by inserting the leading behaviour of the matrix χ into
the expression for the vectors FR/L (C.7), and then inserting the latter into the formula for the resolvent kernel
(C.6).

For further convenience, given D as in (C.33), set

P∞(λ) = I2 +
1

λb′(0)
D with b(λ) =

e−2(λ)

α(0)
↓ (λ)α(0)

↑ (λ)
, (C.43)

so that, by using that (e−2Q)′(0) = b′(0), one may decompose

P(λ) = P∞(λ) + δP(λ) with δP(λ) = O
(e−ϱw

|λ|

)
. (C.44)

It is as well convenient to introduce an analogous parameterisation gathering the exponentially small corrections
to Π(λ) = I2 + δΠ(λ), where, by virtue of (C.27), one has

δΠ(λ) = O
( e−ϱw

1 + |λ|

)
(C.45)

uniformly on C.
From there, one obtains that, uniformly throughout the regionDII , as defined in Fig. 9, one has

χ(λ) = χ(II)
∞ (λ) + δχ(II)(λ) with χ(II)

∞ (λ) = P∞(λ)M−1
↑ (λ)

[
α(0)
↑ (λ)

]σ3 , (C.46)

and

δχ(II)(λ) = δP(λ)Π(λ)M−1
↑ (λ)

[
α(0)
↑ (λ)

]σ3 + P∞(λ)δΠ(λ)M−1
↑ (λ)

[
α(0)
↑ (λ)

]σ3 . (C.47)

By direct inspection, one obtains that uniformly in λ ∈ DII ,

δχ(II)(λ) = O
( e−ϱw

1 + |λ|

)
. (C.48)

Likewise, uniformly throughout the regionDIII , one has the decomposition

χ(λ) = χ(III)
∞ (λ) + δχ(III)(λ) with χ(III)

∞ (λ) = P∞(λ)M↓(λ)
[
α(0)
↓ (λ)

]σ3 , (C.49)

and

δχ(III)(λ) = δP(λ)Π(λ)M↓(λ)
[
α(0)
↓ (λ)

]σ3 + P∞(λ)δΠ(λ)M↓(λ)
[
α(0)
↓ (λ)

]σ3 . (C.50)

Again, a direct analysis shows that for λ ∈ DIII and uniformly away from 0, one has

δχ(III)(λ) = O
(e−ϱw+2vw

1 + |λ|

)
. (C.51)

Note that the additional term e2vw present in the estimates on the remainder is due to the presence of e−2 in the
off-diagonal entry of M↓ and the fact thatDIII ∩ H+ =

{
λ ∈ C : 0 < ℑ(λ) < v

}
.
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These formulae allow to compute the leading behaviour of the vector FR(λ) inside each of the domains. One
infers that

FR(λ) = FR;∞(λ) + δF(A)
R (λ) with δF(A)

R (λ) = δχ(A)(λ)ER(λ) for λ ∈ DA , A ∈ {II, III} . (C.52)

We stress that the expression for FR;∞(λ) does not depend on whether λ ∈ DII or λ ∈ DIII . A direct calculation
shows that

FR;∞(λ) =
1

2iπ
P∞(λ) ·

 α(0)
↓ (λ)e(λ){

α(0)
↑ (λ)e(λ)

}−1


=

1
2iπ


α(0)
↓ (λ)e(λ) − 1

λb′(0)

[
α(0)
↓ (λ)e(λ) +

{
α(0)
↑ (λ)e(λ)

}−1
]

{
α(0)
↑ (λ)e(λ)

}−1
+

1
λb′(0)

[
α(0)
↓ (λ)e(λ) +

{
α(0)
↑ (λ)e(λ)

}−1
]


=

1
2iπ


α(0)
↓ (λ)e(λ) ·

[
1 − 1

λb′(0)
(
1 + b(λ)

)]
{
α(0)
↑ (λ)e(λ)

}−1 ·
[
1 +

1
λb′(0)

(
1 +

{
b(λ)

}−1)]
 = 1

2iπ

(
f+;∞(λ)
f−;∞(λ)

)
. (C.53)

Above, b is as introduced in (C.43). It is easy to see that the above expression for f±;∞(λ) is analytic in a tubular
neighbourhood of R. In particular, there is no pole at λ = 0 as follows from b(0) = −1.

Similarly, using the relation det χ(λ) = 1, one infers that

FL(λ) = FL;∞(λ) + δF(A)
L (λ) with δF(A)

L (λ) = CoMat
(
δχ(A)(λ)

)
EL(λ) for λ ∈ DA , A ∈ {II, III} (C.54)

where

FL;∞(λ) = −F [
L(0)](λ)

(
− f−;∞(λ)
f+;∞(λ)

)
(C.55)

and CoMat(M) stands for the Comatrix of M.
From the above one infers that the resolvent admits the following expansion

R(λ, µ) = R∞(λ, µ) + δR(λ, µ) uniformly in DII ∪DIII , (C.56)

where

R∞(λ, µ) =
−F [

L(0)](λ)
2iπ(λ − µ)

·
(
− f−;∞(λ) f+;∞(λ)

)
·
(

f+;∞(µ)
f−;∞(µ)

)
(C.57)

while, for (λ, µ) ∈ DA ×DB with A, B ∈ {II, III},

δR(λ, µ) =
1

λ − µ

{(
EL(λ),t CoMat

(
δχ(A)(λ)

)
FR;∞(µ)

)
+

(
FL;∞(λ), δχ(B)(µ)ER(µ)

)
+

(
EL(λ),t CoMat

(
δχ(A)(λ)

)
· δχ(B)(µ)ER(µ)

)}
. (C.58)

The leading resolvent may be explicitly cast as

R∞(λ, µ) =
−F [L(0)](λ)
2iπ(λ − µ)

(
− {α(0)

↑ (λ)e(λ)}−1 , α(0)
↓ (λ)e(λ)

)
·
(
I2 +

λ − µ
λµb′(0)

D
)  α(0)

↓ (µ) e(µ)

{α(0)
↑ (µ)e(µ)}−1

 (C.59)
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as follows from D2 = 0.
Obviously, R∞(λ, µ) is analytic in a tubular neighbourhood of R2 and satisfies, for some α > 0, the bounds∣∣∣R∞(λ, µ)

∣∣∣ = O
(

e−α|λ|

|λ − µ|e
w(|ℑ(λ)|+|ℑ(µ)|)

)
, (C.60)

which is valid throughout
{
DII ∪DIII ∪

{
R + iv

}}2
, provided that λ, µ are both uniformly away from 0.

Since δR = R − R∞, one infers that δR is analytic in a tubular neighbourhood of R2. One can bound δR,

globally on
{
DII ∪DIII ∪

{
R + iv

}}2
by using its patch-wise valid decomposition. This yields that

∣∣∣δR(λ, µ)
∣∣∣ = O

(
e−α|λ|−ϱw+4vw

|λ − µ| ew(|ℑ(λ)|+|ℑ(µ)|)
)
. (C.61)

Upon putting these two bounds together, one concludes that for λ, µ throughout
{
DII ∪ DIII ∪

{
R + iv

}}
but

both uniformly away from 0,∣∣∣R(λ, µ)
∣∣∣ ≤ Ce−α|λ|

|λ − µ| e
w(|ℑ(λ)|+|ℑ(µ)|) , (C.62)

for some α > 0.

D Auxiliary Lemma

Lemma D.1. Given σ, v > 0 and r ∈ N there exists C > 0 such that one has the upper bound∫
R±i(σ+v)

dt ·
[

ln(1 + |t|)]r

(1 + |t|) · |k − t| ≤ C ·
[

ln(1 + |k|)]r+1

1 + |k| , (D.1)

for any k ∈ C satisfying |ℑk| ≤ v.

Proof —
First of all, by changing ℜ(t) ↪→ −ℜ(t) under the integral, one may always assume that ℜ(k) > 0. Further-

more, for |ℜ(k)| < M for some fixed M, the integral is well-defined and the bound (D.1) is obvious. Hence, from
now on, one may assumeℜ(k) to be large enough.

Given t = u ± i(σ + v), one has

[
ln(1 + |t|)]r ≤ [

ln(1 + |u| + σ + v)
]r ≤

r∑
ℓ=0

Cr
ℓ

[
ln(1 + |u|)]ℓ · [ ln(1 + σ + v)

]r−ℓ , (D.2)

with Cr
ℓ being the binomial coefficients.

Given the same parameterisation for t, since

|k − t| ≥ 1
3

{
σ + |x − u|

}
where k = x + iℑ(k) as well as 1 + |t| ≥ 1 + |u| , (D.3)

one gets the upper bound∫
R±i(σ+v)

dt ·
[

ln(1 + |t|)]r

(1 + |t|) · |k − t| ≤
r∑
ℓ=0

3Cr
ℓ

[
ln(1 + σ + v)

]r−ℓ Iℓ with Iℓ =
∫
R

du · [ ln(1 + |u|)]ℓ
(1 + |u|) · (σ + |x − u|) . (D.4)
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Then, one may decompose Iℓ as

Iℓ =
0∫

−∞

du · [ ln(1 − u)
]ℓ

(1 − u) · (σ + x − u)︸                        ︷︷                        ︸
=I(1)

ℓ

+

x∫
0

du · [ ln(1 + u)
]ℓ

(1 + u) · (σ + x − u)︸                        ︷︷                        ︸
=I(2)

ℓ

+

+∞∫
x

du · [ ln(1 + u)
]ℓ

(1 + u) · (σ + u − x)︸                        ︷︷                        ︸
=I(3)

ℓ

. (D.5)

I(2)
ℓ

may be estimated by direct bounds

I(2)
ℓ
≤

[
ln(1 + x)

]ℓ
1 + x + σ

x∫
0

du ·
( 1
(1 + u)

+
1

(σ + x − u)

)
=

[
ln(1 + x)

]ℓ
1 + x + σ

·
(

ln(1+ x) − lnσ + ln(σ+ x)
)
. (D.6)

To estimate I(3)
ℓ

one first decomposes it as

I(3)
ℓ
=

+∞∫
0

du · [ ln(1 + u + x)
]ℓ

(1 + u + x) · (σ + u)
=

x∫
0

du
[
ln(1 + u + x)

]ℓ
1 + x − σ

( 1
σ + u

− 1
1 + u + x

)
+

+∞∫
0

du · [ ln(1 + u + 2x)
]ℓ

(1 + u + 2x) · (σ + u + x)
.

(D.7)

The logarithmic term in the first integral may be bounded by
[
ln(1 + 2x)

]ℓ while, in the second integral one uses
the bound valid for x large enough

1 + 2x + u
σ + x + u

≤ 1 + 2x
σ + x

, (D.8)

so as to integrate only a function of the variable 1 + 2x + u. Then, the identity

+∞∫
0

du
[
ln(A + u)

]ℓ
(A + u)2 =

1
A

ℓ∑
p=0

ℓ!
p!

[
ln A

]p (D.9)

leads to

I(3)
ℓ
≤

[
ln(1 + u + x)

]ℓ
1 + x − σ

{
ln(σ + x) − ln(1 + 2x) − lnσ + ln(1 + x)

}
+

ℓ∑
p=0

ℓ!
p!

[
ln(1 + 2x)

]p

σ + x
. (D.10)

By using analogous techniques, one may bound I(1)
ℓ

concluding that

I(1)
ℓ
= O

( [ ln(1 + x)
]ℓ+1

1 + x

)
. (D.11)

All in all, this entails the claim.
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