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Abstract. We consider a particle diffusing outside a compact planar set and

investigate its boundary local time ℓt, i.e., the rescaled number of encounters between

the particle and the boundary up to time t. In the case of a disk, this is also the

(rescaled) number of encounters of two diffusing circular particles in the plane. For

that case, we derive explicit integral representations for the probability density of the

boundary local time ℓt and for the probability density of the first-crossing time of

a given threshold by ℓt. The latter density is shown to exhibit a very slow long-time

decay due to extremely long diffusive excursions between encounters. We briefly discuss

some practical consequences of this behavior for applications in chemical physics and

biology.
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1. Introduction

When a Brownian particle diffuses in a geometric confinement, its encounters with the

reflecting boundary can be characterized by the boundary local time ℓt, which plays the

central role in the theory of stochastic processes [1–3]. In the basic setting of ordinary

diffusion, one considers reflected Brownian motion Xt, released at time t = 0 from a

fixed point x0 and diffusing inside an Euclidean domain Ω ⊂ R
d with diffusion coefficient

D and normal reflections on the smooth boundary ∂Ω. The boundary local time ℓt of

this process on a subset of the boundary, Γ ⊂ ∂Ω, is defined as

ℓt = lim
a→0

D

a

t∫

0

dt′ Θ(a− |Xt′ − Γ|)
︸ ︷︷ ︸

residence time

, (1)

where Θ(z) is the Heaviside step function, and |x − Γ| denotes the distance between a

point x and the boundary region Γ. In this definition, the integral is the residence time

of reflected Brownian motion Xt up to time t inside a thin boundary layer of width a

around Γ: Γa = {x ∈ Ω : |x − Γ| < a} (see [4–17] and references therein). In the

limit a → 0, the residence time vanishes but its rescaling by a yields a well-defined

nontrivial limit ℓt. According to Eq. (1), the boundary local time ℓt is a non-decreasing

process that remains constant when Xt is the bulk, and increases only when Xt hits

the boundary. Alternatively, the boundary local time ℓt can also be written as

ℓt = lim
a→0

aN a
t , (2)

where N a
t is the number of downcrossings of the thin boundary layer Γa up to time t

(Fig. 1), i.e., a regularized version of the number of encounters of the process with the

region Γ (see [18] for further discussion). For a fixed time t, ℓt is a random variable,

which can be characterized by the probability density ρ(ℓ, t|x0). Note that ℓt has units

of length, whereas ℓt/D has units of time per length, reflecting the rescaling by a in Eq.

(1).

While general stochastic properties of the boundary local time were thoroughly

investigated in the past (see [20–22] and references therein), its geometry-specific

properties are less known. For instance, how does the distribution of the number of

encounters depend on the shape of the confining domain and evolve with time? When

does this number exceed a prescribed threshold? To answer these questions, general

spectral expansions for ρ(ℓ, t|x0) and for the probability density U(ℓ, t|x0) of the first-

crossing time Tℓ of a prescribed threshold ℓ by the process ℓt, were established in [18,23].

These spectral expansions rely on the eigenmodes of the Dirichlet-to-Neumann operator,

which are known explicitly only for some simple domains [24]. In particular, closed

analytical formulas were derived for diffusion in a half-line,

ρ(ℓ, t|x0) = erf

(
x0√
4Dt

)

δ(ℓ) +
exp(− (x0+ℓ)2

4Dt
)√

πDt
, (3)
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Figure 1. A simulated trajectory of reflected Brownian motion in the exterior of a

disk of radius R: Ω = {x ∈ R
2 : |x| > R}. Pink region denotes a thin boundary layer

Γa of width a near the boundary: Γ = ∂Ω. The particle is released in a close vicinity of

the boundary (blue diamond) and diffuses until the first encounter with that boundary

(filled circle enumerated by 1). From that point, the particle is released a distance a

above the circle and resumes its motion until the next encounter, and so on. Such a

regularization with small a > 0 allows one to define the number of encounters N a

t
and

to split the trajectory into excursions between encounters (such three excursions are

drawn by different colors).

U(ℓ, t|x0) = (ℓ+ x0)
e−(ℓ+x0)2/(4Dt)

√
4πDt3

, (4)

and in the exterior of a ball of radius R:

ρ(ℓ, t|x0) =

(

1− R

|x0|
erfc

( |x0| − R√
4Dt

))

δ(ℓ) (5)

+
e−ℓ/R

|x0|

(

erf

( |x0| − R + ℓ√
4Dt

)

+
Re−(|x0|−R+ℓ)2/(4Dt)

√
πDt

)

,

U(ℓ, t|x0) =
Re−ℓ/R

|x0|
|x0| −R + ℓ√

4πDt3
e−(|x0|−R+ℓ)2/(4Dt) , (6)

where δ(ℓ) is the Dirac distribution (see [24, 25] for details).

In turn, the analysis of diffusion in the exterior of a compact planar domain turns

out to be more subtle. As planar diffusion is recurrent, the diffusing particle never

escapes to infinity and repeatedly returns to the boundary so that the boundary local

time ℓt grows to infinity as t → ∞ and thus crosses any threshold with probability

1. However, the probability of not hitting the boundary up to time t is known to

decay logarithmically slowly with t [26], so that each return to the boundary may take

abnormally long time. In this paper, we focus on diffusion outside a disk and derive

explicit integral representations for both probability densities ρ(ℓ, t|x0) and U(ℓ, t|x0).

We use then these presentations to analyze their asymptotic behavior. We also

characterize the relative contributions of random trajectories with different exploration
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sizes. Finally, we discuss extensions to more general planar domains, describe some

applications in physics and chemistry, and outline several open questions.

2. Formal solution

In this Section, we recall the formal general solution for ρ(ℓ, t|x0) and U(ℓ, t|x0) from

[18, 23]. The central relation is the expression for the moment-generating function of

the boundary local time ℓt:

Ex0{e−qℓt} = Sq(t|x0), (7)

where Sq(t|x0) is the survival probability, which satisfies the (backward) diffusion

equation

∂tSq(t|x0) = D∆Sq(t|x0) (x0 ∈ Ω), (8)

with the initial condition Sq(0|x0) = 1 and the mixed Robin-Neumann boundary

condition:

(∂n + q)Sq(t|x0)|Γ = 0, (9)

∂nSq(t|x0)|∂Ω\Γ = 0 (10)

(for unbounded domains, the regularity condition Sq(t|x0) → 1 as |x0| → ∞ is also

imposed). Here ∆ is the Laplace operator acting on x0, ∂n is the normal derivative at

the boundary oriented outward the domain, and q ≥ 0 is a parameter in Eq. (7), which

can be related to the surface reactivity of the subset Γ [18]. On the other hand, the

moment-generating function is defined via the probability density of ℓt:

Ex0{e−qℓt} =

∞∫

0

dℓ e−qℓ ρ(ℓ, t|x0). (11)

Inverting this Laplace transform, one formally gets

ρ(ℓ, t|x0) = L−1
q,ℓ{Sq(t|x0)}. (12)

The first-crossing time Tℓ of a given threshold ℓ ≥ 0 by the boundary local time ℓt
is defined as

Tℓ = inf{t > 0 : ℓt > ℓ}. (13)

As the boundary local time is a non-decreasing process, the cumulative distribution

function of the first-crossing time is determined as

Q(ℓ, t|x0) = Px0{Tℓ < t} = Px0{ℓt > ℓ} = 1−L−1
q,ℓ{Sq(t|x0)/q} , (14)

where we used Eq. (12). The probability density of the first-crossing time follows:

U(ℓ, t|x0) = ∂tQ(ℓ, t|x0) = L−1
q,ℓ

{−∂tSq(t|x0)

q

}

. (15)
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Recalling that Hq(t|x0) = −∂tSq(t|x0) is the probability density of the first-passage

time to a partially reactive target Γ (see, e.g., [26]), one can rewrite Eq. (15) as

Hq(t|x0) =

∞∫

0

dℓ q e−qℓ U(ℓ, t|x0). (16)

In other words, the probability density U(ℓ, t|x0) determines the whole family of the

first-passage times described by Hq(t|x0) [18].

Even though the probability densities ρ(ℓ, t|x0) and U(ℓ, t|x0) are formally

determined via Eqs. (12, 15), their analysis requires the Laplace transform inversion,

L−1
q,ℓ , which may be numerically unstable [27]. Moreover, as the parameter q enters

through the Robin boundary condition (9), the dependence of the survival probability

Sq(t|x0) on q is implicit that renders its analysis even more difficult. The aim of the

present paper is to derive fully explicit representations for both densities in the case of

diffusion outside a disk and then to use them for the asymptotic analysis.

3. Diffusion outside a disk

In this section, we consider reflected Brownian motion in the exterior of the disk of radius

R, Ω = {x ∈ R
2 : |x| > R}, and focus on the boundary local time ℓt on the boundary

of that disk: Γ = ∂Ω (Fig. 1). The rotational invariance of the domain implies that the

probability densities and related quantities do not depend on the angular coordinate.

In the following, we replace the starting point x0 by its radial coordinate r0 = |x0|.
We start by recalling the integral representation for the survival probability Sq(t|r0),

which can be derived from the classical solution of a similar heat conduction problem

[28, 29]

Sq(t|r0) =
2qR

π

∞∫

0

dz

z
e−z2Dt/R2

(17)

× Y0(zr0/R)(zJ1(z) + qRJ0(z))− J0(zr0/R)(zY1(z) + qRY0(z))

(zJ1(z) + qRJ0(z))2 + (zY1(z) + qRY0(z))2
,

where Jν(z) and Yν(z) are the Bessel functions of the first and second kind, respectively.

To render the dependence of this expression on q even more explicit, we represent it as

Sq(t|r0) =
4

π

∞∫

0

dz

z
e−z2Dt/R2

Re

(
qA(z, r0/R)

B(z)/R + q

)

, (18)

where

A(z, r) =
i

2

(J0(z) + iY0(z))(J0(zr)− iY0(zr))

J2
0 (z) + Y 2

0 (z)
, (19)

B(z) =
z(J0(z)J1(z) + Y0(z)Y1(z)) + i 2

π

J2
0 (z) + Y 2

0 (z)
. (20)
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Substituting Eq. (18) into Eq. (12) and evaluating the inverse Laplace transform

with respect to q, we get

ρ(ℓ, t|r0) = S∞(t|r0)δ(ℓ) (21)

− 4

πR

∞∫

0

dz

z
e−z2Dt/R2

Re
(

A(z, r0/R)B(z)e−B(z)ℓ/R
)

,

where

S∞(t|r0) =
4

π

∞∫

0

dz

z
e−z2Dt/R2

Re(A(z, r0/R)) (22)

is obtained as the limit of Eq. (18) when q → ∞. As in Eqs. (3, 5), the first term in Eq.

(21) accounts for trajectories that did not hit the boundary up to time t, for which the

boundary local time ℓt remained 0. The positive-order moments of the boundary local

time are analyzed in Appendix A. Similarly, Eq. (14) implies that the inverse Laplace

transform of Sq(t|r0)/q with respect to q yields

Q(ℓ, t|r0) = 1− 4

π

∞∫

0

dz

z
e−z2Dt/R2

Re
(
A(z, r0/R)e−B(z)ℓ/R

)
. (23)

The time derivative of this expression gives the probability density U(ℓ, t|r0) of the

first-crossing time:

U(ℓ, t|r0) =
4D

πR2

∞∫

0

dz z e−z2Dt/R2

Re
(
A(z, r0/R)e−B(z)ℓ/R

)
. (24)

Note also that setting ℓ = 0 in Eq. (24) yields

U(0, t|r0) =
4D

πR2

∞∫

0

dz z e−z2Dt/R2

Re(A(z, r0/R)) = H∞(t|r0), (25)

where we used Eq. (22) and thus retrieved the probability density of the first-passage

time to the disk.

The explicit integral representations (21, 23, 24) are the main analytical results

of the paper. Thanks to the exponential factor e−z2Dt/R2
, these integrals rapidly

converge for large z. In turn, the integrals in Eqs. (21, 23) exhibit logarithmically slow

convergence at small z. A practical solution of this issue is discussed in Appendix B.

The boundary local time ℓt remains zero until the first encounter with the boundary.

As a consequence, the first-crossing time Tℓ can be decomposed into two contributions:

the first-passage time from x0 to the circle, T0,r0 = inf{t > 0 : ℓt > 0 | |X0| = r0},
and the first-crossing time of the level ℓ after starting from the circle, Tℓ,R = inf{t >
0 : ℓt > ℓ | |X0| = R}:

Tℓ = T0,r0 + Tℓ,R. (26)

The strong Markovian character of reflected Brownian motion and of the boundary

local time, as well as the rotational invariance of the problem imply that these two
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contributions are independent variables. As a consequence, the probability density of Tℓ

can be obtained by convolving the densities of T0,r0 and Tℓ,R. The probability density of

the first-passage time to the circle, H∞(t|r0), has been studied long ago (see [26,29,30]

and references therein). As a consequence, one can focus on the probability density

U(ℓ, t|R) of the second contribution Tℓ,R, for which A(z, 1) = i/2, and Eq. (24) becomes

U(ℓ, t|R) = − 2D

πR2

∞∫

0

dz z e−z2Dt/R2

Im
(
e−B(z)ℓ/R

)
. (27)

In the next section, we discuss the asymptotic behavior of the density U(ℓ, t|r0).

4. Asymptotic analysis

To investigate the asymptotic behavior of the probability density U(ℓ, t|r0), it is

convenient to change the integration variable in Eq. (24) as

U(ℓ, t|r0) =
4

πt

∞∫

0

dz z e−z2 Re
(

A(zR/
√
Dt, r0/R)e−B(zR/

√
Dt) ℓ/R

)

. (28)

4.1. Short-time asymptotic behavior

The limit t → 0 corresponds to the large-z expansions of A(z, r) and B(z):

A(z, r) ≃ i

2 r
1
2

e−iz(r−1) (z → ∞), (29)

B(z) ≃ 1

2
+ iz +O(1/z) (z → ∞). (30)

Substituting these approximations into Eq. (28), we get

U(ℓ, t|r0) ≃
e−ℓ/(2R)

(r0/R)
1
2

(r0 −R + ℓ) e−(r0−R+ℓ)2/(4Dt)

√
4πDt3

(t → 0). (31)

Apart from the factor e−ℓ/(2R) (r0/R)−
1
2 , this expression is identical to Eq. (4) for

diffusion in the half-line, if x0 = r0 − R denotes the distance to the boundary. This is

not surprising because the circle looks locally flat at short times, and the behavior should

be close to that of the half-plane. In turn, the supplementary factor e−ℓ/(2R) (r0/R)−
1
2

accounts for the curvature of the boundary. Note that in the case r0 = R, the same

result could alternatively be derived by analyzing Eq. (C.1) in the short-time limit (i.e.,

p → ∞).

In the limit t → 0, the particle does not spend enough time near the boundary to

allow for the boundary local time ℓt to cross a given threshold ℓ, and the probability

density of too short first-crossing times, t ≪ ℓ2/(4D), is extremely small, even if

the particle starts on the boundary. At first thought, this statement may sound to

contradict the well-known property that (reflected) Brownian motion that crossed a

smooth boundary returns infinitely many times to that boundary during an infinitely

short period [31]. This seeming contradiction reflects the crucial difference between the



Statistics of boundary encounters... 8

boundary local time, ℓt, and the number of encounters Na
t with a thin boundary layer

of width a (i.e., the number of returns up to t). The latter is defined for any a > 0 but

diverges in the limit a → 0. This divergence, Na
t → N0

t = +∞, is evoked in the above

statement about infinitely many returns. In turn, the boundary local time ℓt, which is

obtained by rescaling Na
t by a in Eq. (2), remains a meaningful characteristics of the

encounters with the boundary in the limit a → 0.

4.2. Long-time asymptotic behavior

The large-t limit corresponds to the small-z behavior of A(z, r) and B(z):

A(z, r) ≃ i

2
(1− B(z) ln r) (z → 0), (32)

B(z) ≃ 1

ln(1/z) + ln 2− γ − πi
2

(z → 0) , (33)

where γ ≈ 0.5772 . . . is the Euler constant. We substitute these expressions in Eq. (28)

and then neglect ln z as a slowly varying function to get

U(ℓ, t|r0) ≃
1

πt
exp

(

− (ℓ/R)bt
b2t + (π/2)2

)[

sin

(
(ℓ/R)π/2

b2t + (π/2)2

)(

1− bt ln(r0/R)

b2t + (π/2)2

)

+ cos

(
(ℓ/R)π/2

b2t + (π/2)2

)
(π/2) ln(r0/R)

b2t + (π/2)2

]

, (34)

where the remaining integral over z gave the factor 1/2, and we set bt = ln(
√
4Dt/R)−γ.

When bt ≫ π/2 and bt ≫
√

ℓ/R, we finally get

U(ℓ, t|r0) ≃ 2
ℓ/R + ln(r0/R)

t [ln(Dt/R2)]2
(t → ∞). (35)

For comparison, we also present the long-time asymptotic behavior of the

probability density Hq(t|r0) of the first-passage time to a partially reactive target, which

was derived in [29]:

Hq(t|r0) ≃
2
(

1
qR

+ ln(r0/R)
)

t
(

π2 +
[

ln(R2/(4Dt)) + 2γ − 2
qR

]2) . (36)

In the very long time limit, one gets

Hq(t|r0) ≃ 2

1
qR

+ ln(r0/R)

t[ln(Dt/R2)]2
. (37)

In the particular case q = ∞, this behavior coincides with Eq. (35) at ℓ = 0, in

agreement with Eq. (25). More generally, both densities U(ℓ, t|r0) and Hq(t|r0) that are
related by Eq. (16), exhibit the same dependence on time in the limit t → 0. Curiously,

the relation (16) is satisfied even for the asymptotic forms in Eqs. (35, 37).

One can see that the probability density U(ℓ, t|r0) exhibits a very heavy tail at large

t. In particular, any positive moment of the first-crossing time, Ex0{T k
ℓ }, with k ∈ R+,

is infinite. This divergence is caused by the contribution of very long trajectories that
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explore the plane and can move far away from the target but unavoidably return to it

due to the recurrent character of planar diffusion. The same mechanism leads to the

infinite mean first-crossing time for diffusion in the half-line. However, the t−3/2 decay

of U(ℓ, t|x0) in Eq. (4) ensures that at least the moments Ex0{T k
ℓ } with k < 1/2 exist

in the one-dimensional setting.

Figure 2 illustrates the behavior of the probability density U(ℓ, t|R) for several

values of the threshold ℓ. For cross-validation, this density was computed by two

independent methods: (i) the numerical evaluation of the integral in Eq. (27), and

(ii) the numerical computation of the inverse Laplace transform in Eq. (C.4) by the

Talbot algorithm. Both methods show an excellent agreement (circles versus crosses).

At ℓ/R = 0.1 and ℓ/R = 1, the short-time asymptotic relation (31) accurately captures

the behavior of U(ℓ, t|R) at short and even moderate times, t . R2/D, but fails at

long times, as expected. In particular, one can use the simple form of Eq. (31) to

estimate the most probable first-crossing time: tmp ≃ (r0 −R+ ℓ)2/(6D). As the mean

value is infinite, the most probable time plays the role of a natural time scale. At long

times, t ≫ R2/D, Eq. (35) correctly captures the long-time behavior but approaches it

slowly, particularly for large ℓ. In contrast, the approximate relation (34) turns out to

be surprisingly accurate for large and even intermediate times.

The quality of both asymptotic relations (31, 35) is much lower in the case ℓ/R = 10

(Fig. 2(c)). On one hand, Eq. (31) does not reproduce correctly the maximum of

U(ℓ, t|R) and captures only the steep decay at small t. In other words, in the range of

validity of this relation (i.e., t . R2/D), the density U(ℓ, t|R) is already very small and

thus not much useful in practice. On the other hand, the approach to Eq. (35) is very

slow so that this asymptotic relation becomes accurate only at extremely large times.

In contrast, one can still rely on the approximate Eq. (34).

4.3. Exploration size of trajectories

In order to quantify the relative contributions of trajectories with different spatial

extents into the heavy tail of the probability density U(ℓ, t|R), we introduce an absorbing

circle of radius L > R and compute the probability density of the first-crossing time

Tℓ for the trajectories that remained inside that circle up to Tℓ. In order words, while

computing the statistics of the first-crossing times, we discard all trajectories that hit

the circle of radius L up to time Tℓ. In Appendix D, we describe an extension of the

spectral approach from [18, 23–25] to compute the density UL(ℓ, t|r0) in the presence

of the absorbing circle. Expectedly, the density UL(ℓ, t|r0) is not normalized to 1, and

1 −
∫∞
0

dt UL(ℓ, t|r0) is the probability that the trajectory Xt has crossed the circle of

radius L before the associated boundary local time could reach the level ℓ. In this setting,

we could not derive a fully explicit representation for UL(ℓ, t|r0) and thus performed the

Laplace transform inversion in Eq. (D.3) numerically by the Talbot algorithm.

Figure 3 shows the probability densities UL(ℓ, t|R) for several values of L (with

L = ∞ corresponding to the former case without absorbing circle). As the “restricted”
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Figure 2. The probability density U(ℓ, t|R) as a function of t for diffusion outside

the disk of radius R = 1, with D = 1, ℓ = 0.1 (a), ℓ = 1 (b), and ℓ = 10 (c). Empty

circles show the exact solution obtained by numerical computation of the integral in

Eq. (27); dashed line presents the short-time asymptotic behavior (31); solid and

dash-dotted lines show the long-time asymptotic relations (34) and (35), respectively;

crosses present the numerical computation of the inverse Laplace transform in Eq.

(C.4) by the Talbot algorithm.
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Figure 3. The probability density U(ℓ, t|R) (solid line) as a function of t for diffusion

outside the disk of radius R = 1, with D = 1, ℓ = 1 (a) and ℓ = 10 (b). This density is

compared to the probability densities UL(ℓ, t|R) in the presence of the absorbing circle

of radius L, with three values of L as indicated in the plot. All these densities were

obtained via the numerical computation of the inverse Laplace transform in Eq. (D.3)

by the Talbot algorithm. Note that two last curves in the panel (a) were truncated at

large times to avoid numerical instabilities of the Laplace transform inversion.

trajectories explore a bounded domain between two concentric circles (of radii R and L),

the particle returns to the inner circle (target) more often, and the boundary local time

increases faster. As a consequence, the probability density UL(ℓ, t|r0) of the associated

first-crossing time is expected to decay much faster as t → ∞, as confirmed by Fig.

3. This faster decay is also related to the fact that keeping long trajectory within a

bounded region becomes more and more unlikely as time goes on. This figure explicitly

illustrates that the heavy tail of the density U(ℓ, t|R) in Eq. (35) is caused by very

long trajectories that explore the unbounded planar space and thus create long stalling

periods, during which the boundary local time does not change.

5. Discussion and conclusion

In this paper, we considered diffusion in the exterior of a disk and derived the explicit

integral representations (21) and (24) for the probability densities ρ(ℓ, t|r0) and U(ℓ, t|r0)
of the boundary local time ℓt and of the first-crossing time Tℓ, respectively. As the former
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density ρ(ℓ, t|r0) was investigated in [23], we mainly focused on the latter one. With

the aid of the integral representation (24), we deduced Eqs. (31, 35) describing the

short-time and the long-time asymptotic behavior of U(ℓ, t|r0), respectively. Moreover,

Eq. (34) was checked to be an accurate approximation of U(ℓ, t|r0) for moderate and

long times. We illustrated that the probability density U(ℓ, t|r0) vanishes at short times,

reaches the maximum at intermediate times ∼ 1
D
(r0 − R + ℓ)2, and exhibits a heavy

long-time tail such that all positive-order moments are infinite. To quantify the effect of

long excursions between encounters, we also analyzed the probability density UL(ℓ, t|r0)
in the presence of an absorbing circle of radius L.

As discussed in Secs. 1 and 2, the boundary local time ℓt is a proxy of the

number of encounters, N a
t , of a diffusing particle with the boundary layer Γa of width

a up to time t (here, Γ = ∂Ω). Consequently, the first-crossing time Tℓ describes

the moment when the number of encounters exceeds a prescribe threshold. While the

random variables ℓt and Tℓ characterize the reflecting boundary, they form a natural

ground for incorporating surface reactivity and to describe various diffusion-mediated

surface phenomena such as diffusion-influenced chemical reactions, permeation across

biological membranes, surface relaxation in nuclear magnetic resonance, etc. [18, 19].

For instance, U(0, t|r0) = H∞(t|r0) describes the first-passage time to the perfectly

reactive boundary [32], whereas Hq(t|r0), expressed through Eq. (16) in terms of

U(ℓ, t|r0), determines the reaction time on a partially reactive boundary [33–49]. More

sophisticated surface reaction mechanisms can also be implemented with the help of

U(ℓ, t|r0), as discussed in [18].

Interestingly, the probability densities ρ(ℓ, t|r0) and U(ℓ, t|r0) also describe the

first-encounter statistics of two independent particles diffusing in the plane. In fact,

associating the coordinate frame with one of the particles, the diffusive dynamics of two

circular particles of radii R1 and R2 with diffusivities D1 and D2 can be mapped onto

planar diffusion of a single point-like particle with diffusivityD = D1+D2 toward a static

circular target of radius R = R1+R2. As a consequence, ℓt/a is the number of encounters

of such two particles, where a is the separation between two particles at each encounter.

In other words, a single encounter is counted when two particles hit each other and then

moved away and become separated by a distance exceeding a. In turn, TaN is the first

moment when the number of such encounters exceeds N . As an encounter of two species

is the necessary step for most bimolecular reactions, reproduction in animals, and virus

spreading in humans, both quantities can be used in describing various encounters in

chemistry, biology and ecology (see [50–58] and references therein).

Even though the explicit representations (21) and (24) were derived for the

particular case of a disk, the asymptotic behavior of the probability density U(ℓ, t|x0)

is expected to remain valid for diffusion in the exterior of a general compact planar

domain with smooth boundary. Indeed, at short times, t ≪ R2
c/D, the boundary looks

locally flat with respect to the radius of curvature Rc of the boundary in a vicinity of

the starting point. As a consequence, the time dependence of the density U(ℓ, t|x0) is

expected to be given by Eq. (4) for the one-dimensional setting, where x0 = |x0−Γ| is the
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distance between the starting point x0 and the target Γ. In turn, the correction factor

e−ℓ/(2R) (r0/R)−
1
2 from Eq. (31) is specific to the disk. Finding the shape-dependent

correction factor for other domains presents an interesting perspective. Similarly, at

large times, long excursions between encounters are expected to lead to a heavy tail of

the probability density U(ℓ, t|x0) as t → ∞. The characteristic 1/(t ln2(t)) decay may

remain universal but the dependence on ℓ and x0 could be shape-specific. Validation and

specification of these conjectures present another exciting direction for future research.

This problem is tightly related to the asymptotic behavior of the spectrum of the

Dirichlet-to-Neumann operator associated with the modified Helmholtz equation [23]

(see also Appendix D).
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Appendix A. Long-time behavior of the mean boundary local time

According to Eq. (21), the probability density ρ(ℓ, t|r0) exhibits a rapid decay for large

ℓ, ensuring the existence of all positive-order moments of the boundary local time ℓt:

Ex0{ℓkt } =

∞∫

0

dℓ ℓk ρ(ℓ, t|x0) (k > 0). (A.1)

The explicit representation (21) can be used to compute these moments. However, the

direct exchange of the order of integrals over ℓ in Eq. (A.1) and over z in Eq. (21)

is not possible as the resulting integral over z would be divergent. To overcome this

limitation, one can first express the time derivative of the moment Ex0{ℓkt } as

∂tEx0{ℓkt } =
4DRk−2Γ(k + 1)

π

∞∫

0

dz z e−z2Dt/R2

Re

(
A(z, r0/R)

[B(z)]k

)

. (A.2)

Rescaling the integral variable yields

∂tEx0{ℓkt } =
4RkΓ(k + 1)

πt

∞∫

0

dz z e−z2 Re

(

A(zR/
√
Dt, r0/R)

[B(zR/
√
Dt)]k

)

. (A.3)

In the long-time limit, one uses the small-z expansions (33, 32) to get

∂tEx0{ℓkt } ≃ 2RkΓ(k + 1)

πt

∞∫

0

dz z e−z2 Re
(

i
[

(bt − ln z − πi/2)k

− ln(r0/R)(bt − ln z − πi/2)k−1
])

, (A.4)
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where bt = ln(
√
4Dt/R)− γ. Integrating this expression over t, we get

Ex0{ℓkt } ≃ 2RkΓ(k + 1)

π

∞∫

0

dz e−z Im

(

−(bt − 1
2
ln z − 1

2
πi)k+1

k + 1

+ ln(r0/R)
(bt − 1

2
ln z − 1

2
πi)k

k

)

, (A.5)

where we also changed the integration variable z2 → z. Using the binomial expansion,

one can evaluate these integrals term by term. In particular, we get the mean and the

variance in the long-time limit:

Ex0{ℓt} ≃ R
(

ln(
√
4Dt/r0)− γ/2

)

, (A.6)

varx0{ℓt} = Ex0{ℓ2t} − (Ex0{ℓt})2

≃ R2

(

(ln(
√
4Dt/R)− γ/2)2 − ln2(r0/R)− π2

12

)

. (A.7)

These expressions generalize the former results from [23] to an arbitrary starting point.

Appendix B. Numerical computation

Using Eqs. (33, 32), one can easily check that the integrals in Eqs. (21, 23) converge

logarithmically slowly near z = 0. To improve the accuracy of numerical computations,

one can choose an appropriate ε ≪ 1 and split the integral into two parts, from 0 to

ε, and from ε to ∞. The second integral is then evaluated numerically, whereas the

contribution of the first integral, Iε, can be found approximately.

Let us first consider the computation of Q(ℓ, t|r0) in Eq. (23), for which

Iε =
4

π

ε∫

0

dz

z
e−z2Dt/R2

Re
(
A(z, r)e−B(z)ℓ/R

)

≈ 4

π

ε∫

0

dz

z
Re

(
i

2
(1− B(z) ln r)e−B(z)ℓ/R

)

≈ − 2

π

∞∫

ln(1/ε)

dy Im

((

1− ln r

y + b

)

exp
(

− c

y + b

))

,

where c = ℓ/R and b = ln 2 − γ − 1
2
πi. Here we approximated e−z2Dt/R2 ≈ 1 for

0 ≤ z ≤ ε, and made the change of variables: y = ln(1/z). Note that the above

approximation naturally imposes the constraint on ε: ε2 ≪ R2/(Dt). In particular, as

t increases, one has to choose smaller and smaller ε.

The last integral can be evaluated as

Iε ≈ 1 +
2

π
Im
(

bε e
−c/bε − (c+ ln(r0/R)) Ei1(c/bε)

)

, (B.1)
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where Ei1(z) =
∫∞
1

dk e−zk/k = Γ(0, z) is the exponential integral, and bε = b+ ln(1/ε).

As a consequence, we get

Q(ℓ, t|r0) = 1− Iε −
4

π

∞∫

ε

dz

z
e−z2Dt/R2

Re
(
A(z, r0/R)e−B(z)ℓ/R

)
. (B.2)

A similar correction can be used for an accurate computation of ρ(ℓ, t|r0):
ρ(ℓ, t|r0) = S∞(t|r0)δ(ℓ)− I(ρ)ε (B.3)

− 4

πR

∞∫

ε

dz

z
e−z2Dt/R2

Re
(
A(z, r0/R)B(z)e−B(z)ℓ/R

)
,

with

I(ρ)ε =
4

πR

ε∫

0

dz

z
e−z2Dt/R2

Re
(
A(z, r0/R)B(z)e−B(z)ℓ/R

)

≈ 2

πR
Im

(

Ei1(c/bε)−
ln(r0/R)

c
e−c/bε

)

. (B.4)

Note that there is no need for such a correction for computing U(ℓ, t|r0) because Iε does
not depend on time and thus disappears after differentiating Q(ℓ, t|r0) with respect to

t.

Appendix C. Alternative representation

In [18, 23], alternative representations for the probability densities ρ(ℓ, t|x0) and

U(ℓ, t|x0) were developed in terms of the eigenmodes of the Dirichlet-to-Neumann

operatorMp for an arbitrary Euclidean domain Ω with a smooth bounded boundary ∂Ω.

For a given function f on ∂Ω, the operator Mp associates another function g = (∂nw)|∂Ω
on that boundary, where w satisfies the modified Helmholtz equation (p − D∆)w = 0

in Ω with Dirichlet boundary condition w|∂Ω = f [59–63]. For instance, for diffusion

outside the disk of radius R, the probability Q(ℓ, t|R) reads

Q(ℓ, t|R) = L−1
p,t

{1

p
exp(−µ

(p)
0 ℓ)

}

, (C.1)

where L−1
p,t is the inverse Laplace transform with respect to p,

µ
(p)
0 =

√

p/D
K1(R

√

p/D)

K0(R
√

p/D)
(C.2)

is the smallest eigenvalue of the Dirichlet-to-Neumann operator Mp in the exterior of

the disk, and Kν(z) is the modified Bessel function of the second kind [23]. The densities

ρ(ℓ, t|R) and U(ℓ, t|R) follow immediately by taking the derivatives with respect to ℓ

and t, respectively:

ρ(ℓ, t|R) = L−1
p,t

{µ
(p)
0

p
exp(−µ

(p)
0 ℓ)

}

. (C.3)
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and

U(ℓ, t|R) = L−1
p,t

{

exp(−µ
(p)
0 ℓ)

}

. (C.4)

In this Appendix, we briefly describe a direct derivation of Eq. (C.4) that illustrates

the meaning of the boundary local time as a proxy for the number of encounters. Let

us consider a regularized version of the problem, in which the particle after hitting the

circle at some point (R,ϕ) (in polar coordinates) is released from a bulk point (R+a, ϕ),

a distance a above the circle (Fig. 1). The first-crossing time Tℓ can then be represented

as Tℓ = τ1 + τ2 + . . . + τN , where τi is the duration of bulk diffusion after i-th release

(here we assumed that the particle starts on the circle), and N ≈ ℓ/a is the number

of such bulk explorations, see Eq. (2). The random variables τi are independent and

identically distributed, with a well-known moment-generating function [26]:

E{e−pτi} =
K0((R + a)

√

p/D)

K0(R
√

p/D)
. (C.5)

As a consequence, one has

E{e−pTℓ} =
(

E{e−pτ1}
)N

= exp

(

N ln

(

K0((R + a)
√

p/D)

K0(R
√

p/D)

))

≃ exp

(

ℓ

a
ln

(

1 +
K ′

0(R
√

p/D)

K0(R
√

p/D)
a
√

p/D

))

→ exp

(

−ℓ
√

p/D
K1(R

√

p/D)

K0(R
√

p/D)
︸ ︷︷ ︸

=µ
(p)
0

)

(a → 0).

As a consequence, the inverse Laplace transform of the right-hand side with respect to

p yields U(ℓ, t|R) in Eq. (C.4).

Appendix D. Concentric annulus

In order to quantify the relative contributions of far-reaching trajectories, it is convenient

to introduce an absorbing circle of radius L. In other words, we are interested in diffusion

inside a circular annulus, Ω = {x ∈ R
2 : R < |x| < L}. In this Appendix, we adopt

the spectral approach from [18,23–25] to deduce the distribution of the boundary local

time on the inner circle with the constraint of not hitting the outer circle. For brevity,

we skip details and only sketch the main formulas.

Due to rotational invariance, the eigenfunctions of the Dirichlet-to-Neumann

operator Mp associated to the inner circle are the Fourier harmonics,

v(p)n =
einϕ√
2πR

(n ∈ Z), (D.1)
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whereas the associated eigenvalues are

µ
(p)
n,L = −α

Kn(αL)I
′
n(αR)− In(αL)K

′
n(αR)

Kn(αL)In(αR)− In(αL)Kn(αR)
, (D.2)

with α =
√

p/D and the prime denoting the derivative with respect to the argument

(see similar computations in [23,24]). The decomposition (26) of the first-crossing time

Tℓ implies that its probability density is obtained by convolution of two densities, which

in the Laplace domain reads

UL(ℓ, t|r0) = L−1
p,t

{

H̃L(p|r0) exp(−µ
(p)
0,Lℓ)

}

. (D.3)

Here

H̃L(p|r0) =
K0(αL)I0(αr0)− I0(αL)K0(αr0)

K0(αL)I0(αR)− I0(αL)K0(αR)
(D.4)

is the Laplace transform of the probability density of the first-passage time to the inner

circle in the presence of an outer absorbing circle (expectedly, this function vanishes

on the outer circle, r0 = L, and is equal to 1 on the inner circle, r0 = R). In turn,

exp(−µ
(p)
0,Lℓ) is the Laplace transform of the probability density U(ℓ, t|R) (compare with

Eq. (C.4)). In the limit L → ∞, the eigenvalue µ
(p)
0,L from Eq. (D.2) tends to µ

(p)
0 from

Eq. (C.2), and one retrieves Eq. (C.4). Similarly, one gets

QL(ℓ, t|r0) = L−1
p,t

{

H̃L(p|r0)
exp(−µ

(p)
0,Lℓ)

p

}

(D.5)

and

ρL(ℓ, t|r0) = L−1
p,t

{

H̃L(p|r0)
µ
(p)
0,L

p
exp(−µ

(p)
0,Lℓ)

}

. (D.6)

To get the long-time behavior, one can evaluate the above expressions in the limit

p → 0; in particular,

lim
p→0

H̃L(p|r0) =
ln(L/r0)

ln(L/R)
, lim

p→0
µ
(p)
0 =

1

R ln(L/R)
, (D.7)

from which

QL(ℓ,∞|R) =
ln(L/r0)

ln(L/R)
exp
(

− ℓ/R

ln(L/R)

)

. (D.8)

This is the probability that the threshold ℓ is crossed by the boundary local time ℓt
before the trajectory Xt hit the outer circle of radius L. As L → ∞, this probability

tends to 1, but this approach is slow and controlled by ln(L/R).
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