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The adaptive robust lot-sizing problem with backorders under demand
uncertainty

Paula Metzker1, Simon Thevenin1, Yossiri Adulyasak2 and Alexandre Doulgui1

Abstract— To efficiently meet demand in a production system,
the lot-sizing problem determines a production plan that
minimizes the overall costs, optimizes the use of the available
resources, and satisfies demand requirements. Nonetheless,
uncertainties in the production environment directly affect the
quality and feasibility of the production plans. In fact, demand
can be highly volatile and influenced by multiple factors such
as age, life-cycle, economic context, reference groups, culture,
festive season. To increase the robustness of the production
plan to unforeseen uncertainties, one could rely on the robust
optimization methodology that offers ease and flexibility to
account for uncertain parameters. In the light of the robust
approaches, an adaptive robust uncapacitated lot-sizing model
is proposed to deal with demand uncertainty. It offers a
production plan that can be updated when demand information
unfolds over time. Numerical experiments demonstrate that the
adaptive model can outperform the static model, while marginal
additional computational effort is required to obtain a robust
production plan. The results also indicate that the proposed
approach is a better alternative for production planning within
a system that is flexible for changes in the lot size at each
period.

I. INTRODUCTION

The production planning activity makes the best use of
resources to satisfy the production requirements over a plan-
ning horizon. It also controls the quantity and the availability
of materials and components to meet a specific demand [20].
In this context, production lot-sizing decisions are crucial
to balance setup and inventory costs. The classical single-
level single-item lot-sizing problem (LSP) was introduced by
Wagner and Whitin [24], and it determines the production
quantities that minimize the overall costs and meets the
demands. Due to its practical importance, the LSP attracted
a wide range of research from the industrial engineering and
operations research communities [2], [3], [17], [22]. While
most studies consider the deterministic LSPs, the demand
is not known with certainty when the production is planned.
Even though a significant number of studies have considered
demand uncertainty in lot-sizing [16], there are still impor-
tant gaps in the literature. In particular, few works address
the adaptive framework, where unknown parameters unfold
at each period, and the production quantity is updated to
react to this information. Recent adaptive robust optimization
approaches, which rely on limited information, have proven
to be effective in several problems [19], [10], [9]. Our
study aims to explore the efficiency and effectiveness of the
adaptive robust optimization techniques for the LSP under
demand uncertainty.
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Robust optimization [7] considers the representation of
uncertainty in the form of an uncertainty set, and its main
objective is to minimize the total cost under the worst-case
realization. A simple uncertainty set, called box uncertainty
set, was introduced by Soyster et al. [23], and it limits
the uncertain parameter to an interval of possible values
bounded by the minimum and the maximum values that the
uncertainty can achieve. However, the box uncertainty set
tends to provide an overly conservative solution. Therefore,
Bertsimas and Sim [11], [12] propose the box polyhedral
uncertainty set, where the uncertain parameter is bounded
within a range of values whose size is controlled by the
decision-maker through a risk aversion index called budget
Γ. The budget limits the maximum deviation of uncertain
parameters from their nominal values. Therefore, a large
budget considers large deviations from the average, which
leads to more conservative decisions. Hence, the choice of
the uncertainty set is crucial to improve the performance and
mitigate the uncertainties.

Bertsimas and Thiele [13], [14] propose a static robust
formulation of the lot-sizing problem with backorders based
on the budgeted-uncertainty set proposed by Bertsimas and
Sim [11], [12]. For the adaptive framework, Melamed et
al. [18] propose an adaptive robust LSP under demand
uncertainty based on the affinely adjustable robust counter-
part. They describe the adaptive variables by linear decision
rules, and solve the adaptive robust counterpart reformulation
via reformulation per constraint and dualization approach.
However, their model considers the box uncertainty set, that
can lead to conservative solutions. In this paper, we propose
an adaptive robust LSP model based on the budgeted uncer-
tainty set to improve the quality of the production plan. The
resulting method maintains robust, and it has its conservatism
controlled with regard to an fixed risk acceptance.

The remainder of this paper is organized as follows:
Section II introduces the lot-sizing problem. Section III
presents an overview of the robust optimization methodology,
the static lot-sizing model based on the budgeted uncertainty
set proposed by Bertsimas and Thiele [13], and the adaptive
robust lot-sizing model with backorders suggested in this
paper. Section IV provides the numerical experiments and a
comparison of the static and adaptive robust plans. Finally,
Section V summarizes the main findings of this work.

II. PROBLEM STATEMENT

The single-level single-item LSP with backordering deter-
mines the production setup and quantity in a finite horizon
T = {1, ..., |T |}, to minimize the overall costs, and to meet



the demand. For each period t, the following parameters are
given: st the setup cost, vt the unit production cost, ht the
unit inventory cost, bt the unit backordering cost, and finally
dt the demand in period t. For each period t, the following
decision variables are used: Xt, the quantity to produce, It,
the inventory level, Bt, the backordering level at the end of
the period, and Yt the setup decision.

The deterministic formulation of the LSP is as follows:

min
∑
t∈T

(stYt + vtXt + htIt + btBt) (1)

s.t. :

It −Bt = It−1 −Bt−1 + Xt − dt ∀ t ∈ T (2)
Xt ≤Mt · Yt ∀ t ∈ T (3)
Xt, It, Bt ≥ 0 ∀ t ∈ T

Yt ∈ {0, 1} ∀ t ∈ T

Without loss of generality, we assume that the inventory
and the backordering levels at the beginning of the produc-
tion planning are zero. The objective function (1) minimises
the overall costs with regard to the setup, unit production,
inventory and backordering costs. Constraints (2) are the
inventory balance equations. Here, the production in the
current period t and the inventory from the previous period
t − 1 are used to meet the demand dt and the backordered
quantity from period t− 1. If the amount of goods available
is not sufficient to meet the demand, then the amount of
missing goods is captured by the backorder variable (Bt).
Any remaining amount of goods after satisfying both the
demand and the items backordered before, if any, is kept in
stock (It). Constraints (3) are setup-forcing constraints that
relate the production quantities (Xt) to the setup decisions
(Yt). These constraints set the setup variable to 1 (Yt = 1) if
any production is incurred in period t and the setup remains
inactive otherwise(Yt = 0). Although this paper considers
the uncapacitated problem, for which we should set Mt as
a big number, we can define a natural bound for the lot size
in period t given by Mt =

∑
t∈T dt.

The deterministic problem does not take into account
uncertainties. Thus, this model leads to a suboptimal or
even an unrealistic plan in an uncertain context. Although
classical techniques such as Rolling Horizon and Model Pre-
dictive Control can be applied within an adaptive framework,
updating decisions according to information revealed over
time, these approaches do not immunize the system against
the occurrence of unexpected scenarios, such as as when
uncertainty assumes the worst possible value. Thus, decision
makers would like to have a method that efficiently meets
the demands and mitigates these uncertainties in a robust
and reliable way. Robust adaptive optimization emerges as a
promising methodology that takes demand uncertainties into
account, proposing a production plan that can be updated
over time, while still providing some insight into the optimal
production plan over the production horizon.

III. ADJUSTABLE ROBUST OPTIMIZATION
METHODOLOGY

The robust optimization protects the decision system from
uncertainties through an optimal decision that remains viable
for the worst case realization of the uncertain parameter. The
static robust optimization (RO) [4] determines the decisions
in the presence of uncertainty, and no recourse action is al-
lowed after the realization of the uncertain parameters. Based
on the worst case perspective of the uncertain parameters, the
approach is highly conservative to ensure the feasibility of
the production plan to any realization of the uncertainty. The
RO method reformulates the non-deterministic problem as a
robust counterpart, where the uncertainty is described with
an uncertainty set. Ben-Tal et al. [4] indicates that there are
three approaches to solve the RC, that are: reformulation per
constraint, dualization and adversarial approach.

The static RO does not account for the dynamic of the de-
cision process. The Adjustable Robust Optimization (ARO)
[5] is an extension of the RO that considers uncertainties
revealed over time during the execution, and allows the
decision maker to adjust some of the decisions according
to the current knowledge of the revealed data. Therefore,
the recourse decisions are commonly described as a function
of the (upcoming) realizations of the unknown parameters.
Since such reformations are usually intractable, a common
approach is to adopt the affine decisions rule (or affine
function) [1]. Under these affine polices, the adjustable
decisions are linearly dependent on the realization of the
uncertain parameter [21]. As a result, an optimal affine
policy can be efficiently computed by solving a convex
optimization problems as linear, quadratic, conic or semi-
definite optimization problem [8].

Under the affinely adjustable formulation, we can rely on
the common solution approaches for the robust optimization
to solve the problem. This work relies on the reformulation
per constraint and dualization approach [6], [7], [4] to solve
the adaptive robust problem. This approach follows three
steps. First, we reformulate each constraint subject to the
uncertainty as a worst case problem. Then, we dualize the
reformulated problem. Finally, we replace the reformulated
problems by their duals. Thus, we obtain a convex robust
counterpart problem that can be handled by common com-
mercial solvers. In the subsequent section, the static robust
LSP based on the budgeted uncertainty, which was first
introduced by Bertsimas and Thiele [13], followed by the
adaptive robust model proposed in this paper are presented.

A. Static robust optimization LSP formulation

Bertsimas and Thiele [13], [14] propose a static robust
formulation of the LSP with setup and backordering based on
the budgeted-uncertainty set proposed by Bertsimas and Sim
[12]. Before applying the robust methodology to the problem,
the authors reformulate the inventory balance constraints (2)
as a pair of inequalities based on the piecewise linearity and
convexity of the inventory and backordering costs. Then,
they represent the uncertain demand d̃ with the budgeted
uncertainty set U , such that the conservatism of the robust



solution can be controlled by the risk aversion represented
by the budget Γ. The budgeted uncertainty set representing
the uncertain demand is given by U = {d̃ ∈ Rt : d̃t =

d̄t + ‡td̂t t ∈ T ; −∞ ≤ ‡t ≤ ∞ t ∈ T ;
∑t
τ=∞ |‡τ | ≤

−t}, where d̄ is the average demand, and d̂ its standard
deviation. Finally, they express the robust model in terms of
the uncertain parameter as a robust counterpart model. Here,
we can represent a natural limit for the lot size based on
the highest possible value of the demand for each period t,
that is, max dt = d̄t + d̂t. Thus, for the LSP under demand
uncertainty, M is set to M =

∑
t∈T (d̄t + d̂t).

Using a reformulation per constraint approach to handle
the robust counterpart problem, they reformulate the static
robust lot-sizing problem which yields the following mixed-
integer model:

min
∑
t∈T

(stYt + vtXt +Ht)

s.t. :

Ht ≥ ht

(
Γtλt +

t∑
τ=1

(Xj − d̄j + µτt )

)
∀ t ∈ T

Ht ≥ −bt
(
−Γtλt +

∑t
τ=1(Xj − d̄j − µτt )

)
∀ t ∈ T

Xt ≤M · Yt ∀ t ∈ T
λt + µτt ≥ d̂t ∀ t ∈ T ; τ ≤ t
Xt, It, Bt, λt ≥ 0 ∀ t ∈ T
µτt ≥ 0 ∀ t ∈ T ; τ ≤ t
Yt ∈ 0, 1 ∀ t ∈ T

B. Adaptive robust optimization LSP formulation

This section introduces the proposed ARO formulation
for the LSP within the adaptive decision strategy. In this
framework, the setups are fixed at the beginning of the
planning horizon, but the lot sizes and the costs incurred from
the inventory management are updated as the actual demand
are known over time. Similar to the static framework, it
is possible to consider the inventory and the backorder
quantities indirectly by their costs, represented by Ht. Here,
as both production quantities and inventory costs depend on
the uncertain demand, they become adjustable variables.

To ensure the constraint-wise formulation of the robust
optimization methodology, the robust objective function is
now placed as a constraint which determines the worst-case
cost. In addition, the affine decision rules (ADR) are used
to represent the dependence of the adjustable variables up to
the period t on the revealed demand (from d1 to dt−1), such
that the variables are parametrized as follows:

Xt(d̃) = X0
t +

t−1∑
τ=1

Xτ
t dτ Ht(d̃) = H0

t +

t−1∑
τ=1

Hτ
t dτ

The following mixed-integer affinely linear adaptive robust
counterpart model is obtained:

min F

s.t. :

F ≥
∑
t∈T

[stYt + vtX
0
t +H0

t

+ max
Z∈U

t−1∑
τ=1

[(d̄τ + d̂τZτ )(vtX
τ
t +Hτ

t )]]

H0
t ≥ max

Z∈U
{−

t−1∑
τ=1

(d̄τ + d̂τZτ )Hτ
t +

t∑
τ=1

ht

[
X0
τ +

τ−1∑
r=1

(d̄r + d̂rZr)X
r
τ − (d̄τ + d̂τZτ )

]
} t ∈ T

H0
t ≥ max

Z∈U
{−

t−1∑
τ=1

(d̄τ + d̂τZτ )Hτ
t −

t∑
τ=1

bt

[
X0
τ +

τ−1∑
r=1

(d̄r + d̂rZr)X
r
τ − (d̄τ + d̂τZτ )

]
} t ∈ T

X0
t + max

Z∈U

[
t−1∑
τ=1

(d̄τX
τ
t + d̂τX

τ
t Zτ )

]
≤MYt t ∈ T

X0
t + min

Z∈U

[
t−1∑
τ=1

(d̄τX
τ
t + d̂τX

τ
t Zτ )

]
≥ 0 ∀ t ∈ T

H0
t + min

Z∈U

[
t−1∑
τ=1

(d̄τH
τ
t + d̂τH

τ
t Zτ )

]
≥ 0 t ∈ T

X0
t , H

0
t ≥ 0 t ∈ T

Xτ
t , H

τ
t ∈ R t ∈ T ; τ ≤ t− 1

Yt ∈ {0, 1} t ∈ T

Applying the reformulation per constraint and dualization
approach to each set of constraints associated with the un-
certain demand parameters, we obtain the following mixed-
integer linear adaptive robust counterpart problem:

min F

s.t. :

F ≥
∑
t∈T

[stYt + vtX
0
t +H0

t

+ Γtγt +

t−1∑
τ=1

(
d̄τ (vtX

τ
t +Hτ

t ) + ατt + δτt
)
]

H0
t ≥ Γtλt −

t−1∑
τ=1

d̄τH
τ
t

+

t∑
τ=1

[
ht(X

0
τ − d̄τ +

τ−1∑
r=1

d̄rX
r
τ ) + µτt + ξτt

]
∀ t ∈ T

H0
t ≥ Γtψt −

t−1∑
τ=1

d̄τH
τ
t

−
t∑

τ=1

[
bt(X

0
τ − d̄τ +

τ−1∑
r=1

d̄rX
r
τ ) +$τ

t + ετt

]
∀ t ∈ T

X0
t + ηtΓt +

t−1∑
τ=1

(d̄τX
τ
t + βτt + θτt ) ≤MYt ∀ t ∈ T

X0
t − φtΓt +

t−1∑
τ=1

(d̄τX
τ
t − πτt + χτt ) ≥ 0 ∀ t ∈ T



H0
t − εtΓt +

t−1∑
τ=1

(d̄τH
τ
t − στt + κτt ) ≥ 0 ∀ t ∈ T

µtt − εtt + µ
′t
t − ε

′t
t = −htd̂t ∀ t ∈ T

λt − µt
′
t − εt

′
t ≥ 0 ∀ t ∈ T

$t
t − ξtt +$

′t
t − ξ

′t
t = btd̂t ∀ t ∈ T

ψt −$
′t
t − ξ

′t
t ≥ 0 ∀ t ∈ T

ατt − δτt + α
′τ
t − δ

′τ
t = d̂τ (vtX

τ
t +Hτ

t ) ∀ t ∈ T ; τ ≤ t− 1

γt − α
′τ
t − δ

′τ
t = d̂τ (vtX

τ
t +Hτ

t ) ∀ t ∈ T ; τ ≤ t− 1

βτt − θτt + β
′τ
t − θ

′τ
t = d̂τX

τ
t ∀ t ∈ T ; τ ≤ t− 1

ηt − β
′τ
t − θ

′τ
t ≥ 0 ∀ t ∈ T ; τ ≤ t− 1

− πτt + χτt − π
′τ
t + χ

′τ
t = d̂τX

τ
t ∀ t ∈ T ; τ ≤ t− 1

φt − π
′τ
t − χ

′τ
t ≥ 0 ∀ t ∈ T ; τ ≤ t− 1

− στt + κτt − σ
′τ
t + κ

′τ
t = d̂τH

τ
t ∀ t ∈ T ; τ ≤ t− 1

εt − σ
′τ
t − κ

′τ
t ≥ 0 ∀ t ∈ T ; τ ≤ t− 1

µτt − ετt + µ
′τ
t − ε

′τ
t =

− d̂τ

(
Hτ
t + ht − htXτ

t −
t−1∑

r=τ+1

d̂τX
τ
r

)
∀ t ∈ T ; τ ≤ t− 1

λt − µ
′τ
t − ε

′τ
t ≥ 0 ∀ t ∈ T ; τ ≤ t− 1

$τ
t − ξτt +$

′τ
t − ξ

′τ
t =

− d̂τ

(
Hτ
t − bt + btX

τ
t +

t−1∑
r=τ+1

d̂τX
τ
r

)
∀ t ∈ T ; τ ≤ t− 1

ψt −$
′τ
t − ξ

′τ
t ≥ 0 ∀ t ∈ T ; τ ≤ t− 1

ατt , α
′τ
t , β

τ
t , β

′τ
t , δ

τ
t , δ

′τ
t , κ

τ
t , κ

′τ
t ≥ 0 ∀ t ∈ T ; τ ≤ t− 1

κτt , κ
′τ
t , µ

τ
t , µ

′τ
t , χ

τ
t , χ

′τ
t , ξ

τ
t , ξ

′τ
t ≥ 0 ∀ t ∈ T ; τ ≤ t− 1

θτt , θ
′τ
t , ε

τ
t , ε

′τ
t , $

τ
t , $

′τ
t , σ

τ
t , σ

′τ
t ≥ 0 ∀ t ∈ T ; τ ≤ t− 1

γt, λt, ψt, ηt, εt, φt ≥ 0 ∀ t ∈ T
X0
t , H

0
t ≥ 0 ∀ t ∈ T

Xτ
t , H

τ
t ∈ R ∀ t ∈ T ; τ ≤ t− 1

Yt ∈ {0, 1} ∀ t ∈ T

IV. NUMERICAL EXPERIMENTS

The experiments are performed with instances generated
following the standard approach in the literature for LSP
problems, as presented by Brandimarte [15]. Thus, the pro-
duction cost, the holding cost, the average demand, and
the standard deviation of the demand were randomly drawn
from an uniform distribution within the following intervals
vt ∈ U(20, 50), ht ∈ U(1, 10), d̄t ∈ U(140, 480), and
d̂t ∈ U(30, 50), respectively. The setup costs are computed
with the time between order formula: st = D̄t·TBO2·ht

2 ,
where D̄t represents the average demand up to period t.
Instances with 10, 30, and 50 periods, a time between orders
of one period, and a backorder cost equals to 2, 5, or 10 times
the holding cost for each period t are considered. It leads
to 9 different instances. To investigate the impact of robust
optimization for lot-sizing, we evaluate the performance of
the methods through a simulation. For each instance, 5000
scenarios based on the Monte Carlo sampling are simulated,
where the demand is drawn from a uniform distribution

with support between d̄t − d̂t and d̄t + d̂t. The problems
were implemented in Python programming language, and the
models solved with CPLEX 12.9.

Table I shows the expected value of perfect information
(EVPI), which gives the average performance for the de-
terministic solution in case of perfect information of the
occurrence of the uncertain demand, the nominal problem
(DET), the static robust model (ROΓ) and the proposed
adaptive robust model (AROΓ). The robust model with
Γ equals 0 corresponds to the nominal problem. On the
contrary, when Γ equals T , this is the conservative case
which is equivalent to the box uncertainty set. Note that
PC∗ is an abbreviation for percentile. Table I summarises
the average of the expect cost, the 95th percentile cost, the
99th percentile cost, and the worst case cost computed in
the simulation. In addition, Table I presents the average of
the objective value obtained via the respective optimization
approaches for each model, and the average computational
time in seconds. The results are analysed following two axes:
a comparison of the nominal and the static robust LSP under
demand uncertainty, then an analysis of the quality of the
robust solution within the static and adaptive frameworks.

TABLE I
AVERAGE AND WORST CASE ANALYSIS OF THE LSP MODELS

Model Exp. Cost 95th PC∗ 99th PC∗ Worst Cost Obj. Cost Time(s)
EVPI 324,830 330,894 333,386 336,292
DET 341,056 372,727 389,093 412,495 325,006 1.26

ROΓ=0 341,056 372,727 389,093 412,495 325,006 0.02
ROΓ=1 338,604 363,309 378,598 401,141 334,346 0.02

ROΓ=0.2T 340,890 352,178 360,318 373,033 365,855 0.02
ROΓ=0.3T 349,853 362,194 368,971 379,720 398,046 0.02
ROΓ=T 392,804 407,655 415,044 425,638 504,559 0.03
AROΓ=0 341,056 372,727 389,093 412,495 325,006 67.31
AROΓ=1 337,478 356,480 367,547 381,438 343,217 163.64

AROΓ=0.2T 338,383 342,760 345,962 350,228 362,604 1,213.87
AROΓ=0.3T 339,225 342,570 344,118 346,285 369,798 1,216.51
AROΓ=T 339,039 342,945 344,518 346,261 373,589 64.58
Average 343,690 359,930 368,812 381,460 366,094 247.93

From a robust perspective, a production plan is said to
be immunized against uncertainty if its objective cost covers
any realization of the overall costs incurred in the production
system once the uncertainties are revealed. The results in
Table I shows that the nominal model fails to mitigate the
uncertainties as its objective value does not give any informa-
tion neither on the average worst case cost nor on the average
expected cost. Within the static framework, the robust model
fails to protect against the demand uncertainty for Γ lower
than 0.2T . For Γ lower than 1, the static robust plan fails
to react to the realized demands, as its optimal objective
value is lower than its simulated expected cost. However,
the static worst case cost for Γ equals 1 is lower than the
worst case cost incurred in the nominal model, indicating
that even if the model fails to immunize the system from
uncertainties, the robust model does take into account the
uncertainties, and it propose better plans than a deterministic
model that neglects the unexpected events. For Γ equals 0.2T,
the objective value covers the 95th percentile realization
of the uncertain parameter. For this budget, the worst case
scenarios are still not covered, and the robust model fails
to efficiently hedge against uncertainties. However, for Γ



greater or equals to 0.3T , the static production plan remains
robust, and it fully achieves its role of protecting the system
from the uncertain demand.

It is also interesting to investigate the benefit of the
adaptive strategy. From Table I, we can also compare the
static ROΓ and the adaptive AROΓ robust model for the
same budget values Γ. Even though the adaptive model
requires much more time to solve the problem than the
nominal and the static robust model, its computational time
remains acceptable, since the CPU time is approximately 10-
15 minutes. On the one hand, the case of perfect information
EVPI provides a lower bound of the costs of the optimal
production plan. On the other hand, the static robust models
yield an upper bound on these costs. For any Γ, the ARO
model outperforms the RO model, since the average adaptive
expected costs, worst case cost and objective values are 4.2
%, 13 % and 4.5 % lower than the respective static averages.
It indicates that the adaptive model provides a better solution
than the static model within an adaptive strategy. Even if the
computing time for the adaptive model is generally longer
than that of the static model, the cost savings justify the
longer time to obtain a plan. Furthermore, as the adaptive
model determines the adaptive decisions according to the
affine functions, it provides some insight into the predicted
lot size quantity (X0

t ) and predicted inventory management
costs (H0

t ) for each period t along the production horizon.
Consequently, the adaptive robust plans provide more indi-
cators to deepen the understanding of the decision system.
Thus, the decision makers would dispose more significant
information available to support their analysis in the medium
term (e.g.: over all the production horizon), even if the
production plans must be updated at each production period.

V. CONCLUSIONS

This paper proposes an adaptive robust single-item multi-
period uncapacitated lot-sizing problem with backordering
and uncertain demand. Compared to the existing literature
on this topic, the performance of the robust methodology
was improved by addressing the problem under the budgeted
uncertainty set. A comparison between the quality of the
production plan within the static and adaptive framework
was also presented.

The computational experiments indicates that the adaptive
robust model for the LSP under demand uncertainty could
determine good solutions for an adaptive decision strategy,
and offers a production plan that is both robust and adjustable
to the decision context, while the production system immune
to any realizations of demand uncertainty. It was showed
that the adaptive model generally outperforms the static
model even within the static framework, when some risk
are accepted to obtain a robust production plan. In addition,
an in-depth comparison between the box and the budgeted
uncertainty sets in the robust static and adaptive LSP models
could give some insights for decision makers to adopt a
solution that is robust and closer to real-world applications.
Further studies are needed to extend the adaptive model to
the capacitated and multi-item version of the problem.
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