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It is shown that the L α -norms polynomials Rudin conjecture fails. Our counterexample is inspired by Bourgain's work on NLS. Precisely, his study of the Strichartz's inequality of the L 6norm of the periodic solutions given by the two dimension Weyl sums. We gives also a lower bound of the L α -norm of such solutions for α ‰ 2. As a consequence, we establish that for any 0 ă a ă b, the following set Epa, bq "

) , has a Lebesgue measure 0. We further present an alternative proof of Cordoba's theorem based on Paley-Littlewood inequalities.

Fejér used to say-in the 1930's, "Everybody writes and nobody reads." This was true eventhen. Reviewing has improved, but even so it is very hard.

Pál Erdös

The purpose of life is to conjecture and prove..

Introduction

The purpose of this note is to present a counterexamples to the so called Rudin conjecture on the quadratic trigonometric sums based on an estimation of the following Weyl sums

N ÿ n"1
e inx e in 2 t .

Those sums are very well study and has many connection to various areas of mathematics including NonLinear Shrödinger Equations (NLSE). For an application in Number Theory, we refer to [12, p.196]. Therein, the upper bound of the α-norms of such sums is given for α P t4, 6u. Here, we will gives an estimation of lower bound for all α ą 2.

According to Cordoba [START_REF] Córdoba | Translation invariant operators[END_REF], Rudin conjecture is a special case of the following old conjecture in the theory of Fourier series.

Conjecture 1.1. Let k be a positive integer and pa n q nPZ a sequence of complex numbers. Define the Fourier series Sptq by Sptq " ÿ n a n e 2πin k θ .

Then the L 2 norm and the L α norm of Sptq, for α ă 2k, are equivalent, that is, there exist C α such that

› › › ÿ nPZ a n e 2πin k θ › › › α ď C α ´ÿ nPZ ˇˇa n ˇˇ2 ¯1 2 .
Precisely, Rudin in his seminal paper [14] (see the end of section 4.6) asked the following.

For any α P r0, 4q, is it possible to find a constant C α , such that for any N P N ˚, we have

› › › N ÿ k"1 a k epk 2 θq › › › α ď C α › › › N ÿ k"1 a k epk 2 θq › › › 2
where, as customary, T denote the circle and eptq " e 2πit , t P R.

By a similar analogy due to P. Cohen on e in j θ , where

n j`1
n j ą λ ą 1 [6, p.192], this conjecture can be related to the famous Kintchine's and Marcinkiewicz-Zygmund inequalities on the equivalence of the L p -norm of the sums of independent random variables.

It is well-known that that Rudin conjecture holds for the trivial case a k " 1 and for the monotonically decreasing sequence pa k q [START_REF] Córdoba | Translation invariant operators[END_REF]. This can be extended to the case of the monotonically increasing sequence pa k q, and to the case pk 2ℓ b k q, for any monotonic sequence pb k q, by applying Bernstein-Zygmund inequalities. This was observed by e. el Abdalaoui and I. Shparlinski [START_REF] El Abdalaoui | On the number of k-th powers in arithmetic progressions and Rudin conjecture[END_REF]. For sake of completence, we present a self-contain proof of Cordoba's theorem and its extension in the appendix.

Let us remind that that Rudin conjecture implies that Q 2 pa, q; Nq " OpN 1 2 `ǫq, uniformly on a and q ( [14, Theorem 3.5]), where Q 2 pa, q; Nq denote the number of perfect square in the arithmetic progression a `qn, n " 1, . . . , N. In his famous problems paper [9], Erdös conjectured [9, Problem 16]that Q 2 pa, q; Nq " opNq. This was solved by Szméredi [START_REF] Szemerédi | The number of squares in an arithmetic progression[END_REF] as a consequence of Fermat's result which say that no four squares in arithmetic progression over Z exist. Bombieri, Granville and Pintz in [START_REF] Bombieri | Squares in arithmetic progressions[END_REF] improved this result and established that Q 2 pa, q; Nq " pN 2{3 plogpNqq A for a suitable constant A. Subsequently, Bombieri and Zannier [5] proved that Q 2 pa, q; Nq " OpN 3{5 plogpNqq A q for a suitable constant A. However, here we will prove the following.

Theorem 1.2. The Rudin conjecture is not true.

Of-course, Theorem 1.2 bring no information about Q 2 pa, q; Nq-Rudin conjecture, that is, Q 2 pa, q; Nq " Op ? N q, uniformly on a and q neither about its weaker forms, that is, Q 2 pa, q; Nq " OpN 1 2 `εq, uniformly on a and q.

The proof of Theorem 1.2 is based on Bourgain strategy to estimate the L 6 -norm of the Weyl sums in his 1993 NLS's paper [START_REF] Bourgain | Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations[END_REF]. Therein, Bourgain extend the Stichartz's inequality (see Remark 2, page 118.). Here, inspired by his work, we will prove the following Theorem.

Theorem 1.3. Let ǫ be a very small positive (less than 1 100 ) and α " 4 ´ǫ, there is a constant C α ą 0 such that

sup xPT ´ż 1 0 ˇˇN ÿ n"1 epnxqepn 2 tq ˇˇαdt ¯ě C α N 2 .
We will further establish the following lower bound for the L α -norm of such solutions for α ‰ 2. Theorem 1.4. Let α ą 2. Then, there is a constant C α ą 0 such that

ż 1 0 ż 1 0 ˇˇN ÿ n"1 epnxqepn 2 tq ˇˇαdt ě # C α N 3 4 α´3 2 if α ‰ 6. C α N 3 logpNq if not α " 6.
Consequently, we have the following corollary.

Corollary 1.5. Let C, K ą 0 be a two positive constant, and put

E " ! px, tq P T 2 : C ? N ď ˇˇN ÿ n"1 epn 2 t `nxq ˇˇď K ? N
for infinity many N

) .

Then E is a measurable set with respect to the Lebesgue measure on T 2 and its measure is zero, that is, dx b dtpEq " |E| " 0.

Proof. We proceed by contradiction, assume that |E| ą 0, and let t P r0, 1q. Put T t px, y, zq " px `t, y `2x `t, z `epyqq. T t is in the class of Furstenberg-Type maps, and we have T n t p x 2 , 0, 0q " p x 2 `nt, n 2 t ǹx, ř n k"0 epk 2 t `kxqq. It is well-known that for a G δ set of t we have that T t is an ergodic measure-preserving transformation on T 2 ˆC [START_REF] Greshonig | On the ergodicity of the Weyl sums cocycle[END_REF], but this set has measure zero1 . Thus, we will used an ergodic decomposition. Therefore, the set E t "

! x|px, tq P E
) is T t -invariant set with positive measure (take the function π 3 px, y, zq " z and observe that E "

! px, tq : lim ˇˇ1 ? N ř N k"0 epk 2 t `kxqq ˇˇą a ) Ş ! px, tq : lim ˇˇ1 ? N ř N k"0 epk 2 t `kxqq ˇˇă b )
). Hence, its Lebesgue measure is 1 and thus |E| " 1. But, obviously, we have

ż 1 0 ż 1 0 1 N 3 logpNq 1 6 ˇˇN ÿ n"1 epn 2 t `nxq ˇˇ2dxdt ´´Ñ N Ñ`8 0.
since epnxq, n P Z ( is an orthonormal family. One can used also Bourgain's result which assert that pn, n 2 q is a Λ 4 -set [START_REF] Bourgain | Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations[END_REF], that is, there is a constant c ą 0 such that

ż 1 0 ż 1 0 1 N 2 ˇˇN ÿ n"1 epn 2 t `nxq ˇˇ4dxdt ď c.
Therefore, there exists a subsequence pN k q for which almost all px, tq P T 2 , 1

N 3 k plogpN k qq 1 6 ˇˇN k ÿ n"1 epn 2 t `nxq ˇˇ6 ´´Ñ kÑ`8 0.
and, by applying the Lebesgue Dominated Convergence Theorem on E, we get

ż T 2 1 N 3 k logpN k q ˇˇN k ÿ n"1 epn 2 t `nxq ˇˇ6dxdt ´´Ñ kÑ`8 0,
which contradict (4.2), and the proof of the corollary is complete. [ \ Remark 1.6. The set of t P r0, 1q such that for each x P T, px, tq P E, contain the set of numbers with bounded partial quotients, by a theorem due to Hardy-Littlewood [11, Theorem 2.25]. We would like to mention also that by Corollary 2 from [10], we have that E is contain in a set of second category of Baire.

Following Bourgain ideas, we will used some idea from circle method and the classical Gauss estimation combined with ven der Corput method. Before proceeding to the proof, let us observe that the proof of Theorem 1.2 will follows from Theorem 1.3, we will give it in the section 2. The proof of Theorem 1.3 is the subject of the section 3.

Proof of the main result.

In this section, we proceed to the proof of Theorem 1.2. Assume that Rudin conjecture is true. Then, there is a positive constant K α such that, for any N ě 1, for any complex sequence pa n q, we have

´ż 1 0 ˇˇN ÿ n"1 a n epn 2 tq ˇˇαdt ¯1 α ď K α ? N .
Take a n " epnxq, for x P r0, 1q. Then

ż 1 0 ˇˇN ÿ n"1 epnxqepn 2 tq ˇˇαdt ď K α N α 2 .
Whence, by taking the supremum, we get

sup xPT ´ż 1 0 ˇˇN ÿ n"1 epnxqepn 2 tq ˇˇαdt ¯ď K α N α 2 .
Now, taking into account Theorem 1.3, we obtain

C α N 2 ď K α N α 2 . N 2´α 2 ď K 1 α . Which is impossible since α 2 ă 2.
This complete the proof of Theorem 1.2.

Proof of Theorem 1.3

The fundamental idea in the proof of Theorem 1.3 is based on the circle method combined with van der Corput type argument and the theory of Gauss sums. In the proof, we will present with more details Bourgain's observation in page 118 of his 1993's paper [START_REF] Bourgain | Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations[END_REF]. We will thus follows Hardy-Littlewood circle method. For a nice account on it, we refer to [17] or [START_REF] Vinogradov | Elements of number theory[END_REF]. Let α " 4 ´ǫ and ǫ ă 10 ´2. Define the major arcs by Mpq, a, bq " ! px, tq P r0, 1q 2 : ˇˇx ´b q ˇˇă 10 ´2.N ǫ´1 , ˇˇt ´a q ˇˇă 10 ´2N ǫ´2

) ,

with 1 ď a ă q ď N 1 2 ´ǫ, a ^q " 1, 0 ď b ă q. (3.1)
We notice that the major arc satisfy Mpq, a, bq " Ipq, bq ˆIpa, qq with

Ipb, qq " " b q ´10 ´2N ǫ´1 , b q `10 ´2N ǫ´1
ı and

Ipa, qq " " a q ´10 ´2N ǫ´2 , a q `10 ´2N ǫ´2 ı
It is well know that the major arcs are disjoints [17], that is, Mpq, a, bq X Mpq 1 , a 1 , b 1 q ‰ H ùñ q " q 1 , a " a 1 and b " b 1 .

In this setting, we have the following crucial lemma in the proof.

Lemma 3.1. Let N be a positive integer, α " 4 ´ǫ and ǫ ă 10 ´2, let 1 ď a ă q ď N 1 2 ´ǫ, a ^q " 1, 0 ď b ă q. Assume q is odd or q " 0 mod 4 and b is even, or q " 2 mod 4 and b is odd. Then, for any px, tq P Mpq, a, bq, we have

ˇˇN ÿ n"0 epnxqepn 2 tq ˇˇÁ N ? q .
For the proof of Lemma 3.1, we need the following classical lemma on the generalized Gauss sums (see for instance [13, p.93]). We recall that the the generalized Gauss sums are given by Spa, b, qq "

q ÿ n"1 e ´an 2 `bn q ¯,
such sum is invariant under the shift.

Lemma 3.2. Let a, q be relatively prime natural numbers and b P Z.

Then, we have

ˇˇSpa, 2b, qq ˇˇ" $ ' & ' % ? q if q is odd 0, if q " 2 mod 4 ? 2q if q " 0 mod 4, , and 
ˇˇSpa, 2b `1, qq ˇˇ" $ ' & ' % ? q if q is odd ? 2q, if q " 2 mod 4 0 if q " 0 mod 4.
Let us point out that by Theorem 8.1 from [12, p.200], for each px, tq P Mpq, a, bq, we have

ˇˇN ÿ n"0 epnxqepn 2 tq ˇˇď 2 N ? q `?q logpqq.
At this point we present the proof of Theorem 1.3.

Proof of Theorem 1. epnxqepn 2 tq ˇˇαdt ě

N α`ǫ´2 q α 2 " N 2 q α 2
.

Since q was arbitrary in p2, N 1 2 ´ǫs. We get

sup xPT ´ż 1 0 ˇˇN ÿ n"1 epnxqepn 2 tq ˇˇαdt ¯ě c α .N 2 .
The proof of the theorem is complete.

[ \ We still need to give the proof of our fundamental lemma 3.1.

Proof of Lemma 3.1. Put τ " t ´a q and ξ " x ´b q . f. By the division algorithm we can write N " qr N q s `r, 0 ď r ă q. Therefore N ÿ n"1 epn 2 t `nxq "

qr N q s ÿ n"1
epn 2 t `nxq `Opqq, (3.2) since r ă q and |epn 2 t`nxq| " 1. Applying again the division algorithm to write n " mq `s, 0 ď s ă q. We rewrite 3.2 as follows

N ÿ n"1 epn 2 t `nxq " q ÿ s"1 r N q s ÿ m"1
e ´pmq `sq 2 ´a q `τ ¯`pmq `sq ´b q `ξ¯¯`O pqq

" q ÿ s"1 e ´s2 a q `s b q ¯rN q s ÿ m"1 e ´pmq `sq 2 τ `pmq `sqξ ¯`Opqq (3.3)
The last equality is due to the fact that mod q, we have mq `s " s and pmq `sq 2 " s 2 , Moreover, under our assumption 3.1, the error term satisfy

Opqq À N 1 2 ! N 3 4 `ǫ 2 ă N ? q .
Now, by applying van der Corput type argument, we claim that for each s P r1, qs, we have

N q ÿ m"1
e ´pmq `sq 2 τ `pmq `sqξ ¯" N q , (3.4)

The estimation 3.4 is given up to some errors to be precised later.

Indeed, by appealing to Euler summation formula (see [2, Theorem 3.1] or [17, eq. (4.8), p.40], we have

N q ÿ m"1 e ´pmq `sq 2 τ `pmq `sqξ ¯" ż N q 1 e ´`yq `s˘2 τ ``yq `s˘ξ ¯dy `2πi ż N q 1
`y ´rysq ´2qpyq `sqτ `ξ¯e´`y q `s˘2 τ ``yq `s˘ξ ¯dy

(3.5)
Moreover, by changing the variable of integration to z " yq `s, we can rewrite (3.5) as follows

N q ÿ m"1 e ´pmq `sq 2 τ `pmq `sqξ ¯" 1 q ż N `s q`s e ´z2 τ `zξ ¯dz `2πi q ż N `s q`s ´z ´s q
´"z ´s q ı¯´2 qzτ `ξ¯e´z 2 τ `zξ ¯dz (3.6) Now, we estimate the second term in (3.6) as follows

ˇˇ2

πi q ż N `s q`s ´z ´s q

´" z ´s q ı¯´2 qzτ `ξ¯e´z 2 τ `zξ ¯dz ˇď

2π q `2qpN `sq|τ | `|ξ| ď 2π q ´4N 2 .10 ´2N ǫ´2 `N.10 ´2N ǫ´1 ď 10π q .N ǫ ! N q .
since |τ | ď 10 ´2N ǫ´2 , |ξ| ď 10 ´2N ǫ´1 1 N ǫ´2 , with q ď N 1 2 ´ǫ. Applying again the same arguments; we estimate the first term in (3.5) as follows

ˇˇ1 q ż N `s q`s ´e´z 2 τ `zξ ¯´1 ¯dz ˇď 1 q `pN `sq 2 |τ | `pN `sqξ ď 1 q ´4N 2 .10 ´2N ǫ´2 `2N.10 ´2N ǫ´1 ď 6 q .N ǫ ! N q .
Notice that (3.7) it is due to the fact that | sinpxq| ď |x| for all x P R. Summarizing, under our assumption, we have proved that informally for each s P t1, ¨¨¨, qu, we have

ˇˇN q ÿ m"1
e ´pmq `sq 2 τ `pmq `sqξ ¯ˇˇ" N q `O´Nǫ q

(3.7)
This combined with (3.3) and Lemma 3.2 yields the desired inequality, that is,

ˇˇN ÿ n"1 epn 2 t `nxq ˇˇ" N ? q `o´N ? q ¯.
The proof of the theorem is complete.

[ \ Remark 3.3. If in the definition of the major arcs we set ǫ " 0, then it can be seen that the lower bounded is N Ipa, qq

ˇˇN ÿ n"1 epnxqepn 2 tq ˇˇαdt ě N α´2 ? q φpqq
By taking q " ? N and applying the Prime Number Theorem, we obtain

sup xPT ´ż 1 0 ˇˇN ÿ n"1 epnxqepn 2 tq ˇˇαdt ě N 3α 4 ´7 4 .
Let us notice that our arguments yields that the following conjecture which is seems to be attributed to Bourgain does not holds. Conjecture 3.4. There exists a constant δ such that for any N P N ˚, for any p P p2, 4q, we have

› › › N ÿ k"1 a k epk 2 θq › › › p ! `logpNq ˘δ› › › N ÿ k"1 a k epk 2 θq › › › 2 4. Proof of Theorem 1.4
For the proof of Theorem 1.4, we need the following Lemma from [2, Exercises 6,7 and 8 of Chap. 3]. For sake of completeness, we gives its proof.

Lemma 4.1. Let N ě 2 and β ą 0.

Then N ÿ n"1 φpnq n β " $ ' & ' % N 2´β p2´βqζp2q `ζpβ´1q ζpβq `OpN 1´β logpNqq if β ą 1, β ‰ 2. N 2´β p2´βqζp2q `OpN 1´β logpNqq if β ď 1, logpN q ζp2q `C ζp2q ´A `Op logpN q N q if β " 2,
where C is the Euler-Mascheroni constant and A " ř

ně1 µpnq logpnq n 2
, µ is the Möbius function.

Proof. Let us assume that β ą 1 and β ‰ 2. Then,

N ÿ n"1 φpnq n β " N ÿ n"1 1 n β ÿ d|n µpdq n d , since φpnq " ř d|n µpdq n d .
Changing the order of summation, we write

N ÿ n"1 φpnq n β " ÿ q,d,qdďN µpdq d β q β " ÿ dďN µpdq d β ÿ qď N d 1 q β .
Now, by the standard estimation of the Riemann series ´1 m β ¯, we have From (4.1) we deduce easily the desired equality. By the similar arguments, it a simple matter to establish the the two other formulas. The proof of the Lemma is complete.

N ÿ n"1 φpnq n β " ÿ dďN µpdq d β ´N2´β p2 ´βqd 2´β `ζpβ ´1q `O´N1´β d 1´β ¯" N 2´β p2 ´βq
[ \ Now let us proceed to the proof of Theorem 1.4. We first put ǫ " 0 in the definition of the major arcs (eq. (3.1)) and take α ą 2. By such that, for any N ě 1, we have

› › › N ÿ n"1 k 2ℓ a k epk 2 θq › › › α ď C α,ℓ ´N ÿ n"1 k 4ℓ |a k | 2 ¯1 2 .
For the proof of Proposition A.1 , we start by strengthening [7, Corollary, p.172] as follows.

Lemma A.2. For any α P r2, 4q and any ℓ P N, there is a constant C α,ℓ such that, for any N ě 1, we have

› › › N ÿ n"1 k 2ℓ epk 2 θq › › › α ď C α,ℓ ´N ÿ n"1 k 4ℓ ¯1 2 .
We recall that by Faulhaber's formula, for any positive integer ℓ, we have

N ÿ k"1 k ℓ " 1 ℓ `1 ℓ ÿ j"1 p´1q j ˆℓ `1 j ˙Bj n ℓ`1´j , (A.1)
where B j is the j-th Bernoulli number with the convention of B 1 " ´1 2 .

We need also the following inequality due to S. Bernstein and A. Zygmund For the proof of Proposition A.1. For its proof, we refer to [18, Theorem 3.13, Chapter X, p. 11].

Lemma A.3. [Bernstein-Zygmund inequality]. For any p ě 1, for any polynomial P of degree n, we have

› › P 1 › › p ď n › › P › › p
, where P 1 is the derivative of P . The equality holds if and only if P pe ix q " M cospnx `ξq.

An obvious generalization of Bernstein-Zygmund inequality is given by the following statement.

Lemma A.4. For any p ě 1, for any polynomial P of degree n, for any k ě 1, we have

› › P pkq › › p ď n! pn ´kq! › › P › ›
p , where P pkq stand for the k-th derivative of P .

Proof of Lemma A.2. Assume ℓ " 1 and apply Lemma A.3 to get

› › › N ÿ n"1 k 2 epk 2 θq › › › α ď N 2 › › › N ÿ n"1 epk 2 θq › › › α with P pℓq " # k 2 a k if 1 ď ℓ " k 2 ď N 2 , 0 if not.
By Lemma A.5, it is suffices to establish that

› › › › › ´ÿ jě1 ˇˇS j pP q ˇˇ2 ¯1 2 › › › › › α ď C α }P } 2 .
But, by the triangle inequality combined with Fubini theorem, we have

› › › › › ´ÿ jě1 ˇˇS j pP q ˇˇ2 ¯1 2 › › › › › α " ˜« ż 1 0 ´ÿ jě1 ˇˇS j pP qpθq ˇˇ2 ¯α 2 dθ ff 2 α ¸1 2 ď ˜« ÿ jě1 ż 1 0 ˇˇS j pP qpθq ˇˇα dθ ff 2 α ¸1 2 Therefore › › › › › ´ÿ jě1 ˇˇS j pP q ˇˇ2 ¯1 2 › › › › › α ď ˜ÿ jě1 › › S j pP q › › 2 α ¸1 2 
Now, by the definition of the projection S j , we can write

S j pP qpθq " ÿ 2 j 2 ďkă2 j`1 2 k 2 a k epk 2 θq " ÿ 2 j 2 ďkă2 j`1 2 a k ´Tk pθq ´Tk´1 pθq ¯,
where T l pθq " ř l m"1 m 2 epm 2 θq. We thus have S j pP qpθq " ÿ

2 j 2 ďkă2 j`1 2 a k T k pθq ´ÿ 2 j 2 ďkă2 j`1 2 a k T k´1 pθq, " ÿ 2 j 2 ďkă2 j`1 2 a k T k pθq ´ÿ 2 j 2 ´1ďkă2 j`1 2 
´1 a k`1 T k pθq. Hence 2 q and, as customary, txu is the greatest integer less than or equal to x , rxs is the least integer greater than or equal to x. Consequently, by the triangle inequality, we get › › S j pP q Taking into account that pa k q is a decreasing sequence, we obtain

› › α ď ÿ kPD j `ak ´ak`1 q › › T k › › α àt2 j`1 2 u › › T t2 j`1 2 u › › α `ar2
› › S j pP q › › α ď C α 2 j 4
˜ÿ kPDn `ak ´ak`1 q `at2 j`1 2 u `ar2 Taking the sum over j, we get

ÿ jě2 › › S j pP q › › α C 1 α ÿ jě1 ˜ÿ kPD j |a k | 2 ¸1 2
Now, we notice that by Parseval equality we have

› › › › › ´ÿ jě2 ˇˇS j´1 pP q ˇˇ2 ¯1 2 › › › › › 2 " ÿ jě1 ˜ÿ kPD j |a k | 2 ¸1 2 .
Applying again Lemma A.5, we conclude that there is a positive constant K α such that

ÿ jě2 › › S j pP q › › α ď K α › › ›P › › › 2 .
The general case follows by the same arguments combined with Lemma A.4 and this achieve the proof of the proposition.

[ \

3 .

 3 Let a, b, q as in Lemma 3.1, and α " 4 ´ǫ.

3α 4 ´7 4 .

 44 previous proof can be modified as follows. We write sup

1 )

 1 The last equality is due to the fact that for any γ ą 1, we have ÿ

  appealing to Lemma A.5, we rewrite A.2 as follows.

We ask if Greshchonig-Nerurkar-Volný theorem can be improved by exhibiting a set of positive Lebesgue measure of t for which the maps T t still ergodic.
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ˇˇN ÿ

n"1

, since Mpq, a, bq are disjoints. Whence,

At this point, we are going to apply Lemma 4.1. Let β " α 2 ´1. Then, β " 2 correspond to α " 6. We thus get

Now, assume 2 ă α ď 4. Then β Ps0, 1s. It follows from Lemma 4.1 that we have

To finish the proof, we consider the case α ą 4, α ‰ 6, that is, β ą 1, β ‰ 2. In this case, by Lemma 4.1, we conclude that

Appendix A. An extension of Cordoba's theorem.

In this appendix, we present an extension of Cordoba's theorem [7, p.167] based on Play-Littlewood inequalities combined with Bernstein-Zygmund inequalities. Our proof is self-contain and gives an alternative proof to Cordoba's proof.

Proposition A.1. Let ta n u be monotonically decreasing sequence. Then, for any α P r0, 4q, for any positive integer ℓ, there is a constant C α,ℓ Therefore,

We further have

´N ÿ

n"1 k 4 ¯ě c.N 5 , for some constant c ą 0. Combining those inequalities, we conclude that

The general case follows from Lemma A.4 combined with Faulhaber's formula A.1. The details are left to the reader.

[ \ Proof of Proposition A.1, we need also the following classical Littelwood-Paley inequalities. For its proof, we refer for instance to [18, Theorem 4.22, Chapter XV, p.233].

Lemma A.5. Let α P p1, `8q. Then, there exist A α , B α ą 0 such that, for any trigonometric polynomials P on the circle, we have

where S j is the j-th dyadic partial sum of the Fourier series of P , defined by the formulas

P pnqepnxq if j ą 0, P p0q if j " 0, ÿ ´2|j| ănď´2 |j|´1 P pnqepnxq if j ă 0.

We proceed now to the proof of Proposition A.1. 

Proof of Proposition