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Abstract—The motivation of our work is the instantiation of
a computational view of the cerebral cortex. Kohonen’s early
definition of self-organizing maps was inspired by the cortical
substrate on a local scale and is now a widely used learning
algorithm. Following the same path, from biology to computation,
the cortex can be interpreted as an architecture made of similar
self-organizing modules connected together. To our knowledge,
there are no such algorithmic derivation of large architectures
of self-organizing modules. This paper presents the behavior of
several maps connected one to another as a step towards wider
networks of self-organizing maps and shows that this architecture
learns a model of inputs and generates predictions in a map
without using an additional algorithm. This prediction ability is
applied to the control of a quadcopter flying in a corridor.

Index Terms—Self-Organizing Maps, Modular Architecture,
Prediction

I. INTRODUCTION

Self-organization is a core feature of nervous systems.
Many descriptions of the whole cerebral cortex, as in [1],
support the idea that the cortex is an architecture made of
self-organizing parts. These modules communicate around the
sensory information collected by the organism; this commu-
nication is performed abstractly, linking sensory and memory
information through internal connections. An early definition
of self-organizing maps by Kohonen [2] refers to the dynamics
of the cortical substrate, considered locally. As opposed to
the local self-organization observed in the cortex from which
the SOM algorithm has been derived, there is no, as far as
we know, algorithmic derivation of large architectures of self-
organizing modules. Our work investigates this issue. The
creation of a general framework to combine maps in a network,
aggregating usual and sequence processing maps and allowing
them to handle any input, is, therefore, a relevant challenge in
the field of self-organizing maps and unsupervised learning. A
suitable choice to achieve such a network seems to use internal
connections that depend neither on the dimension of the inputs
processed by a map nor on their temporal aspect. Moreover,
connections can be bidirectional. The algorithm has to handle
this retroactive information transmission. On a computational
aspect, the information transmitted between maps should be
small to ease computation in larger architectures. Finally,
adding modules and inputs should be straightforward. To ad-
dress all these issues, this paper uses and extends the CxSOM
model introduced in [3]. The model is designed as a general
framework combining self-organizing maps into architectures

Fig. 1. Example of an architecture of maps on a multimodal input space.
Data from sensors can be seen as modalities of different dimensions. Instead
of stacking all the modalities into a global vector, each map takes as input
one of these modalities. The communication in the architecture only relies
on the best matching unit position, i.e a position p in each map. It is then
straightforward to add additional maps to the architecture or to modify the
connections. Each SOM learns from positions in the other maps, regardless
to the dimension of the modality they handle.

where each map learns on different inputs. The communication
in the architecture relies on transmitting the best matching unit
position, i.e. a 1D position and uses a relaxation process to
handle retroactions in the architecture. By these mechanisms,
any architecture can be built, like in figure I. The motivation
to search for such a modular and generic framework and the
choice of the information to be transmitted is motivated by
previous works.

Many works have indeed followed the idea that combining
simple principles or algorithms leads to complex compu-
tational mechanisms. Let us mention deep learning as an
aggregation of single-layer perceptrons or cellular automata
that are able to perform computation through local interactions.
Combining self-organizing maps in a search for more complex
learning mechanisms has also been introduced early, like
HSOM [4], evaluating the clustering properties of two stacked
SOMs. The best matching unit index of the first map is used as
an input to the second layer, like CxSOM, but the connections
can only be hierarchical. Some works rather focus on the
association of maps allowing retroactions, such as A-SOM
[5], or [6]. Those models rely on transmitting information
between two or three maps so that they learn jointly on
different inputs. The information transmitted between the maps



in these works is a whole set of neurons activities. On the
other hand, the modular aspect of the brain is closely linked
with temporal data processing and memories. Concerning this
topic, several models of self-organizing maps for sequence
processing have been developed. They are, like the multi-map
models, based on the reuse of some internal map information
from a learning timestep in the next one [7]. This information
is used either to compute the activity or as secondary input
in the next timestep. In particular, SOMSD [8]–[10] uses
the best matching unit index as this transmitted information.
As a model linking temporal and modular aspects, let us
cite [11], using a structure of two growing self-organizing
networks for sequence processing and decision, inspired by
episodic and semantic memories in the brain. All these models,
i.e. the multi-map and the sequence processing ones, carry
a similar idea of transmitting information between several
maps or timesteps. It supports the idea of creating a modular
framework.

The goal of the paper is to understand the mechanisms
involved in the decentralized self-organization created by
CxSOM. One of the computational applications of such a
network is multimodal data processing. Most of the time, the
data used for learning are high-dimensional, but this dimension
can be decomposed in several modalities, as reviewed in [12].
For example, a robot has many sensors that acquire image and
sound features, positions of robot parts, speed, etc. These are
different modalities in the multimodal dataset used to learn and
control the robot. An example of processing modalities with an
architecture is given in figure I. In this paper, we use CxSOM
on a prediction application. An architecture learns on several
mutually dependent modalities. Once learning is realized, one
of the modalities is not presented to the corresponding map.
The other maps drive then the behavior of this map. We show
that the output of this map is a good prediction of the missing
modality, and therefore, the network of maps has learned
multimodal connections. The paper is organized as follows:
first, we describe the CxSOM model and how to use it for
prediction. Then, we show the prediction ability on simulated
inputs in an architecture of three maps. Finally, a four map
architecture is used to control a quadcopter in a corridor, using
real inputs.

II. ALGORITHM DESCRIPTION

The algorithm used in this paper is a modified version of the
standard Kohonen self-organizing map algorithm, designed to
create non-hierarchical architectures only composed of self-
organizing maps. The model has been introduced in [3] with
a two-map architecture, showing how the maps get organized
and learn a relationship between multimodal inputs. The
CxSOM model aims at simplifying joint self-organized biolog-
ically inspired processes [13], [14]. In this paper, we address
modality prediction with architectures of maps with CxSOM.
Each map takes its inputs in a modality. Once learning has
been realized, tests are run with the same algorithm but with
one of the maps not receiving its input. The output of this map

Fig. 2. Weights, activity, and neighborhood functions in a map being
connected to two other maps in CxSOM. The external activity has three
maxima A, B, and C. The global activity corresponds to the external one
modulated by the contextual activity. It allows the map to select the best
matching unit at a position close to B, as both the contextual activities are
high only in this area.

is taken as a prediction of the input. We use architectures of
three, then four maps, on simulated and real inputs.

A. Kohonen Self-Organizing Map

Let us present the standard SOM algorithm with the nota-
tions used in our model. A map is an array (1D) or a grid (2D)
of computational units. The input feeding the map is taken in a
space noted D. To enable better visualization and plotting, we
consider in the paper one-dimensional maps of N units where
a position p ∈ [0, 1] indexes each unit. To each of those units
is associated a randomly initialized weight vector ωe(p) ∈ D,
also referred to as a prototype. A learning step, indexed by t
is the following:

1) An input ξt ∈ D is presented to the map.
2) A best matching unit (BMU) is found as the position

Πt where a matching function between the input and
the weights is maximum. The matching function is a
gaussian activation:

a(ξ, p) = exp(
(ξ − w(p))2

2σ2
(1)

3) Learning is realized by shifting the weight of each unit
towards ξt relatively to how close it is from the BMU
position Πt:

∀p, ωe(p, t+ 1) = ωe(p, t) +αHe(Πt, p)(ξt −ωe(p, t))
(2)

H(Πt, p) is a linearly decreasing function around Πt in the
map position space, reaching 0 at a distance he. In this work,
the learning rate α and the neighborhood radius he are constant
over time, unlike most SOM-based works. The algorithm
performs vector quantization by creating a mapping of the
input space over the N prototypes, with the specificity that
the prototypes of two close units in the map are also close in
D, creating a continuity in the mapping.

B. Consensus Driven Architecture : CxSOM

We consider a multimodal input space D1 ×D2 · · · ×DK ,
where each input is a tuple (ξ1t , · · · , ξKt ). Instead of stacking



all the modalities into a unique vector to use a standard
Kohonen map, the data are processed by an architecture made
of K maps, each map Mk learning on one modality Dk. A
three map architecture is shown in figure 3, and a map of the
architecture is described in figure 2. A map i takes an external
input ξi, having its values in a modality Di of the input space,
and contextual inputs; those are the BMUs Πj

t of the connected
maps in the architecture. More precisely, the contextual inputs
and the BMU search rely on a dynamic relaxation process.
Indeed, in an architecture with a bidirectional connection,
computing the best matching unit in the first map changes the
contextual input of the second, and thus its best matching unit.
It would then modify contextual input of the first map and its
best matching unit, and so on. To handle those bidirectional
connections and, more generally, loops in a network, the BMU
search is realized by moving the best matching units slowly
in each map until all the best matching units positions in the
architecture are stable.

Let us detail the algorithm in a three-map example. The
inputs are noted Xt, Yt, Zt and the maps MX , MY , MZ .
Each map has two contextual inputs; therefore, the units in the
map have three layers of weights: external weights, taking their
values in the external input space, and two contextual weight
layers, being map positions in [0, 1] and take as inputs the best
matching units of the other maps. The operations realized in
a learning timestep t are described in figure 4. They are the
following:

1) A multimodal input is drawn and each modality input ξit
is presented to the corresponding map M i as an external
input.

2) Then, the BMU selection is a competition relax-
ation, in a nested timeline noted τ . One step of
the relaxation is described in figure 3. Let Π(τ) =
(ΠX(τ),ΠY (τ),ΠZ(τ)) refer to as the temporary best
matching units.

a) Π?(τ) is initialized as the position where the
external activity is maximum.

b) The external activity ae(ξ, p) and the contextual
activities acj(Πj , p) for all map j connected to map
i, are computed according to equation 1, with their
respective inputs and weights, and merged into a
global activity:

ag(p) =
√
ae(p)(βae(p) + (1− β)ac(p)), β = 0.5

where ac(p) is the mean of each acj .
c) In each map i, the temporary best matching unit

Πi(τ) is moved by a fixed step towards the position
where ag is maximum.

d) The timestep is recomputed until Π(τ) has reached
a stable state. The consensual stabilization of the
best matching unit is a relaxation competition.

3) The best matching units in all the maps are taken
as the final stable value of the best matching unit
once this relaxation process is achieved, noted Πt =
(ΠX(τ),ΠY (τ),ΠZ(τ)) ; this is where the consensus is

Fig. 3. Relaxation in a 3-map architecture for one timestep t. Once the
external inputs ξit are presented to the maps, the relaxation is a dynamic
process indexed by τ . The positions Π(τ = 0) are initialized as the
maximum index of a map external activity. Each map has three sets of weights
represented in blue (external weights), green, and orange (contextual weights).

Fig. 4. Algorithm workflow scheme, for learning (top) and prediction (bottom)
steps. The external inputs are X , Y and Z.

found. Learning is realized as in a standard SOM on ex-
ternal and contextual weights separately, by moving the
weights towards their targets, according to equation 1.
The learning kernels widths he and hc are different.

Learning is stopped when the weights have converged over
the iterations. The process is summarized in figure 4.

C. Input Prediction

After learning is realized, the evaluation and prediction rely
on tests. Inputs samples are presented to the architecture and
the same relaxation algorithm is performed, but the weights are
not updated; it is described in figure 4. The activity of a map i
can still be computed when the external input is not presented.
Its activity is then driven by the contextual inputs only. Thus,
relaxation and BMU computation can be performed. The
best matching unit weight ωi

e(Π
i
t) is then a prediction of

the missing input; this prediction is what is demonstrated in
this paper. The prediction process is performed locally, at a
map scale and therefore does not need a global view of the
architecture.

III. PREDICTION OF SIMULATED INPUTS

The experiments aim at showing that the architecture is
able to predict an input after learning. Indeed, even without
an external input, a map still has an activation driven by its



Fig. 5. The BMU weights ωX
e (ΠX) are plotted according to the actual input

X (resp. Y and Z), when map MX has not received X and is only driven
by its contextual inputs, to evaluate the prediction quality of the architecture
X . The inputs are taken in a torus, so X ,Y and Z are related. The first
plot shows that the best matching unit weight is a correct prediction of X .
The fact that map MX does not receive an external input does not affect the
behavior of both the other maps, which still achieve vector quantization on
their inputs, as shown on the second and third plots.

Fig. 6. Disposition of weights in each map. ωe in blue and the two ωcj in
orange and green.

contextual inputs, and thus a best matching unit. The weight
ωi
e(Π

i) of this unit is then used to predict the missing input.
Through this process, the architecture is able to activate a map
correctly and predict the input.

A. Setup

Before learning on a real dataset, let us show the model’s
prediction ability on a controlled setup. Inputs (X,Y, Z) ∈
[0, 1] are coordinates of points located on a circle in 3D-
space, to which noise is added in all three dimensions, so that
the input is actually taken in a thin torus, see figure 7. The
architecture is composed of three maps, which are lines of 500
units, with positions p spanning [0, 1]. Each map is connected
to both the others and has then two contextual inputs. The
neighborhood parameters are he = 0.2 and hc = 0.02.
During the learning phase, each map receives both external and
contextual inputs. For plotting, learning is frozen and BMU
computation through relaxation is performed on a set of 1000
test inputs (X,Y, Z) taken on the torus. For each input ξt
some response elements of the maps are gathered: the BMUs
(ΠX

t ,Π
Y
t ,Π

Z
t ) and their weights ωi

e(Π
i). A second test is run

without presenting X input to the first map in all the 1000
samples: the global activity of map MX is only its contextual
activity (i.e the average of acy and acz). The test elements are
plotted to enlight the behavior of the maps: ωi

e(Π
i) according

to the external input ξi in figure 5, and the inputs X ,Y and
Z according to ΠX ,ΠY ,ΠZ in figure 7.

B. Discussion

The three plots of figure 5 show that when X input is not
presented to the map, ωX

e (ΠX) can be seen as a valid pre-
diction of the missing observation. The behavior of the other
maps MY and MZ is not altered. Let us detail this prediction.
The arrangement of the input on a circle is particular: the
same value of X corresponds to two distinct points on the

Fig. 7. The 1000 inputs samples (X,Y, Z) are plotted according to the best
matching units positions ΠX in map MX during tests. The first plot shows
this repartition when each map has received an input; the second when X
has not been presented to map MX , the third when the maps MX , MY and
MZ are standard Kohonen maps, not connected during learning and tests.
The architecture allows map MX to generate a prediction when the input is
not presented, thanks to the other maps.

circle, likewise for Y and Z. In figure 7, the inputs X , Y
and Z are plotted according to the BMU of the map MX ,
during the test with the input (a), during the test where X
is not presented (b), and in the case of a standalone map,
without connections to MY and MZ maps (c). These two
figures show that self-organization splits the [0, 1] interval of
the map positions into small areas, thanks to the wave shape of
contextual weights, shown in figure 6. This explanation of this
shape is the external neighborhood radius being larger than the
contextual ones. This difference ensures weight convergence.
The inputs having their BMUs in one of these areas correspond
to a contiguous region of the torus, contrary to the case of the
standalone map (c) where a same area in the map matches
two separate regions of the torus: the values for Y and Z for
the same X are randomly mixed up between these regions.
The repartition of the inputs in figure 7 (b) shows that when
the input is not presented, map MX still has its best matching
unit in the same zone as when X was presented, thanks to
the contextual inputs. The best matching unit weight ωi

e(Π
i)

is then close to the input, and is therefore a decent prediction
of its value. The same behavior is observed for maps MY and
MZ .

In the end, the experiment shows that the architecture
delimits zones in a self-organized way, activated either by the
external input or only by the contextual inputs. This activation
and prediction is done without any external algorithm, and is
performed at a map’s scale. The map making the prediction
only knows the BMU positions of the neighboring maps of
the architecture but not the state and weights of the entire
architecture. To perform this kind of prediction in a standard
self-organizing map, it would be necessary for the predicting



Fig. 8. Left: Vanishing point abscissa x and the two angles used to compute
ϕ. Right: quadcopter with the commands ω, ρ and internal odometry v

algorithm to know the entire map state to select the areas
corresponding to the values to predict. This way of mapping
data shows rich dynamics of the model and motivates future
work.

IV. APPLICATION TO THE CONTROL OF A QUADCOPTER

We propose indoor navigation of quadcopters as a real
application for proof of concept. Here, we address the sub-
task of navigating through a straight narrow corridor thanks
to visual control. The quadcopter elevation, as well as the
forward speed, are kept constant. The commands are twofold:
set a yaw angular speed ω (i.e., turn left or right) and set
a roll angle ρ (leaning to the left or right). For example, a
constant small positive ρ setting provides a constant acceler-
ation of the quadcopter to the left. Internal odometry of the
quadcopter provides the current speed v on the left-right axis.
Vision processes extract from the front image two scalars: the
normalized abscissa of the vanishing point x on the picture
(0 means middle), and the difference ϕ of the angles of the
floor lines (ϕ get far from 0 when the drone gets close to the
walls). See figure 8.

The data acquisition is made with a handcrafted controller,
where a PID controller is designed to control the lateral speed
of the quadcopter (in order to avoid walls) by adjusting the
ρ angle. In the same time, the drone keeps x close to zero
with a proportional control on ω (i.e., it tries to keep parallel
to the corridor axis). The ρ (acceleration) adjustment depends
on current v, x, ϕ. It has to be robust to signal latencies and
to the turbulences made by the propellers in such confined
flying conditions. Our experiment consists of using four maps,
each fed with ρ, v, x, ϕ rescaled in [0, 1], and learn from
observations samples from the handcrafted controller. Then
we have removed the ρ input in our architecture, letting
the consensus retrieve it and replace the PID controller. The
resulting ρ command computed by the map (see figure 9) was
applied online to the quadcopter, which flies then safely along
the corridor.

V. CONCLUSION

This paper extends the understanding of a self-organizing
map architecture, CxSOM, where only a position is shared
between maps. It shows in particular that after the architecture
has been trained, a map is able to predict a missing input,
driven by its connections to the other maps and a dynamic re-
laxation process. This prediction is realized in a decentralized
way, without using an external algorithm to process the outputs
of the maps. The simplicity of the information shared between
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Fig. 9. The activation of the map ρ allowing to retrieve the ρ = ωe(Π)
command, from position Π where ac (in purple) is maximal.

maps makes CxSOM scalable to larger architectures. Such a
simple system (1D, few maps, sharing only positions) exhibits
some rich dynamics. Moreover, the model has been easily ap-
plied to real inputs with the quadricopter. More fundamentally,
we can consider any graph to define an architecture thanks
to the genericity of the model formulation. It orients future
work on larger and diverse architectures (cycles, high/low
arity, etc.). The formulation also includes recurrent maps with
time-delayed connections, such as [10]. Using CxSOM in the
context of sequence processing and memory is then also a
relevant direction for future work.
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[12] Dana Lahat, Tülay Adalı, and Christian Jutten. Multimodal Data Fusion:
An Overview of Methods, Challenges and Prospects. Proceedings of the
IEEE, 2015.

[13] O. Ménard and H. Frezza-Buet. Model of multi-modal cortical process-
ing: Coherent learning in self-organizing modules. Neural Networks,
2005.

[14] B. Khouzam and H.Frezza-Buet. Distributed recurrent self-organization
for tracking the state of non-stationary partially observable dynamical
systems. Biologically Inspired Cognitive Architectures, 2013.


