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Coherence of high-dimensional random matrices in a Gaussian
case : application of the Chen-Stein method

M. Boucher ∗ , D. Chauveau ∗, M. Zani ∗†

Abstract :
This paper studies the τ -coherence of a (n × p)-observation matrix in a Gaussian framework. The τ -coherence
is defined as the largest magnitude outside a diagonal bandwith of size τ of the empirical correlation coefficients
associated to our observations. Using the Chen-Stein method we derive the limiting law of the normalized
coherence and show the convergence towards a Gumbel distribution. We generalize here the results of Cai and
Jiang [CJ11a]. We assume that the covariance matrix of the model is bandwise. Moreover, we provide numerical
considerations highlighting issues from the high dimension hypotheses. We numerically illustrate the asymptotic
behaviour of the coherence with Monte-Carlo experiment using a HPC splitting strategy for high dimensional
correlation matrices.

Key words : coherence, high-dimensional matrices, correlation, Chen-Stein method, Gaussian, GPGPU,
random matrices, sparsity.

1 Introduction

Random matrix theory has known a huge amount of breakthroughs for these last twenty years.
Developments have been made in theoretical fields as well as in various applied domains. Among
these applications, one can cite high-energy physics (e.g. [For10] on log–gases), electronic en-
gineering (signal and imaging, see [Don06, CT05, CRT06b, CRT06a] ), statistics (see [Joh01,
Joh08, BG16]). Earlier works on random matrices were focused on spectral analysis of eigenval-
ues and eigenvectors (see [Wig58] or [Meh04, BS10], see also [BC12] and references therein). For
a reference on random matrices theory, see [BS10, Meh04, AGZ10].

In statistics more particularly, random matrices are useful for inference in a high dimensional
framework. One can think about high dimensional regression, hypothesis testing for high di-
mension parameters, inference for large covariance matrices. See e.g. [BS96, CT07, BJYZ09,
CWX10a, CZZ10, BRT09]. In these contexts, the dimension p is much bigger than the sample
size n.

We will be focusing here on the covariance structure of a certain type of random matrices.
More precisely, we will be examining the coherence of random matrices with bandwise covariance
of size τ > 1. Let us define the model.

Let
(
X1, X2, . . . , Xp

)
be a p – dimensional Gaussian random vector with mean

µ =t (µ1, · · · , µp) in Rp and covariance matrix Σ = (σkj)kj ∈ Rp × Rp. For n ∈ N∗, we consider
a random sample

(
X1
i , X

2
i , . . . , X

p
i

)
i=1,...,n

issued from
(
X1, X2, . . . , Xp

)
, arranged in a (n, p)-

matrix X. From a statistical point of view, it means that each row can be seen as an individual
and each column as a character. We will write Xk the kth column of X. We are interested in the
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correlation terms of X in models where p is much larger than n. The classical empirical Pearson’s
correlation coefficient is defined by :

ρkj =

n∑
i=1

(
Xk
i − Xk

)(
Xj
i − Xj

)
√

n∑
i=1

(
Xk
i − Xk

)2
√

n∑
i=1

(
Xj
i − Xj

)2
=

< Xk − Xk1n,Xj − Xj1n >
‖ Xk − Xk1n ‖ . ‖ Xj − Xj1n ‖

, (1)

where 1n is the identical 1–vector in Rn:

1n =t (1, 1, . . . , 1) ∈ Rn

and ‖ x ‖ stands for the the Euclidian norm of the vector x and Xk is the empirical mean of the
kth column Xk:

Xk =
1

n

n∑
i=1

Xk
i .

Equivalently if the mean µ = t
(
µ1, . . . , µp

)
is known,

ρ̃kj =

n∑
i=1

(
Xk
i − µk

) (
Xj
i − µj

)
√

n∑
i=1

(
Xk
i − µk

)2√ n∑
i=1

(
Xj
i − µj

)2
=

< Xk − µk1n,Xj − µj1n >
‖ Xk − µk1n ‖ . ‖ Xj − µj1n ‖

(2)

The empirical correlation coefficients ρkj (resp. ρ̃kj) are arranged in a (p, p)-matrix Rn (resp.
R̃n) which is the empirical correlation matrix of X.

Definition 1.1. With the notations above, we can define the largest magnitude of the off–diagonal
terms of Rn and R̃n:

Ln = max
1≤k<j≤p

|ρkj | , L̃n = max
1≤k<j≤p

|ρ̃kj | (3)

The quantity L̃n is defined as the coherence of the matrix Xn. With a slight abuse of terminology,
we will call both Ln and L̃n coherence of Xn.

The notion of coherence has first appeared in signal theory as an indicator of the sparsity
of a matrix. More precisely, it is involved in the so-called Mutual Incoherence Property (MIP),
which can be explained as follows: a mesurement (n, p) matrix X is used to recover a k–sparse
signal β via linear mesurements y = Xβ using a recovery algorithm. The condition

(2k − 1)L̃n < 1

ensures the exact recovery of β when β has at most k non zero entries. For details on this
approach, see Donoho and Huo [DH01], Fuchs [Fuc04], Cai, Wang and Xu [CWX10b], and
references therein.

Another domain where covariance and correlation matrices are highly used is statistic theory,
for example testing Σ = I against Σ 6= I. This issue has been considered in the case where n
and p are of same order (i.e. n/p→ γ ∈ (0,∞) ) by Johnstone in the Gaussian case [Joh01], and
Péché in the sub-Gaussian case [Pé09]. The test statistic relies – according to PCA methods – on
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the largest eigenvalue of the empirical covariance matrix λmax(Σ̂n). The asymptotic distribution
of this maximum eigenvalue is the Tracy–Widom law.

However, testing Σ = I can seem too restrictive, and one think about independance versus
non independence in terms of correlation matrix i.e. testing Rn = I against Rn 6= I. According
to previous results, one could think about using λmax(Rn). However, even if Tracy–Widom law
is conjectured in this case (see [Jia04b], and see also [HM18] for a study on the i.i.d. case), one
choose to study instead the coherence as a test statistic. Jiang in [Jia04a] first adressed this
problem and showed strong consistency of Ln and limit distribution of L2

n in the case where
n and p are of the same order. Moments assumptions in [Jia04a] and dimension for p were
substantially improved by a series of papers: Li and Rosalsky [LR06], Zhou [Zho07], Liu, Lin
and Shao [LLS08], Li, Liu and Rosalsky [LLR10], Li, Qi and Rosalsky [LQR12]. In [CJ12] the
authors consider the limiting distribution of the coherence in a spherical case. See also [CZ16]
for studies on the differential correlation matrices in high dimensional context.

Lately Cai and Jiang [CJ11a] (see also the supplement [CJ11b]) considered "ultra-high di-
mensions" i.e. p as large as enβ . In this paper, they also present a variant of the coherence,
the so–called τ–coherence aimed to test whether the covariance Σ has a given bandwidth τ > 1,
where τ = 1 would be a special case. We define it below:

Definition 1.2. For any integer τ ≥ 1, we define the τ–coherence as:

Ln,τ = max
|k−j|>τ

|ρkj | (4)

In [CJ11a] strong laws and convergence of distributions of Ln,τ are given as well. Recently,
Shao and Zhou [SZ14] studied coherence and τ coherence relaxing the normal hypothesis, im-
proving assumptions on the moments of the entries and on the dimension p.

Our purpose is to generalize this model: we assume that Σ = (σkj)16k,j6p is defined as
follows:

σkj =


γkjσkσj if |k − j| < τ
εnσkσj if τ ≤ |k − j| ≤ τ +K

0 if τ +K < |k − j|
. (5)

So, Σ is divided into three parts : a central band of size τ ∈ N , an outside part with null
coefficients and a transitional bandwidth of size K ∈ N. We have, for all k ∈ [[1; p]], σk > 0;
for all k, j ∈ [[1; p]], γkj ∈ [−1, 1] and (εn)n>1 is a sequence of real numbers in [−1, 1] such that

lim
n→+∞

|εn| = 0. To be more precise, the construction of Σ suggests that if we take two p-vectors

which are close (in term of indexes, for example X1 and X2), they will be correlated. If they are
far enough one to another, they will be independent. But, if they are not so close and not so far,
their correlation will decrease to zero when n goes to infinity. This generalization of the model
of [CJ11a] seemed to us more suited for real datasets. Later, we will see that both τ and K may
depend of n and may go to infinity under sufficient hypotheses. Without loss of generality, we
can assume that µ = 0Rp and for all k ∈ [[1, p]], σk = 1.

All previously cited studies are highly related to the Chen-Stein method which we also use
here. It relies on a Poisson approximation of weakly dependent events. For references on this
method, see [AGG89], [Pec12] and references therein.
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This paper is organized as follows: section 2 presents the main results, further on section 3
gives some simulation results for our model, section 4 is devoted to the proof of the main result
whereas section 5 gather technical results and proofs of technical lemmas.

The usual notations un = o(vn) and un = O(vn) stand for un negligible with respect to vn
and un of the same order of vn respectively and asymptoticaly when n→∞.

2 Main result

We focus on correlations not too big, i.e. not too close to 1 or −1. Hence we define the following
set:

Definition 2.1. For any δ ∈]0, 1[ we define by

Γp,δ = {k ∈ [[1; p]] : |rkj | > 1− δ for some j ∈ [[1; p]] and k 6= j},

where (rkj)p×p is the correlation matrix issued from Σ = (σkj)p×p.

The main result of the paper is the following Theorem:

Theorem 2.1. Let n be an integer, p = pn a sequence such that pn −→
n→+∞

+∞. Let (εn)n∈N∗ be

a sequence of real number in ]− 1, 1[. Let us assume the following conditions :

Hyp 1 : log(pn) = o(n
1
3 ) as n→ +∞

Hyp 2 : τ = τ(n) = o(ptn) as n→ +∞ for any t > 0.

Hyp 3 : ∃δ ∈]0, 1[ such that |Γp,δ| = o(pn) where | · | denotes the cardinality of the set.

Hyp 4 : εn ∼ γ
√

log(pn)
n as n→ +∞ and γ ∈]− 2 +

√
2, 2−

√
2[

Hyp 5 : K = K(n) = O (pνn) where ν ∈]0, c(γ, δ)[

and c(γ, δ) = min
(

1
3(1

2γ
2 − 2|γ|+ 1), δ

2(2−δ)2
36

)
.

Under these conditions, we can show that :

nL2
n,τ − 4 log(pn) + log(log(pn))

L−→
n→+∞

Z (6)

where Z has the cdf F (y) = e
− 1√

8π
e−

y
2
for all y ∈ R.

We can observe that it is the same distribution as in [CJ11a]. The band in the covariance
matrix which contains terms εn is a smooth transition between the central band and the external
part of the matrix with null terms. This model is an illustration of vanishing dependence when
the components are too far one from each other. In [CJ11a], the central band of the matrix is
as large as τ with the condition of theorem 2.1. If we suppose K = cst < +∞, we boil down to
the same model. Indeed, we have τ̃ = τ +K wich is the new width of the non–null bandwidth,
and τ̃ is still such that :

∀t > 0, τ̃ = o(pt) as n→ +∞. (7)
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3 Numerical aspects

In this section, we provide some simulated examples to illustrate the behavior of our asymptotic
result in practical simulations (n and p both large but finite). For this, we use the R Statistical
Software [R C20]. A difficulty comes from the fact that in our context, we have to compute
correlations of large matrices. We need Gaussian observation matrices of size n×p with log (p) =

o
(
n

1
3

)
. It means that for a large n, for example n = 4000, we will have p ≈ 45000 taking p =[

exp
(
n

1
3.5

)]
in our simulations (where [x] is the integer part of x). For each (n× p)-observation

matrix, we have to compute the (p× p)-correlation matrix to compute the τ -coherence. For the
range of p that we consider, we can observe the evolution of the size of the (p× p)-matrix in Gb
according to n in Figure 1. For example, with n = 4000 and p = 44112, we have, for correlation
stored in double, a 14.5Gb (p× p)-matrix which is very large for a common computer. We must
find a way to compute the τ -coherence without loading the entire (p × p)-correlation matrix in
the computer memory (RAM).

Figure 1: Size of (p × p)-correlation matrix and (n × p)-observation matrix according to n with p =[
exp(n1/3.5)

]
for real numbers stored as double precision numbers.

The idea is to generate the (n × p)-observation matrix by packets of columns. Each packet
will have a size (n × Tb) where Tb is choosen by the user. With these packets of columns, we
compute all correlation blocks of size (Tb×Tb) between each pair of packets of columns. In that
way, we must choose a size Tb in order to have two blocks fitting simultaneously in the computer
memory. Then, we can compute the τ -coherence by taking the largest coefficient in absolute
value in our block paying attention to wether the block corresponds to the central band (with
bandwith τ) or not.
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Using this strategy, we can generate correlation matrices even if p is very large, so that we are
able to study the limiting distribution of the τ -coherence. In that way, to illustrate our theorem,
we consider the following parameters :

p =
[
exp

(
n1/3.5

)]
, τ = 5 ∗ [log(p)] , K = 10 ∗

[
n1/10 log(p)

]
, εn = 0.1 ∗

√
log(p)

n

Our purpose here is to simulate a sample of τ -coherence by a Monte-Carlo procedure in order
to compare its empirical distribution with the asymptotic one. We thus run R = 200 replications
of the following procedure, simulating R times the matrices of observations and computing the
correlations per blocks. For each replications, we generate an observation matrix X of size (n×p)
using the following numerical scheme :

∀i ∈ [[1, n]],∀j ∈ [[1, p]], Xj
i =

j+K−1∑
k=j

εnY
k
i +

j+K+2τ∑
k=j+K

rkY
k
i +

j+2τ+2K∑
j+K+2τ+1

εnY
k
i (8)

where all coefficients (rk)16k61+2τ are real numbers in [−1, 1] (we take

r1, . . . r1+2τ
i.i.d∼ U[−1,1] in the simulation), Xj

i is the coefficient of X on the ith line and the jth

column and all random variable Y k
i

i.i.d∼ N (0, 1) arranged in a (n× (p+ 2τ + 2K))-matrix Y.
We highlight the fact that Y is quite larger than X. This numerical scheme is inspired by time
series model.

Figure 2: Level plot of the correlation’s structure with observations : zoom on the square 1 : 500

We can observe that we generate data following our model and obtain an observation matrix
associated to a correlation matrix with a band structure in Figure 2. We recognize a central band
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with non-null coefficients. In fact, we also notice that the transition band with εn’ coefficients
is not really recognizable but this is due to the fact that those coefficients are decreasing fastly
to 0 when n goes to infinity (for instance, here, we have εn ≈ 0.007 not different from 0 in the
color scale).

With this observation matrix, we can use our procedure to compute the τ -coherence. After
running R replications, we obtain a sample of τ -coherence. In Figure 3, we see that for n large
enough, the sample distribution seems to approximate the limiting one.

Figure 3: Histograms and Kernel density estimates for n = 2000, 3000, 4000, 5000 and for R = 200
replications

Precisely, we compare the estimated density of the sample (in red) with the asymptotic
density (in blue) which is defined by f(x) = 1

2
√

8π
exp

(
−1

2y −
1√
8π

exp
(
−1

2y
))

for all x ∈ R.
Also, in order to observe the convergence, we study numerically the distance between the sample
and asymptotic distribution. We use the Kolmogorov, L2 and the Total Variation norms. We
remind, respectively, the definition of these norms :

dKS(f̂ , f) = sup
x∈R
|Fn(x)− F (x)| , (9)

d2(f̂ , f) =

∫ ∣∣∣f̂(x)− f(x)
∣∣∣2 dx, (10)
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dTV (f̂ , f) =
1

2

∫ ∣∣∣f̂(x)− f(x)
∣∣∣ dx. (11)

We observe, in the results displayed in Figure 4, that the difference between both distributions
decreases to 0 when n is increasing.

Figure 4: Evolution of Kolmogorov, L2 and Total Variation norm between simulated and asymptotic
behavior

These results provide numerical evidence that our limiting distribution is adequate. We also
higlight the fact that the procedure we proposed here allows to compute τ -coherence correspond-
ing to any large matrix X arising in actual (big) data experiments. However, this procedure is
not very efficient if it is done with a classical programming. For example, computing only one
replication for n = 4000 (and so p = 44112), requires about 90 min to obtain the value of one
τ -coherence. In order to obtain more usable (i.e fast) codes in perspective of real-size applica-
tions, we are currently exploring HPC strategies to compute correlation blocks using GPGPU
computation. We are very confident into the use of GPU to reduce simulation’s time.

4 Proof of the main result

In this section, we describe the proof of our main result. First, we would like to higlight the
fact that, as we said, we apply the Chen-Stein method. But, we do not apply it directly to the
τ -coherence. It is more efficient to use the Chen-Stein method to a new easier to handle random
variable.

First of all, we introduce many notation which will be used along this paper.
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4.1 Notations

• I = {(k, j) ∈ [[1, p]]2 : 1 6 k < j 6 p}

• Iτ = {(k, j) ∈ I : |k − j| < τ}

• IK = {(k, j) ∈ I : τ ≤ |k − j| ≤ τ +K}

• I0 = {(k, j) ∈ I : |k − j| > τ +K}

• Eδ = {(k, j) ∈ I : k ∈ Γp,δ or j ∈ Γp,δ}

• Λτp = {(k, j) ∈ I : |k − j| < τ and max
16k 6=q,j 6=q6p

(|rkq|, |rjq|) 6 1− δ}

• ΛKp = {(k, j) ∈ I : τ ≤ |k − j| ≤ τ +K and max
16k 6=q,j 6=q6p

(|rkq|, |rjq|) 6 1− δ}

• Λ0
p = {(k, j) ∈ I : |k − j| > τ +K and max

16k 6=q,j 6=q6p
(|rkq|, |rjq|) 6 1− δ}

With these different sets, we can write three different partitions of the set I :

1. I = Iτ ∪ IK ∪ I0

2. I = Eδ ∪ Λτp ∪ ΛKp ∪ Λ0
p

3. I0 ∪ IK = ΛKp ∪ Λ0
p ∪
[
Eδ ∩ Iτ

]
The following Lemma gives the sizes of these three sets:

Lemma 4.1. With the previous notations

|Iτ | = (τ − 1)

(
2p− τ

2

)
, (12)

|IK | = (K + 1)

(
2p−K − 2τ

2

)
, (13)

|I0| =
(p− τ −K − 1)(p− τ −K)

2
. (14)

4.2 Auxiliary variables

Now we introduce an auxiliary random variable which will be more convenient to handle in the
Chen–Stein method. Let

Vn,τ = max
16k<j6p,|k−j|>τ

|tXkXj | = max
α=(k,j)∈I0∪IK

∣∣∣tXkXj
∣∣∣ (15)

In the sequel, we will use notation α = (k, j) to denote index into different sets.

Proposition 4.1. Under the assumptions of Theorem theorem 2.1, we have

n2L2
n,τ − V 2

n,τ

n

P−→
n→+∞

0. (16)
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The proof of this Proposition is postponed to section 4.

Hence to study the asymptotic behaviour of Ln,τ , it is enough to study the limiting distribution
of Vn,τ . To do so, we use another slightly different random variable defined by:

V ′n,τ = max
α∈Λ0

p∪ΛKp

(Zα) (17)

where the index α = (k, j) and Zα = Zkj =
∣∣tXkXj

∣∣. The two variables Vn,τ and V ′n,τ are linked
by the following inequalities:

Proposition 4.2. Let

an(y) =
√

4n log(pn)− n log log(pn) + ny with y ∈ R. (18)

We have :
P
(
V ′n,τ > an(y)

)
6 P (Vn,τ > an(y)) 6 P

(
V ′n,τ > an(y)

)
+ o(1) (19)

Proof. (For seek of simplicity, we will denote an(y) by an in the sequel).
To proove this result, we need the two following technical results whose proofs are postponed to
section 4.

Lemma 4.2. Let an be as in formula (18). Then,

P0 := P
(∣∣tX1Xτ+K+2

∣∣ > an
)

=
1√
2π
e−

y
2

1

p2
n

(1 + o(1)) = On→+∞

(
1

p2
n

)
(20)

Lemma 4.3. Let an be as in formula (18) and let us define cγ := 1
2γ

2 − 2|γ|+ 2 with γ defined
in theorem 2.1. Then, for any d ∈ [0; cγ [ and n→ +∞ :

PK := P
(∣∣tX1Xτ+1

∣∣ > an
)

= o
(
p−dn

)
(21)

According to the partition I0 ∪ IK = Λ0
p ∪ ΛKp ∪

(
Eδ ∩ Iτ

)
,

P (Vn,τ > an) = P
(

max
α=(k,j)∈I0∪IK

∣∣∣tXkXj
∣∣∣ > an

)
6 P

(
V ′n,τ > an

)
+ P

(
max

α=(k,j)∈Eδ∩Iτ

∣∣∣tXkXj
∣∣∣ > an

)
6 P

(
V ′n,τ > an

)
+

∑
α=(k,j)∈Eδ∩Iτ

P
(∣∣∣tXkXj

∣∣∣ > an

)
6 P

(
V ′n,τ > an

)
+

∑
α∈[Eδ∩Iτ ]∩IK

P (Zα > an) +
∑

α∈[Eδ∩Iτ ]∩I0

P (Zα > an) .

All variables Zα having same distributions in the different sets above, we have

P (Vn,τ > an) 6 P
(
V ′n,τ > an

)
+
∣∣[Eδ ∩ Iτ ] ∩ IK∣∣P (Z1,τ+1 > an) +

∣∣[Eδ ∩ Iτ ] ∩ I0

∣∣P (Z1,τ+K+2 > an)

6 P
(
V ′n,τ > an

)
+ |IK |PK + |Eδ|P0.

We can use the following straightforward result :
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Lemma 4.4.
|Eδ| 6 2pn|Γp,δ|

Hence from assumption 3 of theorem 2.1, we have :

|Eδ| = o(p2
n) (22)

Now, we need to prove that |IK |PK + |Eδ|P0 −→
n→+∞

0. First, from lemma 4.2 and (22),

|Eδ|P (Z1,τ+K+2 > an) ∼
n→+∞

|Eδ|
1√
2π
e−

y
2

1

p2
n

=
n→+∞

o(p2
n)

1√
2π
e−

y
2

1

p2
n

=
1√
2π
e−

y
2 o(1) −→

n→+∞
0.

Secondly, using lemma 4.1 (more precisely eq. (13)) and lemma 4.3 we have :

|IK |PK −→
n→+∞

0 ⇔ ν < cγ − 1 (23)

(24)

and this is fullfilled from assumptions on theorem 2.1. Finally, we obtain :

|IK |PK + |Eδ|P0 −→
n→+∞

0. (25)

Then,
P (Vn,τ > an) 6 P

(
V ′n,τ > an

)
+ o(1) (26)

Also, it is easy to see that :
P
(
V ′n,τ > an

)
6 P (Vn,τ > an) . (27)

Remark 1. The main constraint so far is pnKPK → 0 when n→∞ which leads to

ν <
1

2
γ2 − 2|γ|+ 1 .

Moreover, it also implies the following condition:

γ ∈ [−2, 2] is such that
1

2
γ2 − 2|γ|+ 1 > 0 ⇐⇒ γ ∈]2 +

√
2; 2−

√
2[

4.3 Chen–Stein method for V ′n,τ

We focus now on the asymptotic behaviour of V ′n,τ . For that purpose, we apply the Chen-Stein
method. We remind this result, which can be found in [AGG89], in the following lemma:
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Lemma 4.5. The Chen-Stein Method
Let I be a set of indices. Let α ∈ I and Bα a set of subset of I (i.e. for all α, Bα ⊂ I). Let ηα
be random variables. For a given t ∈ R, we define λ :=

∑
α ∈I

P (ηα > t). Then,

∣∣∣∣P(max
α∈I

(ηα) 6 t

)
− e−λ

∣∣∣∣ 6 min

(
1,

1

λ

)
. (b1 + b2 + b3) , (28)

where

• b1 =
∑
α∈I

∑
β∈Bα

P(ηα > t)P (ηβ > t)

• b2 =
∑
α∈I

∑
α 6=β∈Bα

P (ηα > t, ηβ > t)

• b3 =
∑
α∈I

E [|E[1ηα>t|σ(ηβ, β ∈ I\Bα)]− E[1ηα>t]|].

As we said, this method is an approximation of weekly dependent events by a Poisson law
which is represented by the quantity e−λ ( corresponding to P (Z = 0), Z having a Poisson law
P (λ)). We need to find weekly dependent events to have b1, b2 and b3 small (even null or asymp-
totically null).

In our case, notations are :

• Λ = Λ0
p ∪ ΛKp .

• α = (k, j) ∈ Λ.

• Bα = Bkj = {(u, v) ∈ Λ : |k − u| < τ +K, |j − v| < τ +K and (k, j) 6= (u, v)}.

• ηα = Zα = Zkj =
∣∣tXkXj

∣∣ =

∣∣∣∣ n∑
i=1

Xk
i X

j
i

∣∣∣∣.
• λn =

∑
α∈Λ

P(Zα > an).

• b1,n =
∑
α∈Λ

∑
β∈Bα

P(Zα > an)P(Zα > an).

• b2,n =
∑
α∈Λ

∑
α 6=β∈Bα

P(Zα > an, Zβ > an).

• b3,n =
∑
α∈Λ

E [|E [1Zα>an |σ (Zβ, β ∈ Λ\Bα)]− E [1Zα>an ]|] .

First of all, we compute λn to assure it converges (as n → +∞) to a finite value. Then, we
compute b1,n, b2,n and b3,n. Let us start with a preliminary lemma.

Lemma 4.6. Considering the previous notations, with straightforward computations we obtain
the following results :

• |Λ0
p| ∼ p2

n/2 as n→ +∞

• |Bij | 6 8(τ +K)pn ∼ 8Kpn as n→ +∞

• |ΛKp | 6 |IK |

12



4.3.1 Computation of λn

According to the Chen-Stein method and using the fact that random variables have the same
law when indices are in the same set, we have

λn =
∑

α∈Λ0
p∪ΛKp

P (Zα > an) =
∑
α∈Λ0

p

P (Zα > an) +
∑
α∈ΛKp

P (Zα > an) =|Λ0
p|.P0 + |ΛKp |.PK

According to theorem 2.1, lemma 4.3 and lemma 4.6, we have

lim
n→+∞

|ΛKp |.PK = 0

while, according to lemma 4.2 and lemma 4.6,

|Λ0
p|.P0 ∼

+∞
p2
n

1

p2
n

1√
8π
ey/2 =

1√
8π
ey/2.

Finally, we obtain :

lim
n→+∞

(λn) =
1√
8π
ey/2 (29)

This quantity appears in the distribution function of the asymptotic Gumbel random variable.

4.3.2 Computation of b1,n

We add some notations :

• B0
α := Bα ∩ Λ0

p and |B0
α| 6 |Bα| 6 8(τ +K)pn

• BK
α := Bα ∩ ΛKp and |BK

α | 6 K2

• Pα := P (Zα > an)

As used above, Zα1 and Zα2 will have the same law as long as α1 and α2 belong to the same set.
Then, we have :

b1,n =
∑

α∈Λ0
p∪ΛKp

∑
β∈Bα

PαPβ

=
∑
α∈Λ0

p

∑
β∈B0

α

PαPβ +
∑
α∈Λ0

p

∑
β∈BKα

PαPβ +
∑
α∈ΛKp

∑
β∈B0

α

PαPβ +
∑
α∈ΛKp

∑
β∈BKα

PαPβ

=
∑
α∈Λ0

p

∑
β∈B0

α

(P0)2 +
∑
α∈Λ0

p

∑
β∈BKα

P0PK +
∑
α∈ΛKp

∑
β∈B0

α

PKP0 +
∑
α∈ΛKp

∑
β∈BKα

(PK)2

= |Λ0
p|.|B0

α|. (P0)2 + |Λ0
p|.|BK

α |P0PK + |ΛKp |.|B0
α|PKP0 + |ΛKp |.|BK

α |. (PK)2

At this point, we need to check that lim
n→+∞

(b1,n) = 0, so we focus particulary on :

13



1. |Λ0
p|.|B0

α|. (P0)2 :

|Λ0
p|.|B0

α|. (P0)2 ∼ 1

2
p2
n.|B0

α|. (P0)2 6 4(τ +K)p3
n.O

(
1

p4
n

)
= O

(
pν−1
n

)
(30)

From assumptions on ν we have lim
n→+∞

[
|Λ0
p|.|B0

α|. (P0)2
]

= 0

2. |Λ0
p|.|BK

α |P0PK :

|Λ0
p|.|BK

α |P0PK ∼ 1

2
p2
n|BK

α |P0PK 6
1

2
K2p2

nP0PK 6 O
(
p2+2ν
n

)
O
(
p−2
n

)
PK = O

(
p2ν
n PK

)
According to lemma 4.3, we will have lim

n→+∞

[
p2ν
n PK

]
= 0 iff 2ν < cγ which is true from

hypothesis 5 in theorem 2.1. Then, we obtain :

lim
n→+∞

[
|Λ0
p|.|BK

α |P0PK
]

= 0

3. |ΛKp |.|B0
α|PKP0 : We use the same principle of computation than previsouly :

|ΛKp |.|B0
α|PKP0 6 pnK|B0

α|PKP0 6 8pnK(τ +K)pnPKP0 = O
(
p2ν
n PK

)
(31)

So, from previous assumptions on ν, we have :

lim
n→+∞

[
|ΛKp |.|B0

α|PKP0

]
= 0 .

4. |ΛKp |.|BK
α |. (PK)2 : We have :

|ΛKp |.|BK
α |. (PK)2 6 pK3 (PK)2 = O

(
p1+3ν
n

)
(PK)2 (32)

According to lemma 4.3, if 1 + 3ν < 2cγ , we have

lim
n→+∞

[
|ΛKp |.|BK

α |. (PK)2
]

= 0 .

To conclude, we finally obtain :
lim

n→+∞
[b1,n] = 0 .

Remark 2. The main constraint here is pnK3 (PK)2 → 0 which is true from condition pnKPK →
0 of remark 1.

4.3.3 Computation of b2,n

The computation of b2,n is the most technical part. As we did for the computation of b1,n, we
will divide this computation into four parts (according on which set we are). We remind the
definition of b2,n :

b2,n =
∑

α∈Λ0
p∪ΛKp

∑
β∈Bα

P (Zα > an, Zβ > an) .

Here we introduce some new notations :
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• Pαβ := P (Zα > an, Zβ > an)

• P0i := Pαβ1α∈Λ0
p
1β∈Ωi where Ωi will be a subset of indices and i an integer.

• PKi := Pαβ1α∈ΛKp
1β∈Ωi where Ωi will be a subset of indices and i an integer.

To show that lim
n→+∞

[b2,n] = 0, we will divide it into four sums, each one being the sum of the
same probability on a given set of indices. Then, we have :

b2,n =
∑
α∈Λ0

p

∑
β∈B0

α

Pαβ

︸ ︷︷ ︸
:=Q1

+
∑
α∈Λ0

p

∑
β∈BKα

Pαβ

︸ ︷︷ ︸
:=Q2

+
∑
α∈ΛKp

∑
β∈B0

α

Pαβ

︸ ︷︷ ︸
:=Q3

+
∑
α∈ΛKp

∑
β∈BKα

Pαβ

︸ ︷︷ ︸
:=Q4

(33)

Computation of Q1 :

First, we define some additional subsets of indices. In particular, we have :

1. Ω1 := {(u, v) ∈ Λ0
p : i− u < τ and j − v < τ} and |Ω1| 6 τ2

2. Ω2 := {(u, v) ∈ Λ0
p : i− u < τ and τ < j − v < τ +K} and |Ω2| 6 τK

3. Ω3 := {(u, v) ∈ Λ0
p : τ < i− u < τ +K and j − v < τ} and |Ω3| 6 τK

4. Ω4 := {(u, v) ∈ Λ0
p : i− u < τ and τ +K 6 j − v} and |Ω4| 6 τ (pn − τ −K) 6 τpn

5. Ω5 := {(u, v) ∈ Λ0
p : τ +K 6 i− u and j − v < τ} and |Ω5| 6 τ (pn − τ −K) 6 τpn

6. Ω6 := {(u, v) ∈ Λ0
p : τ < i− u < τ +K and τ < j − v < τ +K} and |Ω6| 6 K2

7. Ω7 := {(u, v) ∈ Λ0
p : τ < i− u < τ +K < and τ +K 6 j − v}

and |Ω7| 6 K (pn − τ −K) 6 Kpn

8. Ω8 := {(u, v) ∈ Λ0
p : τ +K 6 i− u and j − v < τ} and |Ω8| 6 K (pn − τ −K) 6 Kpn

We have :

Q1 6 4

8∑
i=1

∑
α∈Λ0

p

∑
β∈Ωi

Pαβ (34)

Then, using the fact that on each given subset the random variables have the same law :

Q1 6
∣∣Λ0

p

∣∣ . |Ω1|P01 +
∣∣Λ0

p

∣∣ . |Ω2|P02 +
∣∣Λ0

p

∣∣ . |Ω3|P03 +
∣∣Λ0

p

∣∣ . |Ω4|P04 (35)

+
∣∣Λ0

p

∣∣ . |Ω5|P05 +
∣∣Λ0

p

∣∣ . |Ω6|P06 +
∣∣Λ0

p

∣∣ . |Ω7|P07 +
∣∣Λ0

p

∣∣ . |Ω8|P08 (36)

So, we just have to show that each part will have a null limit when n is going to infinity.

Lemma 4.7. Using the previous notations, we have, as n→ +∞ :∣∣Λ0
p

∣∣ . |Ω1|P01 → 0 (37)
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Proof. We have :∣∣Λ0
p

∣∣ . |Ω1|P01 6
∣∣Λ0

p

∣∣ τ2P01 ∼
1

2
p2
nτ

2P01 = o
(
p2+2t
n P01

)
for any t > 0

where we use lemma 4.6 for the equivalent. We can write :

P01 = P

(∣∣∣∣∣
n∑
k=1

u1
ku

2
k

∣∣∣∣∣ > an,

∣∣∣∣∣
n∑
k=1

u3
ku

4
k

∣∣∣∣∣ > an

)
(38)

(39)

where
(
u1
k, u

2
k, u

3
k, u

4
k

)
16k6n

i.i.d∼ N4 (0,Σ4) and

Σ4 =


1 0 r1 0
0 1 0 r2

r1 0 1 0
0 r2 0 1

 ,

where coefficients r1, r2 are from the correlation matrix (rkj). From Lemma 6.11 of [CJ11a],
focusing on equation (131), we know that

P01 6 O
(
p−2b2+ε1
n

)
+O

(
p−2−2c2+ε2
n

)
as n→ +∞ (40)

for any ε1, ε2 > 0 and where a = 1+(1−δ)2
2 , b = a

(1−δ)2 and c = 1−a
3 for δ ∈]0, 1[. By construction

b2 − 1 > 0, hence for a well-chosen t such that t < b2 − 1, there exists ε1(δ) > 0 such that we
have :

ε1 < 2b2 − 2− 2t . (41)

Analogously, we can find ε2(δ) such that:

ε2 < 2
(
c2 − t

)
. (42)

Since τ = o(pt) for any t > 0, we have∣∣Λ0
p

∣∣ . |Ω1|P01 → 0 as n→ +∞ . (43)

Lemma 4.8. Using previous notations, we have :∣∣Λ0
p

∣∣ . |Ω2|P02 → 0 (44)

Proof. We have :∣∣Λ0
p

∣∣ . |Ω2|P02 6 τK
∣∣Λ0

p

∣∣P02 ∼
1

2
p2
nτKP02 = O

(
τp2+ν

n P02

)
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where we use the lemma 4.6 for the equivalence above. In this proof, we almost have the same
case than in the proof of lemma 4.7. In fact, the only difference is the matrix Σ4 which is now

Σ4 =


1 0 r 0
0 1 0 εn
r 0 1 0
0 εn 0 1

 ,

where r is a coefficient from the matrix (rkj). So, by the same method we have

p2+ν
n P02 → 0 (45)

iff ε1 < 2b2−2−ν and ε2 < 2c2−ν where we still have b = 1+(1−δ)2

2(1−δ)2 and c = 1−(1−δ)2
6 . Moreover

we can show that b2 − 1 > c2. Then, if ν < 2c2 (fullfilled by assumptions in theorem 2.1), and
from τ = o

(
ptn
)
for any t > 0, we have :∣∣Λ0

p

∣∣ . |Ω2|P02 → 0 . (46)

Lemma 4.9. Using notations previously introduced, we have :∣∣Λ0
p

∣∣ . |Ω3|P03 → 0 (47)

Proof. This proof is exactly the same than for lemma 4.8 except that the matrix becomes

Σ4 =


1 0 εn 0
0 1 0 r
εn 0 1 0
0 r 0 1

 .

In particular, we obtain the same condition on ν.

Lemma 4.10. Using notations previously introduced, we have :∣∣Λ0
p

∣∣ . |Ω4|P04 → 0 (48)

Proof. We have : ∣∣Λ0
p

∣∣ . |Ω4|P04 6 τpn
∣∣Λ0

p

∣∣P04 ∼ τp3
nP04 (49)

Now, the correlation matrix is Σ4 =


1 0 r 0
0 1 0 0
r 0 1 0
0 0 0 1

.

Thanks to the lemma 6.9 in [CJ11a], proved in the supplementary paper, we obtain P04 =

O
(
p−4+ε
n

)
for any ε > 0. Then, we have p3

nτP04 = O
(

τ
p1−εn

)
which tends to 0 as n → ∞ since

τ = o
(
ptn
)
for any t > 0.
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Lemma 4.11. Using notations previously introduced, we have :∣∣Λ0
p

∣∣ . |Ω5|P05 → 0 . (50)

Proof. This proof is exactly the same than for lemma 4.10 considering the correlation matrix

Σ4 =


1 0 0 0
0 1 0 r
0 0 1 0
0 r 0 1



Lemma 4.12. Using notations previously introduced, we have :∣∣Λ0
p

∣∣ . |Ω6|P06 → 0 (51)

Proof. This proof is exactly the same than for lemma 4.8 except that the matrix become

Σ4 =


1 0 εn 0
0 1 0 εn
εn 0 1 0
0 εn 0 1


In particular, we have : ∣∣Λ0

p

∣∣ . |Ω6|P06 6 K
2
∣∣Λ0

p

∣∣P06 ∼ O
(
p2+2ν
n P06

)
(52)

with Σ4 as correlation matrix for the 4-uplet in P06. As for lemma 4.8, we have the following
conditions

ε1 < 2b2 − 2− 2ν and ε2 < 2
(
c2 − ν

)
(53)

which is summarized in ν < c2, and which is true considering theorem 2.1. Then, we obtain the
desired result : ∣∣Λ0

p

∣∣ . |Ω6|P06 → 0 (54)

Lemma 4.13. Using notations previously introduced, we have :∣∣Λ0
p

∣∣ . |Ω7|P07 → 0 (55)

Proof. This proof is exactly the same than for lemma 4.10 considering the correlation matrix

Σ4 =


1 0 εn 0
0 1 0 0
εn 0 1 0
0 0 0 1

 .
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Lemma 4.14. Using notations previously introduced, we have :∣∣Λ0
p

∣∣ . |Ω8|P08 → 0 (56)

Proof. This proof is exactly the same than for lemma 4.10 considering the correlation matrix

Σ4 =


1 0 0 0
0 1 0 εn
0 0 1 0
0 εn 0 1

 .

Remark 3. The main constraint here for Q1 is ν < c2.

Computation of Q2 :

For this case, we will divide the computation into two parts. Indeed, we will consider two cases
: when α is close to the set ΛKp and when it is not. For that purpose, we introduce the following
sets :

I0,I = {(i, j) ∈ [[1, p]], i < j and τ +K < j − i < τ + 4K} and Λ0
p,I = Λ0

p ∩ I0,I

and

I0,II = I0\I0,I and Λ0
p,II = Λ0

p ∩ I0,II .

We can write :

Q2 :=
∑
α∈Λ0

p

∑
β∈BKα

Pαβ =
∑

α∈Λ0
p,I

∑
β∈BKα

Pαβ +
∑

α∈Λ0
p,II

∑
β∈BKα

Pαβ .

Now, we look at the sum on Λ0
p,I . We notice that on this set, the probability Pαβ is issued

from a Gaussian vector with correlation matrix

Σ4 =


1 0 r1 r2

0 1 r3 r4

r1 r3 1 εn
r2 r4 εn 1


where |ri| 6 1− δ for all i ∈ {1, 2, 3, 4}. Moreover, coefficients (ri)i may be replaced here by εn
according to the position of the indice in both sets Λ0

p,I and B
K
α . But we know that lim

n→+∞
(εn) = 0

then, for n large enough, we still have |ri| 6 1 − δ. Using Cauchy-Schwarz inequality, we can
bound :

Pαβ = E
[
1Zα>an1Zβ>an

]
6

√
E
[
12
Zα>an

]
E
[
12
Zβ>an

]
6
√
E [1Zα>an ]E

[
1Zβ>an

]
=
√
PαPβ

Now, we use the fact that α ∈ Λ0
p,I ⊂ Λ0

p and β ∈ BK
α ⊂ IK , then :

19



Pαβ 6
√
P0PK

which is true for any |ri| 6 1 then, sup
|ri|61,i=1,...,4

Pαβ 6
√
P0PK . At this point, using |Λ0

p,I | 6

3Kp, |BK
α | 6 K2, and P0 = O

(
p−2
)
, we get:∑

α∈Λ0
p,I

∑
β∈BKα

Pαβ 6 3K3p
√

P0PK 6 3K3P1/2
K O(1) = O

(
p3νP1/2

)
as n→ +∞.

Now, using lemma 4.3:

p3νP1/2 −→
n→+∞

0⇔ 3ν <
1

2

(
1

2
γ2 − 2|γ|+ 2

)
⇔ ν <

1

6
cγ (57)

which is true according to assumptions of theorem 2.1.

Now, let us focuse on the computation of Λ0
p,II . For that purpose, we introduce four subsets:

• Ω2
1 := {(u, v) ∈ BK

α : u− i < τ and j − v > τ +K} and |Ω2
1| 6 Kτ

• Ω2
2 := {(u, v) ∈ BK

α : τ +K < u− i and j − v < τ} and |Ω2
2| 6 Kτ

• Ω2
3 := {(u, v) ∈ BK

α : τ 6 u− i 6 τ +K and j − v > τ +K} and |Ω2
2| 6 K2

• Ω2
4 := {(u, v) ∈ BK

α : τ +K < u− i and τ 6 j − v 6 τ +K} and |Ω2
4| 6 K2

We have :

∑
α∈Λ0

p,II

∑
β∈BKα

Pαβ 6 4
4∑
i=1

∑
α∈Λ0

p,II

∑
β∈Ω2

i

Pαβ

.
In order to consider all these subset, we have the four next lemmas :

Lemma 4.15. Considering the same notations as previously :
(
u1
k, u

2
k, u

3
k, u

4
k

)
16k6n

i.i.d∼ N4 (0,Σ4).

If the probability Pαβ is issued from a Gaussian vector with covariance matrix Σ4 =


1 0 r1 x
0 1 0 0
r1 0 1 εn
x 0 εn 1


where x ∈ {εn, 0}, then : ∑

α∈Λ0
p,II

∑
β∈Ω2

1

Pαβ 6 O
(
pt+ν+εP1/2

K

)
(58)

for any t > 0 and any ε > 0.

Proof. In order to prove this result, we observe that in this case, for all k > 1, u2
k is independent

of {u1
k, u

3
k, u

4
k}. It means that conditionally on u1

k, we have independence between Z12 and Z34.
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By consequence, using Cauchy-Schwarz, we obtain :

Pαβ = E
[
E
[
1Z12>an1Z34>an |u1

k, k = 1, . . . , n
]]

(59)
= E

[
E
[
1Z12>an |u1

k, k = 1, . . . , n
]
E
[
1Z34>an |u1

k, k = 1, . . . , n
]]

(60)

6

√
E
[
E
[
1Z12>an |u1

k, k = 1, . . . , n
]2]E [E [1Z34>an |u1

k, k = 1, . . . , n
]2] (61)

Now, because u1
k is independent of u2

k, we can use lemma 6.7 from [CJ11a] and we have :

E
[
E
[
1Z12>an |u1

k, k = 1, . . . , n
]2]

= O
(
p−4+ε

)
for any ε > 0. And on the other side, we have :

E
[
E
[
1Z34>an |u1

k, k = 1, . . . , n
]2]
6 PK

Finally, using |Λ0
p,II | 6 p2 and |Ω2

1| 6 Kτ , and writing K = O(pν), we have the desired result
: ∑

α∈Λ0
p,II

∑
β∈Ω2

1

Pαβ 6 O
(
pt+ν+εP1/2

K

)
(62)

Now, from lemma 4.15 we have the condition :

t+ ν + ε <
1

2

(
1

2
γ2 − 2|γ|+ 2

)
,

which can be fullfilled from condition in eq. (57) and for well-chosen t > 0 and ε > 0. Finally we
obtain, with our condition on ν that :

lim
n→+∞

 ∑
α∈Λ0

p,II

∑
β∈Ω2

1

Pαβ

 = 0 .

For the other subsets Ω2
i , i = 2, 3, 4, we will use the same method. Indeed we notice that

respectively for Ω2
2, Ω2

3 and Ω2
4, the covariance matrices involved are respectively :

Σ2
4 =


1 0 0 0
0 1 x r
0 x 1 εn
0 r εn 1

 , Σ3
4 =


1 0 εn x
0 1 0 0
εn 0 1 εn
x 0 εn 1

 , Σ4
4 =


1 0 0 0
0 1 x εn
0 x 1 εn
0 εn εn 1

 (63)

For each case, we use the fact that we always have u2
k (or u1

k) independent of the other three
random variables. Also, in order to use the lemma 4.15, we notice that by construction Z12 = Z21.
Then, for cases Ω2

3 and Ω2
4, we just have to consider the Gaussian vector (u2

k, u
1
k, u

3
k, u

4
k) instead

of (u1
k, u

2
k, u

3
k, u

4
k). In that way, all matrices have the same form than in lemma 4.15 and similar
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upper-bound for the probability. Now, we use the upper-bound of subsets Ω2
i . More precisely,

for Ω2
3 and Ω2

4:∑
α∈Λ0

p,II

∑
β∈Ω2

3

Pαβ 6 |Λ0
p,II |.|Ω2

3|P
1/2
K O

(
p−2+ε

)
= O

(
p2ν+εP1/2

K

)
for any ε > 0

It means that we need to have, according to lemma 4.3 :

2ν <
1

2

(
1

2
γ2 − 2|γ|+ 2

)
⇔ ν <

1

4

(
1

2
γ2 − 2|γ|+ 2

)
. (64)

With this condition

lim
n→+∞

 ∑
α∈Λ0

p,II

∑
β∈Ω2

3

Pαβ

 = 0

and

lim
n→+∞

 ∑
α∈Λ0

p,II

∑
β∈Ω2

4

Pαβ

 = 0

Finally, the case Ω2
2 leads to the exactly same result than for Ω2

1 because of the upper-bound on
|Ω2

2| which is the same than for |Ω2
1|. Then, we have :

lim
n→+∞

 ∑
α∈Λ0

p,II

∑
β∈BKα

Pαβ

 = 0

and then
lim

n→+∞
[Q2] = 0

Remark 4. The main constaint here is ν < 1
6cγ.

Computation of Q3 :

We focuse here on Q3 =
∑

α∈ΛKp

∑
β∈B0

α

Pαβ . Once more, we will consider different subsets for β

according to its place into B0
α. More precisely, let us define :

• Ω3
1 = {(u, v) ∈ Λ0

p : i− u < τ and v − j < τ} and |Ω3
1| 6 τ2.

• Ω3
2 = {(u, v) ∈ Λ0

p : i− u < τ and τ 6 v − j 6 τ +K} and |Ω3
2| 6 τK.

• Ω3
3 = {(u, v) ∈ Λ0

p : i− u < τ and τ +K < v − j} and |Ω3
3| 6 τp.

• Ω3
4 = {(u, v) ∈ Λ0

p : τ 6 i− u 6 τ +K and v − j < τ} and |Ω3
4| 6 τK.

• Ω3
5 = {(u, v) ∈ Λ0

p : τ +K < i− u and v − j < τ} and |Ω3
5| 6 τp.
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• Ω3
6 = {(u, v) ∈ Λ0

p : τ 6 i− u 6 τ +K and τ 6 v − j 6 τ +K} and |Ω3
6| 6 K2.

• Ω3
7 = {(u, v) ∈ Λ0

p : τ 6 i− u 6 τ +K and τ +K < v − j} and |Ω3
7| 6 Kp.

• Ω3
8 = {(u, v) ∈ Λ0

p : τ +K < i− u and τ 6 v − j 6 τ +K} and |Ω3
8| 6 Kp.

Then, we have :

Q3 6
8∑
i=1

∑
α∈ΛKp

∑
β∈Ω3

i

Pαβ

For Q3, we use the computation of Q2. Indeed, covariance matrices which are involved in the
computation fo Q3 are similar than for Q2. The similarity comes from the fact that we exchange
the role between α and β. More precisely, for Q2 we had α ∈ Λ0

p and β ∈ BK
α and now we

have α ∈ ΛKp and β ∈ B0
α. So, covariance matrices here will have the same structure than in Q2

exchanging columns {1, 2} and columns {3, 4}.

We notice that :
|Ω3

1|, |Ω3
2|, |Ω3

4| 6 |Ω3
6| 6 K2 (65)

Using the fact that B0
α ⊂ Λ0

p, we have :∑
α∈ΛKp

∑
β∈Ω3

6

Pαβ 6
∑
α∈ΛKp

∑
β∈Ω3

6

P0 6 pK.K
2P0 = O

(
p3ν−1

)
as n→ +∞

However, from condition in eq. (57), we have ν < 1
3

(
1
4γ

2 − |γ|+ 1
)
. But, γ ∈]−2+

√
2, 2−

√
2[.

Then, 1
3

(
1
4γ

2 − |γ|+ 1
)
∈]1

6 ,
1
3 [. It leads, in particular, to ν < 1

3 and then :

lim
n→+∞

 ∑
α∈ΛKp

∑
β∈Ω3

6

Pαβ

 = 0

And so, from equation eq. (65) :

lim
n→+∞

 ∑
α∈ΛKp

∑
β∈Ω3

1

Pαβ

 = lim
n→+∞

 ∑
α∈ΛKp

∑
β∈Ω3

2

Pαβ

 = lim
n→+∞

 ∑
α∈ΛKp

∑
β∈Ω3

4

Pαβ

 = 0 (66)

Now, we look at the case when β belongs to Ω3
3,Ω

3
5,Ω

3
7 and Ω3

8. We start by describing
each covariance matrix involved. We note x ∈ {εn, 0} and r a correlation coefficient such that
|r| 6 1− δ. We have :

• for α ∈ ΛKp , β ∈ Ω3
3, Σ3

4 =


1 εn r 0
εn 1 x 0
r x 1 0
0 0 0 1



• for α ∈ ΛKp , β ∈ Ω3
5, Σ3

4 =


1 εn 0 x
εn 1 0 r
0 0 1 0
x r 0 1


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• for α ∈ ΛKp , β ∈ Ω3
7, Σ3

4 =


1 εn εn 0
εn 1 x 0
εn x 1 0
0 0 0 1



• for α ∈ ΛKp , β ∈ Ω3
8, Σ3

4 =


1 εn 0 x
εn 1 0 εn
0 0 1 0
x εn 0 1

.

We observe that for each case above one variable u3
k or u4

k is independent from the three other
ones. Then we can use the same method than for Q2 (conditioning on u3

k when u
4
k is independent

of the other ones or reversely on u3
k).Then, by Cauch-Schwarz, we obtain the same upper-bound

for Pαβ . To show that we obtain the desired convergence, we study here the worst case. That is
to say, using the fact that |Ω3

i | 6 Kp for i = 3, 5, 7, 8, we can write :∑
α∈ΛKp

∑
β∈Ω3

7

Pαβ 6 |ΛKp |.|Ω3
7|P

1/2
K O

(
p−2+ε

)
6 O

(
p2ν+εPK

)
as n→ +∞

Then, we have exactly the same condition on ν that for equation eq. (64). It means that

lim
n→+∞

 ∑
α∈ΛKp

∑
β∈Ω3

7

Pαβ

 = 0,

and it induces that
lim

n→+∞
[Q3] = 0.
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Computation of Q4 :

This last quantity is simpler because we can write :

Q4 =
∑
α∈ΛKp

∑
β∈BKα

Pαβ 6
∑
α∈ΛKp

∑
β∈BKα

PK =
∣∣ΛKp ∣∣ . ∣∣BK

α

∣∣PK 6 pK3Pk = O
(
p1+3νPK

)
as n→ +∞

So, to have lim
n→+∞

(Q4) = 0 we must have, according to lemma 4.3:

1 + 3ν <
1

2
γ2 − 2|γ|+ 2 ⇔ ν <

1

3
(cγ − 1)

Under this assumption on ν we have

lim
n→+∞

[Q4] = 0

Finally, gathering the results from Q1 to Q4 and under sufficient assumtions, we have :

lim
n→+∞

[b2,n] = 0.

Remark 5. The constraint on ν is ν < 1
3(cγ − 1).

4.3.4 Computation of b3,n

We have :

b3,n =
∑

α∈Λ0
p∪ΛKp

E
[∣∣E [1Zα>an |σ (Zβ, β ∈ (Λ0

p ∪ ΛKp )\Bα
)]
− E [1Zα>an ]

∣∣]
=
∑
α∈Λ0

p

E
[∣∣E [1Zα>an |σ (Zβ, β ∈ (Λ0

p ∪ ΛKp )\Bα
)]
− E [1Zα>an ]

∣∣]
+
∑
α∈ΛKp

E
[∣∣E [1Zα>an |σ (Zβ, β ∈ (Λ0

p ∪ ΛKp )\Bα
)]
− E [1Zα>an ]

∣∣]
(67)

The first term of the RHS above is 0 from the choice of Bα. Hence

b3,n =
∑
α∈ΛKp

E
[∣∣E [1Zα>an |σ (Zβ, β ∈ (Λ0

p ∪ ΛKp )\Bα
)]
− E [1Zα>an ]

∣∣] (68)

6
∑
α∈ΛKp

E
[
E
[
1Zα>an |σ

(
Zβ, β ∈ (Λ0

p ∪ ΛKp )\Bα
)]]

+ E [E [1Zα>an ]] (69)

6 2
∣∣ΛKp ∣∣PK (70)

(71)
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According to the hypotheses in theorem 2.1, we have

lim
n→+∞

[∣∣ΛKp ∣∣PK] = 0

Finally, we obtain :

lim
n→+∞

[b3,n] = 0

Remark 6. Gathering remark 1 to 5 and noticing that on γ ∈] − 2 +
√

2, 2 −
√

2[ we have
1
3(cγ − 1) < 1

6cγ we get the final assumptions of theorem 2.1 for ν.

�

4.4 Proof of Theorem 2.1

We showed in Section 4.3 that

P
(
V ′n,τ 6 an

)
= exp (−λn) + o (1) as n→ +∞ (72)

Thanks to lemma 4.2, we have, for n large enough :

P (Vn,τ 6 an) = exp (−λn) + o (1) as n→ +∞ (73)

From the expressions of an and λn, this leads us to the asymptotic behaviour :

1

n
V 2
n,τ − 4 log (pn) + log log (pn)

L−→
n→+∞

Z (74)

where Z has the Gumbel cdf defined in theorem 2.1. Then, we can write :

1

n log (pn)
V 2
n,τ − 4

P−→
n→+∞

0 (75)

Then, from Proposition 4.1 we have (6).
�

5 Proofs of technical results

5.1 Proof of Proposition 4.1

We first recall here the basic definition of tightness :

Definition 5.1. Let (un) be a real sequence. We say that (un) is a tight sequence if :

∀ε > 0,∃K > 0, sup
n≥1

(P (|un| ≥ K)) < ε (76)

For the proof of proposition 4.1 we use the following lemma which is proved in [Jia04a] (see
Lemma 2.2):
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Lemma 5.1. Let τ be an integer. We define |||A||| = max
1≤i<j≤p,|i−j|>τ

|Aij | for a

(p × p)-matrix. Let X be a random (n, p)-matrix where (X1, X2, . . . , Xp) are the p columns in
Rn and Rn the empirical correlation matrix of X. Let’s define, for any k ∈ [[1, p]] :

• hk = 1√
n
‖ Xk −Xk1n ‖ with Xk = 1

n

n∑
i=1

Xk
i

• cn,1 = max
16k6p

|hk − 1|

• cn,2 = min
16k6p

hk

• cn,3 = max
16k6p

|Xk|

• Vn,τ = max
16k<j6p,|k−j|>τ

|tXkXj | = max
16k<j6p,|k−j|>τ

|
n∑
i=1

Xk
i X

j
i |

Then,

|||nRn − tXX||| 6
c2
n,1 + 2cn,1

c2
n,2

Vn,τ + n

(
cn,3
cn,2

)2

(77)

We denote here by ∆n := |nLn,τ − Vn,τ |, for any n > 1. We have :∣∣n2L2
n,τ − V 2

n,τ

∣∣ = |nLn,τ − Vn,τ | . |nLn,τ + Vn,τ | 6 ∆n. (∆n + 2Vn,τ ) (78)

Now, we can notice :

∆n 6 |||nRn − tXX|||6
c2
n,1 + 2cn,1

c2
n,2

Vn,τ + n

(
cn,3
cn,2

)2

(79)

where the upper bound above refers to lemma 5.1. Using definition 5.1, we see that(
cn,1
√

n
log(pn)

)
n>1

:=
(
c′n,1
)
n>1

and
(
cn,3
√

n
log(pn)

)
n>1

:=
(
c′n,3
)
n>1

are both tight sequences. In

that way, both sequences c1,n = c′n,1

√
log(pn)
n and c4,n = c′4,n

√
log(p)
n are tight too (from Hyp 1 in

theorem 2.1, log(pn)
n → 0 when n→ +∞).

So,

∆n 6

log(pn)
n c

′2
n,1 + 2

√
log(pn)
n c′n,1

c2
n,2

Vn,τ + n
log(pn)

n

(
c′n,3
cn,2

)2

∆n

log(pn)
6

1
nc
′2
n,1 + 2

√
1
nc
′
n,1

c2
n,2

Vn,τ +

(
c′n,3
cn,2

)2

∆n

log(pn)
6

Vn,τ√
n log(pn)

c
′2
n,1

√
log(pn)
n + 2c′n,1

c2
n,2

+

(
c′n,3
cn,2

)2
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With this inequality, we notice that the sequence (∆′n)n>1 :=
(

∆n
log(pn)

)
n>1

is tight. Finally, with

tightness of (∆′n)n>1, we have from assumptions in theorem 2.1 :∣∣n2L2
n,τ − V 2

n,τ

∣∣
n

6
∆n

n
(∆n + 2Vn,τ ) =

∆′n log(pn)

n

(
∆′n log(pn) + 2Vn,τ

)
6 2

√
(log(pn))3

n

(
∆′n

√
log(pn)

n
+ Vn,τ

)
P−→

n→+∞
0.

5.2 Proof of Lemma 4.2

For the proof of this Lemma, we need the following technical result which is presented in [CJ11a]
(see Lemma 6.8) and proved in the supplementary paper.

Lemma 5.2. We consider the following hypotheses :

1. ξ1, . . . , ξn i.i.d random variables such that E[ξ1] = 0 and E[ξ2
1 ] = 1.

2. ∃t0 > 0, ∃α ∈]0, 1] such that E
[
et0|ξ1|

α]
< +∞.

3. (pn)n∈N∗ such that pn −→
n→+∞

+∞ and log(pn) = o
(
n

α
2+α

)
as n→ +∞

4. (yn)n>1 such that yn −→
n→+∞

y > 0

Then,

P

(
1√

n log(pn)

n∑
k=1

ξk > yn

)
∼

n→+∞

1

y
√

2π
p
− 1

2
y2n

n

√
log(pn)

−1
(80)

Let us check all the hypotheses of this lemma above. First we write :

P
(∣∣tX1Xτ+K+2

∣∣ > an
)

= P(

(∣∣∣∣∣
n∑
i=1

X1
iX

τ+K+2
i

∣∣∣∣∣ > an

)
(81)

Now, if we define ξi = X1
iX

τ+K+2
i , we have :

1. E[ξi]

|== E[X1
i ]E[Xτ+K+2

i ] = 0× 0 = 0 where the independence come from the sample.

2. E[ξ2
i ] |== E[

(
X1
i

)2
]E[
(
Xτ+K+2
i

)2
] = 1× 1 = 1

3. For t0 = 1
2 and α = 1, we have :

E[et0|ξ1|
α
] = E[e

|X1
1X

τ+K+2
1 |
2 ] 6 E[e

1
2(X1

1)
2

]E[e
1
2(Xτ+K+2

1 )
2

] < +∞

4. We have wn := an√
n log(p)

−→
n→+∞

√
4 = 2 > 0

5. According to the hypothesis 1 from theorem 2.1 : log(pn) = o(n
1
3 ) as n −→

n→+∞
+∞
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So we have all hypothesis needed to apply the lemma 5.2, and then :

P
(∣∣tX1Xτ+K+2

∣∣ > an
)

= P

(
1√

n log(pn)

∣∣tX1Xτ+K+2
∣∣ > an√

n log(pn)

)

= P

(
1√

n log(pn)

∣∣∣∣∣
n∑
i=1

X1
iX

τ+K+2
i

∣∣∣∣∣ > an√
n log(pn)

)

= P

(
1√

n log(pn)

n∑
i=1

X1
iX

τ+K+2
i >

an√
n log(pn)

)
+P

(
1√

n log(pn)

n∑
i=1

X1
iX

τ+K+2
i < − an√

n log(pn)

)

= P

(
1√

n log(pn)

n∑
i=1

X1
iX

τ+K+2
i > wn

)
+ P

(
− 1√

n log(pn)

n∑
i=1

X1
iX

τ+K+2
i > wn

)
(82)

From lemma 5.2

P
(∣∣tX1Xτ+K+2

∣∣ > an
)

=
1

2
√

2π
p
− 1

2
w2
n

n
1√

log(pn)
(1 + o(1)) +

1

2
√

2π
p
− 1

2
w2
n

n
1√

log(pn)
(1 + o(1))

=
1√
2π
p
− 1

2
w2
n

n
1√

log(pn)
(1 + o(1))

=
1

2π log(pn)
e
− 1

2

a2n
n log(pn)

− 1
2

log log(pn)
(1 + o(1)) =

1

p2
n

√
2π
e−

1
2
y(1 + o(1))

5.3 Proof of Lemma lemma 4.3

We remind that PK := P
(∣∣tX1Xτ+1

∣∣ > an
)
. We will apply once again lemma 5.2, with new

quantities ξ and ω:

• P+
K := P

(
tX1Xτ+1 > an

)
• P−K := P

(
tX1Xτ+1 < −an

)
• ξk := X1

kX
τ+1
k

• wk :=
1√

1 + ε2
n (ξk − εn)

.

Notice that (ξk)k>1 are independent due to the independence between each line of Xn. First
we compute E [ξk] = εn and var (ξk) = 1 + ε2

n. So, E [wk] = 0 and var (wk) = 1.We will apply the
lemma 5.2 with wk. Then,

P+
K = P

 1√
n log(pn)

n∑
k=1

wk >
an − nεn√

(1 + ε2
n)n log(pn)︸ ︷︷ ︸

:=zn

 (83)

From hypotheses of theorem 2.1, we have lim
n→+∞

[zn] := z = 2− γ > 0. Then,

29



P+
K ∼ 1

z
√

2π
p
− 1

2
z2n

n

√
log(pn)

−1

∼ 1

z
√

2π
exp

[
−1

2
z2
n log (pn)− 1

2
log log (pn)

]
∼ 1

z
√

2π
exp

[
−2

1 + ε2
n

log (pn)

(
1 +

ε2
n

4

log log (pn)

log (pn)
+
y

4

1

log (pn)
+

nε2
n

4 log (pn)
− εn

2

an
log (pn)

)]

With our hypotheses on εn, we have :

• −2

1 + ε2
n

log (pn) −→
n→+∞

−∞

• ε2
n

4

log log (pn)

log (pn)
−→

n→+∞
0

• y

4

1

log (pn)
−→

n→+∞
0

• nε2
n

4 log (pn)
−→

n→+∞

1

4
γ2 from εn ∼ γ

√
log(pn)
n .

• εn
2

an
log (pn)

−→
n→+∞

γ from an ∼ 2
√
n log(pn)

panP+
K ∼

1

z
√

2π
exp

[(
a− 2− 1

2
γ2 + 2γ + o (1)

)
log (pn)

]
(84)

Finally, for γ ∈]− 2, 2[ :

lim
n→+∞

[
panP+

K

]
= 0⇔ a < 2 +

1

2
γ2 − 2γ (85)

Analogously, we have :

P−K = P

(
1√

n log(pn)

n∑
k=1

wk < −
an + nεn√

(1 + ε2
n)n log(pn)

)
(86)

= P

 −1√
n log(pn)

n∑
k=1

wk >
an + nεn√

(1 + ε2
n)n log(pn)︸ ︷︷ ︸

:=z̃n

 (87)

Thanks to lemma 5.2 and because lim
n→+∞

[z̃n] := z̃ = 2 + γ > 0, we have :

P−K ∼
1

z̃
√

2π
exp

[
−2

1 + ε2
n

log (pn)

(
1 +

ε2
n

4

log log (pn)

log (pn)
+
y

4

1

log (pn)
+

nε2
n

4 log (pn)
+
εn
2

an
log (pn)

)]
(88)
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pbnP−K ∼
1

z̃
√

2π
exp

[(
b− 2− 1

2
γ2 − 2γ + o (1)

)
log (pn)

]
(89)

And finally, for γ ∈]− 2, 2[ :

lim
n→+∞

[
pbnP−K

]
= 0⇔ b < 2 +

1

2
γ2 + 2γ (90)

To conclude, observing that

min

(
2 +

1

2
γ2 + 2γ, 2 +

1

2
γ2 − 2γ

)
=

1

2
γ2 − 2|γ|+ 2 := cγ ,

combining eq. (90) and eq. (85), we obtain, for all d ∈ [0; cγ [ and as n→ +∞ :

PK := P
(∣∣tX1Xτ+1

∣∣ > an
)

= o
(
p−dn

)
. (91)
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