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Positive First-order Logic on Words
Denis Kuperberg

CNRS, LIP, ENS Lyon
Email: denis.kuperberg@ens-lyon.fr

Abstract—We study FO+, a fragment of first-order logic
on finite words, where monadic predicates can only appear
positively. We show that there is an FO-definable language that is
monotone in monadic predicates but not definable in FO+. This
provides a simple proof that Lyndon’s preservation theorem fails
on finite structures. We additionally show that given a regular
language, it is undecidable whether it is definable in FO+.

I. INTRODUCTION

Preservation theorems in first-order logic (FO) establish
a link between semantic and syntactic properties [AG97],
[Ros08]. We will be particularly interested here in Lyndon’s
theorem [Lyn59], which states that if a first-order formula
is monotone in a predicate P (semantic property), then it
is equivalent to a formula that is positive in P (syntactic
property). As for other preservation theorems, this result may
not hold when restricting the class of structures considered.
Whether Lyndon’s Theorem was true when restricted to finite
structures was an open problem for 28 years. It was finally
shown to fail on finite structures in [AG87] with a very difficult
proof, using a large array of techniques from different fields
of mathematics such as probability theory, topology, lattice
theory, and analytic number theory. A simpler but still quite
intricate proof of this fact was later given by [Sto95], using
Ehrenfeucht-Fraı̈ssé games on grid-like structures equipped
with two binary predicates.

The goal of this paper is to further restrict the class of struc-
tures under consideration, by allowing only finite words. We
will therefore work in this paper with the particular signature
associated with finite words: one binary predicate (the total
order), and a finite set of monadic predicates (encoding the
alphabet). We will call FO+ the fragment of first-order logic
on these models, that is syntactically positive in the monadic
predicates. Our purpose is twofold:
• Find out whether Lyndon’s Theorem holds on finite

words, and investigate the relation of this framework with
the more general case of finite structures.

• From the point of view of language theory: study the nat-
ural fragment of FO+-definable languages, in particular
given a regular language, can we decide whether it is
FO+-definable?

Recall that FO on words is a well-studied logic defining a
proper fragment of regular languages. This fragment has many
equivalent characterizations: definable by star-free expres-
sions, aperiodic monoids, LTL formulas,... [DG08], [Sch65],
[Kam68], [MP71].

Contributions

We define a semantic notion of monotone language on al-
phabets equipped with a partial order: the language is required
to be closed under replacement of a letter by a bigger one. This
generalizes the monotonicity condition on monadic predicates
in the sense of Lyndon. The negation-free logic FO+ can only
define monotone languages, and can be seen as a fragment of
the standard FO logic on words, in the context of ordered
alphabets.

Answering our first objective, we show that Lyndon’s The-
orem fails on finite words, by building a regular language
that is monotone and FO-definable, but not FO+-definable.
This proof uses a variant of Ehrenfeucht-Fraı̈ssé games that
characterizes FO+-definability, introduced in [Sto95], and
instantiated here on finite words. As a corollary, using suitable
axiomatizations of finite words, we obtain the failure of
Lyndon’s theorem on finite structures, in a much simpler way
than in [AG87], [Sto95].

Finally, answering our second objective, we show that FO+-
definability is undecidable for regular languages. This result is
obtained using a reduction from the Turing Machine Mortality
problem [Hoo66]. To our knowledge, this is the first example
of a natural1 class of regular languages for which membership
is undecidable.

Although we work in a specialized framework requiring a
partial order on the alphabet, we believe that this is not an
artificial construct, as it occurs naturally in several settings.
On one hand, powerset alphabets – i.e. letters are sets of
atomic predicates, and are naturally ordered by inclusion – are
standard in verification and model theory. The link between
powerset alphabets and model theory will be explicited in the
paper. On the other hand, ordered letters can be used as an
abstraction for factors of the input word that are naturally
equipped with a partial order, for instance in quantitative
generalizations of regular languages such as regular cost
functions [Col12].

Some details and additional remarks can be found in the
Appendix.

Related works

Monotone complexity
Positive fragments of first-order logic play a prominent role

in complexity theory. Indeed, an active research program con-

1The concept of “natural” class is of course a bit informal here, but for
instance we can think of it as classes inductively defined via a syntax. More
generally, any class of regular languages not purposely defined to have an
undecidable membership problem could be considered natural in this context.978-1-6654-4895-6/21/$31.00 ©2021 IEEE
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sists in studying positive fragments of complexity classes. This
includes for instance trying to lift equivalent characterizations
of a class to their positive versions, or investigating whether
a semantic and a syntactic definition of the positive variant
of a class are equivalent. See [GS92] for an introduction to
monotone complexity, and [LSS96], [Ste94] for examples of
characterizations of the positive versions of the classes P and
NP, in particular through extensions of first-order logic. The
aforementioned paper [AG87], which was the first to show
the failure of Lyndon’s theorem on finite structures, does so
by reproving in particular an important result on monotone
circuit complexity first proved in [FSS81]: Monotone-AC0 6=
Monotone ∩AC0.

Membership in subclasses of regular languages
Related to our undecidability result, we can mention that

there are syntactically defined classes of regular languages
for which decidability of membership is an open problem.
Such classes, also related to FO fragments, are the ones
defined via quantifier-alternation: given a regular language, is
it definable with an FO formula having at most k quantifier
alternations? Recent works obtained decidability results for
this question, but only for the first 3 levels of the quantifier
alternation hierarchy [PZ19]. For higher levels, the problem
remains open. Let us also mention the generalized star-height
problem [PST89]: can a given regular language be defined
in an extended regular expression (with complement allowed)
with no nesting of Kleene star? In this case it is not even
known whether all regular languages can be defined in this
way.

Quantitative extensions
First-order logic on words has been extended to quantitative

settings, which naturally yields a negation-free syntax, because
complementation becomes problematic in those settings. This
is the case in the theory of regular cost functions [Col12],
[KVB12], and in other quantitative extensions concerned with
boundedness properties, such as MSO+U [Boj04] or Magni-
tude MSO [Col13]. We hope that the present work can shed
a light on these extensions as well.

Notations and prerequisites

If i, j ∈ N, we note [i, j] the set {i, i+ 1, . . . , j}. If X is a
set, we note P(X) its powerset, i.e. the set of subsets of X .
We will note A a finite alphabet throughout the paper. The set
of finite words on A is A∗. The length of u ∈ A∗ is denoted
|u|. If L ⊆ A∗ is a language, we will note L its complement.
We will note dom(u) = [0, |u| − 1] the set of positions of a
word u. If u is a word and i ∈ dom(u), we will note u[i] the
letter at position i, and u[..i] the prefix of u up to position
i. Similarly, u[i..j] is the infix of u from position i to j and
u[i..] is the suffix of u starting in position i.

We will assume that the reader is familiar with the notion
of regular languages of finite words, and with some ways to
define such languages: finite automata (DFA for deterministic
and NFA for non-deterministic), finite monoids, and first-order

logic. See e.g. [DG08] for an introduction of all the needed
material.

II. MONOTONICITY ON WORDS

A. Ordered alphabet

In this paper we will consider that the finite alphabet A
is equipped with a partial order ≤A. This partial order is
naturally extended to words componentwise: a1a2 . . . an ≤A
b1b2 . . . bm if n = m and for all i ∈ [1, n] we have ai ≤A bi.

A special case that will be of interest here is when the
alphabet is built as the powerset of a set P of predicates, i.e.
A = P(P ), and the order ≤A is inclusion. We will call this a
powerset alphabet.

Taking A = P(P ) is standard in settings such as verification
and model theory, where several predicates can be considered
independently of each other in some position.

Powerset alphabets constitute a particular case of ordered
alphabets. The results obtained in this paper are valid for both
the powerset case and the general case. Due to the nature of
the results (existence of a counter-example and undecidability
result), it is enough to show them in the particular case
of powerset alphabets to cover both cases. Moreover, the
powerset alphabet case allows us to directly establish a link
with Lyndon’s theorem, which is stated in the framework
of model theory. For these reasons, we will keep the more
general notion of ordered alphabet for generic definitions, but
we will prove our main results on powerset alphabets in order
to directly obtain the stronger version of these results.

B. Monotone languages

We fix A a finite ordered alphabet.

Definition 1. We say that a language L ⊆ A∗ is monotone if
for all u ≤A v, if u ∈ L then v ∈ L.

Example 2. Let A = {a, b} with a ≤A b. Then A∗bA∗ is
monotone but its complement a∗ is not monotone.

Definition 3. Let L ⊆ A∗, the monotone closure of L is the
language L↑ = {v ∈ A∗ | ∃u ∈ L, u ≤A v}. It is the smallest
monotone language containing L.

In particular, if a ∈ A, we will note a↑ the set {b ∈ A |
a ≤A b}.

Lemma 4. Given an NFA A, we can compute in time O(|A| ·
|A|) an NFA A↑ for the monotone closure of L(A).

Proof. We build an NFA A↑ from A, by replacing every

transition p
a→ q of A by p

a↑→ q. We use here the standard
convention where a transition p

B→ q with B ⊆ A stands for
a set of transitions {p b→ q | b ∈ B}. It is straightforward to
verify that A↑ is an NFA for L↑: any run of A↑ on some word
v can be mapped to a run of A on some u ≤A v.

Theorem 5. Given a regular language L ⊆ A∗, it is decidable
whether L is monotone. The problem is in P if L is given by
a DFA and PSPACE-complete if L is given by an NFA.



Proof. Notice that if A is an NFA, L(A) is monotone if and
only if L(A↑) ⊆ L(A). This shows that the problem is in
PSPACE in general, and that it is in P whenA is a DFA, since it
reduces to checking emptiness of the intersection between A↑
and the complement of A. We show that the general problem
is PSPACE-hard by reducing from NFA universality. Let A
be an NFA on an alphabet A. We build the ordered alphabet
B = A∪ {a, b}, where a, b /∈ A, and a ≤B b is the only non-
trivial inequality in B. We build an NFA B of size polynomial
in the size of A and recognizing aA∗+bL(A), using standard
NFA constructions. We have that L(A) = A∗ if and only if
L(B) is monotone, thereby completing the PSPACE-hardness
reduction.

III. POSITIVE FIRST-ORDER LOGIC

A. Syntax and semantics

The main idea of positive FO, that we will note FO+, is
to guarantee via a syntactic restriction that it only defines
monotone languages.

Notice that since monotone languages are not closed under
complement (see Example 2), we cannot allow negation in the
syntax of FO+. This means we have to add dual versions of
classical operators of first-order logic.

This naturally yields the following syntax for FO+:

ϕ,ψ := a↑(x) | x ≤ y | x < y | ϕ ∨ ψ | ϕ ∧ ψ | ∃x.ϕ | ∀x.ϕ

As usual, variables x, y, . . . range over the positions of the
input word. The semantics is the same as classical FO on
words, with the notable exception that a↑(x) is true if and
only if x is labelled by some b ∈ a↑. Unlike classical FO, it is
not possible to require that a position is labelled by a specific
letter a, except when a↑ = {a}. This is necessary to guarantee
that only monotone languages can be defined.

Formal semantics of FO+

If ϕ is a formula with free variables FV(ϕ), its semantics
is a set JϕK of pairs of the form (u, α), where u ∈ A∗ and
α : FV(ϕ) → dom(u) a valuation for the free variables. We
write indistinctively u, α |= ϕ or (u, α) ∈ JϕK, to signify that
(u, α) satisfies ϕ. If FV (ϕ) = ∅, we can simply write u |= ϕ
instead of (u, ∅) |= ϕ. In this case, the language recognized
by ϕ is JϕK = {u ∈ A∗ | u |= ϕ}.

We define JϕK by induction on ϕ.
• u, α |= a↑(x) if a ≤A u[α(x)].
• u, α |= x ≤ y if α(x) ≤ α(y).
• u, α |= x < y if α(x) < α(y).
• Jϕ ∨ ψK = JϕK ∪ JψK.
• Jϕ ∧ ψK = JϕK ∩ JψK.
• u, α |= ∃x.ϕ if there exists i ∈ dom(u) such that

(u, α[x 7→ i]) ∈ JϕK.
• u, α |= ∀x.ϕ if for all i ∈ dom(u), we have (u, α[x 7→
i]) ∈ JϕK.

Here the valuation α[x 7→ i] maps y to
{
i if y = x
α(y) if y 6= x

.

Example 6. On alphabet A = {a, b, c} with a ≤A b.

• ∀x.a↑(x) recognizes {a, b}∗.
• ∃x.b↑(x) recognizes A∗bA∗.

Remark 7. In the powerset alphabet framework where A =
P(P ), we can naturally view FO+ as the negation-free frag-
ment of first-order logic, by having atomic predicates a↑(x)
range directly over P instead of A = P(P ). We can then
drop the a↑ notation, as predicates from P are considered
independently of each other. This way, p(x) will be true if
and only if the letter S ∈ A labelling x contains p. A letter
predicate S↑(x) in the former syntax can then be expressed
by
∧
p∈S p(x), so FO+ based on predicates from P is indeed

equivalent to FO+ based on A. We will take this convention
when working on powerset alphabets.

Example 8. Let A = P(P ) with P = {a, b}. The for-
mula ∃x, y. x ≤ y ∧ a(x) ∧ b(y) recognizes A∗{a, b}A∗ +
A∗{a}A∗{b}A∗.

B. Properties of FO+

Lemma 9. Assume the order on A is trivial, i.e. no two distinct
letters are comparable. Then all languages are monotone, and
any FO-definable language is FO+-definable.

Proof. The fact that all languages are monotone in this case
follows from the fact that for two words u, v we have u ≤A v
if and only if u = v.

If L is definable by an FO formula ϕ, we can build an
FO+ formula ψ from ϕ by pushing negations to the leaves
using the usual rewritings such as ¬(ϕ ∧ ψ) = ¬ϕ ∨ ¬ψ and
¬(∃x.ϕ) = ∀x.¬ϕ. For all letter a ∈ A and variable x, we
then replace all occurrences of ¬a(x) by

∨
b6=a b(x). Finally,

the negation of x ≤ y (resp. x < y) can be written y < x
(resp. y ≤ x).

Lemma 10. The logic FO+ can only define monotone lan-
guages.

Proof. By induction on formulas, see Appendix A for details.

It is natural to ask whether the converse of Lemma 10
holds: if a language is FO-definable and monotone, then is
it necessarily FO+-definable? This will be the purpose of
Section IV.

C. Ordered Ehrenfeucht-Fraı̈ssé games

We will explain here how FO+-definability can be captured
by an ordered variant of Ehrenfeucht-Fraı̈ssé games, that we
will call EF+-games.

This notion was defined in [Sto95] for general structures,
we will instantiate it here on words.

We define the n-round EF+-game on two words u, v ∈ A∗,
noted EF+

n (u, v). This game is played between two players,
Spoiler and Duplicator.

If k ∈ N, a k-position of the game is of the form (u, α, v, β),
where α : [1, k] → dom(u) and β : [1, k] → dom(v) are
valuations for k variables in u and v respectively. We can



think of α and β as giving the position of k previously placed
tokens in u and v.

A k-position (u, α, v, β) is valid if for all i ∈ [1, k], we
have u[α(i)] ≤A v[β(i)], and for all i, j ∈ [1, k], α(i) ≤ α(j)
if and only if β(i) ≤ β(j).

Notice the difference with usual EF-games: here we do not
ask that tokens placed in the same round have same label,
but that the label in u is ≤A-smaller than the label in v. This
feature is intended to capture FO+ instead of FO.

The game starts from the 0-position (u, ∅, v, ∅).
At each round, starting from a k-position (u, α, v, β), the

game is played as follows. If (u, α, v, β) is not valid, then
Spoiler wins. Otherwise, if k = n, then Duplicator wins.
Otherwise, Spoiler chooses a position in one of the two words,
and places token number k + 1 on it. Duplicator answers by
placing token number k + 1 on a position of the other word.
Let us call α′ and β′ the extensions of α and β with these
new tokens. If (u, α′, v, β′) is not a valid (k + 1)-position,
then Spoiler immediately wins the game, otherwise, the game
moves to the next round with (k + 1)-position (u, α′, v, β′).

We will note u �n v when Duplicator has a winning
strategy in EF+

n (u, v).

Definition 11. The quantifier rank of a formula ϕ, noted
qr(ϕ) is its number of nested quantifiers. It can be defined by
induction in the following way: if ϕ is atomic then qr(ϕ) = 0,
otherwise, qr(ϕ ∧ ψ) = qr(ϕ ∨ ψ) = max(qr(ϕ), qr(ψ)) and
qr(∃x.ϕ) = qr(∀x.ϕ) = qr(ϕ) + 1.

The following Theorem shows the link between the n-round
EF+ game and formulas of rank at most n.

Theorem 12 ([Sto95, Thm 2.4]). We have u �n v if and
only if for all formulas ϕ of FO+ with qr(ϕ) ≤ n, we have
(u |= ϕ)⇒ (v |= ϕ).

Since the proof of Theorem 12 does not appear in [Sto95],
it can be found in Appendix B for completeness.

Let us now see how we can use EF+ games to characterize
FO+-definability.

Corollary 13. A language L is not FO+-definable if and only
if for all n ∈ N, there exists (u, v) ∈ L×L such that u �n v.

Proof. ⇐ : Let n ∈ N, there exists (u, v) ∈ L × L such that
u �n v. By Theorem 12, any formula of quantifier rank n
accepting u must accept v, so no formula of quantifier rank
n recognizes L. This is true for all n ∈ N, so L is not FO+-
definable.
⇒ (contrapositive): Assume there exists n ∈ N such that for

all (u, v) ∈ L × L, u 6�n v. By Theorem 12, this means that
for all (u, v) ∈ L×L, there exists a formula ϕu,v of quantifier
rank n accepting u but not v. Since there are finitely many
FO+ formulas of rank n up to logical equivalence [Lib04,
Lem 3.13], the set of formulas F = {ϕu,v | (u, v) ∈ L × L}
can be chosen finite. We define ψ =

∨
u∈L

∧
v/∈L ϕu,v , where

the conjunctions and disjunction are finite since F is finite.
For all u ∈ L, u |=

∧
v/∈L ϕu,v hence u |= ψ, and conversely,

a word satisfying ψ must satisfy some
∧
v/∈L ϕu,v , so it cannot

be in L.

IV. SYNTAX VERSUS SEMANTICS

We will now answer the natural question posed in Sec-
tion III-B: is any FO-definable monotone language FO+-
definable?

A. A counter-example language

This section is dedicated to the proof of the following
Theorem:

Theorem 14. There is an FO-definable monotone language
K on a powerset alphabet that is not FO+-definable.

Let P = {a, b, c} and A = P(P ), ordered by inclusion.
We will note

(
a
b

)
,
(
b
c

)
,
(
c
a

)
for the letters {a, b}, {b, c}, {a, c}

respectively, and > for {a, b, c}. If x ∈ P we will often note
x instead of {x} to lighten notations.

We now define the desired language by:

K := (a↑b↑c↑)∗ +A∗>A∗.

We claim that K satisfies the requirements of Theorem 14.
Notice that the second disjunct A∗>A∗ could be omitted if

we were to consider only the alphabet A\{>}. When sticking
with a powerset alphabet, this disjunct is necessary to obtain
an FO-definable language. Indeed, if we just define K0 =
(a↑b↑c↑)∗ on alphabet A, we have K0 ∩ (>∗) = (>>>)∗.
Since >∗ is FO-definable but (>>>)∗ is not (see [DG08]),
and FO-definable languages are closed under intersection, we
have that K0 is not FO-definable.

Lemma 15. K is monotone and FO-definable.

Proof. The fact that K is monotone is straightforward from
its definition, as the union of two monotone languages.

To show that K is FO-definable, we can use the classical
characterizations of first-order definable languages [DG08].
Here we will verify that its minimal automaton A is counter-
free, that is, no word induces a non-trivial cycle in A.

The minimal DFA A recognizing K is depicted in Figure 1.
We note ¬a = {∅, {b}, {c}, {b, c}} the sub-alphabet of A of
letters not containing a, similarly for ¬b and ¬c. The edges
going to rejecting state ⊥ are grayed and dashed, and the ones
going to accepting sink state q> are grayed, for readability. We
also note a′ = a↑ \ {>} = {{a},

(
a
b

)
,
(
c
a

)
}, and similarly for

b′, c′.
To show that K is FO-definable, it suffices to show that A is

counter-free, i.e. that there is no word u ∈ A∗ , distinct states
p, q of A, and integer k, such that p u→ q and q u

k

→ p. Assume
for contradiction that such u, p, q, k exist. Since the only non-
trivial strongly connected component in A is {qa, qb, qc}, these
states are the only candidates for p, q. Since p, q are distinct, it
means |u| is not a multiple of 3, and u induces a 3-cycle, either
qa

u→ qb
u→ qc

u→ qa if |u| ≡ 1 mod 3 or in the reverse order
if |u| ≡ 2 mod 3. Thus, the first letter of u can be read from
all states from {qa, qb, qc}, while staying in this component.



qa

qb

qc q>

⊥

a′ b′

c′

>

>

>

A

>

¬a
¬b ¬c

A \ {>}

Fig. 1. The minimal DFA A of K

Such a letter does not exist, so we reach a contradiction. The
DFA A is counter-free, so K is FO-definable [DG08].

Remark 16. In order to get a better intuition on the language
K, we can also build its 21-element syntactic monoid and
verify its aperiodicity. This is done in Appendix C. In addition,
it is useful to understand how an FO formula can describe the
language K, as we will later build on this understanding in
Section V. We describe the behaviour of such a formula in
Appendix D.

Lemma 17. K is not FO+-definable.

Proof. We establish this using Corollary 13. Let n ∈
N, and N = 2n. We define u = (abc)N and v =
[
(
a
b

)(
b
c

)(
c
a

)
]N−1

(
a
b

)(
b
c

)
. Notice that u ∈ K, and v /∈ K because

|v| ≡ 2 mod 3, and v does not contain >. By Corollary 13, it
suffices to prove that u �n v to conclude. We give a strategy
for Duplicator in EF+

n (u, v). The strategy is an adaptation
from the classical strategy showing that (aa)∗ is not FO-
definable [Lib04]. We consider that at the beginning, tokens
first , last are placed on the first and last positions on u, and
first ′, last ′ on the first and last position of v. The strategy
of Duplicator during the game is then as follows: every time
Spoiler places a token in one of the words, Duplicator answers
in the other by replicating the closest distance (and direction)
to an existing token. This strategy is illustrated in Figure 2,
where move i of Spoiler (resp. Duplicator) is represented by
i (resp. i ).

a b c a b c a b c a b c a b c a b c a b c a b c(
a
b

)(
b
c

)(c
a

)(
a
b

)(
b
c

)(c
a

)(
a
b

)(
b
c

)(c
a

)(
a
b

)(
b
c

)(c
a

)(
a
b

)(
b
c

)(c
a

)(
a
b

)(
b
c

)(c
a

)(
a
b

)(
b
c

)(c
a

)(
a
b

)(
b
c

)
1

1 2

2

3

3

Fig. 2. An example of Duplicator’s strategy for n = 3.

We have to show that this strategy of Duplicator allows
him to play n rounds without losing the game. This proof is

similar to the classical one for (aa)∗, see e.g. [Lib04]. The
main intuition is that the length of the non-matching intervals
between u and v is at worst divided by 2 at each round, and it
starts with a length of 2n, so Duplicator can survive n rounds.
A detailed proof can be found in Appendix E.

B. Lyndon’s Theorem

In this section we consider first-order logic on arbitrary
signatures and unconstrained structures. Our goal is to see
how Theorem 14 can be lifted to this general framework.

Definition 18. A formula ϕ is monotone in a predicate P
if whenever a structure S is a model of ϕ, any structure S′

obtained from S by adding tuples to P is also a model of ϕ.

Example 19. On graphs, where the only predicate is the edge
predicate, the formula asking for the existence of a triangle
is monotone, but the formula stating that the graph is not a
clique is not monotone.

Definition 20. A formula ϕ is positive in P if it never uses
P under a negation.

Let us recall the statement of Lyndon’s Theorem, which
holds on general (possibly infinite) structures:

Theorem 21 ([Lyn59, Cor 2.1]). If ψ is an FO formula
monotone in predicates P1, . . . , Pn, then it is equivalent to
a formula positive in predicates P1, . . . , Pn.

We will now see explicitly how the language K from
Section IV-A can be used to show that Lyndon’s Theorem
fails on finite structures.

The failure of this theorem on finite structures was first
shown in [AG87] with a very difficult proof, then reproved
in [Sto95] with a simpler one, using the Ehrenfeucht-Fraı̈ssé
technique. Still, the proof from [Sto95] is quite involved
compared to the one we present here.

Since Lyndon’s theorem can be found in the literature under
different formulations, and since it is not clear at first sight that
they are equivalent, we make it clear here how the construction
of this paper applies to all of them. This also serves the
purpose of making explicit the exact signature needed in each
formulation to show the failure on finite structures with our
method.

Several monotone predicates
This is the formulation of Theorem 21. Let us show that

our language K shows its failure on finite structures.
We will use here the fact that if P = {a, b, c} is a set

of monadic predicates, then a finite model over the signature
(≤, a, b, c) where the order ≤ is total is simply a finite word on
the powerset alphabet A = P(P ). Therefore, in order to view
our words as general finite structures, it suffices to axiomatize
the fact that ≤ a total order. This can be done with a formula
ψtot = (∀x, y. x ≤ y ∨ y ≤ x) ∧ (∀x, y, z. x ≤ y ∧ y ≤ z ⇒
x ≤ z) ∧ (∀x, y. x ≤ y ∧ y ≤ x ⇒ x = y) ∧ (∀x. x ≤ x).
Notice that ψtot is not monotone in the predicate ≤.



Let ϕ be the FO-formula defining K, obtained in
Lemma 15, and let ψ = ϕ ∧ ψtot . Then, ψ is monotone in
predicates a, b, c, and finite structures on signature (≤, a, b, c)
satisfying ψ are exactly words of K. However, as we proved
in Theorem 14, no first-order formula that is positive in
predicates a, b, c can define the same class of structures, since
the same formula interpreted on words would be an FO+-
formula for K.

Single monotone predicate
Other formulations of Lyndon’s Theorem use a single mono-

tone predicate, as in [Sto95]. We can encode the language K in
this framework, by using one binary predicate A to represent
all letter predicates. Let K3 be K restricted to words of length
at least 3. By Theorem 14 it is clear that K3 is FO-definable
but not FO+-definable.

Let ψ3 be an FO-formula stating that there are at least
3 elements 0, 1, 2, and that for all y /∈ {0, 1, 2} and for
all x, A(x, y) holds. We build the FO formula ϕ′ from the
FO formula ϕ recognizing the language K3 by replacing
every occurrence of a(x) (resp. b(x), c(x)) by A(x, 0) (resp.
A(x, 1), A(x, 2)).

Finally, we define the FO formula ψ′ = ψtot∧ψ3∧ϕ′. Finite
structures on signature (≤, A) accepted by ψ′ are exactly
those who encode words of K3. No formula positive in A can
recognize this class of structures, otherwise we could obtain
from it an FO+-formula for K3, by replacing every occurrence
of A(x, y) by (a(x) ∧ y = 0) ∨ (b(x) ∧ y = 1) ∨ (c(x) ∧ y =
2) ∨ y ≥ 3.

Closure under surjective homomorphisms
Lyndon’s theorem is also often stated in the following way:

if an FO formula defines a class of structures closed under
surjective homomorphisms, then it is equivalent to a positive
formula. This formulation is equivalent to saying that the
formula is monotone in all predicates. We can deal with this
framework as well, by incorporating a predicate 6≤ to the
signature. Let ψ6≤ be the formula obtained from ψ by pushing
negations to the leaves and replacing all subformulas of the
shape ¬(x ≤ y) with x 6≤ y. Let

ψ′′ = (∃x, y. x ≤ y∧x 6≤ y)∨ (ψ6≤∧∀x, y. (x ≤ y∨x 6≤ y)).

Finite structures on the signature (≤, 6≤, a, b, c) can be
classified into three categories:
• if there are x, y such that x ≤ y∧x 6≤ y, then the structure

satisfies ψ′′ (because of the first disjunct)
• otherwise, if there are x, y such that ¬(x ≤ y ∨ x 6≤ y),

then the structure does not satisfy ψ′′ (because of the last
conjunct)

• otherwise, 6≤ is the complement of ≤, and the structure
satisfies ψ′′ if and only if it satisfies ψ6≤.

Therefore, in ψ 6≤ we can use ≤ and 6≤ freely, assuming that
6≤ is actually the complement of ≤. In particular the ψtot

subformula of ψ 6≤ axiomatizes the fact that ≤ is a total order,
provided that 6≤ is its complement. So the structures of the
third item are exactly the words of K, with an additional

predicate 6≤ which is the complement of ≤. The two first
items guarantee that the class of finite structures accepted by
ψ′′ is monotone with respect to ≤ and 6≤ as well. As before,
it is impossible to have a formula positive in all predicates
accepting the same class of finite structures as ψ′′, since
replacing x 6≤ y with y < x in this formula would directly
yield an FO+-formula for K.

V. UNDECIDABILITY OF FO+-DEFINABILITY

This section is dedicated to the proof of the following
Theorem:

Theorem 22. The following problem is undecidable: given
L a regular language on a powerset alphabet, is L FO+-
definable?

We will a start with an informal proof sketch to convey the
main ideas of the proof, before going to the technical details.

A. Proof sketch

The proof proceeds by reduction from the Turing Machine
Mortality problem, known to be undecidable [Hoo66]. A
deterministic Turing Machine (TM) is mortal if there is a
uniform bound n ∈ N on the length of its runs, starting from
any arbitrary configuration.

Given a machine M , we want to build a regular language
L such that L is FO+-definable if and only if M is mortal.

Configuration words
The intuitive idea is that L will mimic the language

(a↑b↑c↑)∗ from earlier, but the letters will be replaced by
words encoding configurations of M . We therefore design an
ordered alphabet A and a language C of configurations words
such that words from C encode configurations of M . These
words will be of three possible types 1, 2, 3, playing the role
of the letters a, b, c of the language K. This partitions C into
C1 ∪ C2 ∪ C3. We guarantee that the transitions of M will
always change the types in the following way: 1→ 2, 2→ 3
or 3→ 1.

Moreover, we design the order ≤A of the alphabet A so
that given two words u1, u2 from C, there is a word v that is
bigger (for the order ≤A) than both u1 and u2 if and only if
u1 and u2 are consecutive configurations of M . Such a word
v will be written

(
u1

u2

)
in this proof sketch.

Language L
Finally, the language L will be roughly defined as the

upward-closure of (C1#C2#C3#)∗, where # is a separator
symbol. The only requirement for configuration words appear-
ing in a word of L is on their types. Apart from this, the
configuration words can be arbitrary, they do not have to form
a run of M .

We will then use the EF+-game technique to show that L
is FO+-definable if and only if M is mortal.

If M not mortal
The easier direction is proving that if M is not mortal, then

L is not FO+-definable. Indeed, if M is not mortal, we can
choose an arbitrarily long run u = u1#u2# . . .#uN of M .



We build the word v =
(
u1

u2

)
#
(
u2

u3

)
# . . .#

(
uN−1

uN

)
, and we

verify that u ∈ L and v /∈ L. Then, using the same technique
as in the proof of Lemma 17, with C1, C2, C3 playing the role
of a, b, c, we show that Duplicator wins the EF+ game on
u, v with log(N) rounds. Therefore L is not FO+-definable,
by Corollary 13.

If M mortal
The converse direction is more difficult: we have to show

that if there is a bound n on the length of runs of M from
any configuration, then L is FO+-definable. We will again
use the EF+-game and Corollary 13: we give an integer m
(depending only on n) such that for any u ∈ L and v /∈ L,
Spoiler wins EF+

m(u, v).
Without loss of generality, consider u = u0#u1# . . .#uN

a word of L, where each ui is in C, and v a word not in
L. To describe the winning strategy of Spoiler, we will first
rule out the problems in “local behaviours”: if v contains a
factor containing at most 2 symbols # preventing it from
belonging to L, then Spoiler wins easily in a bounded number
of rounds by pointing this local inconsistency in v, that cannot
be mirrored in u. The only remaining problem is the “long-
term inconsistency” occurring in the previous EF+ games: a
long factor with two conflicting possible interpretations, each
being forced by one of the endpoints. For instance, when
dealing with the language K, such long-term inconsistencies
were exhibited by words of the form

(
a
b

)(
b
c

)(
c
a

)(
a
b

)
. . .
(
b
c

)
, with

the first letter being constrained to a and the last one to c.
We have to show that contrarily to what happens with the
language K, or in the case where M is not mortal, Spoiler
can now point out such long-term inconsistencies in a bounded
number of rounds.

To do that, let us abstract a configuration word w ∈ C by
its height h(w): the length of the run of M starting in the
configuration w. Our mortality hypothesis can be rewritten as:
the height of any configuration word is at most n. A word
w ∈ C will be abstracted by a single letter h(w) ∈ [0, n].
We saw that if a word w′ is of the form

(
w1

w2

)
, then w1

and w2 encode consecutive configurations of M , so their
heights must be consecutive integers i + 1 and i. We will
abstract such a word w′ by the letter

(
i+1
i

)
. This allows us

to design an abstracted version of the EF-game, called the
integer game, where letters are integers or pairs of integers,
and with special rules designed to reflect the constraints of the
original EF+ game on (u, v). The integer game makes explicit
the core combinatorial argument making use of the mortality
hypothesis. We show that Spoiler wins this integer game in
2n rounds. We finally conclude by lifting this strategy to the
original EF+-game.

This ends the proof sketch, and we now go to the more
detailed proof.

B. The Turing Machine Mortality problem

We will start by describing the problem we will reduce from,
called Turing Machine (TM) Mortality.

The TM Mortality problem asks, given a deterministic TM
M , whether there exists a bound n ∈ N such that from any
finite configuration (state of the machine, position on the tape,
and content of the tape), the machine halts in at most n steps.
We say that M is mortal if such an n exists.

Theorem 23 ([Hoo66]). The TM Mortality problem is unde-
cidable.

Remark 24. The standard mortality problem as formulated in
[Hoo66] does not ask for a uniform bound on the halting time,
and allows for infinite configurations, but it is well-known
that the two formulations are equivalent using a compactness
argument. Indeed, if for all n ∈ N, the TM has a run of length
at least n from some configuration Cn, then we can find a
configuration C that is a limit of a subsequence of (Cn)n∈N,
so that M has an infinite run from C.

Notice that the initial and final states of M play no role
here, so we will omit them in the description of M . Indeed,
we can assume that M halts whenever there is no transition
from the current configuration.

Let M = (Γ, Q,∆) be a deterministic TM, where Γ is the
alphabet of M , Q its set of states, and ∆ ⊆ Q×Γ×Q×Γ×{←
,→} its (deterministic) transition table.

We will also assume without loss of generality that Q is
partitioned into Q1, Q2, Q3, and that all possible successors
of a state in Q1 (resp. Q2, Q3) are in Q2 (resp. Q3, Q1).
Remark that if M is not of this shape, it suffices to make three
copies Q1, Q2, Q3 of its state space, and have each transition
change copy according to the 1-2-3 order given above. This
transformation does not change the mortality of M .

We will say that p has type i if p ∈ Qi. The successor type
of 1 (resp. 2, 3) is 2 (resp. 3, 1).

Our goal is now to start from an instance M of TM
Mortality, and define a regular language L such that L is FO+-
definable if and only if M is mortal.

C. The base language Lbase

The base alphabet
We define first a base alphabet Abase . Words over this

alphabet will be used to encode configurations of the TM M .

Abase = Γ∪(∆×Γ)∪(Γ×∆)∪(∆×Γ×∆)∪(Q×Γ)∪{#}.

We will note aδ (resp. aδ
′
, aδ

′

δ ) the letters from ∆×Γ (resp.
Γ×∆,∆× Γ×∆), and [q.a] letters of Q× Γ.

The letter [q.a] is used to encode the position of the reading
head, q ∈ Q being the current state of the machine, and a ∈ Γ
the letter it is reading.

A letter aδ will be used to encode a position of the tape
that the reading head just left, via a transition δ writing an
a on this position. A letter aδ

′
will be used for a position of

the tape containing a, and that the reading head is about to
enter via a transition δ′. We use aδ

′

δ if both are simultaneously
true, i.e. the reading head is coming back to the position it
just visited. Finally, the letter # is used as separator between
different configurations.



Configuration words
The encoding of a configuration of M is therefore a word

of the form (for example):

a1a2 . . . (ai−1)δ
′
[q.ai](ai+1)δ . . . an.

The letter (ai+1)δ indicates that the reading head came from
the right via a transition δ = ( , , q, ai+1,←) (where is
a placeholder for an unknown element). The letter (ai−1)δ

′

indicates that it will go in the next step to the left via a
transition δ′ = (q, ai, , ,←).

A word u ∈ (Abase)∗ is a configuration word if it encodes
a configuration of M with no incoherences. More formally, u
is a configuration word if u contains no #, exactly one letter
from Q × Γ (the reading head), and either one aδ and one
bδ
′

located on each side of the head, or just one letter aδ
′

δ

adjacent to the head. Moreover, the labels δ and δ′ both have
to be coherent with the current content of the tape.

Remark 25. Because we ask these δ and δ′ labellings to be
present, configuration words only encode TM configurations
that have a predecessor and a successor configuration.

The type of a configuration word is simply the type in
{1, 2, 3} of the unique state it contains.

Let us call C ⊆ (Abase)∗ the language of configuration
words. This language C is partitioned into C1, C2, C3 accord-
ing to the type of the configuration word. It is straightforward
to verify that each Ci is an FO-definable language.

We can now define the language Lbase . The basic idea is
that we want Lbase to be (C1#C2#C3#)∗, but in order to
avoid unnecessary bookkeeping later in the proof, we do not
want to care about the endpoints being C1 and C3. Let us also
drop the last # which is useless as a separator, and assume
that C1 appears at least once, just for the sake of simplifying
the final expression. This gives for Lbase the expression:

(ε+C3#+C2#C3#)(C1#C2#C3#)∗(C1+C1#C2+C1#C2#C3).

Notice that Lbase cannot verify that the sequence is an
actual run of M , since it just controls that the immediate
neighbourhood of the reading head is valid, and that the types
succeed each other according to the 1-2-3 cycle. The tape can
be arbitrarily changed from one configuration word to the next.

D. The alphabet A
We now define another alphabet Aamb (amb for ambiguous),

consisting of some unordered pairs of letters from Abase . An
unordered pair {a, b} is in Aamb if a can be replaced by b in
the encodings of two successive configurations of M of the
same length. Thus, let Aamb be the following set of unordered
pairs (we note the “predecessor” element first to facilitate the
reading):
• {aδ, a}, a ∈ Γ, δ ∈ ∆

• {a, aδ
′
}, a ∈ Γ, δ′ ∈ ∆

• {aδ
′
, [q.a]}, δ′ = ( , , q, , ) ∈ ∆

• {aδ
′

δ , [q.a]}, δ = ( , , p, a, d) ∈ ∆, δ′ = (p, , q, ,−d) ∈ ∆
• {[p.a], bδ}, δ = (p, a, , b, ) ∈ ∆

• {[p.a], bδ
′

δ }, δ = (p, a, q, b, d) ∈ ∆, δ′ = (q, , , ,−d) ∈ ∆

where stands for an arbitrary element, and −d is the
direction opposite to d.

Notice that all letters of Aamb have a clear “predecessor”
element: even the possible ambiguity regarding letters aδ

′

δ are
resolved thanks to the type constraint on transitions of M .
For readability, we will use the notation

(
a
b

)
instead of {a, b},

where the upper letter is the predecessor element.
We can now define the alphabet A = Abase∪Aamb , partially

ordered by a <A b if a ∈ Abase , b ∈ Aamb , a ∈ b. For now we
use the general formalism of ordered alphabet for simplicity.
We will later describe in Remark 45 how the construction is
easily modified to fit in the powerset alphabet framework.

E. Superposing configuration words

We will see that thanks to the definition of the alphabet
Aamb , two distinct configurations can be “superposed”, i.e. can
be written simultaneously with letters of A including letters
of Aamb , if and only if one follows from the other by a valid
transition of M .

Lemma 26. If u1, u2 ∈ C encode two successive configura-
tions of the same length, then there exists v ∈ A∗ such that
u1 ≤A v and u2 ≤A v.

Proof. It suffices to take the letters in v to be the union
of letters in u1, u2 when these letters differ. For instance
if u1 = aabδ

′
[p.a]cδc and u2 = aaδ

′′
[q.b]dδ′cc, then v =

a
(
a
aδ′′
)(

bδ
′

[q.b]

)(
[p.a]
dδ′

)(
cδ
c

)
c.

Lemma 27. Let u1, u2 ∈ C, and assume that there exists
v ∈ A∗ satisfying u1 ≤A v and u2 ≤A v. Then either u1 = u2,
or one is the successor configuration of the other.

Proof. Let [p.a] and [q.b] be the reading heads in u1 and u2,
in positions i and j respectively.

If i = j, let us consider the letter v[i], we know that
[p.a] ≤A v[i] and [q.b] ≤A v[i]. Since no letter of the form
{[p.a], [q.b]} exists in Aamb , we must have [p.a] = [q.b]. Let
δ′ = (p, a, p′, a′, d) be the transition of M from [p.a]. Let
λ = −1 if d =← and λ = 1 if d =→. By definition of
C, we must have letters b1, b2 such that u1[i + λ] = bδ

′

1

and u2[i + λ] = bδ
′

2 , with possible additional δ subscripts.
As before, there is no letter {bδ′1 , bδ

′

2 } in Aamb , even with
optional additional δ subscripts, so u1[i + λ] = u2[i + λ].
Finally, either both u1[i − λ] and u2[i − λ] are letters from
Γ (if the δ subscript is present u1[i+ λ] = u2[i+ λ]), or are
letters with a δ subscript. In both cases, again by definition
of Aamb , we must have u1[i − λ] = u2[i − λ]. The rest of
the words u1, u2 outside of these three positions {i1, i, i+ 1}
are forced to be letters of Γ by definition of C, so again they
cannot vary between u1 and u2, since Aamb does not contain
letters {a, b} with a, b ∈ Γ. We can conclude that u1 = u2.

Consider now the case where i 6= j. Assume without loss of
generality that p is of type 1 (no type plays a particular role).
Let δ1 be the transition from [p.a], of type 1→ 2. Let us called
enriched letter a letter of the form aδ , aδ

′
, or aδ

′

δ . By definition
of Aamb , both u2[i] and u1[j] must be enriched letters. By
definition of C, it means u1[j] is just next to u1[i] where the
reading head is, say without loss of generality j = i + 1.



So we have v[i] = {[p.a], u2[i]} ∈ Aamb , and as we saw,
u2[i] is either predecessor or successor to [p.a] in this case.
Let us assume for now that u2[i] is successor to [p.a]. This
means it has a δ1 subscript. Since u2 ∈ C, this forces the
state q to be of type 2, the target type of δ1. Consider now the
enriched letter u1[j], which is such that {[q.b], u1[j]} ∈ Aamb .
Either u1[j] has a superscript δ′ with target q, or a subscript
δ2 with source p. This latter case is not possible, as from
the fact that u1 ∈ C, it would force p to be of type 3, the
target type of δ2. So we have indeed that both u1[i] and u1[j]
are the predecessors of u2[i] and u2[j] in the letters v[i], v[j]
of Aamb respectively. It is straightforward to verify that this
implies that u1 is the predecessor configuration of u2: the only
discrepancies allowed between u1 and u2 outside of positions
i, j are of the form {aδ, a} and {a, aδ′} and do not influence
the underlying letter of Γ. Similarly, in the other case, where
u2[i] is predecessor to [p.a] in the letter v[i], we obtain that
u1 is the successor configuration to u2.

Lemma 28. It is impossible to have three distinct words
u1, u2, u3 ∈ C and v ∈ A∗ such that for all i ∈ {1, 2, 3},
ui ≤A v.

Proof. By Lemma 27, any pair from {u1, u2, u3} must encode
two consecutive configurations of M . However, since the
reading head must move at each step, from u1 to u2 and from
u2 to u3, this means the reading head moves either 0 or 2
positions between u1 and u3, which yields a contradiction.

F. The language L

We finally define L to be the monotone closure of Lbase on
alphabet A, so that L can contain letters from Aamb .

By Lemma 4, since L is the monotone closure of a regular
language, it is regular (and monotone).

As a side remark, we can observe the following:

Remark 29. L is FO-definable. Since it is not crucial to the
following, we only give here a rough intuition on why L is FO-
definable. The language K from Section IV-A can be seen as
an abstraction of L, with a, b, c playing the role of C1, C2, C3

respectively. In this light, and since C1, C2, C3 are all FO-
definable, we can use the fact that the language K is FO-
definable as well, by Lemma 15, to obtain an FO-formula for
L. We also need Lemma 28 to guarantee that the equivalent
of the letter > from K never appears.

We will now prove in the next sections that L is FO+-
definable if and only if M is mortal, using Corollary 13.

G. M not mortal =⇒ L not FO+-definable

Let n ∈ N, we aim to build (u, v) ∈ L×L such that u �n v.
There is a configuration from which M has a run of length

N + 3, with N = 2n+1 + 1. Let u = u0#u1# . . .#uN be
an encoding of this run where each ui ∈ C, and where we
omitted the first and last configurations of the run, which may
not be representable in C by Remark 25. Here all the ui’s are
of the same length, which is the size of the tape needed for
this run.

By Lemma 26, for each i ∈ [0, N −1], there exists vi ∈ A∗
such that ui ≤A vi and ui+1 ≤A vi.

We build v = u0#v1# . . .#vN−2#uN . Notice that v /∈ L,
because the types of u0 and uN forces them to be separated
by N − 1 mod 3 configurations as in u, but in v they are
separated by N − 2 mod 3 configurations.

We describe a strategy for Duplicator witnessing u �n v.
It is a simple adaptation from the proof of Lemma 17, so we
will just sketch the idea.

Let us consider that initially, there is a pair of initial (resp.
final) tokens at the beginning (resp. end) of u, v. We will
consider that the initial tokens are “blue”, and the final ones
are “yellow”. In the following, a pair of corresponding tokens
in u, v will be blue (resp. yellow) if they are at the same
distance to the beginning (resp. end) of the word.

When Spoiler plays a token in ui (resp. vi), Duplicator will
look at the color of the closest token in ui, (resp. vi), and
answer with a token of the same color, i.e. by playing in
vi (resp. ui) for blue, and in vi−1 (resp. ui+1) for yellow.
Of course, the same strategy applies to tokens played on #
positions.

This strategy preserves the following invariant: after k
rounds, the number of # between the last blue token and
the first yellow token on the same word (u or v) is at least
2n−k. This invariant guarantees that Duplicator wins the n-
round game, since this gap will never be empty.

H. M mortal =⇒ L FO+-definable

Let M be a mortal TM , and n be the length of a maximal
run of M , starting from any configuration.

We will show that L is FO+-definable, by giving a strategy
for Spoiler in EF+

f(n)(u, v) for any (u, v) ∈ L×L, where the
number of rounds f(n) depends only on n, and not on u, v.

Let (u, v) ∈ L × L. Without loss of generality we can
assume that u ∈ Lbase . This is because there exists u′ ∈ Lbase

with u′ ≤A u, and we can consider the pair (u′, v) instead
of (u, v). Indeed, if Spoiler wins on (u′, v), then the same
strategy is winning on (u, v), where his winning condition
only gets easier.

Thus we can write u = u0#u1# . . .#uN , where each ui
is in C. Let us also write v = v0#v1# . . .#vT , where each
vi does not contain #. Let us emphasize that no assumption
is made on N and T , they can be any integers.

We will now describe a strategy for Spoiler in EF+(u, v),
that is winning in a number f(n) of rounds only depending
on n.

Ruling out local inconsistencies
As explained in the proof scheme of Section V-A, we will

first show that if v presents local inconsistencies (that we
define here formally via the notion of forbidden local factor),
Spoiler can point them out in a bounded number of moves.

Definition 30. Let us call local factor a factor containing at
most two symbols ]. A local factor is forbidden if it is not a
factor of any word in L.



Lemma 31. If v contains a forbidden local factor, Spoiler can
win in a constant number of moves (at most 5).

Proof. This can be seen by verifying that the language of
words containing no forbidden local factors is FO+-definable,
with a formula ϕloc using at most 5 nested quantifiers. We
sketch here how such a formula ϕloc can be built.

Notice that formulas of FO+ can use the letter ] either
positively or negatively, since it is not comparable with any
other letter. If (p, a) ∈ Q× Γ, we define S(p, a) := {(σ, τ) ∈
(Abase)2 | σ[p.a]τ ∈ C} as the possible neighbourhoods of
[p.a] in the base alphabet. Let us define an FO+-formula
ϕC(x) with free variable x, to be a formula that verifies
that the maximal ]-free factor containing position x is in C↑,
and that this is witnessed by the reading head at position x.
This formula will verify that x contains some [p.a], that the
immediate neighbourhood of x is compatible with [p.a], via
a formula

∨
(σ,τ)∈S(p,a) σ

↑(x − 1) ∧ τ↑(x + 1), and that all
other letters (not on positions {x− 1, x, x+ 1}) between the
neighbouring ] symbols are in Γ↑.

We now give a description of the formula ϕloc . The formula
will state that for all positions x < y of successive ] symbols
(i.e. with no ] between them), there must be positions i1 <
x < i2 < y < i3, with only two ] symbols in [i1, i3], such
that ϕC(i1)∧ϕC(i2)∧ϕC(i3). Additionally, the types of the
states in i1, i2, i3, must be respectively either 1-2-3, 2-3-1, or
3-1-2.

From now on, we will therefore assume that v does not
contain forbidden local factors.

Finding long-term inconsistencies
We will see how the only remaining cause for v not

belonging to L is what we called long-term inconsistencies
in the proof scheme of Section V-A. We will formalize this
with the notion of non-coherent maximal ambiguous factor.

Let us start with an auxiliary definition.

Definition 32. A factor vi of v is compatible with type j ∈
{1, 2, 3} if there exists u′ ∈ Cj with u′ ≤A vi. The set-type
of vi is {j | vi is compatible with j}.

By Lemma 28, each vi is compatible with at most 2 distinct
types in {1, 2, 3}. If vi is compatible with 2 types, then one
is the predecessor (resp. successor) of the other in the 1-2-3
cycle order, and we call it the first type (resp. second type)
of vi. We will consider that v0 (resp. vT ) is only compatible
with type(u0) (resp. type(uN )). Indeed, if Duplicator matches
v0 to a word ui with i 6= 0, Spoiler can win the game in the
next round, by choosing a # position before ui (and same
argument for vT ).

Definition 33. A factor of the form vi#vi+1# . . .#vj of v is
called ambiguous if each vk is compatible with two types, and
the set-types succeed each other in the cycle order {1, 2} →
{2, 3} → {3, 1}. For instance if the set-type of vi is {3, 1},
then vi+1 must have set-type {1, 2}. An ambiguous factor is
maximal if it is not contained in a strictly larger ambiguous
factor.

Definition 34. A factor vi of v is called an anchor if either
i = 0, i = T or if vi−1#vi#vi+1 is not ambiguous.

If vi is an anchor, we can uniquely define its anchor type.
It is simply its type if i = 0 or T , and otherwise since
vi−1#vi#vi+1 is not ambiguous, we define the anchor type
of vi to be the only possible type for vi that does not create an
incoherence with its two neighbours. Notice that such a type
exists, since we assumed v does not contain forbidden local
factors.

Example 35. Assume v5 has set-type {2, 3}, v6 has set-type
{3, 1}, and v7 has set-type {2, 3}. Then v6 is an anchor, and
its anchor type is 1. The type 3 is indeed impossible for v6,
since its successor type 1 is not in the set-type of v7.

Notice that if Duplicator maps an anchor vi to a word uj
such that type(uj) is not the anchor type of vi, then Spoiler
can win in at most 5 moves, by pointing to a contradiction
with the immediate neighbourhood of vi.

Definition 36. Let vi#vi+1# . . .#vj be a maximal ambigu-
ous factor. It is called coherent if vi−1#vi# . . .#vj+1 ∈ L,
and this is witnessed by the anchor types of vi−1 and vj+1.

In other words, vi#vi+1# . . .#vj is coherent if the anchor
types at vi−1, vj+1 are either both concatenable with the first
type of both vi, vj , or are both concatenable with their second
type. Here by “concatenable”, we mean to respect the 1-2-3
order, for instance type 3 must be followed by type 1.

Example 37. Let w = vi#vi+1# . . .#vj be a maximal
ambiguous factor, where vi has set-type {1, 2} and vj has
set-type {2, 3}. Assume vi−1 has anchor type 1, so it is
concatenable with the second type of vi. This means that for
w to be coherent, we need vj+1 to have anchor type 1, in
order to be concatenable with the second type of vj as well.

Lemma 38. v contains a maximal ambiguous factor w that
is not coherent.

Proof. Assume that all maximal ambiguous factors of v are
coherent. Since v does not contain forbidden local factors, we
have that the anchor types of two consecutive anchors follow
the 1-2-3 order. This means that the anchor types, together
with the coherence of maximal ambiguous factors, give us a
witness that v ∈ L. This witness is a word of Lbase , obtained
by choosing the anchor types on all anchors, and either the
first type or the second type uniformly in maximal ambiguous
factors, as fixed by the anchors at the extremities. Since we
know that v /∈ L, this is a contradiction.

We are now ready to describe Spoiler’s strategy. Spoiler
starts by placing two tokens delimiting a maximal ambiguous
factor w that is not coherent, as obtained in Lemma 38.
Because w is not coherent, Duplicator is forced to answer with
the first type for one of these tokens, and with the second type
for the other: otherwise Spoiler immediately wins by exposing
a local inconsistency with the anchors delimiting w.



We will now show how Spoiler can win on such a factor
w, starting with these two tokens. For this, we will introduce
the notion of height of a configuration word, and the integer
game that will abstract the EF+-game on w. This is where
we finally make use of the hypothesis that M is mortal.

Abstracting words by integers
If u ∈ C is a configuration word, let us define its height

h(u) to be the length of the run starting in u, and not going
outside of the tape specified in u.

If u ∈ C, let us also define its n-approximation αn(u) as
the maximal word in (Abase)≤n · (Q× Γ) · (Abase)≤n that is
an infix on u. That is, we remove letters whose distance to
the reading head is bigger than n.

Here are a few properties of the height:

Lemma 39. For all u ∈ C, the following hold:

• 0 < h(u) < n.
• For all x, y ∈ Γ∗, we have h(xuy) ≥ h(u).
• h(u) = h(αn(u)).
• If v ∈ C is the successor configuration of u ∈ C, then
h(v) = h(u)− 1.

Proof. The first item is a consequence of the fact that M is
mortal with bound n. Notice that the inequalities are strict
because of Remark 25: words from C must have a predecessor
and a successor configuration. The second item comes from
the fact that the run of length h(u) starting in u is still possible
when adding a context x, y, which is not affected by this run.
The third item uses the fact that a run can only visit the n-
approximation of u, so the context outside of αn(u) does not
affect the height h(u). The fourth item is a basic consequence
of the definition of the height.

Corollary 40. The height of a configuration word u is an
FO+-definable property, i.e for all k ∈ N there exists an FO+

formula hk such that hk accepts a configuration word u ∈ C
if and only if h(u) = k.

Proof. By Lemma 39, the formula hk can simply use a
lookup table to verify that αn(u) is of height k, using a
finite disjunction listing possibilities for αn(u) being of height
k. When evaluated on A∗, the formula hk will accept the
monotone closure of configuration words of height k.

Remark 41. We use here the fact that computation is done
locally around the reading head to obtain Corollary 40. This
seems to make Turing Machines more suited to this reduction
than e.g. cellular automata, where computation is done in
parallel on the whole tape.

Thanks to the height abstraction, we will show that we can
focus on playing a special kind of abstracted EF-game.

The integer game
The idea is to abstract a configuration word ui ∈ C by its

height h(ui). If u′ is the predecessor configuration of u′′, and
u′, u′′ ≤A v, we will abstract the word v by

(
h(u′)
h(u′′)

)
.

Let Σbase = [0, n] and Σamb = {
(
i
i−1

)
| 1 ≤ i ≤ n}. Let

Σ = Σbase ∪Σamb , ordered by i ≤Σ

(
i
i−1

)
and i−1 ≤Σ

(
i
i−1

)
for all

(
i
i−1

)
∈ Σamb .

We define the n-integer game as follows: It is played on an
arena (u, v) with u ∈ (Σbase)∗ and v ∈ (Σamb)∗. If we note
i (resp. j) the first (resp. last) letter of u, then the first (resp.
last) letter of v is

(
i
i−1

)
(resp.

(
j+1
j

)
).

The rest of the rules is very close to those of EF+(u, v):
in each round, Spoiler plays a token in u or v, Duplicator has
to answer with a token in the other word, while maintaining
the order between tokens, and the constraint that the label of a
token in u is ≤Σ-smaller than the label of its counterpart in v.
We add an additional neighbouring constraint for Duplicator:
consecutive tokens in one word must be related to consecutive
tokens in the other, and in this case, if two tokens of v are in
consecutive positions labelled

(
i
i−1

)(
j
j−1

)
, the corresponding

tokens in u must be either labelled i, j or i− 1, j − 1. A mix
i, j − 1 or i− 1, j is not allowed.
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Fig. 3. A position of the integer game.

Lemma 42. For all n ∈ N, Spoiler can win any n-integer
game in 2n rounds.

To keep the flow of the global proof, we defer the proof of
Lemma 42 to Section V-I. We will first see how to use this
Lemma to conclude the proof.

Remark 43. Lemma 42 still holds if the definition of n-integer
game is generalized to include the symmetric case where, if
we note i, j the first and last letters of u respectively, v starts
with

(
i+1
i

)
and ends with

(
j
j−1

)
. Indeed, it suffices to consider

the mirrored images of u and v to show that Spoiler wins in
the same amount of rounds.

Lifting the strategy to the original EF+-game
Let us go back to the EF+-game on u, v, where Spoiler

has placed two tokens delimiting a non-coherent maximal
ambiguous factor w in v.

Spoiler can now play only between these existing tokens,
and import the strategy from the integer game, by abstracting
each word ui by its height and each word vj by

(
h(u′)
h(u′′)

)
, where

u′, u′′ ∈ C are such that u ≤A v, u′ ≤A v, and h(u′) =
1 + h(u′′). Each factor of u, v delimited by # corresponds to
a single position in the abstracted integer game. Spoiler can
for instance mimic a move of the integer game by playing in
the first position of the corresponding factor in u or v, i.e. just
after a #-labelled position.

Lemma 44. If Duplicator does not comply with the rules of
the integer game, then Spoiler can punish it in at most log n
rounds.



Proof. Assume ui is matched to vj , but there is no u′ ≤A vj
such that h(ui) = h(u′). It means that αn(u) is not compatible
with v, and this can be punished by Spoiler using log n rounds
(with a dichotomy strategy, or n rounds with a naive strategy).
Thus by Lemma 39, Spoiler can enforce the basic rule of the
integer game, stating that if integer t is matched to

(
s+1
s

)
, then

t = s+ 1 or t = s. Using the correspondence between EF+-
games and FO+-definability, this property can also be seen
via Corollary 40.

If neighbours are matched with non-neighbours, then it
suffices for Spoiler to point the two # positions between
the non-neighbours, that cannot be matched in the other
word, so he wins in 2 moves. We show that the rest of
the neighbourhood rule is also enforced. Assume ui#ui+1

is matched to vj#vj+1. Assume type(ui) is the first (resp.
second) type of vj while type(ui+1) is the second (resp.
first) type of vj+1. By definition of L, type(ui+1) must be
the successor type of type(ui), for instance without loss of
generality, type(ui) = 1 and type(ui+1) = 2. Then, the set-
type of vi is {1, 2} (resp. {3, 1}) and the set-type of vj+1 is
{1, 2} (resp. {2, 3}). This contradicts the fact that vi#vi+1 is
part of an ambiguous factor, as set-types should follow each
other in the order {1, 2}-{2, 3}-{3, 1}.

Combining these arguments and by Lemma 42, we obtain
that following this strategy, Spoiler will win in at most f(n) =
2 + 2n + log n + 5 rounds, by punishing Duplicator as soon
as Duplicator loses the n-integer game.

Using Corollary 13, we obtain that L is FO+-definable,
with a formula of quantifier rank at most f(n).

Remark 45. The alphabet A can be turned into a powerset
alphabet, by adding all subsets of Abase absent from Aamb ,
rejecting any word containing ∅ but no new non-empty subset,
and accepting any word containing a new non-empty subset.
This shows that this undecidability result still holds in the
special case of powerset alphabets.

This concludes the proof of Theorem 22, up to the proof of
Lemma 42 which is done in the next section.

I. Winning the integer game

Let us show Lemma 42: Spoiler can win any n-integer game
in 2n rounds.

Proof. Let (u, v) be an arena for an n-integer game. We
proceed by induction on n.

For n = 1, the constraints on the game forces u ∈ 1(0+1)∗0
and v ∈

(
1
0

)∗
.

We can have Spoiler play on the last occurrence of 1 in
u, and on the successor position labelled 0. Duplicator cannot
respond to these two moves while respecting the neighbouring
constraint, so Spoiler wins in 2 moves.

Assume now that for some n ≥ 1, Spoiler wins any n-
integer game in 2n moves, and consider an (n + 1)-integer
game arena (u, v). If the letters n+1 and

(
n+1
n

)
do not appear

in u, v respectively, then Spoiler can win in 2n moves by
induction hypothesis.

If the letter n+1 does not appear in u, then let y be the first
position labelled

(
n+1
n

)
in v. By definition of the integer game

y cannot be the first position of v, otherwise u should start
with n+ 1. We will choose position y in v for the first move
of Spoiler, let x be the position in u answered by Duplicator,
we have u[x] = n. We can assume that x is not the first
position of u, otherwise Spoiler can win in the next move. If
Spoiler were to play x − 1 in u, with u[x − 1] = i, by the
neighbouring constraint Duplicator would be forced to answer
y−1 in v, with label

(
i+1
i

)
. This shows that the words u[..x−1]

and v[..y − 1] form a correct n-integer arena, as the integer
n + 1 is not present anymore, and all other constraints are
respected. Therefore, Spoiler can win by playing 2n moves
in these prefixes. This gives a total of 2n + 1 moves in the
original (n+ 1)-integer game.

Finally, if the letter n+1 does appear in u, Spoiler starts by
playing the position x in u corresponding to the last occurrence
of n + 1 in u. Duplicator must answer a position y labelled(
n+1
n

)
. Notice that neither x nor y can be a last position, so

u[x + 1] and v[y + 1] are well-defined. As before, using the
neighbouring constraint, we know that if i = u[x + 1], then
v[y+1] =

(
i
i−1

)
. Therefore, the words u[x+1..] and v[y+1..]

form an (n + 1)-integer game arena, and moreover the letter
n+1 does not appear in u[x+1..] (by choice of x). Using the
precedent case, we know that Spoiler can win from there in
2n+ 1 moves, playing only on u[x+ 1..] and v[y+ 1..]. This
gives a total of 2n + 2 moves in the original (n + 1)-integer
game, thereby completing the induction proof.

Conclusion
We believe this paper gives an example of fruitful interac-

tion between automata theory and model theory. Indeed, a clas-
sical result of model theory, the failure of Lyndon’s theorem
on finite structures, has been greatly simplified by using the
toolbox of regular languages. Conversely, this question coming
from model theory, when considered on regular languages,
yields the first (to our knowledge) natural fragment of regular
languages with undecidable membership problem, and opens
new techniques for proving undecidability of expressibility in
positive logics. We hope that the tools developed in this paper
can be further used in both fields, and that this will encourage
more interactions of this form in the future.

In the short term, we are interested in extending these
techniques to the framework of cost functions, see [Kup14],
[Kup], and to other extensions of regular languages.
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APPENDIX

A. Proof of Lemma 10

We prove here that any language definable by FO+ is
monotone.

This is done by induction on the FO+ formula ϕ, where
the induction property is strengthened to include possible free

variables: for all (u, α) ∈ JϕK and v ≥A u, we have (v, α) ∈
JϕK.
Base cases:

Let (u, α) ∈ Ja↑(x)K and v ≥A u, we have v[α(x)] ≥A
u[α(x)] ≥A a, so (v, α) ∈ Ja↑(x)K.

Let (u, α) ∈ Jx ≤ yK and v ≥A u. We have α(x) ≤ α(y)
so (v, α) ∈ Jx ≤ yK. The argument for < instead of ≤ is
identical.

Induction cases:
Let (u, α) ∈ Jϕ∨ψK and v ≥A u. We have (u, α) ∈ JϕK or

(u, α) ∈ JψK. Therefore, by induction hypothesis, (v, α) ∈ JϕK
or (v, α) ∈ JψK, hence (v, α) ∈ Jϕ ∨ ψK. The argument for
ϕ ∨ ψ is identical.

Let (u, α) ∈ J∃x.ϕK and v ≥A u. There exists i ∈ dom(u)
such that (u, α[x 7→ i]) ∈ JϕK. By induction hypothesis,
(v, α[x 7→ i]) ∈ JϕK. Hence, (v, α) ∈ J∃x.ϕK. The argument
for ∀ is identical.

B. Proof of Theorem 12

The proof is an adaptation of the classical proof for cor-
rectness of EF-games, see e.g. [Lib04].

Since FO+ is a fragment of FO, we can directly use the
following Lemma:

Lemma 46 ([Lib04, Lem 3.13]). Let n, k ∈ N. Up to logical
equivalence, there are finitely many formulas of quantifier rank
at most n using k free variables.

We will now show a strengthening of Theorem 12, where
free variables are incorporated in the statement:

Theorem 47. Let n, k ∈ N, u, v ∈ A, α : [1, k] →
dom(u) and β : [1, k] → dom(v) be valuations for k
variables x1, . . . , xk in u, v respectively. Then Duplicator
wins EF+

n (u, α, v, β) if and only if for any FO+ formula ϕ
with qr(ϕ) ≤ n using k free variables x1 . . . xk, we have
u, α |= ϕ ⇒ v, β |= ϕ.

Proof. We prove this by induction on n.
Base case n = 0:

Notice that quantifier-free formulas of FO+ are just positive
boolean combinations of atomic formulas, that either compare
the values of the free variables, or assert that the label of a
free variable is ≤A-greater than some letter a ∈ A. Consider
that there is a quantifier-free formula ϕ with k free variables
accepting u, α but rejecting v, β. This happens if and only if
there is a variable xi such that u[α(xi)] 6≤A v[β(xi)], or if
two variables xi, xj are not in the same order according to α
and β. That is, this happens if and only if (u, α, v, β) is not
a valid k-position, i.e. if and only if Spoiler wins the 0-round
game EF+

0 (u, α, v, β).

Induction case: Assume there is an FO+ formula ϕ with
qr(ϕ) ≤ n, accepting u, α but not v, β. The formula ϕ is a
positive combination of atomic formulas, formulas of the form
∃x.ψ, and formulas of the form ∀x.ψ. Therefore, one of these
formulas accepts u, α but not v, β. If it is an atomic formula,



then Spoiler immediately wins EF+
n (u, α, v, β) as in the base

case.
If it is a formula of the form ∃x.ψ, then Spoiler can

use the following strategy: pick a position p witnessing that
the formula is true for u, α, and play the position p in u.
Duplicator will answer a position p′ in v, and the game
will move to (u, α′, v, β′), where α′ = α[x 7→ p] and
β′ = β[x 7→ p′]. Since the formula ψ has quantifier rank
at most n − 1, and accepts u, α′ but not v, β′, by induction
hypothesis Spoiler can win in the remaining n− 1 rounds of
the game.

Now if it is a formula of the form ∀x.ψ, then Spoiler can do
the following: pick a position p′ witnessing that the formula
is false for v, β, and play the position p′ in v. Duplicator
will answer a position p in u, and the game will move to
(u, α′, v, β′), where α′ = α[x 7→ p] and β′ = β[x 7→ p′].
Since the formula ψ has quantifier rank at most n − 1, and
accepts u, α′ but not v, β′, by induction hypothesis Spoiler can
win in the remaining n− 1 rounds of the game.

Let us now show the converse implication. We assume any
formula of quantifier rank at most n accepting u, α must accept
v, β, and we give a strategy for Duplicator in EF+

n (u, α, v, β).
Suppose Spoiler places token x at position p in u. Let α′ =

α[x 7→ p]. By Lemma 46, up to logical equivalence, there is
only a finite set F of FO+ formulas of rank at most n − 1
with k + 1 free variables accepting u, α′. Let ψ =

∧
ϕ∈F ϕ.

Then u, α satisfies the formula ∃x.ψ of rank n (as witnessed
by p), so by assumption we also have v, β |= ∃x.ψ. This
means there is a p′ ∈ dom(v) such that v, β′ |= ψ, where
β′ = β[x 7→ p′]. Duplicator can answer position p′ in v, and
by induction hypothesis he will win the remaining of the game,
since every formula of F accepts v, β′.

Suppose now that Spoiler places token x at position p′ in
v. Let β′ = β[x 7→ p′]. Let F be the finite set of formulas
(up to equivalence) of quantifier rank at most n− 1 and with
k + 1 free variables, that reject v, β′. Let ψ =

∨
ϕ∈F ϕ, and

ψ′ = ∀x.ψ. By construction, x = p′ witnesses that ψ′ does
not accept v, β. Our assumption implies that it does not accept
u, α either. So there is p ∈ dom(u) such that u, α′ 6|= ∀x.ψ,
where α′ = α[x 7→ p]. Duplicator can answer position p in u.
If a formula ϕ of rank at most n− 1 is true in u, α′, then by
construction it cannot appear in F , therefore it is also true in
v, β′. By induction hypothesis, Duplicator wins the remaining
(n− 1)-round game starting from (u, α′, v, β′).

C. Syntactic monoid for the language K
It is instructive to see what the syntactic monoid of K looks

like, in particular to get a first intuition on how an FO formula
can be defined for K.

We depict this monoid M in Figure 4, using the eggbox
representation based on Green’s relations: boxes are J -classes,
lines are R-classes, columns are L-classes, and cells are H-
classes. See [Col11] for an introduction to Green’s relations
and eggbox representation.

The syntactic morphism h : A∗ → M is easily inferred,
as elements of the monoid in h(A) are directly named after
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bca b bc

ca cab c

∅
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Fig. 4. The syntactic monoid M of K

the letter mapping to them. The accepting part of M is F =
{1,
(
a
b

)(
b
c

)(
c
a

)
,
(
c
a

)(
a
b

)(
b
c

)
, abc,>}.

To show that K is FO-definable, it suffices to verify that
M is aperiodic, which is directly visible on Figure 4, as all
H-classes are singletons (see [Col11]).

D. An explicit FO formula for the language K

Recall that K = (a↑b↑c↑)∗+A∗>A∗. We describe here the
behaviour of a formula witnessing that K is FO-definable.

The A∗>A∗ part of K is just to rule out words containing >
by accepting them, which can be done by a formula ∃x.>(x).
So we just need to design a formula ϕ for K ′ = (a↑b↑c↑)∗ \
(A∗>A∗), assuming the letter > does not appear, the final
formula will then be ϕ ∨ ∃x.>(x).

We will call forbidden pattern any word that is not an infix
of a word in K ′. Let us call anchor a position x such that
either x is labelled by a singleton, or x is labelled by

(
a
b

)
(resp.

(
b
c

)
,
(
c
a

)
) with x + 1 labelled by a letter different from(

b
c

)
(resp.

(
c
a

)
,
(
a
b

)
). The idea is that if x is an anchor position

of u ∈ K ′, then there is only one possibility for the value of x
mod 3. If the first position is labelled by a letter from a↑, we
will consider that it is an anchor labelled a, otherwise we will
reject the input word. Similarly, the last position is either a c
anchor or causes immediate rejection of the word. If x, y are
successive anchor positions (i.e. with no other anchor positions
between them), the word u[x+1..y−1] is necessarily an infix
of (
(
a
b

)(
b
c

)(
c
a

)
)∗. We say that an anchor x goes right-up (resp.

right-down) if we can replace the letter
(
α
β

)
by α (resp. β) at

position x+1 without having a forbidden pattern in the imme-
diate neighbourhood of x. Notice that x can not go both right-
up and right-down. We define in the same way the left-up and
left-down property by replacing x+1 with x−1. For instance



consider u =
(
a
b

)(
b
c

)(
c
a

)(
a
b

)(
b
c

)
c
(
a
b

)(
b
c

)(
c
a

)(
a
b

)(
b
c

)(
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)(
c
a

)(
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b

)(
b
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)
,

then apart from the first and last position there are two anchors:
x = 5 labelled c and y = 10 labelled

(
b
c

)
, because it is

followed by another
(
b
c

)
.

Fig. 5. A visualization of anchors

The anchor x goes left-up and right-up, while the anchor y
goes left-up and right-down. If d ∈ {up, down} is a direction,
we say that two successive anchors x < y agree on d if x
goes right-d and y goes left-d. We say that x and y agree if
they agree on some d.

Now, the formula ϕ will express the following properties:
• for all x, x+1 consecutive anchors, the letters at positions
x, x+1, x+2 do not form a forbidden pattern (omit x+2
if x+ 1 is the last position).

• all non-consecutive successive anchors agree.
For instance the formula will accept the word u above, as the
anchors 0, x agree on up, x, y agree on up, and y, last agree
on down.

It is routine to verify that these properties can be expressed
in FO, and that they indeed characterize the language K ′.

E. Detailed proof of Lemma 17

We show here that the strategy of Duplicator defined in the
proof of Theorem 14 of Section IV-A indeed guarantees that
Duplicator wins EF+

n (u, v).
We will generally write p, p′ for related tokens, p being the

position in u and p′ the position in v.
The proof works by showing that the following invariant

holds: after i rounds where Duplicator did not lose, if tokens
in positions p < q in u are related to tokens p′ < q′ in v, and
u[p..q] 6≤A v[p′..q′], let us note d = q−p, d′ = q′−p′; then d =
d′+1 and d ≥ 2n−i. In other words, if we call wrong interval
a factor u[p..q] or v[p′..q′] such that u[p..q] 6≤A v[p′..q′], the
invariant states that after i rounds, the length of the smallest
wrong interval in u is at least 2n−i, and corresponding wrong
intervals differ by 1, the one in u being longer. Before the
first round, this invariant is true, as the only tokens are at the
endpoints of u and v, and we have |u| = |v|+1 and |u| ≥ 2n.
Now, assume the invariant true at round i, and consider round
i + 1. When Spoiler plays a token in one of the words, two
cases can happen. If it is played between previous tokens p, q
(resp. p′, q′) such that u[p..q] ≤A v[p′..q′], then Duplicator
will simply answer the corresponding position in the other
word, and the smallest wrong interval is not affected. If on
the contrary, the new token is played in a minimal wrong
interval, say u[p, q] on position r, then Duplicator will answer
by preserving the closest distance between r − p and q − r.
For instance if r − p < q − r, Duplicator will answer r′ =
p′+(r−p). We can notice that by definition of the words u and
v, and since u[p] ≤ v[p′] by the rules of the game, we have

u[p..r] ≤A v[p′..r′], and in particular u[r] ≤A v[r′], so the
move of Duplicator is legal. Moreover, since q−r > r−p, we
have q− r ≥ q−p

2 , so using the induction hypothesis, q− r ≤
2n−(i+1). Moreover, since we had (q− p) = (q′− p′) + 1, we
now have (q−r) = (q−p)−(r−p) = (q′−p′)+1−(r′−p′) =
(q′ − r′) + 1, so the invariant is preserved. The case where
r − p ≥ q − r is symmetrical. If on the other hand Spoiler
plays in v a position r′ in a wrong interval v[p′..q′], then
min(r′ − p′, q′ − r′) will be strictly smaller than 2n−(i+1),
and will be replicated by the answer r of Duplicator in u[p..q].
This means that the new smallest wrong interval created in u
will have length at least 2n−(i+1), thereby guaranteeing that
the invariant is also preserved in this case.
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