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We experimentally study how the turbulent energy dissipation rate scales in the cross-
stream direction of turbulent wake flows generated by two side-by-side square prisms. We
consider three different such turbulent flows with gap ratios G/H = 1.25,2.4 and 3.5, where
G is the distance between the prisms and H is the prism width. These three flows have very
different dynamics, inhomogeneities and large-scale features. The measurements were taken
with a multi-camera particle image velocimetry (PIV) system at several streamwise locations
between 2.5H and 20H downstream of the prisms. After removing the large-scale most
energetic coherent structures, the normalised turbulence dissipation coefficient C ′ε of the
remaining incoherent turbulence is found to scale as C ′ε ∼ (

√
ReL/Re′λ)

3/2 along the highly
inhomogeneous cross-stream direction for all streamwise locations tested in all three flows
and for all three inlet Reynolds numbers considered. Re′λ and ReL are, respectively, a Taylor
length-based and an integral length-based Reynolds number of the remaining incoherent
turbulence.

1. Introduction
In the framework of Kolmogorov’s (K41) equilibrium cascade theory for homogeneous
turbulence (Kolmogorov 1941a,b,c; Batchelor 1953), the energy dissipation rate ε in the
turbulent flow can be scaled as

ε = CεU3/L (1.1)
whereU is the characteristic velocity scale of the energy-containing eddies, and their size is

captured by the integral length scale L.Cε is a non-dimensional constant (independent of time,
position and Reynolds number) of order unity at sufficiently large Reynolds number. Equation
(1.1) is sometimes refered to as the Taylor-Kolmogorov relation because it first appeared
(without much justification) in Taylor (1935). As mentioned by Rubinstein & Clark (2017),
“if the idea of ‘equilibrium’ in turbulence and the Taylor-Kolmogorov relation were restricted
to static spectra alone, they would have only limited importance. We arrive at something
more general by recalling that the importance of the K41 equilibrium is the hypothesis
that it occurs in any turbulent flow.” This made equation (1.1) “one of the cornerstone
assumptions of turbulence theory”, quoting Tennekes & Lumley (1972). It provides a concise
and straightforward way to estimate the energy dissipation rate in the flow and to model eddy
viscosities in Reynolds-averaged Navier-Stokes models of turbulence (see Pope 2000). It also
indicates an essential feature of the equilibrium energy cascade: the energy dissipation level
in the flow is dictated by the large-scale eddies, irrespective of fluid kinematic viscosity ν,
instantaneously.
In the past decade, it has been observed in protracted initial decay regions of various
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turbulent flows where energy spectra have clear power law ranges with exponents close to
Kolmogorov’s −5/3, that the turbulence dissipation rate does not obey (1.1) with constant
Cε but that Cε depends on local and global Reynolds numbers (see the review of Vassilicos
2015) as follows:

Cε ∼ Rem/2
G
/Renλ(, Const) (1.2)

where m ≈ 1 and n ≈ 1; ReG ≡ U∞Lg/ν is the global Reynolds number based on the
incoming velocity U∞ and a characteristic size of the turbulence generator Lg, ν being
the kinematic viscosity; and Reλ ≡ ukλ/ν is the local (in streamwise direction) Reynolds
number based on a local velocity scale uk representing the local turbulent kinetic energy
and the local Taylor length-scale λ. The observation of relation (1.2), which is refered to as
the non-equilibrium turbulence dissipation scaling (Vassilicos 2015), was first reported by
Seoud & Vassilicos (2007) in an approximately locally homogenous and isotropic turbulent
flow generated by a fractal grid. Later on, it was also confirmed in various types of fractal
grids and observed in a variety of other turbulent flows, including fractal/multiscale and
regular grid turbulence (Valente & Vassilicos 2012; Isaza et al. 2014; Hearst & Lavoie 2014;
Nagata et al. 2013, 2017), axisymmetric and planar bluff body wakes (Obligado et al. 2016;
Alves Portela et al. 2018; Chongsiripinyo & Sarkar 2020), planar jets (Cafiero & Vassilicos
2019), turbulent boundary layers (Nedić et al. 2017), and both forced and decaying periodic
turbulence (Goto & Vassilicos 2015) in which case Reλ is local in time. Most recently,
Ortiz-Tarin et al. (2021) found a non-equilibrium dissipation scaling with an exponent n = m
different from 1 in the high Reynolds number wake of a slender (rather than bluff) body.
The turbulence dissipation scaling has a profound influence on basic turbulent flow

properties such as mean flow profile streamwise evolution and the turbulent/non-turbulent
interface propagation velocity in self-preserving boundary-free turbulent shear flows. The
rate of growth of self-similar turbulent jets and wakes is very different in the presence of
the non-equilibrium dissipation scaling (1.2) than in the presence of the Taylor-Kolmogorov
scaling Cε = Const (Nedić et al. 2013; Dairay et al. 2015; Cafiero & Vassilicos 2019).
Similarly, the turbulent/non-turbulent interface propagation velocity is very different in these
flows in the presence of one or the other dissipation scaling too (Zhou & Vassilicos 2017;
Cafiero & Vassilicos 2020). These differences have been observed in Direct Numerical
Simulations (DNS) and laboratory experiments (Nedić et al. 2013; Dairay et al. 2015; Zhou
& Vassilicos 2017; Cafiero & Vassilicos 2019, 2020).
As demonstrated by Goto &Vassilicos (2015, 2016a,b) the turbulence cascade responsible

for the dissipation scaling (1.2) is an out of equilibrium non-Kolmogorov cascade with a
significant time-lag between the rate of energy loss by the energy-containing eddies and the
turbulence dissipation by the smallest ones which, therefore, do not balance instantaneously.
The presence of this non-equilibrium cascade is felt in non-stationary conditions, either in
time, as in time-evolving periodic turbulence, or in the streamwise directions for flows such
as jets, wakes and grid-turbulence. In such flows, the streamwise direction represents time in
the frame moving with the streamwise mean fow velocity (e.g. Taylor 1938).
Unlike the Kolmogorov equilibrium cascade and the resulting Taylor-Kolmogorov dissi-

pation scaling which are well established as time-average properties of statistically stationary
turbulence that is either homogeneous (even if only locally) or periodic (Kolmogorov
1941b,a,c; Frisch 1995; Vassilicos 2015; Goto & Vassilicos 2015, 2016a; Yasuda &
Vassilicos 2018), the dissipation scaling (1.2) is also present in non-homogeneous turbulence,
for example turbulent jets andwakes. Turbulence inhomogeneity typically implies production
and spatial fluxes of turbulent kinetic energy which must be dissipated by a turbulence
cascade mechanism. Given that the non-equilibrium cascade gives rise to a universal relation
between the time/streamwise variations of Cε and Reλ (relation (1.2)) in a universality
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class of flows currently known to include self-similar jets and wakes, decaying grid and
periodic turbulence, and forced periodic turbulence, could it also give rise to a universal
relation between space variations of Cε and Reλ? If such a relation exists and is the same for
different inhomogeneity structures, then one should seriously consider the possibility that it
is a reflection of a turbulence cascade which somehow universally relates turbulent kinetic
energy, turbulence dissipation and size of energy containing eddies, the three turbulence
quantities involved inCε and Reλ. Indeed, the turbulence cascade is one mechanism involved
in the turbulent kinetic energy balance which may be essentially the same for a range of
types of inhomogeneity. Of course, if such a relation exists for some universality class of
turbulence inhomogeneities and if it does indeed reflect a turbulence cascade mechanism,
then this turbulence cascade will have to be a non-Kolmogorov cascade simply because it
will fundamentally concern non-homogeneous turbulence.
The first question we therefore ask in this paper is whether a relation of general validity

exists between Cε and Reλ in the transverse direction of a class of inhomogeneous turbulent
flows. The second question we ask in this paper is whether such a non-homogeneous
dissipation scaling, if it exists, has anything in common with the non-equilibrium/non-
stationarity dissipation scaling (1.2). The non-equilibrium cascade which gives rise to (1.2)
is such that Cε grows or decays when Reλ decays or grows in the streamwise direction: for
example,Cε grows as Reλ decays in axisymmetric turbulent wakes, decaying grid turbulence
and decaying periodic turbulence (Dairay et al. 2015; Vassilicos 2015; Goto & Vassilicos
2015, 2016a,b); and Cε decays as Reλ grows in planar turbulent jets (Cafiero & Vassilicos
2019). Does something similar happen in transverse/cross-stream directions? Whether it is
worth investigating a new concept of inhomogeneous turbulence cascades and its potential
relations with non-equilibrium cascades will be determined by the results of the present study
and is a question which must be left for future research.
To address the two questions raised above, we examine cross-stream profiles of turbulent

kinetic energy, integral length-scale and turbulence dissipation in the wakes of side-by-side
pairs of square prisms. It has been established in previous investigations that there are mainly
three flow regimes in such flows (e.g. Sumner et al. 1999; Alam et al. 2011; Yen & Liu
2011): (a) when G/H 6 1.2 ∼ 1.3 where G is the center-to-center distance between the
prisms and H is the side-length/width of the square prism (see figure 1), the flow is similar
to that of a single bluff body, so this case is refered to as ‘single-bluff-body regime’; (b) for
G/H between 1.2 ∼ 1.3 and 2.2 ∼ 2.5, the flow switches intermittently from one prism to
the other, resulting in one wide and one narrow vortex streets in the wake. This flow case
is the ‘bistable regime’ or ‘asymmetric wake regime’(e.g Kim & Durbin 1988); (c) when
G/H > 2.2 ∼ 2.5, the flow loses the bistability of the previous regime and two coupled
vortex streets form in the wake, either in in-phase or in anti-phase mode (e.g. Alam & Zhou
2013). This case is refered to as ‘couple-street regime’. Note that the critical G/H values
which demarcate different flow regimes are affected by the inlet Reynolds number (Xu et al.
2003).
In the present study, we follow Avelar (2019) and chose three gap ratios, G/H = 1.25, 2.4

and 3.5, one G/H value for each one of the three different flow regimes just mentioned. This
provides significant variability in flow types and turbulence inhomogeneity for a systematic
investigation of the relation between Cε and Reλ in qualitatively different flows obtained by
simple adjustments of inlet conditions without changing global Reynolds number. To also
assess the effect of global Reynolds number, each G/H case is studied under at least two
incoming velocities (see section 2).
The paper is organised as follows. Section 2 describes the experiments. In section 3, we

compare the different flow fields obtained for different gap ratios to evidence the different
large-scale features of the turbulence and the different turbulent flow inhomogeneities in the
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Figure 1: (a) PIV set up for the energy dissipation rate measurements. (b) PIV set up fpr
the integral length scale measurements. (c) The coordinate system normal to the prisms’s
spanwise direction and definitions of G, H and xc . All fields of view in (a), (b) and (c) and

laser sheets in (a) and (b) are in the horizontal (x, y) plane.

three flows. The scaling of the energy dissipation rate is studied in section 4, including the
result both with and without the energy of the coherent motions. Conclusions are given in
section 5 and the Appendix gives some information on the proper orthogonal decomposition
method used in the study.

2. Experimental details
The experimentwas carried out in the boundary layerwind tunnel of theLille FluidMechanics
Laboratory (LMFL). The test section of the wind tunnel is 2m wide by 1m high and 20m
long. The wind tunnel operates in a closed loop and the test section is transparent on all four
sides to allow extensive use of optical techniques. The temperature is regulated to ±0.15K
using a heat exchanger located in the plenum chamber. The external speed is controlled by
adjusting the fan speedwith a stability of better than 0.5%. Both parameters are fully computer
controlled. More details about the wind tunnel are available in Carlier & Stanislas (2005).
For the present study, two aluminium square prisms with same H = 0.03m were used and
vertically positioned in the test section at about 5m downstream of the test section’s entrance
(figure 1a). Experimental measurements were taken with three different center-to-center gap
distances G between the two prisms (figure 1c), i.e. G = 1.25H, 2.4H and 3.5H, and three
incoming velocities U∞ = 5, 6, and 7.35m/s (measured with a pitot tube 0.45m upstream of
the prisms) corresponding to global Reynols numbers Re = U∞H/ν = 1.0,1.2 and 1.5×104

respectively. The pitot tube was removed after measuring the incoming velocity. Experiments
with different G/H cases were run for each Re as listed in table 1.
To obtain Cε and Reλ we need to measure estimates of turbulent dissipation rate, turbulent

kinetic energy and integral length scale and we had to use different PIV set ups for the
measurements of turbulent dissipation on the one hand (figure 1a) and integral length scale
on the other (figure 1b). The energy dissipation rate ε was measured with a system of two
cameras (figure 1a). The system comprises an Innolas 2x150mJ YAG laser at 10Hz with
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Re 1.0 × 104 1.2 × 104 1.5 × 104

G/H 1.25 2.4 3.5 1.25 2.4 3.5 3.5

Cases

SFV7 SFV2.5 SFV7 SFV14 SFV14 SFV14 SFV20
SFV14 SFV5 SFV14 SFV20 SFV20 SFV20
SFV20 SFV10 SFV20

SFV20

Area (∆x × ∆y) 1H × 0.9H 1H × 0.9H 1H × 0.9H

Table 1: Details of the small fields of view (SFV).

Re 1.0 × 104 1.2 × 104 1.5 × 104

G/H 1.25 2.4 3.5 1.25 2.4 3.5 3.5
x range(H) 0.53 – 24.3 11.1 – 24.9 11.1 − 24.9
y range(H) -2.4 – 2.9 -2.8 – 3.0 -2.8 – 3.0

Table 2: Details of the large fields of view (LFV).

which a laser sheet is obtained in the horizontal (x, y) plane normal to the vertical span of the
prisms. This sheet enters from the side of the test section and is 0.3 mm thick. Two sCMOS
cameras are positioned on either side of the sheet, one over the top and one under the bottom
of the test section, and observe the same region of the flow so as to have two independent
measurements of the velocity fields. The calibration was conducted on a transparent grid with
cross patterns which allows the same points to be located to within 0.1 pixel on both cameras
and therefore generates a commonmesh to allow denoising. The idea, following Foucaut et al.
(2020), is that two independent measurements of the same quantity can be used to estimate
and/or remove the noise in statistical calculations (cf. Foucaut et al. 2016). We explain how
we apply this denoising procedure to the calculation of ε in the following paragraphs. The
cameras are equipped with 200 mm Micro-Nikor lenses, the f-stop is adjusted to 8 to obtain
particle images of the order of 2 pixels. The magnification is 0.5, and the field of view, which
is refered to as small field of view (SFV), is about 1H in streamwise direction by 0.9H in
lateral direction (figure 1 a and c). For each gap ratio G/H, the measurement was taken
at several downstream positions along the geometric centreline which crosses mid-distance
between the two prisms (y = 0), as sketched in figure 1c where xc is the streamwise position
of the centre of the SFVs. The measurement cases for each G/H are summarized in table 1.
Note that in the table, the cases are refered to as SFVN where N gives an idea in terms of
multiples of H of the approximate streamwise distance xc of the centre of the corresponding
SFV from the mid-point between the prisms.
The energy dissipation rate ε is estimated based on the assumption of local axisymmetry

along the streamwise direction (see George & Hussein 1991) as follows:

ε = ν

−
(
∂u
∂x

)2
+ 2

(
∂u
∂y

)2
+ 2

(
∂v

∂x

)2
+ 8

(
∂v

∂y

)2 (2.1)

where the overbar is an average over time, u and v are the fluctuating velocity components in
the streamwise and cross-stream directions respectively, andwhere x and y are the streamwise
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Figure 2: Ratios of the interrogation window size in the SFVs to the local Kolmogorov
length scale η at different streamwise positions along the geometric centreline.

and cross-stream spatial coordinates shown in figure 1. Lefeuvre et al. (2014) demonstrated
that the energy dissipation rate estimated based on the streamwise local axisymmetry
assumption is a good representation of the full energy dissipation rate across the stream
in the wake of a square prism, and in fact more accurate than the energy dissipation rate
estimated based on the locally isotropy assumption, especially in the near wake region.
The velocity fluctuation derivatives in equation (2.1) are obtained from the SFV measure-

ments with a central differencing scheme. The denoising is that of Foucaut et al. (2020) and
takes advantage of the fact that every term in equation (2.1) is the product of a derivative
with itself. One of the two derivatives in this product is obtained from one camera and the
other derivative from the other camera. As the noise in the measurements made with one
camera is uncorrelated with the noise in the measurements made with the other camera, the
average over time (i.e. over different PIV images) of the product of these two derivatives has
a very significantly reduced noise contribution. For example, the term (∂u/∂x)2 is obtained
by time-averaging the product of (∂u/∂x) from one of the two cameras with (∂u/∂x) from
the other camera. The same process has been applied to the other mean-square velocity
derivative terms in equation (2.1), so that the noise in ε is significantly reduced.
A different PIV set up is used for the integral length scale measurements (figure 1b),

in which case the field of view is referred to as a large field of view (LFV). For these
measurements,a 2x220mJ YAG BMI laser at 12Hz was used; the beam quality of this laser
makes it possible to produce a sheet with a substantially constant thickness of around 0.8mm
over a length of 1m. A system of four sCMOS cameras was positioned to obtain a field of
view of 24H (streamwise) by approximately 5.5H (cross-stream) for the smallest Reynolds
number Re = 1.0×104, and two sCMOSwere used to get a field of view of 14H (streamwise)
by 6H (cross-stream) for the two larger Reynolds numbers Re = 1.2×104 and Re = 1.5×104.
Each camera was equipped with a 105mmMicro Nikkor lens with a magnification of 0.085 in
the four camera case and of 0.078 in the two camera case. The laser sheet was also horizontal
((x, y) plane) and entered the wind tunnel through a mirror positioned downstream in the
wind tunnel test section (figure 1b). The f-stop was adjusted to 8 to get particle images of 1.7
pixels. The fields of view of consecutive cameras were adjusted to have a common region
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Figure 3: (a) Streamwise profiles of the normalised mean streamwise velocity U/U∞
along the wake centerline (y/H = 0) for different gap ratios. The solid lines are from the
LFV measurements and the dashed line is from the DNS of Zhou et al. (2019). (b-d)

Streamwise profiles of turbulent kinetic energy along the centreline taken from LFV and
SFV measurements at Re = 1.0 × 104. Each plot corresponds to one value of G/H: (b)

G/H = 1.25, (c) G/H = 2.4, (d) G/H = 3.5. The vertical dashed lines stand for the
upstream and downstream boundaries of each SFV.

of 2cm to allow estimation of the level of uncertainty. Details of the LFV measurements are
listed in table 2.
For both SFV and LFV measurements, the PIV delays were adjusted to have a maximum

displacement of 12 pixels, and the acquisition frequency was 5Hz for SFV and 4 Hz for LFV
to ensure uncorrelated sample. 20,000 velocity fields were captured for each measurement.
The seeding was carried out using Poly-Ethylene Glycol particles. The diameter of the
particles was about 1µm and the concentration was adjusted to have a number of particles
per pixel of 0.04. The PIV analysis was carried out using an in-house software developed
on a MatPIV basis. It is multi-pass and multi-grid (Willert & Gharib 1991; Soria 1996) and
completes its analysis by image deformation (Scarano 2001; Lecordier & Trinite 2004) and
a final 24 × 24 pixel interrogation window, with about 58% overlap, which corresponds to
312 µm interrogation window for the SFV and about 1.6 mm for the LFV.
The spatial resolution of the SFV measurements is important for a reliable estimation of ε .

The ratio of the interrogation window size (∆d) to the Kolmogorov length scale η ≡ (ν3/ε)1/4

for all the measured positions along the wake centerline is displayed in figure 2. It should
be noted that for each gap ratio at a particular position, only the case with the highest Re is
shown. The ratio ∆d/η varies from 4.5 in the nearest position (SFV2.5) to 2.5 in the farthest
position (SFV20). For most positions, ∆d/η is generally below 4, except for the very nearest
one. It has been shown that a PIV resolution of ∆d/η 6 5 can provide an estimation of the
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Figure 4: Ratio of (u2 + v2)/2 to (u2 + v2 + w2)/2 from the DNS data (courtesy of Dr Yi
Zhou of Nanjing University of Science and Technology) of Zhou et al. (2019). Re = 2500,

G/H = 4 and y/H = 0.

energy dissipation rate with an uncertainty of less than 30% (e.g. Lavoie et al. 2007; Tokgoz
et al. 2012). Therefore, the spatial resolution in the present study should provide a reliable
estimation of the energy dissipation rate, especially for x/H > 4.
We close this section with two comparisons: a comparison of the streamwise mean flow

velocity obtained from one of our LFVs and the streamwise mean flow velocity obtained
for the same type of flow by the direct numerical simulation (DNS) of Zhou et al. (2019)
(figure 3a); and a comparison of the turbulent kinetic energies obtained from our SFV and
LFV measurements (figure 3b,c,d). The streamwise profile of the normalised time-averaged
streamwise velocityU/U∞ along the geometric centerline for gap ratio G/H = 4 obtained by
Zhou et al. (2019) at Re = 2500 agrees well with the present measurements for G/H = 3.5
at Re = 1.0 × 104.
Figure 3a also illustrates the very significant differences in mean flow profiles between

the three gap ratios that we consider here. Equally significant inhomogeneity differences are
also manifest in the streamwise turbulence kinetic energy profiles in Figure 3b,c,d. These are
clearly flows with very different inhomogeneity structures.
FollowingKolář et al. (1997), the turbulent kinetic energy k is estimated from (u2+v2)/2 as

our PIV does not provide access to the spanwise velocity fluctuation component w. In figure
4 we plot a comparison between (u2 + v2)/2 and (u2 + v2 + w2)/2 using the DNS data that
Zhou et al. (2019) obtained for a turbulent flow generated by two side-by-side square prisms
with G/H = 4 and a global Reynolds number of Re = 2500. This comparison suggests that
(u2 + v2)/2 captures about 75% to 80% of (u2 + v2 + w2)/2 for x/H > 5. More importantly
for our scaling study of section 4, the ratio of (u2 + v2)/2 to (u2 + v2 + w2)/2 remains about
constant in this x/H range. (We could have made an assumption of axisymmetry to estimate
(u2+v2+w2)/2 from u2/2+v2 but we do not expect such an estimation to either invalidate our
choice of turbulent kinetic energy surrogate or significantly change this paper’s conclusions
because u2/v2 is close to 1 in our SFVs for x/H > 7 when G/H = 2.4 and 3.5.)
Finally, figure 3b,c,d compares the kinetic energies k = (u2 + v2)/2 obtained from the

LFV measurements with the kinetic energies k = (u2 + v2)/2 obtained from the denoised
SFVmeasurements and shows that the two independent k measurements overlap for all G/H
cases and in all SFV positions.
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Figure 5: Examples of flow patterns of normalised instantaneous streamwise velocity
U/U∞ in the wake of the two prisms (filled squares) at Re = 1.0 × 104. (a, b) G/H = 1.25,
(c, d) 2.4, (e) 3.5. The positions of SFVs for each gap ratio are also displayed with dashed

squares.

3. The velocity, turbulent kinetic energy and integral length scale
Figure 3 gives some initial appreciation of the qualitative and quantitative differences in
inhomogeneity structure of our three flows. In this section we document the qualitatively
different dynamics and flow types as well as the different types of statistical inhomogeneity
between the three flows in the horizontal (x, y) plane.We look at planar fields of instantaneous
streamwise and cross-stream velocities (U,V), time-averaged streamwise and cross-stream
velocities (U,V) and turbulent kinetic energy k in subsection 3.1. In subsection 3.2 we report
on the variation of the integral length scale in the (x, y) plane. The results in this section are
from our LFV measurements.

3.1. Velocity and turbulent kinetic energy
We start with instantaneous velocity fields. Figure 5 shows distinctly different instantaneous
streamwise velocity fields for the three gap ratios (i.e. G/H = 1.25, 2.4 and 3.5) and confirms
the three different typical flow patterns mentioned in this paper’s introduction: ‘single-bluff-
body regime’ for G/H = 1.25, ‘asymmetric wake regime’ for G/H = 2.4 and ‘couple-street
regime’ for G/H = 3.5. The solid black squares in the plots of figure 5 (and some subsequent
figures) represent the square prisms which generate the wake. The empty dashed squares are
the positions of the SFVs.
In the case G/H = 1.25 (figure 5a, b), the two prisms are so close that the shear layers
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Figure 6: Planar mean flows for the three different gap ratios at Re = 1.0 × 104. The solid
lines represent mean flow streamlines of mean velocities (U, V) and the colour-filled

iso-contours stand for U/U∞. (a) G/H = 1.25, (b) 2.4, (c) 3.5.

on the outer side of each prism develop into a single-body-like wake, even though a small
gap flow persists between the two prisms. This small gap flow breaks the symmetry and
randomly flips between being biased towards one prism (figure 5a) to the other (figure 5b)
with time intervals which can be as long as about 10 minutes, i.e. an order of 105H/U∞.
Such bi-stability with such long flip-times results in an asymmetric time-average mean flow
(U,V) even though the time-average is taken over 20,000 images taken at 4Hz, i.e. about 83
minutes (section 2). The mean gap flow for our statistics turns out to be biased “upwards”
(figure 6a) instead of being straight as would be expected from a symmetric inlet condition.
The momentum of the narrow gap flow is small and very sensitive to perturbations in the
flow (e.g. Ishigai & Nishikawa 1975; Alam & Zhou 2013), and it is impossible to ensure
perfect symmetry of perturbations during measurements.
The gap glow between the prisms remains biased in the case G/H = 2.4 (figure 5c, d),

but it is stronger and therefore interacts with the shear layers from the outer sides of the
prisms causing the wake of that particular prism towards which the gap flow is biased to be
displaced in the same direction. As the gap flow has now a larger momentum than in the
G/H = 1.25 case, it more often randomly flips from one side to the other (figure 5 c &
d). Time intervals can now be as long as about 2 minutes, i.e. an order of 104H/U∞. As a
result, the time-average flow is also asymmetric for G/H = 2.4 (figure 6b) but less so than
for G/H = 1.25.
As G/H increases to 3.5 (figure 5e), the gap flow between the prisms is no longer biased

and each prism forms its own vortex street so that the whole wake results from the interaction
between the two symmetrical vortex streets. The mean flow is now symmetric (figure 6c) and
the flow between the prisms has a larger mean velocity than the flow directly downstream of
the prisms.
For G/H = 1.25 (figure 6a), the mean flow streamlines reveal a large-scale recirculation

region downstream of the prisms, resulting in amean streamwise velocity deficit in the central
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Figure 7: Spatial distribution of normalised turbulent kinetic energy k/U2
∞ for different

gap ratios at Re = 1.0 × 104. (a) G/H = 1.25, (b) 2.4, (c) 3.5.

region of this wake. The mean flow in the G/H = 2.4 case (figure 6b) is a combination of the
characteristics of G/H = 1.25 and G/H = 3.5. Clearly the three different flow cases have
significantly different mean flow characteristics, as well as different dynamics.
Consistent with the different instantaneous and mean planar velocities of the three G/H

flow cases, their turbulent kinetic energy k also exhibits distinct features as shown in figure 7.
The shear layers from the prisms have high kinetic energy in all three cases. It is worth noting,
though, that for G/H = 1.25 (figure 7a) and G/H = 2.4 (figure 7b), the energies of the inner
side shear layers are much higher than the energies on the outer side. On the contrary, for
G/H = 3.5 (figure 7c),the wake behind each individual prism is more symmetric and the
shear layers from either side have similar levels of kinetic energy. It is interesting to see
that there is a large-scale low energy region in the G/H = 1.25 flow (figure 7a), upstream
of where the kinetic energy peaks, corresponding to the large recirculation region in the
mean flow (figure 6a). A break of symmetry due to bi-stability is manifest in the turbulent
energy map of the G/H = 1.25 flow (figure 7a), but for the other two cases (figure 7b,c)
the turbulent energy is symmetrically distributed with respect to the centerline (y = 0) and
decays monotonically downstream after reaching a maximum at a much shorter streamwise
distance than for the G/H = 1.25 flow (see also figure 3b,c,d).

3.2. Integral length scale
Integral length scales are obtained from the LFV measurements with the four-camera PIV
system. The integral scales we calculate are obtained from

Li(x, y) ≡
∫ r0

0
Ri(x, y,rx)drx with Ri =

ui(x, y)ui(x + rx, y)√
ui(x, y)2

√
ui(x + rx, y)2

(3.1)

where rx is the streamwise separation between two points in the horizontal plane, r0 is the
value of r where the two-point auto-correlation coefficient Ri first crosses zero (figure 8),
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Figure 8: Streamwise two-point auto-correlation coefficients Ri for i = 1,2 with u1 ≡ u
and u2 ≡ v at two different cross-stream positions, (x/H = 5, y/H = 0) and

(x/H = 5, y/H = 0.4), in the case of G/H = 2.4 and Re = 1.0 × 104.

Figure 9: Map of normalised integral length scales L/H in the (x, y) plane for each gap
ratio at Re = 1.0 × 104. (a) G/H = 1.25, (b) 2.4, (c) 3.5.

where i = 1,2 with u1 ≡ u and u2 ≡ v (there is of course no summation over the index i, and
the overbar is the average over time).
Figure 8 compares the two-point auto-correlation coefficient R1 for u at two lateral positions

(y/H = 0 and 0.4) with R2 for v in the case of G/H = 2.4 and Re = 1.0 × 104. (The other
cases produce similar auto-correlations.) It can be seen from this figure that R2 for v decreases
quickly and varies periodically with rx , which reflects the periodic large-scale vortices in
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the flow. It can also be seen in figure 8 that R1 for u reaches its first zero-crossing at a
separation rx close to 10H which is a very long distance, well above the length scale of
the energy-containing vortices which is commensurate with H and the local width of the
wake(s) (Hayakawa & Hussain 1989; Zhou et al. 2002). A similar observation of long range
streamwise auto-correlations of u was made by Chen et al. (2020) in the wake of a single
prism reflecting long streaky structures formed between the energy containing vortices. On
the basis of these considerations, we adopt the integral length scale L ≡ L2 of the cross-
stream fluctuations v in the definition of Cε in our study of how Cε and Reλ may relate to
each other.
The integral length scale L ≡ L2 for all three gap ratios atRe = 1.0×104 is shown in figure 9.

For G/H = 1.25 (figure 9a), L(x, y) increases gradually as flow develops downstream, and is
larger near the wake centerline than in the ambient region, which is similar to the streamwise
evolution of the integral length scale in the wake of a single cylinder (e.g. Beaulac &
Mydlarski 2004). L(x, y) at G/H = 2.4 (figure 9b) displays a distribution resembling that of
G/H = 1.25, except that L(x, y) is much larger in the gap flow region for G/H = 2.4 than for
G/H = 1.25. L(x, y) forG/H = 3.5 (figure 9c) differs from the streamwise increasing L(x, y)
for G/H = 2.4 and G/H = 1.25: it grows downstream of the prisms, reaches maxima, and
decays downstream of these maxima. L(x, y) in the G/H = 3.5 case is generally smaller than
L(x, y) in the G/H = 2.4 and G/H = 1.25 cases. The qualitatively different integral scale
maps for our three gap ratios are consistent with the observation that the vortex formation
lengths for G/H = 1.25 and G/H = 2.4 are much larger than for G/H = 3.5 (e.g. Alam et al.
2011), since the integral length scale physically reflects the size of the energy-containing
vortices in the flow field.
This section has demonstrated the significant qualitative differences in the dynamics, large

scale features and inhomogeneity structures of the three different gap flows considered in this
study. Instantaneous velocities, mean flow velocities, turbulent kinetic energy and integral
length scale values andmaps are indeed very different in the three flows.We can therefore use
these three flows to study potential cross-stream relations betweenCε and Reλ in qualitatively
different flow contexts, both with and without changing inlet Reynolds number. It is even
possible to see whether any spatial relation that we may find between Cε and Reλ is sensitive
to the asymmetry which can be imposed by bi-stability.

4. Turbulent energy dissipation rate scaling
In this section, we examine the scalings of the energy dissipation rate by looking at different
positions in different wake flows generated by side-by-side prisms with different gap ratios
and different inlet/global Reynolds numbers.

4.1. Scaling of Cε with all scales of motions
Figure 10 shows examples of isocontours of turbulent kinetic energy k/U2

∞, integral length
scale L/H and energy dissipation rate ε at different streamwise positions of the same flow.
The main point we make with these examples taken from the G/H = 2.4 flow is that
inhomogeneity is also present in the small fields of view (SFV) for all the three quantities
plotted. The same point can be made with similar plots for our two other G/H flows but we
omit them for economy of space.
The small field of view inhomogeneities are consistent with the large field of view

inhomogeneities: the kinetic energy variesmostly in the cross-stream direction inside SFV2.5
(figure 10a) and SFV5 (figure 10b) and decays in the streamwise direction within SFV10
(figure 10c) and SFV20 (figure 10d), which is consistent with the spatial evolution of the
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Figure 10: Isocontours of (a - d) turbulent kinetic energy k/U2
∞, (e - h) integral scale L/H,

and (i - l) energy dissipation rate ε in the SFVs of the G/H = 2.4 flow at Re = 1.0 × 104.
(a, e, i): SFV2.5; (b, f, j): SFV5; (c, g, k): SFV10; (d, h, l): SFV20.

kinetic energy in the LFV of the same flow case (figure 7b). The integral length scale (figure
10e-h) at each (x, y) location within the SFVs is obtained by interpolation of the result of
the LFV measurement (figure 9b) and is therefore consistent with it by construction. The
turbulence dissipation rate ε is also very inhomogeneous within the SFVs (figure 10i-l) and
is even slightly asymmetrically distributed in SFV10 and SFV20, a remnant signature of
bistability even though the time average was taken over 20,000 images taken at 5Hz for 67
mins (section 2). As expected, this asymmetry is even stronger in the G/H = 1.25 case but
is absent in the G/H = 3.5 case (not shown here for economy of space). All three quantities
show a tendency towards homogeneity with increasing distance downstream, particularly in
the cross-stream direction, and most notably within SFV20.
Using our measured values of k, L and ε we compute the normalised dissipation rate

Cε ≡ εL/U3 and the local Taylor length-based Reyolds number Reλ ≡ λU/ν where λ ≡
(15νU2/ε)1/2 and U = (2/3k)1/2. As we are interested in cross-stream profiles, we calculate
streamwise-averaged values of Cε and Reλ within each SFV, denoted respectively 〈Cε 〉(y)
and 〈Reλ〉(y), which we plot as functions of y/H in Figure 11 in the nearest and furthest
SFVs for all three gap ratios G/H. The global Reynolds number is the same in figures 10
and 11, namely Re = 1.0× 104, but our conclusions from these figures do not change for the
different values of Re that we tried.
It is evident from figure 11 that 〈Cε 〉 increases when 〈Reλ〉 decreases and vice versa. This

inverse relation between 〈Cε 〉 and 〈Reλ〉 holds for all gap ratios, all SFVs and all values of
Re that we tried even though the y-dependencies of 〈Cε 〉 and of 〈Reλ〉, and even the very
ranges of 〈Cε 〉 and 〈Reλ〉 values, vary from case to case. We therefore have the beginnings of
an answer to the two questions we posed in the introduction: it appears that there is indeed a
relation between 〈Cε 〉 and 〈Reλ〉 in the transverse/cross-stream direction and that this relation
resembles qualitatively the non-equilibrium/non-stationarity dissipation scaling (1.2) in that
it is an inverse relation between 〈Cε 〉 and 〈Reλ〉 irrespective of gap ratio, position of SFV
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Figure 11: The lateral distributions of streamwise averaged non-dimensional dissipation
rate 〈Cε 〉(y) and turbulent Reynolds number 〈Reλ〉(y) for different SFVs corresponding to
the three gap ratios at Re = 1.0 × 104. (a) G/H = 1.25, SFV7, (b) 1.25, SFV20; (c) 2.4,

SFV2.5, (d) 2.4, SFV20; (e) 3.5, SFV7, and (f) 3.5, SFV20.

and global Reynolds number. It is worth noting that the dissipation asymmetry observed in
figure 10k-l for G/H = 2.4 is also present in SFV20 for G/H = 1.25 but not for G/H = 3.5
where bistability is absent, and it is also worth stressing that an inverse relation between 〈Cε 〉
and 〈Reλ〉 is observed both with and without asymmetry.
The Reynolds number Reλ is not small in all G/H and SFV cases (see figure 11), and is

generally between 100 and 500 after being averaged in the streamwise direction within each
SFV (which actually reduces it). The relatively high Reynolds number nature of our turbulent
flows and flow regions is also manifested by the presence of Kolmogorov-like close to 2/3
power law exponents for the streamwise second-order structure functions of both u and v,
observed in all SFVs for all G/H values; see figure 12 where exponents more or less close to
2/3 appear more or less well-defined over a decade of range of scales bounded from below
by λ.
For more insight into the inverse relation between Cε and Reλ and a better comparison

with the non-equilibrium/non-stationarity dissipation scaling (1.2), we look at scatter plots
of Cε and Reλ, see figure 13. Different scatter plots are for different G/H values and different
SFVs, though we chose to plot those for the closest and furthest SFVs. The values of Cε and
Reλ in these scatter plots are from 20 evenly spaced x for each y within the corresponding
SFV.
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Figure 12: Compensated streamwise second-order structure functions
(∆u)2 = (u(x0, y = 0) − u(x0 + l, y = 0))2 and (∆v)2 = (v(x0, y = 0) − v(x0 + l, y = 0))2 in
different SFVs for all three gap ratios at Re = 1.0 × 104 (x0 is at a distance of about 0.1H

from the upstream boundary of the SFV). (a) G/H = 1.25, (b) 2.4, (c) 3.5.

These scatter plots confirm the inverse relation between Cε and Reλ in the whole field of
view rather just between 〈Cε 〉(y) and 〈Reλ〉(y). A best power law fit Cε ∼ Re−nλ of the data
is also given for each scatter plot. Power laws do appear to fit the data reasonably well in
some cases but less so in other cases such as SFV7 for G/H = 1.25 (figure 13a), SFV20
for G/H = 2.4 (figure13e) and SFV20 of G/H = 3.5 (figure13f). In those cases where
the power law is an acceptable fit, the exponent n is not uniformly the same: for example
n ≈ 2.14 for SVF20 G/H = 1.25 but n ≈ 1.5 for SVF2.5 G/H = 2.4. Even though the
spatial inhomogeneities of the turbulent kinetic energy, of the turbulence dissipation and of the
integral length scale are such thatCε and Reλ are anticorrelated in space,which is qualitatively
similar to the non-equilibrium/non-stationarity dissipation scaling (1.2), there does not seem
to be a well-defined universal power law relation between the spatial variabilities of Cε and
Reλ, which is unlike (1.2).
Alves Portela et al. (2018) reported that in the near wake of a single square prism,

specifically x/H smaller than at least 10, the non-equilibrium dissipation scaling (1.2) is
observed provided that the energy of the large-scale coherent structures is excluded. In the
following sub-section we explore the hypothesis that the variability in the quality of the fit
Cε ∼ Re−nλ and of its exponent n may be due to the variability in large-scale structures
present at different streamwise positions for different gap ratios G/H. We therefore explore
the scalings of the spatial inhomogeneity of the turbulence dissipation when the coherent
motions are removed.
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Figure 13: Scatter plots for Cε and Reλ in different SFVs for the three gap ratios at
Re = 1.0 × 104. The red dashed line in each plot is fitted based on the least squares

method for all the data points.

4.2. Scaling of Cε without the coherent motions
A snapshot PODmethod is used to decompose the flow velocity field into different orthogonal
modes and then remove the most energetic coherent motions from the velocity field. A
practical description of the POD method applied here is given in the Appendix. This method
gives rise to a distribution of energies in different POD modes which we plot in figure 14
for all gap ratios and all SFVs at Re = 1.0 × 104. It is interesting to see that the streamwise
evolution (from one SFV to the next in the streamwise direction) of the energy of the
first, most energetic, mode is consistent, for each G/H, with the streamwise evolution of the
corresponding integral length scale (figure 9): the energy of the first mode in the G/H = 1.25
case increases from SFV7 to SFV20 (figure 14a), while for G/H = 3.5 the energy of the
first mode energy decreases from SFV7 to SFV20 (figure 14c). For G/H = 2.4 (figure 14b),
the energy of the first mode decreases first from SFV2.5 to SFV5 and then increases further
downstream. The corresponding integral length scale for each G/H varies in a similar way
in the streamwise direction.
It can be seen from figure 14 that the first two modes stand out in terms of turbulent kinetic

energy content. We therefore take the first two modes as representative of the coherent
motions. We checked that the results of this subsection do not change appreciably if we were
to define the coherent motions in terms of the first three modes.
In the following analysis, we divide the flow field into coherent motions, reconstructed

using the first two modes in equation (5.6), and the remaining small-scale velocity field
which is reconstructed using the rest of the modes in equation (5.6). We define the coherent
turbulent energy k̃(x, y, t) = (ũ2+ ṽ2)/2 in terms of the streamwise and cross-stream coherent
velocity fluctuations (ũ, ṽ) and the remaining turbulent kinetic energy k ′(x, y, t) = (u′2+v′2)/2
in terms of the streamwise and cross-stream velocity fluctuations (u′, v′) in the remaining
modes. Figure 15 shows, for G/H = 2.4 and Re = 1.0 × 104, maps of the time-averaged
coherent turbulent energy, k̃ (figure 15a-d), of the time-averaged turbulent energy in the
remaining motions, k ′ (figure 15c-h) and of the time-averaged energy dissipation rate ε ′ in
these remaining motions (figure 15i-l). It is worth noting, by comparing figures 15i-l and 10
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Figure 14: The distribution of turbulent energy among different POD modes, Ei given by
(5.4), in different SFVs for different gap ratios at Re = 1.0 × 104. (a) G/H = 1.25, (b) 2.5,

(c) 3.5.

Figure 15: Isocontours of (a - d) coherent turbulent kinetic energy k̃/U2
∞, (e - h) remaining

small-scale turbulent kinetic energy k ′/U2
∞, and (i - l) energy dissipation rate ε ′ in the

SFVs corresponding to G/H = 2.4 at Re = 1.0 × 104. (a, e, i): SFV2.5, (b, f, j): SFV5, (c,
g, k): SFV10, and (d, h, l): SFV20.

i-l, that the spatial distribution of ε ′ is effectively identical to that of ε . This correspondence
is reasonable and validates our flow decomposition because the turbulent energy dissipation
mainly occurs at the small scales.
Figure 15 demonstrates that the inhomogeneity remains present in the small fields of view

with the decomposed fields but is now much more organised because of the extraction of
the coherent motions. The coherent kinetic energy k̃ is typically large where the small-scale
kinetic energy k ′ is small and vice versa. The sum of these two energies adds up to k plotted
in figure 10a-d.
A better understanding of the opposite spatial distributions of k̃ and k ′ can be provided by

representative instantaneous snapshots of k̃, k ′ and ε ′, shown in figure 16 for SFV2.5 and
figure 17 for SFV5. The coherent motions are closer to the geometric centerline y = 0 in the
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Figure 16: Instantaneous spatial distribution of (a) k̃, (b)k ′, (c)ε ′, (d) ω̃, and (e) ω′ with
respect to the coherent vortex structure represented by solid line 2D streamlines in the

case of SFV2.5 for G/H = 2.4 and Re = 1.0 × 104.

Figure 17: Instantaneous spatial distribution of (a) k̃, (b)k ′, (c)ε ′, (d) ω̃, and (e) ω′ with
respect to the coherent vortex structure represented by solid line 2D streamlines in the

case of SFV5 for G/H = 2.4 and Re = 1.0 × 104.

SFV2.5 and SFV5 measurements than in SFVs further downstream, and therefore easier to
be identified in SFV2.5 and SFV5. The coherent motion streamlines obtained from (ũ, ṽ) and
plotted as solid lines in figures 16 and 17 give a clear indication of where the centre of the
large-scale coherent vortex is, particularly for SFV2.5, whereas this is not the case in SFVs
further downstream. We checked that the instantaneous snapshots in figures 16 and 17 are
quite typical, though the centre of the large-scale motion can be equally found on the positive
or negative y sides.
A first striking observation in both figures 16 and 17 is that k̃ (figures 16a, 17a) is high
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Figure 18: Streamwise-averaged energy dissipation rate 〈ε ′〉 and turbulent kinetic energy
〈k ′〉 based on small-scale motions, integral scale 〈L〉 and 〈k ′3/2/L〉 for Re = 1.0 × 104

and different SFVs corresponding to (a - c) G/H = 1.25, (d - f) 2.4, and (g - i) 3.5.

far from the coherent motion’s central region. The coherent vorticity ω̃ = ∂ṽ/∂x − ∂ũ/∂y
and the small-scale vorticity ω′ = ∂v′/∂x − ∂u′/∂y are also plotted in these snapshot
figures. The maximum values of k̃ are located near the boundary between the positive and
negative coherent vorticity ω̃ (figures 16d and 17d). This observation is consistent with Zhou
& Antonia (1993) and Chen et al. (2019) who reported that the coherent tangent velocity
increases rapidly with increasing distance from vortex centre, reaching a maximum before
decreasing slowly further away. The maximum coherent turbulent kinetic energy is indeed
expected to be found at approximately the same distance away from the vortex center where
the tangent velocity reaches its peak value. It is worth mentioning at this point that in SFVs
further downstream, negative and positive coherent motions have their centres further away
from the y = 0 centreline so that their flow influence meets at the centre of such downstream
SFVs thereby causing approximately circular k̃ patterns. The time-average of these patterns
is also circular as can be seen in figures 15c-d.
The second striking observation in figures 16 and 17 is that the higher values of k ′ (figures

16b, 17b) are concentrated relatively close to the coherent motion’s central region. The same
is true for ω′ (figures 16e, 17e) and the turbulent energy dissipation rate ε ′ (figures 16c,
17c) which, like k ′, are therefore dislocated from k̃. Chen et al. (2018) also found that
the turbulent energy dissipation occurs mainly within the von Kármán vortices in the wake
of a single cylinder. The spatial proximity between high k ′ and high ε ′ values (as well as
high ω′ values) is not unexpected since they are all closely associated with the small-scale
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Figure 19: Streamwise-averaged non-dimentional energy dissipation rate 〈C′ε 〉(y) and
turbulent Reynolds number 〈Re′λ〉(y) based on small-scale motions for Re = 1.0 × 104 and
(a) G/H = 1.25, SFV7; (b) 1.25, SFV20; (c) 2.4, SFV2.5; (d) 2.4, SFV20; (e) 3.5, SFV7;

(f) 3.5, SFV20.

fluctuations (u′, v′). Note that, quite naturally, both k ′ and ε ′ show much more intermittent
spatial distribution than k̃.
A closer look at figures 16 and 17might suggest that there is no perfect collocation between

k ′ and ε ′ either and that high values of ε ′ might more often occur around the centerline than
high values of k ′. In fact, this point about the centerline is not always true and the finer
dislocation between k ′ and ε ′, which does indeed exist, is much subtler and is also non-
universal. In figure 18 we plot time-averaged and streamwise-averaged turbulent energies
and dissipations: to be precise, we plot 〈ε ′〉 and 〈k ′〉 for all three G/H values and all SFVs
except one (we omit the plots for SFV10 G/H = 2.4 because they look very similar to those
for SFV7 in the G/H = 3.5 case). The dislocation between k ′ and ε ′ is evident in all SFVs
except SFV2.5 for G/H = 2.4 where both 〈ε ′〉 and 〈k ′〉 are peaked at y = 0. It is clear that
the statistical inhomogeneity of the turbulence is highly marked in all SFVs for all values of
G/H. It is now the time to return to the main question posed in this paper: can the variety
of cross-stream inhomogeneities in figure 18 be represented by a universal relation between
C ′ε ≡ ε ′/(k ′

3/2
/L) and Re′λ ≡ k ′

1/2
λ′/ν where λ′ ≡ (15νk ′/ε ′)1/2?

The first part of the answer to this question is provided in figure 19 where one can see
that 〈C ′ε 〉(y) increases when 〈Re′λ〉(y) decreases and vice versa, very much like 〈Cε 〉(y)
and 〈Reλ〉(y) in figure 11 but with some different y-dependencies. Concerning the different
y-dependencies, the y-asymmetry in some of the plots of figure 11 is absent in the plots of
figure 19 presumably because of the strong symmetrising influence of the very symmetric
distribution of k ′ seen in figure 15f-h.
Once again, this inverse relation which now is between 〈C ′ε 〉(y) and 〈Re′λ〉(y) holds for all

gap ratios, all SFVs and all values of Re that we tried. Furthermore this qualitative inverse
relation is universal as it holds for all the different y-dependencies in figure 18 where we
plot 〈ε ′〉(y), 〈k ′〉(y), 〈L/H〉(y) and 〈k ′3/2/L〉(y) for all three G/H values and nearly all
SFVs. These y-dependencies are in fact so widely different that it is impossible to make a
simple argument for this inverse relation between 〈C ′ε 〉(y) and 〈Re′λ〉(y) on the basis that
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Figure 20: Scatter plots of C′ε and Re′λ values in different SFVs for each gap ratio and for
two inlet Reynolds numbers. (a - f) Re = 1.2 × 104 and (f) Re = 1.5 × 104.

C ′ε ≡ ε ′/(k ′
3/2
/L) and Re′λ ∼ k ′/

√
νε ′. Indeed, if it was always the case that 〈ε ′〉(y) increases

or decreases when 〈k ′〉(y) decreases or increases and if the y-dependence of 〈L/H〉(y) was
always weak, then the inverse relation between 〈C ′ε 〉(y) and 〈Re′λ〉(y) could indeed be no
more than a reflection of an inverse relation between 〈ε ′〉(y) and 〈k ′〉(y). However it is clear
from figure 18 that this is not the case. The universal inverse relation between 〈C ′ε 〉(y) and
〈Re′λ〉(y) holds for many different types of cross-stream inhomogeneity.
For a better comparison with the non-equilibrium/non-stationarity dissipation scaling (1.2)

and for a more complete answer to the main question posed in this paper, we now look at
scatter plots of C ′ε and Re′λ, see figure 20. Different scatter plots are for different G/H values
and different SFVs, though we once again chose to plot those for the closest and furthest
SFVs. The values of C ′ε and Re′λ in these scatter plots are from 20 evenly spaced values of
x for each y within the corresponding SFV. These scatter plots confirm the inverse relation
between C ′ε and Re′λ in the whole field of view rather just between 〈C ′ε 〉(y) and 〈Re′λ〉(y). A
best power law fit C ′ε ∼ Re′−nλ of the data is also given for each scatter plot. Power laws now
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Figure 21: Scaling exponent n in (a)C′ε ∼ Re′λ
−n for the flow fields reconstructed based on

random motions (POD modes 3 to 2000) and in (b) Cε ∼ Reλ−n for the flow fields with
coherent motions. The different values of x/H correspond to different SFVs.

Figure 22: Comparison between two different choices of global Reynolds number for all
the measured cases at different gap ratios and inlet Reynolds numbers. (a) C′ε versus

√
Re/Re′λ, and (b) C′ε versus

√
ReL/Re′λ with ReL ≡ 〈

√
k ′〉xy 〈L〉xy/ν.

appear to fit the data rather well in all cases and for all the global Reynolds numbers that we
tried. There is in fact very little scatter in these scatter plots.
In figure 21 we plot the power law exponents n in C ′ε ∼ Re′−nλ for each case (different

values of G/H and global Reynolds number Re and different SFVs) and compare them with
the power law exponents obtained from best fits of the (Cε , Reλ) scatter plots in figure 13 for
each gap ratio. Quite remarkably, exponents very close to n = 1.5 are returned universally
for all C ′ε ∼ Re′−nλ fits, whereas the values of n returned for the Cε ∼ Re−nλ fits in figure 13
range between n = 1 and n = 2.3.
In spite of the wide variety and complexity of the spatial inhomogeneities of the turbulent

flows considered here, the equally varied near-field (x 6 20H) inhomogeneities of the
turbulent kinetic energy, of the turbulence dissipation and of the integral length scale are
closely linked together by a simple universal relation, C ′ε ∼ Re′−3/2

λ , once the large-scale
coherent motions have been removed from the flow. The expectation that C ′ε should be
independent of viscosity at the sufficiently high Reynolds numbers of this paper’s turbulent
flows means that C ′ε should also depend on a global Reynolds number, as is in fact the case
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of the non-equilibrium/non-stationarity turbulence dissipation scaling (1.2). One may try
C ′ε ∼ (

√
Re/Re′λ)

3/2 in terms of the global Reynolds number Re = U∞H/ν but figure 22a
shows that C ′ε versus

√
Re/Re′λ does not collapse all G/H and SFV cases. A careful look

at figure 22a reveals, however, that for a given G/H and a given SFV, C ′ε versus
√

Re/Re′λ
does collapse different Re values. We therefore define a local global Reynolds number
ReL ≡ 〈

√
k ′〉xy 〈L〉xy/ν where 〈...〉xy is an average over the entire SFV considered for a

given G/H. Figure 22b shows that C ′ε versus
√

ReL/Re′λ collapses all our data for all gap
ratios, SFVs and global Reynolds numbers. Hence,

C ′ε ∼ (
√

ReL/Re′λ)
3/2. (4.1)

We checked that this scaling is robust to moderate changes of the (x, y) range over which
the average 〈...〉xy is taken. However, further research is needed in the future to establish a
priori ways of determining the proper spatial extent of this average, which may probably be
of the order of the integral length-scale and/or a characteristic size of the large-scale coherent
structures.

5. Conclusion
The scaling (4.1) is the main result of this paper. It describes how the variations along
the cross-stream direction of the turbulent kinetic energy, the turbulent kinetic energy
dissipation and the integral length scale are closely interlinked. This scaling holds for several
streamwise positions in three significantly different turbulent flows and three different inlet
Reynolds numbers. It shares clear qualitative similarities with the scaling C ′ε ∼

√
ReG/Re′λ

found along the streamwise direction of a planar turbulent near wake (Alves Portela et al.
2018), and also with the scaling Cε ∼

√
ReG/Reλ characterising variations in time of

periodic turbulence (Goto & Vassilicos 2015, 2016a,b) and variations along the streamwise
direction in axisymmetric turbulent wakes, planar turbulent jets and grid-generated decaying
turbulence (Seoud & Vassilicos 2007; Valente & Vassilicos 2012; Isaza et al. 2014; Hearst &
Lavoie 2014; Nagata et al. 2013, 2017; Vassilicos 2015; Obligado et al. 2016; Chongsiripinyo
& Sarkar 2020; Cafiero & Vassilicos 2019). These streamwise and temporal turbulence
dissipation scalings reflect a non-equilibrium turbulence cascade characterised by a cascade
time-lag between turbulent kinetic energy and integral length-scale on the one hand and
turbulence dissipation on the other (Goto & Vassilicos 2015, 2016a,b). The cross-stream
turbulence dissipation scaling (4.1) has its roots in the qualitatively different cross-stream
spatial distribution of the incoherent turbulence kinetic energy on the one hand and the
turbulence dissipation and/or integral length-scale on the other (see figure 18 where the
quantities plotted are averaged over x but also recall that there is no such average in (4.1)).
These different cross-stream spatial distributions are dislocations within the incoherent
turbulence which are different from, but may nevertheless be somehow related to, the
observed dislocation between the coherent energy k̃ and the incoherent turbulence. More
importantly, however, these dislocations within the incoherent turbulence may be somehow
analogous to the cascade time-lag and may therefore be a reflection of a non-homogeneous
turbulence cascade operating through space as well as time, very much like the cascade time-
lag is an essential property of the non-equilibrium turbulence cascade. The scaling (4.1)
implies that a new concept of a non-homogeneous turbulence cascade may be meaningful
and complementary to the concept of non-equilibrium turbulence cascade, and may therefore
be worth investigating in the future.
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Appendix: Proper Orthogonal Decomposition (POD) In the present work, a POD method
is used to seperate the coherent motions in the flow from the remaining smaller scale
motions. The POD method, which was first introduced in the study of turbulence by Lumley
(1967), is now a well established technique for identifying the coherent motions (see Berkooz
et al. 1993). In the present study we use the snapshot POD method (Sirovich 1987). The
mathematical description of POD in a general Hilbert space is available in Holmes et al.
(2012). Here we give a brief practical summary for the purpose of explaining what was done
for this paper.
The velocity fluctuations u(x, y, t) and v(x, y, t) from the PIV measurement are arranged

in a snapshot matrix U , each column of which is composed of velocity fluctuations from the
same PIV image:

U(2m×n) =



ux1 ,y1 ,t1 ux1 ,y1 ,t2 . . . ux1 ,y1 ,tn
ux2 ,y2 ,t1 ux2y2 ,t2 . . . ux2 ,y2 ,tn

...
...

. . .
...

uxm ,ym ,t1 uxmym ,t2 . . . uxm ,ym ,tn
vx1 ,y1 ,t1 vx1 ,y1 ,t2 . . . vx1 ,y1 ,tn
vx2 ,y2 ,t1 vx2y2 ,t2 . . . vx2 ,y2 ,tn

...
...

. . .
...

vxm ,ym ,t1 vxmym ,t2 . . . vxm ,ym ,tn


(5.1)

where m is the number of data points in the image, e.g. m = 209 × 249 for SFV2.5, and
n = 2000 is the number of images in one run of the PIV measurement. (Note that for each
SFV, measurements were taken over 10 runs.) The correlation matrix C is the product of the
transpose of U with itself, i.e.

C(n×n) = UT
(n×2m)U(2m×n). (5.2)

Then we solve the eigenvalue problem

Cφi = λiφi (5.3)

where φi (i = 1,2, . . . n) is the eigenvector with n components and λi is the corresponding
eigenvalue. The energy of each mode as a fraction of the total kinetic energy can be expressed
as

Ei =
λi∑n

k=1 λk
(5.4)

We can project the snapshot matrix U onto each eigenvector and get the corresponding
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spatial coefficients

[a1, a2, . . . , an](2m×n) = U(2m×n)[φ1,φ2, . . . ,φn](n×n) (5.5)

Because the correlation matrix C is symmetric, the eigenvector matrix [φ1,φ2, . . . ,φn] is
orthogonal, i.e. [φ1,φ2, . . . ,φn]

−1 = [φ1,φ2, . . . ,φn]
T . Therefore,

U(2m×n) = [a1, a2, . . . , an][φ1,φ2, . . . ,φn]
T

=

n∑
i=1

aiφi
T

= U1 + U2 + U3 + · · · + Un

(5.6)

which means physically U can be decomponsed into Ui (≡ aiφi
T ) contributed by different

velocity modes. The relative kinetic energy contribution from different modes to the whole
flow field is proportional to the value of the corresponding eigenvalue (5.4). Usually, the
eigenvalues are sorted in descending order, therefore the first few modes Ui which make the
predonimant contribution to the total turbulent kinetic energy can be treated as modes of the
coherent motions.

REFERENCES

Alam, M. M. & Zhou, Y. 2013 Intrinsic features of flow around two side-by-side square cylinders. Phys.
Fluids 25 (8), 085106.

Alam, M. M., Zhou, Y. & Wang, X. W. 2011 The wake of two side-by-side square cylinders. J. Fluid Mech.
669, 432–471.

Alves Portela, F., Papadakis, G. & Vassilicos, J. C. 2018 Turbulence dissipation and the role of coherent
structures in the near wake of a square prism. Phys. Rev. Fluids 3 (12), 124609.

Avelar, M. 2019 Spatial evolution of wakes generated by side by side cylinders. PhD thesis, Department
of Aeronautics, Imperial College London.

Batchelor, G. K. 1953 The theory of homogeneous turbulence. Cambridge university press.
Beaulac, S. & Mydlarski, L. 2004 Dependence on the initial conditions of scalar mixing in the turbulent

wake of a circular cylinder. Phys. Fluids 16 (8), 3161–3172.
Berkooz, G., Holmes, P. & Lumley, J. L. 1993 The proper orthogonal decomposition in the analysis of

turbulent flows. Annu. Rev. Fluid Mech 25 (1), 539–575.
Cafiero, G. & Vassilicos, J.C. 2019 Non-equilibrium turbulence scalings and self-similarity in turbulent

planar jets. Proc. R. Soc. Lond. A 475 (2225), 20190038.
Cafiero, G. & Vassilicos, J. C. 2020 Non-equilibrium scaling of the turbulent-nonturbulent interface speed

in planar jets. Phys. Rev. Lett. 125 (17), 174501.
Carlier, J. & Stanislas, M. 2005 Experimental study of eddy structures in a turbulent boundary layer

using particle image velocimetry. J. Fluid Mech. 535, 143.
Chen, J. G., Zhou, Y., Antonia, R. A. & Zhou, T. M. 2018Characteristics of the turbulent energy dissipation

rate in a cylinder wake. J. Fluid Mech. 835, 271–300.
Chen, J. G., Zhou, Y., Antonia, R. A. & Zhou, T. M. 2019 The turbulent Kármán vortex. J. Fluid Mech.

871, 92–112.
Chen, J. G., Zhou, Y., Antonia, R. A. & Zhou, T. M. 2020 Temperature correlations with vorticity and

velocity in a turbulent cylinder wake. Int. J. Heat Fluid Flow 84, 108606.
Chongsiripinyo, K. & Sarkar, S. 2020 Decay of turbulent wakes behind a disk in homogeneous and

stratified fluids. J. Fluid Mech. 885, A31.
Dairay, T., Obligado, M. & Vassilicos, J. C. 2015Non-equilibrium scaling laws in axisymmetric turbulent

wakes. J. Fluid Mech. 781, 166–195.
Foucaut, J.-M., Cuvier, C., Coudert, S. & Stanislas, M. 2016 3d spatial correlation tensor from an

l-shaped spiv experiment in the vear wall region. In Progress in wall turbulence 2 (ed. M. Stanislas,
J. Jimenez & I. Marusic), pp. 405–417. Springer International Publishing.

Foucaut, J.-M., George, W. K., Stanislas, M. & Cuvier, C. 2020 Velocity derivatives in a high reynolds



27

number turbulent boundary layer. part iii: Optimization of an spiv experiment for derivative moments
assessment, arXiv: 2010.09364.

Frisch, U. 1995 Turbulence: the legacy of A. N. Kolmogorov. Cambridge university press.
George, W. K. & Hussein, H. J. 1991 Locally axisymmetric turbulence. J. Fluid Mech. 233, 1–23.
Goto, S. & Vassilicos, J.C. 2015 Energy dissipation and flux laws for unsteady turbulence. Phys. Lett. A

379 (16), 1144 – 1148.
Goto, S. & Vassilicos, J. C. 2016a Local equilibrium hypothesis and taylor’s dissipation law. Fluid Dyn.

Res. 48 (2), 021402.
Goto, S. & Vassilicos, J. C. 2016b Unsteady turbulence cascades. Phys. Rev. E 94 (5), 053108.
Hayakawa, M. & Hussain, F. 1989 Three-dimensionality of organized structures in a plane turbulent wake.

J. Fluid Mech. 206, 375–404.
Hearst, R. J. & Lavoie, P. 2014 Decay of turbulence generated by a square-fractal-element grid. J. Fluid

Mech. 741, 567–584.
Holmes, P., Lumley, J. L., Berkooz, G. & Rowley, C. W. 2012 Turbulence, coherent structures, dynamical

systems and symmetry. Cambridge university press.
Isaza, J. C., Salazar, R. & Warhaft, Z. 2014 On grid-generated turbulence in the near-and far field

regions. J. Fluid Mech. 753, 402.
Ishigai, S. & Nishikawa, E. 1975 Experimental study of structure of gas flow in tube banks with tube axes

normal to flow part ii; on the structure of gas flow in single-column, single-row, and double-rows
tube banks. Bulletin of JSME 18 (119), 528–535.

Kim, J. & Durbin, P.A. 1988 Investigation of the flow between a pair of circular cylinders in the flopping
regime. J. Fluid Mech. 196, 431–448.

Kolář, V., Lyn, D. A. & Rodi, W. 1997 Ensemble-averaged measurements in the turbulent near wake of
two side-by-side square cylinders. J. Fluid Mech. 346, 201–237.

Kolmogorov, A. N. 1941a Dissipation of energy in locally isotropic turbulence. Dokl. Akad. Nauk SSSR
32, 16–18.

Kolmogorov, A. N. 1941b The local structure of turbulence in incompressible viscous fluid for very large
reynolds numbers. Dokl. Akad. Nauk SSSR 30, 301–305.

Kolmogorov, A. N. 1941c On degeneration (decay) of isotropic turbulence in an incompressible viscous
liquid. In Dokl. Akad. Nauk SSSR, , vol. 31, pp. 538–540.

Lavoie, P., Avallone, G., De Gregorio, F., Romano, G. P. & Antonia, R. A. 2007 Spatial resolution of
piv for the measurement of turbulence. Exp. Fluids 43 (1), 39–51.

Lecordier, Bertrand & Trinite, Michel 2004 Advanced piv algorithms with image distortion validation
and comparison using synthetic images of turbulent flow. In Particle image velocimetry: recent
improvements, pp. 115–132. Springer.

Lefeuvre, N., Thiesset, F., Djenidi, L. & Antonia, R. A. 2014 Statistics of the turbulent kinetic energy
dissipation rate and its surrogates in a square cylinder wake flow. Phys. Fluids 26 (9), 095104.

Lumley, J. L. 1967 The structure of inhomogeneous turbulence. In Atmospheric Turbulence and Radio
Wave Propagation (ed. A. M. Yaglom & V. I. Tatarski), pp. 166–178. Moscow.

Nagata, K., Saiki, T., Sakai, Y., Ito, Y. & Iwano, K. 2017 Effects of grid geometry on non-equilibrium
dissipation in grid turbulence. Phys. Fluids 29 (1), 015102.

Nagata, K., Sakai, Y., Inaba, T., Suzuki, H., Terashima, O. & Suzuki, H. 2013 Turbulence structure and
turbulence kinetic energy transport in multiscale/fractal-generated turbulence. Phys. Fluids 25 (6),
065102.

Nedić, J., Tavoularis, S. & Marusic, I. 2017 Dissipation scaling in constant-pressure turbulent boundary
layers. Phys. Rev. Fluids 2 (3), 032601.

Nedić, J, Vassilicos, J. C. & Ganapathisubramani, B. 2013 Axisymmetric turbulent wakes with new
nonequilibrium similarity scalings. Phys. Rev. Lett. 111 (14), 144503.

Obligado, M., Dairay, T. & Vassilicos, J. C. 2016 Nonequilibrium scalings of turbulent wakes. Phys.
Rev. Fluids 1 (4), 044409.

Ortiz-Tarin, J.L., Nidhan, S. & Sarkar, S. 2021 High-reynolds-number wake of a slender body. J. Fluid
Mech. 918.

Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.
Rubinstein, R. & Clark, T. T. 2017 “equilibrium” and “non-equilibrium” turbulence. Theor. App. Mech.

Lett. 7 (5), 301–305.
Scarano, Fulvio 2001 Iterative image deformation methods in piv. Measurement science and technology

13 (1), R1.



28

Seoud, R. E. & Vassilicos, J. C. 2007 Dissipation and decay of fractal-generated turbulence. Phys. Fluids
19 (10), 105108.

Sirovich, L. 1987 Turbulence and the dynamics of coherent structures. i. coherent structures. Quart. Appl.
Math. 45 (3), 561–571.

Soria, Julio 1996 An investigation of the near wake of a circular cylinder using a video-based digital
cross-correlation particle image velocimetry technique. Experimental Thermal and Fluid Science
12 (2), 221–233.

Sumner, D., Wong, S. S. T., Price, S. J. & Paidoussis, M. P. 1999 Fluid behaviour of side-by-side circular
cylinders in steady cross-flow. J. Fluids Struct. 13 (3), 309–338.

Taylor, G. I. 1935 Statistical theory of turbulence iv-diffusion in a turbulent air stream. Proc. R. Soc. Lond.
A 151 (873), 465–478.

Taylor, G. I. 1938 The spectrum of turbulence. Proc. R. Soc. Lond. A 164 (919), 476–490.
Tennekes, H. & Lumley, J. L. 1972 A first course in turbulence. MIT press.
Tokgoz, S., Elsinga, G. E., Delfos, R. & Westerweel, J. 2012 Spatial resolution and dissipation rate

estimation in taylor–couette flow for tomographic piv. Exp. Fluids 53 (3), 561–583.
Valente, P. C. & Vassilicos, J. C. 2012 Universal dissipation scaling for nonequilibrium turbulence. Phys.

Rev. Lett. 108 (21), 214503.
Vassilicos, J. C. 2015 Dissipation in turbulent flows. Annu. Rev. Fluid Mech. 47, 95–114.
Willert, Christian E & Gharib, Morteza 1991 Digital particle image velocimetry. Experiments in fluids

10 (4), 181–193.
Xu, S. J., Zhou, Y. & So, R. M. C. 2003 Reynolds number effects on the flow structure behind two

side-by-side cylinders. Phys. Fluids 15 (5), 1214–1219.
Yasuda, T. & Vassilicos, J. C. 2018 Spatio-temporal intermittency of the turbulent energy cascade. J.

Fluid Mech. 853, 235–252.
Yen, S. C. & Liu, J. H. 2011 Wake flow behind two side-by-side square cylinders. Int. J. Heat Fluid Flow

32 (1), 41 – 51.
Zhou, Y. & Antonia, R. A. 1993 A study of turbulent vortices in the near wake of a cylinder. J. Fluid Mech.

253, 643.
Zhou, Y., Nagata, K., Sakai, Y. & Watanabe, T. 2019 Extreme events and non-kolmogorov −5/3 spectra

in turbulent flows behind two side-by-side square cylinders. J. of Fluid Mech. 874, 677–698.
Zhou, Y. & Vassilicos, J. C. 2017 Related self-similar statistics of the turbulent/non-turbulent interface

and the turbulence dissipation. J. Fluid Mech. 821, 440–457.
Zhou, Y., Zhang, H. J. & Yiu, M. W. 2002 The turbulent wake of two side-by-side circular cylinders. J.

Fluid Mech. .


	Introduction
	Experimental details
	The velocity, turbulent kinetic energy and integral length scale
	Velocity and turbulent kinetic energy
	Integral length scale

	Turbulent energy dissipation rate scaling
	Scaling of C with all scales of motions
	Scaling of C without the coherent motions

	Conclusion

