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Qualitative analysis of optimisation problems with respect to

non-constant Robin coefficients

Idriss Mazari∗ Yannick Privat† ‡

November 18, 2022

Abstract

Following recent interest in the qualitative analysis of some optimal control and shape
optimisation problems, we provide in this article a detailed study of the optimisation of Robin
boundary conditions in PDE constrained calculus of variations. Our main model consists of
an elliptic PDE of the form −∆uβ = f(x, uβ) endowed with the Robin boundary conditions
∂νuβ+β(x)uβ = 0. The optimisation variable is the function β, which is assumed to take values
between 0 and 1 and to have a fixed integral. Two types of criteria are under consideration;
the first one is non-energetic criteria. In other words, we aim at optimising functionals of the
form J (β) =

´
Ω or ∂Ω

j(uβ). We prove that, depending on the monotonicity of the function
j, the optimisers may be of bang-bang type (in other words, the optimisers write 1Γ for some
measurable subset Γ of ∂Ω) or, on the contrary, that they may only take values strictly between
0 and 1. This has consequence for a related shape optimisation problem, in which one tries to
find where on the boundary Neumann (∂νu = 0 ) and constant Robin conditions (∂νu+u = 0)
should be placed in order to optimise criteria. The proofs for this first case rely on new fine
oscillatory techniques, used in combination with optimality conditions. We then investigate
the case of compliance-type functionals. For such energetic functionals, we give an in-depth
analysis and even some explicit characterisation of optimal β∗.
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tions, Shape optimisation, Bilinear optimal control problems, Qualitative analysis of optimisation
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1 Introduction

1.1 Scope of the article, informal presentation of the problem

1.1.1 Informal presentation of the problem

The goal of this article is to provide a theoretical analysis of a class of PDE constrained optimisation
problems which arise in many fields (for instance, in automation, in physics or in mathematical
biology), and in which the aim is to minimise or maximise a certain criteria by acting on the
coefficients of the Robin boundary conditions.

More specifically, we are working with heterogeneous Robin boundary conditions, in the following
sense: the state equation of the phenomenon is supplemented, on the boundary of the domain,
with a condition of the form

∂u

∂ν
(x) + β(x)u(x) = 0,

where β is a non-negative function on the boundary. Our goal is to optimise certain criteria with
respect to β, under some natural constraints.

Context We provide bibliographical references in section 1.6 of this introduction, but let us
point out that such problems have been the topic of a wide research activity. For instance, in
[9, 10], several aspects of the optimisation of the natural energy of the underlying PDE or of some
eigenvalues were tackled. Similarly, this type of question is very natural in the context of thermal
insulation. In this case, a relevant query is to find the best way to coat a domain with an insulant
in order to optimise certain criteria. This is the point of view chosen, for example, in [9, 10, 15].
Other authors have studied this problem in parabolic models, with applications to fluid dynamics
[19], or in hyperbolic problems [20]. Let us finally mention that, in many of the aforementioned
cases, the functionals to be optimised either derive from the natural energy of the PDE or are of
”tracking-type” (i.e. the aim is to minimise the distance of the state to a reference state). However,
many relevant optimisation problems do not fall in either category. This is for example the case
in spatial ecology. One may consider, following [4, 25, 23, 26, 27, 28], the problem of maximising
the population size in logistic models: how should one design the boundary of a domain in order
to optimise the total population inside the domain? Although most of our analysis is, in the main
proofs of this article, detailed in the case of linear models, we also provide in section 1.4 some
extension to non-linear models.

We consider and analyse fairly general functionals, with a strong emphasis on the qualitative
properties of optimisers. As we shall see, these properties are closely related to existence results for
shape optimisation problems. To carry out our proofs, we introduce an oscillatory method which,
although reminiscent of the one we introduced recently in [25], requires fine tuning to obtain our
results.

One of our main contributions is the analysis of the influence of the type of functionals we wish
to optimise (for instance, the monotonicity of the functional is crucial in the forthcoming analysis)
on qualitative results. Let us mention that we consider two main types of functionals: energetic
ones (in other words, functionals that are equal, up to a multiplicative constant, to the natural
energy of the state equation), in which we may achieve an explicit characterisation of optimisers,
and non-energetic ones. The latter case exhibits very different qualitative features; this is the main
topic under consideration here.

Furthermore, let us underline that, from a mathematical perspective, our contributions can be
read through the lens of bilinear optimal control problems set on the boundary. In this setting, we
see β as the control. Likewise, such bilinear optimal control problems have been an active topic of
research in the past years, and are not yet fully understood. We refer once again to section 1.6 of
the introduction for further discussion of recent works in this field.
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Paradigmatic formulation of our problem and motivation The most general version of
our problem problem reads as follows: let Ω be a regular enough domain in IRd and let, for any
measurable subset Γ ⊂ ∂Ω, uΓ

α be the unique solution of{
−∇ · (A(x)∇uΓ

α(x)) = g0(x, uΓ
α(x)) x ∈ Ω

∂νu
Γ
α(x) + α1Γ(x)uΓ

α(x) = 0 x ∈ ∂Ω.
(1.1)

In this formulation, α > 0 is a fixed parameter, A is a matrix assumed to be uniformly elliptic and
g0 is a given non-linearity.

A possible interpretation of this equation is that it is an approximation of a mixed problem of
the type 

−∇ · (A(x)∇vΓ(x)) = g0(x, vΓ(x)) x ∈ Ω,

∂νv
Γ(x) = 0 x ∈ ∂Ω\Γ,

vΓ(x) = 0 x ∈ Γ.

(1.2)

Indeed, under adequate assumptions, the solution to (1.1) converges in some sense to the one of
(1.2) as α→ +∞. We refer to Appendix A for additional explanation in the case where g0 = g0(x).

As a consequence, optimising criteria involving uΓ
α with respect to Γ is closely related to opti-

mising criteria involving vΓ with respect to Γ.

Remark 1 (Comment on the methods used). Let us stress the following fact: while it is plausible
that the optimisers of the problems involving uΓ

α and of the problems involving vΓ have the same
qualitative features, we believe that the tools necessary in order to analyse them are fundamentally
different, as the proper convergence for the mixed Neumann-Dirichlet problem should be the Γ-
convergence of sets while, for the problems involving uΓ

α, the relevant topology is rather the weak
L∞−∗ one on the compactification of {1Γ ,Hd−1(Γ) = V0}. We refer to section 1.5 for additional
comments.

The typical problems we consider in this paper are

sup / inf
Γ⊂∂Ω

Hd−1(Γ)=V0

ˆ
Ω

j
(
uΓ
α

)
or sup / inf

Γ⊂∂Ω
Hd−1(Γ)=V0

ˆ
∂Ω

j
(
uΓ
α

)
(1.3)

where Hd−1(·) stands for the (d− 1)-Hausdorff dimensional measure of Γ and j is a smooth non-
linearity. Stated as such, these problems are shape optimisation problems. We consider a relaxed
version of this problem, where the term α1Γ in (1.1) is replaced with a function β ∈ L∞(∂Ω)
satisfying certain constraints; we explain later in this introduction how qualitative properties for
the optimisation with respect to β are translated to (non-)existence results for the initial shape
optimisation problem.

We also consider, for the sake of completeness, compliance-type problems: namely, the goal for
this class of problems is to solve

sup / inf
Γ⊂∂Ω

Hd−1(Γ)=V0

ˆ
Ω

fuΓ
α (1.4)

where f is the source term in the equation.
Since all the results we establish hereafter are valid whatever the value of α > 0, we may

without loss of generality fix α = 1 in this formulation. We also underline that we first work with
linear models and cover non-linear models in section 1.4.
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1.1.2 Plan of the introduction

The introduction of this paper is long, and we thus take the liberty to give a plan to ease the
reading. Subsection 1.1.3 contains the presentation of the state equation, as well as the definitions
of the two types of functionals considered. In particular, it concludes with a presentation of the
focal point of our analysis for non-energetic functionals, the bang-bang property. In subsection
1.1.4, we motivate the analysis of this property by linking it to existence properties for some
shape optimisation problems. In sections 1.2-1.3, we give our main theorems in the linear case,
first stating the ones dealing with non-energetic criteria, second presenting the ones relevant for
energetic criteria. Section 1.4 contains the results for non-linear models. Section 1.5 is devoted to
the technical context of our proofs. The introduction concludes with section 1.6, which contains a
discussion of the relevant references.

1.1.3 Problem under consideration in this article

Relaxation of the problem and admissible class of coefficients β. We have mentioned we
would consider a relaxed version of (1.3)-(1.4). In order to make the above statement about the
relaxation of the problem precise, we define, for a fixed V0 ∈ (0;Hd−1(∂Ω)), the set B(∂Ω) as

B(∂Ω) :=

{
β ∈ L∞(∂Ω) : 0 6 β 6 1,

ˆ
∂Ω

β = V0

}
. (1.5)

This set corresponds corresponds to the closure of the set {1Γ,Hd−1 (Γ) = V0} for the weak-star
topology of L∞(∂Ω) [18, Proposition 7.2.17]. The set B(∂Ω) is the admissible class we consider
throughout this paper. The link between existence properties for the shape optimisation prob-
lems of type (1.3) and the so-called bang-bang property for optimisation problems set in B(∂Ω) is
investigated in section 1.1.4.

State equation For the sake of simplicity, we first focus in this paper on a simpler version of
(1.2). This allows us to not dwell on existence and regularity issues, and we thus hope to provide a
clear description of the type of arguments involved in the proofs of our results. We refer to section
1.4 for non-linear models.

Henceforth, Ω is a fixed open bounded connected subset of IRd with a C 2 boundary, and
f ∈ L∞(Ω) is a fixed source term. We further assume that

f does not vanish identically and f > 0 a.e. in Ω. (Hf )

For any β ∈ B(∂Ω), we denote by uβ the unique solution of the equation{
−∆uβ = f in Ω,
∂uβ
∂ν + βuβ = 0 on ∂Ω.

(Eβ)

Alternatively, uβ is the unique minimiser in W 1,2(Ω) of the energy functional

Eβ : W 1,2(Ω) 3 u 7→ 1

2

ˆ
Ω

|∇u|2 +
1

2

ˆ
∂Ω

βu2 −
ˆ

Ω

fu. (1.6)

As a consequence of the strong maximum principle, for any β ∈ B(∂Ω) and any f ∈ L∞(Ω)
satisfying (Hf ), we have

inf
Ω
uβ > 0.
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First type of functional: energetic functionals Two natural optimisation problems that
stem from (Eβ) are the problems of maximising and minimising the compliance. In other words,
we shall tackle the problems

max /min
β∈B(∂Ω)

ˆ
Ω

fuβ = F(β) (energetic criteria).

What is notable here is that the functional F rewrites naturally using the energy defined in (1.6),
whence the wording ”energetic” to describe such criteria. Straightforward computations indeed
lead to

F(β) = −2Eβ(uβ) = −2 min
u∈W 1,2(Ω)

Eβ(u).

This alternative formulation enables us to obtain a finer description of optimisers. Since this is
not the central point of this paper, we state the relevant results last, in Theorem 8.

Second type of functional: non-energetic criteria We want to consider boundary and
interior cost functionals. For both these criteria, we consider a fixed non-linearity j : IR → IR.
As we will see, the monotonicity of j plays a crucial role in the qualitative analysis of optimisers.
Thus, we choose j to be monotone. Since we are dealing both with minimisation and maximisation
problems, we may take j to be increasing. Overall, we assume that

j ∈ C 2(IR+) and j′ > 0 on (0; +∞). (Hj)

Using this non-linearity we define two functionals:

J∂Ω : B(∂Ω) 3 β 7→
ˆ
∂Ω

j(uβ) (boundary criterion),

JΩ : B(∂Ω) 3 β 7→
ˆ

Ω

j(uβ) (distributed criterion),

(1.7)

Our focus is on the optimisation problems

sup / inf
β∈B(∂Ω)

ˆ
∂Ω

j(uβ), (1.8)

where uβ solves (Eβ). We refer again to section 1.6 of this introduction for a discussion of the
history of these problems. Several features of the optimisers are relevant in such queries, among
them the so-called bang-bang property: do optimisers β∗ write 1Γ for some subset Γ of ∂Ω? To
justify why this is a relevant question, let us now discuss briefly the relationship between this bang-
bang property and the existence of optimal shapes for the related shape optimisation problem.

1.1.4 Relationship between existence properties for the shape optimisation problem
and the bang-bang property for the relaxed formulation.

Let us now explain a bit more in details the link between the initial shape optimisation problems

sup / inf
Γ⊂∂Ω

Hd−1(Γ)=V0

ˆ
∂Ω

j
(
wΓ
)
, (1.9)

where wΓ solves {
−∆wΓ = f in Ω,
∂wΓ

∂ν + 1Γw
Γ = 0 on ∂Ω,

(1.10)
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and the relaxed problem (1.8).
The first thing that should be noted is that (1.8) has a solution β∗. We refer to Lemma 12

below and indicate that this follows from the direct method in the calculus of variations: the weak
L∞−∗ compactness of B(∂Ω) and the continuity for the L∞−∗ topology of the functionals suffice
to obtain this result. Obtaining such an existence property for (1.9) is much harder.

However, since B(∂Ω) is the compactification of the set {1Γ ,Hd−1 (Γ) = V0} it follows that
for every β ∈ B(∂Ω) there exists a sequence {Γk}k∈IN of measurable subsets of ∂Ω with Hausdorff
measure V0 such that

1Γk →
k→∞

β in the weak L∞ − ∗ topology.

Since J∂Ω is continuous for this topology, we obtain

J∂Ω (1Γk) −−−−−→
k→+∞

J∂Ω(β).

The set {1Γ,Hd−1(Γ) = V0} corresponds exactly to the set of extreme points of the admissible set
B(∂Ω). We call its elements bang-bang functions.

With these informations it is easy to obtain the following proposition/definition describing
the relationships between the shape optimisation problem (1.9) and the bilinear optimal control
problem (1.8).

Definition 2. 1. Problem (1.9) has a solution if, and only if there exists a bang-bang solution
β∗ of Problem (1.8). In this case, we say that Problem (1.8) satisfies the bang-bang property.

2. Alternatively, Problem (1.9) does not have a solution if, and only if any solution β∗ of (1.8)
satisfies Hd−1 ({0 < β∗ < 1}) > 0. In this case, we say that Problem (1.9) enjoys a relaxation
property.

1.2 First case: boundary and distributed criteria

1.2.1 Existence results and bang-bang property for maximisation problems

Boundary criteria

We first tackle the maximisation problem

max
β∈B(∂Ω)

ˆ
∂Ω

j(uβ), (Pmax,∂Ω,B)

where uβ denotes the unique solution to (Eβ). We refer to Lemma 12 below for the existence of
optimal profiles. We also state the related shape optimisation problem

sup
Γ⊂∂Ω

Hd−1(Γ)=V0

ˆ
∂Ω

j
(
wΓ
)
. (Pmax,∂Ω,Σ)

Our first result states that maximisers of (Pmax,∂Ω,B) satisfy the bang-bang property. Following
the discussion of Section 1.1.4, the shape optimisation problem (Pmax,∂Ω,Σ) has a solution.

Theorem 3. Let Ω be a bounded open set of IRd such that ∂Ω is C 2. Assume f satisfies (Hf )
and j satisfies (Hj). Any solution β∗ of the optimisation problem (Pmax,∂Ω,B) is bang-bang: there
exists Γ∗ ⊂ ∂Ω such that β∗ = 1Γ∗ . As a consequence, the shape optimisation problem (Pmax,∂Ω,Σ)
has a solution.
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The proof of this Theorem is one of the central points of this paper. It is carried out using a
high frequency analysis of the second order derivative of the functional. While this type of results
is usually proved using convexity or concavity arguments, the fact that the problem is not energetic
and that we are considering a bilinear control problems a priori prohibits obtaining a convexity
property for the functional J∂Ω. We refer to section 1.5 for a discussion of the method.

Distributed criteria

Although we decided to start with boundary criteria as, to the best of our knowledge, they have
received less attention in the literature, our methods naturally extend to the case of distributed
criteria. In this case, the optimisation problem is

max
β∈B(∂Ω)

ˆ
Ω

j(uβ), (Pmax,Ω,B)

where uβ denotes the unique solution to (Eβ), and the related shape optimisation problem reads

sup
Γ⊂∂Ω ,Hd−1(Γ)=V0

ˆ
Ω

j
(
wΓ
)
. (Pmax,Ω,Σ)

The main result is the following Theorem:

Theorem 4. Let Ω be a bounded open set of IRd such that ∂Ω is C 2. Assume f satisfies (Hf )
and j satisfies (Hj). Any solution β∗ of the optimisation problem (Pmax,Ω,B) is bang-bang: there
exists Γ∗ ⊂ ∂Ω such that β∗ = 1Γ∗ . As a consequence, the shape optimisation problem (Pmax,Ω,Σ)
has a solution.

Since the proof is very similar to that of Theorem 3, we omit it in the main text of the article
and only give it in Appendix D.

1.2.2 Non-existence and relaxation phenomenon for minimisation problems

Boundary criteria

Let us now consider the minimisation problem

min
β∈B(∂Ω)

ˆ
∂Ω

j(uβ). (Pmin,∂Ω,B)

Once again, we refer to Lemma 12 for the existence of optimal profiles. As stated hereafter, we
shall show that the related shape optimisation problem

inf
Γ⊂∂Ω Hd−1(Γ)=V0

ˆ
∂Ω

j
(
wΓ
)

(Pmin,∂Ω,Σ)

exhibits a relaxation phenomenon. It is interesting to notice that the main argument for showing
the second part of the following result rests upon a low frequency analysis of the second order
optimality conditions.

Theorem 5. Let Ω be a bounded open set of IRn such that ∂Ω is C 2. Assume f satisfies (Hf )
and j satisfies (Hj).
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(i) Any solution β∗ of (Pmin,∂Ω,B) satisfies

Hd−1 ({0 < β∗ < 1}) > 0,

so that (Pmin,∂Ω,Σ) does not have a solution and enjoys a relaxation phenomenon.

(ii) Furthermore, let us introduce

U0(f) := sup
β∈B(∂Ω)

sup
x∈Ω

uβ(x) ∈ (0,+∞).

There exists C > 0 such that, if

j′′(u) 6 −Cj′(0) on [0, U0(f)] and j′(U0(f)) > 0,

then for any solution β∗ of (Pmin,∂Ω,B) we have

Hd−1 ({β∗ = 1}) > 0.

Let us provide an example of function j satisfying the assumptions of (ii). Given C > 0 and
U0(f) > 0, the function j given by

j(u) = −1

2
u2 +

1

2

(
U0(f) +

1

C

)
u

fulfills these conditions provided that CU0(f) < 1. Since U0(f) does not depend on C, it suffices
to chose C small enough.

Remark 6. One has U0(f) < +∞ since f ∈ L∞(Ω). More precisely, one has

sup
β∈B(∂Ω)

‖uβ‖W 1,p(Ω) < +∞

for any p ∈ [1; +∞), by standard elliptic regularity estimates which are detailed in Lemma 11. We
conclude by the compactness of the embedding W 1,p(Ω) ↪→ C 0(Ω) for p large enough.

We refer to section 1.5 for comments on the proof.

Distributed criteria

Here again, some of our methods naturally extend to the case of distributed criteria. The proof
of the following result is very similar to that of Theorem 5, and we provide it in Appendix E. The
minimisation problem under consideration is

min
β∈B(∂Ω)

ˆ
Ω

j(uβ). (Pmin,Ω,B)

Theorem 7. Let Ω be a bounded open set of IRn such that ∂Ω is C 2. Assume f satisfies (Hf )
and j satisfies (Hj). Then, any solution β∗ of (Pmin,Ω,B) satisfies

Hd−1 ({0 < β∗ < 1}) > 0.

8



1.3 Second case: energetic criteria

Let us now tackle the two energetic optimisation problems

min
β∈B(∂Ω)

ˆ
Ω

fuβ (Qmin)

and

max
β∈B(∂Ω)

ˆ
Ω

fuβ . (Qmax)

The existence of optimisers for (Qmin)-(Qmax) can be obtained by adapting the arguments of
Lemma 12 below.

As we have noted earlier, a salient feature of these problems is that they can be rewritten in
terms of the energy of the equation (Eβ):

ˆ
Ω

fuβ = −2 min
u∈W 1,2(Ω)

1

2

ˆ
Ω

|∇u|2 +
1

2

ˆ
∂Ω

βu2 −
ˆ

Ω

fu. (1.11)

Let us mention an important consequences of this fact: as an infimum of linear functionals is
concave, the criterion is convex. This is why we can expect a more precise description of the
optimisers of this problem.

Let us mention that two very related contributions to the study of this problem are [9, 10],
in which several problems of minimising some energetic criteria are studied. The main difference
with our case is that the authors of [9, 10] rather study the problem of optimising such criteria
with respect to β for the boundary conditions β∂νuβ + uβ = 0, which significantly changes the
behaviour of the functionals.

We sum up our results in the following Theorem:

Theorem 8. Let Ω be a bounded open set of IRn such that ∂Ω is C 2. Assume f satisfies (Hf )
and j satisfies (Hj).

(i) Every solution β∗ of the maximization problem (Qmax) is bang-bang: there exists Γ∗ ⊂ ∂Ω
such that β∗ = 1Γ∗ .

(ii) Let vΩ denote the solution of the Dirichlet problem{
−∆vΩ = f in Ω,

vΩ = 0 on ∂Ω,
(1.12)

and let V Ω
0 given by

V Ω
0 = − 1

‖∂νvΩ‖L∞(∂Ω)

ˆ
∂Ω

∂νvΩ ∈ (0,Hd−1(∂Ω)].

For every V0 ∈ (0, V Ω
0 ), the minimization problem (Qmin) enjoys a relaxation property and

has a unique solution β∗ given by

β∗ = V0
−∂νvΩ´
∂Ω
−∂νvΩ

. (1.13)

(iii) Case where f(·) = 1. Let us assume that f ≡ 1. The constant admissible profile β∗V0
≡

V0

Hd−1(∂Ω)
solves the minimization problem (Qmin) if, and only if Ω is a ball.
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1.4 Non-linear models: distributed criteria

One of our initial motivation is also to understand some optimal control problems that arise in some
fields of applied mathematics, for instance in mathematical biology. For a detailed introduction
to optimisation problems in mathematical biology we refer to [22, Introduction] and the references
therein, or to [24]. In most applications of optimal control to mathematical biology, the goal is to
optimise a criterion involving a resources term related to a population density modelled through a
PDE. In a nutshell, optimizing such a criterion means in general looking for a resource term or a
control that guarantees the “best” survival of the population in long time, or the largest population
size. The underlying equation is typically non-linear and, as it models a population, the solutions
of the equation should satisfy a non-negativity assumption. This motivates the upcoming analytic
setting needed in order to state the relevant results. We give a concrete example after stating
Theorem 9. It should be noted that this case is, at the notational level, heavier than the linear
one, but that the methods are similar to that of the linear case. For this reason, we only give the
proofs in Appendix F, and only state our theorem for distributed criteria.

Analytic set-up We fix a non-linearity g = g(x, y), and we first assume

g is measurable in both variables and C 2 in the second variable. (HNL)

Keeping in mind the aforementioned mathematical biology motivation, we are looking for non-
negative solutions yβ ∈W 1,2(Ω) of the equation

−∆yβ = g(x, yβ) , in Ω ,
∂yβ
∂ν + βyβ = 0 on ∂Ω ,

yβ > 0 , yβ 6= 0.

(1.14)

We of course assume:

For any β ∈ B(∂Ω), there exists a unique solution yβ ∈W 1,2(Ω) to (1.14). (HWP )

Since we are working with optimality conditions, we need to be allowed to differentiate the map
β 7→ yβ . This is possible, granted the steady-states yβ are linearly stable: in other words, letting
µβ be the first eigenvalue of the linearised operator, i.e.

µβ := inf
ϕ∈W 1,2(Ω) ,

´
Ω
ϕ2=1

(ˆ
Ω

|∇ϕ|2 −
ˆ

Ω

∂g

∂y
(·, yβ)ϕ2 +

ˆ
∂Ω

βϕ2

)
(1.15)

we must have
∀β ∈ B(∂Ω) , µβ > 0. (Hstab)

Finally, W 1,p-estimates on yβ are crucial. We hence need to ensure that

∀β ∈ B(∂Ω), ∀p ∈ [1; +∞), yβ ∈W 1,p(Ω). (Hreg)

These are the only assumptions we need on g. After stating the theorem, we explain why a
large class of monostable non-linearities satisfies these conditions.

Optimisation problem We assume g satisfies (HNL)-(HWP )-(Hstab)-(Hreg). We still work
with a function j satisfying (Hj) and define

RΩ(β) :=

ˆ
Ω

j(yβ).

10



We consider the optimisation problems

max
β∈B(∂Ω)

RΩ(β) (Rmax)

as well as

min
β∈B(∂Ω)

RΩ(β). (Rmin)

Under the assumption that g satisfies (HNL)-(HWP )-(Hstab)-(Hreg), the existence of solutions
to (Rmax)-(Rmin) is proved following the arguments of Lemma 12 below. Our main theorem is

Theorem 9. Assume j satisfies (Hj) and g satisfies (HNL)-(HWP )-(Hstab)-(Hreg). Then:

1. Any solution of (Rmax) is of bang-bang type. In other words, for every maximiser β∗ of
(Rmax), there exists a measurable subset Γ∗ of ∂Ω such that β∗ = 1Γ∗ .

2. Any solution β∗ of (Rmin) satisfies

Hd−1 ({0 < β∗ < 1}) > 0.

An application to the optimal design of barriers in logistic models Let us give an
example of a class of non-linearities g satisfying (HNL)-(HWP )-(Hstab)-(Hreg). We consider any
function m ∈ L∞(Ω) such that ˆ

Ω

m >

ˆ
∂Ω

β = V0. (1.16)

Then the non-linearity
gβ : (x, y) 7→ y (m(x)− y)

satisfies (HNL)-(HWP )-(Hstab)-(Hreg). To see why this is the case, we first observe that we are
exactly in the context of monostable non-linearities, which, adapting the arguments of [6], yields
the existence and uniqueness of a solution yβ of (1.14), that further satisfies yβ 6 ‖m‖L∞ . This
readily gives the regularity estimates of Assumption (Hreg). Finally, we observe that, as yβ 6= 0
is a non-negative eigenfunction, associated with eigenvalue 0, the monotonicity of the eigenvalue
ensures that the first eigenvalue µβ of −∆− (m− 2yβ) is positive for any β.

This equation models a population density that can access resources, accounted for in this
scenario by the function m. For more references on the modelling on such phenomena we refer
to [22], as well as to section 1.6 below. If we take j(x) = x, the optimisation problem (Rmax)
(resp. (Rmin)) can be interpreted as: how should we design the features of the fence around the
domain in order to maximise (resp. minimise) the population size? In this context, the bang-bang
property has been deemed to be a relevant aspect of the qualitative analysis of optimisers [25, 28].

1.5 Comments on the proof of the bang-bang property and technical
context

In this section, we comment upon our methods of proofs, in order to provide some context regarding
the tools we introduce to analyse the bang-bang property for the bilinear optimal control problems
under consideration.
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Oscillatory techniques used here The bang-bang property is often proved via the following
reasoning: one determines the so-called “switch function” of the control problem. This function,
say φ, encodes the optimality conditions. If an optimiser is not bang-bang, this usually implies
that φ has a level-set of positive measure. To conclude, unique continuation theorems are invoked,
that prove that this can not be the case since φ often satisfies a certain well-behaved optimality
system.

However, this strategy is mostly useful for energetic problems. For non-energetic problems,
such as the ones considered here, the equation solved by the switching function is usually not
tractable. We refer for instance to [23]. Instead, the method we introduce for Robin boundary
conditions hinges on the one we introduced in [25]. In it, we show that, for certain distributed
bilinear optimal control problems, the second order derivative of the functional to optimise writes
as something very similar to a Rayleigh quotient of a certain operator L, in terms of u̇β [h]. Here,
u̇β [h] denotes the derivative of β 7→ uβ in a direction h. Concretely, this means that, the functionals
under consideration in Theorems 3, 4 and 9 being denoted generically J and double dots standing
for second-order derivatives in a direction h, we derive an estimate of the form

J̈ & A‖u̇β [h]‖2W 1,2(Ω) −B‖u̇β [h]‖2L2(Ω)

for some constants A and B. The monotonicity of the functional enables to choose a positive A.
We refer to Proposition 14 for a precise statement. Such an estimate allows to prove the bang-
bang property: by assuming that a maximiser β∗ is not bang-bang, we show that there exists a
perturbation h that has a suitable support and such that u̇β [h], has, in the spectral basis of L,
only high modes. Thus, the second order derivative of the functional can be made arbitrarily high,
and we can reach a contradiction. This idea is one of the key points of the proofs of Theorems 3,
4 and 9. Of course, several points need to be refined in order to make this scheme suitable for the
present context.

Second, and this is also a novelty of the article, we show that the same expression of the
second order derivative in terms of Rayleigh quotients allows to prove relaxation phenomena for
minimisation problem. Contrary to the bang-bang property, the method rests upon the use of
low-eigenmodes, and it is at the center of Theorem 5 and 7.

Relationship with other existence theorems in shape optimisation A particularly crucial
step in all our proofs is the monotonicity of the functionals we optimise. Concretely, consider the
problem (Pmax,∂Ω,B). Then one of the central points of the proof of Theorem 3 is that the functional
J∂Ω(β) =

´
∂Ω
j(uβ) is increasing. This implies that, from a shape optimization perspective, the

functional Γ 7→
´
∂Ω
j(wΓ) is increasing. In this context, it is tempting to use the seminal theorem

of Buttazzo-DalMaso [11] to conclude that there exists a solution of (Pmax,∂Ω,Σ). However, the
topology on sets required by [11] is not suited to our type of problems: in [11], the convergence on
sets is the Γ-convergence; unfortunately, it is not clear that this topology makes the functional we
consider here continuous, which prohibits using this result. Furthermore, the strategies of proof
are very different. Nevertheless, we wish to highlight the fact that, as in [11], the crux of the
problem is the monotonicity of the functional.

1.6 Related works and bibliographical references

Optimisation of criteria involving the Robin coefficients Two lines of research coexist
when it comes to optimisation in combination with Robin boundary conditions, one dedicated to
the type of problems we consider here, where the domain Ω is fixed and β is the variable, and
another one focused on optimising the domain Ω itself. Some contributions combine these two
approaches.
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Among the vast literature relevant in such queries, let us first single out [19] and [20]. Both
papers deal with time-dependent equation, and focus on ”tracking-type” functionals. In other
words, in the framework of our paper, this would mean that the functional to optimise would
involve a term of the form ‖uβ − uref‖2X for some norm X and some reference uref . Such criteria
are known to be very relevant in many applications. Our paper, on the other hand, focuses on
”free” functionals, and the methods used to analyse each problem are necessarily very different.

The aforementioned [9, 10] investigate the properties of the optimisers β that minimise the
natural energy of the model or some related eigenvalues. Although Theorem 8 is closely related
to these contributions, let us highlight the fact that they consider boundary conditions of the
form β∂νu + u = 0, which changes the features of the problems. This contribution falls into the
first category described above (energetic functionals), but it is noteworthy that the motivation in
[9, 10] is an optimal insulation problem which was then deeply explored from the point of view of
both optimal control and shape optimisation in the recent [14]. Notable in the latter is the fact
that one of their main results, [14, Theorem 5.1] uses Talenti-like inequalities for Robin boundary
conditions, which has been another very active line of research following [2]. Finally, let us mention
[13], where a related spectral optimisation problem for quasilinear elliptic operators, which can be
interpreted as a p-laplacian version of a Robin spectrum, is investigated. Of particular interest is
that the authors of [13] study optimal designs under a volume constraint only (in our case, this
would amount to only prescribing

´
∂Ω
β) and obtain several results related to a relaxed formulation

of the problem.

Bilinear control problems Let us first underline that the study of bilinear controllability of
systems (i.e. trying to reach an exact state using a bilinear control) is a very active field. We refer,
for instance, to [1, 5, 12].

On the other hand, bilinear optimal control problems, in which one rather aims at optimising
a certain criterion, as is the case in the present paper, have received less attention. We have
already mentioned several contributions related to the optimisation of Robin coefficients in order
to minimise tracking-type functionals; in this broader context of bilinear optimisation, let us also
refer to [16, 17], where bilinear optimal control problems for chemotaxis or chemorepulsion models
are studied. The functional the authors wish to minimise is also of tracking type, but the control
acts on the interior of the domain rather than on the boundary. Most of the emphasis is placed
on deriving existence results and optimality conditions. Related to these contributions, we point,
for another distributed bilinear optimal control problem, to [8], a contribution that focuses on a
numerical multigrid analysis of the optimisation system.

However, the literature is scarcer when it comes to the qualitative analysis of bilinear optimal
control problems when the functionals is not of tracking type. A paradigmatic example is that of the
optimisation of the total population size in monostable models. In this problem, which originated
in [21], the goal is to spread resources so as to maximise the integral of the solution of a reaction-
diffusion equation. In the elliptic case, proving the bang-bang property for optimal resources
distributions proves surprisingly difficult, and the problem exhibits a very intricate qualitative
behaviour. We refer to [4, 7, 23, 26, 27, 28] and the references therein for an overview of this
problem. It should be noted that the bang-bang property was only recently proved by the two
authors in collaboration with a third one in [25], using a method that, as was explained, is linked
to the one we develop here for Robin controls.

2 Preliminary material

We first give some existence results and regularity estimates for the solutions of (Eβ). Since the
proofs are standard, we only give them below in Appendix B. We begin with a uniform estimate:
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Lemma 10. Let Ω be a bounded domain in IRd with a C 2 boundary. There exists C > 0 such that

∀β ∈ B(∂Ω), ∀v ∈W 1,2(Ω), C‖v‖2W 1,2(Ω) 6
ˆ

Ω

|∇v|2 +

ˆ
∂Ω

βv2.

Lemma 11. Assume f ∈ L∞(Ω). Then the equation (Eβ) has a unique solution uβ ∈ W 1,2(Ω).
Furthermore, for any p ∈ [1; +∞), uβ ∈W 1,p(Ω),

sup
β∈B(∂Ω)

‖uβ‖W 1,p(Ω) <∞

and
∀β ∈ B(∂Ω) , inf

Ω
uβ > 0.

In particular, as a consequence of Sobolev embeddings, we have the uniform estimates

0 < inf
β∈B(∂Ω)

inf
Ω
uβ 6 sup

β∈B(∂Ω)

sup
Ω
uβ <∞.

This lemma is a standard consequence of Robin regularity results.
We finally state our existence result.

Lemma 12. Let us assume that ∂Ω is C 2. Each of the problems (Pmax,∂Ω,B)-(Pmin,∂Ω,B)-
(Pmax,Ω,B)-(Pmin,Ω,B) has a solution.

3 Proofs of Theorems 3 and 5

Throughout this section, f and j are assumed to satisfy (Hf ) and (Hj) respectively. We work only
on boundary criteria; thus, to alleviate notation, we drop the subscript in J∂Ω and simply write

J (β) :=

ˆ
∂Ω

j(uβ).

We begin by computing the derivatives of J , as these derivatives are key in proving Theorems 3
and 5.

3.1 Computation of the derivatives of J∂Ω

The differentiability of the map B(∂Ω) 3 β 7→ uβ ∈W 1,2(Ω) is standard. To specify the optimality
conditions we use, let us introduce a bit of terminology.

Definition 13. The cone of admissible perturbation at a given β ∈ B(∂Ω) is the set of functions
h ∈ L∞(Ω) such that, for any sequence of positive real numbers εn decreasing to 0, there exists a
sequence of functions hn ∈ L∞(Ω) converging in L2(Ω) to h as n → +∞, and β + εnhn ∈ B(∂Ω)
for every n ∈ IN. An element of the cone of admissible perturbations is called an admissible
perturbation.

Let us consider β ∈ B(∂Ω) and an admissible perturbation h at β. We denote with a single
(resp. double) dot the first (resp. second) order Gateaux derivative of relevant quantities at β in
the direction h. By differentiating (Eβ), we see that u̇β solves{

−∆u̇β = 0 in Ω,
∂u̇β
∂ν + βu̇β = −huβ on ∂Ω,

(3.1)
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while üβ satisfies {
−∆üβ = 0 in Ω,
∂üβ
∂ν + βüβ = −2hu̇β on ∂Ω.

(3.2)

Existence and uniqueness of W 1,2(Ω) solutions to these equations are immediate. The derivatives
of the criterion J are, similarly, given by

J̇ (β)[h] =

ˆ
Ω

u̇βj
′(uβ) and J̈ (β)[h, h] =

ˆ
∂Ω

üβj
′(uβ) +

ˆ
∂Ω

(u̇β)
2
j′′(uβ). (3.3)

In order to make these derivatives more tractable, we introduce the adjoint state pβ as the unique
solution in W 1,2(Ω) of {

−∆pβ = 0 in Ω,
∂pβ
∂ν + βpβ = j′(uβ) on ∂Ω.

(3.4)

Since infΩ uβ > 0 and since j′ > 0 on IR∗+, it follows from the maximum principle that pβ is positive

in Ω and that we even have
inf
Ω
pβ > 0. (3.5)

Multiplying (3.4) by u̇β and (3.1) by pβ , an integration by parts yields

0 =

ˆ
Ω

∇u̇β · ∇pβ +

ˆ
∂Ω

βpβ u̇β −
ˆ
∂Ω

j′(uβ)u̇β

0 =

ˆ
Ω

∇u̇β · ∇pβ +

ˆ
∂Ω

βpβ u̇β +

ˆ
∂Ω

huβpβ

Hence, we obtain ˆ
∂Ω

j′(uβ)u̇β = −
ˆ
∂Ω

huβpβ ,

by combining the two identities above. In particular, according to (3.3), we get

J̇ (β)[h] = −
ˆ
∂Ω

huβpβ . (3.6)

Multiplying (3.4) by üβ , and (3.2) by pβ , and integrating by parts also gives the following
expression for the second-order Gateaux derivative of J :

J̈ (β)[h, h] = −2

ˆ
∂Ω

hu̇βpβ +

ˆ
∂Ω

j′′(uβ) (u̇β)
2
. (3.7)

3.2 Proof of Theorem 3

We shall argue by contradiction: let us fix a maximiser β∗ ∈ B(∂Ω) (which exists thanks to Lemma
12) such that the set

ω∗ := {0 < β∗ < 1} (3.8)

has positive measure:
Hd−1(ω∗) > 0.

It follows that for any admissible perturbation h at β∗ supported in ω∗ (in the sense of Defini-
tion 13), there holds

J̇ (β∗)[h] = 0. (3.9)
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To reach a contradiction, it suffices to prove that there exists an admissible perturbation h sup-
ported in ω∗ such that

J̈ (β∗)[h, h] > 0. (3.10)

We start by recalling that, from (3.7), we have

J̈ (β∗)[h, h] = −2

ˆ
∂Ω

hu̇β∗pβ∗ +

ˆ
∂Ω

j′′(uβ∗) (u̇β∗)
2
. (3.11)

The first step of this proof is to obtain an expression of J̈ that is reminiscent of a Rayleigh
quotient. This is the purpose of the following proposition:

Proposition 14. There exist three constants A ,B ,C with A > 0 such that

J̈ (β∗)[h, h] > A

ˆ
Ω

|∇u̇β∗ |2 −B‖u̇β∗‖W 1,2(Ω)‖u̇β∗‖L2(Ω) − C
ˆ
∂Ω

u̇2
β∗ . (3.12)

Proof of Proposition 14. We isolate the first part of (3.7), and define

W(β∗)[h, h] := −2

ˆ
∂Ω

hu̇β∗pβ∗ . (3.13)

Using the boundary condition of the equation (3.1) on u̇β∗ this quantity rewrites

W(β∗)[h, h] = 2

ˆ
∂Ω

(∂ν u̇β∗ + β∗u̇β∗)
pβ∗

uβ∗
u̇β∗ .

Let us introduce the function Ψβ∗ given by

Ψβ∗ :=
pβ∗

uβ∗
,

so that

W(β∗)[h, h] =

ˆ
∂Ω

Ψβ∗
(
∂ν
(
u̇2
β∗
)

+ 2β∗u̇2
β∗
)
. (3.14)

Since infΩ uβ∗ , pβ∗ > 0 from (3.5) and lemma 11, and since supΩ uβ∗ , pβ∗ <∞, one has

inf
Ω

Ψβ∗ > 0.

Furthermore, for every function z ∈W 2,2(Ω), one has

−
ˆ

Ω

(∆Ψβ∗) z +

ˆ
Ω

(∆z) Ψβ∗ =

ˆ
∂Ω

(∂νz) Ψβ∗ −
ˆ
∂Ω

z (∂νΨβ∗) . (3.15)

We first compute

∂Ψβ∗

∂ν
=
∂νpβ∗

uβ∗
−Ψβ∗

∂νuβ∗

uβ∗
= −β∗Ψβ∗ + β∗Ψβ∗ +

j′(uβ∗)

uβ∗
=
j′(uβ∗)

uβ∗
> 0. (3.16)

We want to take z = u̇2
β∗ in (3.15). We have

∆z = 2|∇u̇β∗ |2 + 2u̇β∗∆u̇β∗ = 2|∇u̇β∗ |2 since ∆u̇β∗ = 0.

Hence, ˆ
∂Ω

Ψβ∗∂ν
(
u̇2
β∗
)

= 2

ˆ
Ω

|∇u̇β∗ |2Ψβ∗ −
ˆ

Ω

u̇2
β∗∆Ψβ∗ +

ˆ
∂Ω

j′(uβ∗)

uβ∗
u̇2
β∗ (3.17)
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Thus, the second order derivative of J rewrites

J̈ (β∗)[h, h] = 2

ˆ
Ω

Ψβ∗ |∇u̇β∗ |2 −
ˆ

Ω

u̇2
β∗∆Ψβ∗ +

ˆ
∂Ω

(
2β∗Ψβ∗ +

j′(uβ∗)

uβ∗
+ j′′(u)

)
u̇2
β∗ . (3.18)

Since β∗ and uβ∗ belong to L∞(∂Ω) and since j is C 2, there exists a constant C independent of h
such that, for any admissible perturbation h,

ˆ
∂Ω

(
2β∗Ψβ∗ +

j′(uβ∗)

uβ∗
+ j′′(u)

)
(u̇β∗)

2 > −C
ˆ
∂Ω

u̇2
β∗ . (3.19)

Overall, we thus have the following estimate on J̈ :

J̈ (β∗)[h, h] > 2

ˆ
Ω

Ψβ∗ |∇u̇β∗ |2 −
ˆ

Ω

u̇2
β∗∆Ψβ∗ − C

ˆ
∂Ω

u̇2
β∗ . (3.20)

Since infΩ Ψβ∗ > 0, there exists A > 0 such that

J̈ (β∗)[h, h] > A

ˆ
Ω

|∇u̇β∗ |2 −
ˆ

Ω

u̇2
β∗∆Ψβ∗ − C

ˆ
∂Ω

u̇2
β∗ . (3.21)

Direct computations yield

∆Ψβ∗ =
∆pβ∗

uβ∗
−Ψβ∗

∆uβ∗

uβ∗
− 2
∇uβ∗ · ∇pβ∗

u2
β∗

+ 2Ψβ∗
|∇uβ∗ |2

u2
β∗

=
fΨβ∗

uβ∗
− 2
∇uβ∗ · ∇pβ∗

u2
β∗

+ 2Ψβ∗
|∇uβ∗ |2

u2
β∗

.

Besides, since uβ∗ and pβ∗ belong to W 1,p(Ω) for any p ∈ [1; +∞) and since infΩ uβ∗ > 0, it follows
that, for any p > 1,

−2
∇uβ∗ · ∇pβ∗

u2
β∗

+ 2Ψβ∗
|∇uβ∗ |2

u2
β∗

∈ Lp(Ω).

Therefore, ∆Ψβ∗ belongs to Lp(Ω) for any p > 1. Now, let us apply Hölder’s inequality with three
exponents: let (q, r) ∈ (1; +∞)2 be such that

1

2
+

1

q
+

1

r
= 1 and r ∈ (2; 2∗) with 2∗ :=

2d

d− 2
.

By the Hölder inequality, we obtain∣∣∣∣ˆ
Ω

u̇2
β∗∆Ψβ∗

∣∣∣∣ 6 ‖∆Ψβ∗‖Lq(Ω)‖u̇β∗‖Lr(Ω)‖u̇β∗‖L2(Ω) (3.22)

and so, from the Sobolev embedding W 1,2(Ω) ↪→ Lr(Ω), there exists a constant B > 0 such that∣∣∣∣ˆ
Ω

u̇2
β∗∆Ψβ∗

∣∣∣∣ 6 B‖u̇β∗‖W 1,2(Ω)‖u̇β∗‖L2(Ω). (3.23)

We thus infer that

J̈ (β∗)[h, h] > A

ˆ
Ω

|∇u̇β∗ |2 −B‖u̇β∗‖W 1,2(Ω)‖u̇β∗‖L2(Ω) − C
ˆ
∂Ω

u̇2
β∗ . (3.24)

As a consequence, (3.12) is proved.
This concludes the proof of the Proposition.
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We point that since the standardW 1,2(Ω) norm is equivalent toW 1,2(Ω) 3 u 7→
(´

Ω
|∇u|2 +

´
∂Ω
u2
)1/2

(we refer to Lemma 10 for instance), in what follows, we use

‖u‖2W 1,2(Ω) =

ˆ
Ω

|∇u|2 +

ˆ
∂Ω

u2.

Up to multiplying B by a positive constant, (3.12) remains unchanged and we thus keep the
notation B. We turn back to the proof of the Theorem.

The key point is to construct an admissible perturbation h, supported in ω∗ (introduced in
(3.8)) such that J̈ (β∗)[h, h] > 0. To this aim, we use (3.12) to say that it suffices to construct,
for ε > 0 and δ > 0 small enough, an admissible perturbation h supported in ω∗ such that
‖h‖L2(∂Ω) = 1, and that further satisfies

‖u̇β∗‖L2(Ω) 6 ε‖u̇β∗‖W 1,2(Ω) (3.25)

and
‖u̇β∗‖L2(∂Ω) 6

√
δ‖∇u̇β∗‖L2(Ω) (3.26)

Indeed, if h is non-zero and satisfies (3.25)-(3.26) then, according to (3.12), we obtain

J̈ (β∗)[h, h] > A‖∇u̇β∗‖2L2(Ω) −B‖∇u̇β∗‖W 1,2(Ω)‖u̇β∗‖L2(Ω) − C‖u̇β∗‖2L2(∂Ω)

> (A− Cδ)‖∇u̇β∗‖2L2(Ω) −Bε‖u̇β∗‖
2
W 1,2(Ω)

> (A− Cδ)‖∇u̇β∗‖2L2(Ω) −Bε
(
‖∇u̇β∗‖2L2(Ω) + ‖u̇β∗‖2L2(∂Ω)

)
> (A− Cδ −Bε(1 + δ))‖∇u̇β∗‖2L2(Ω).

In particular, to ensure that we have a positive right-hand side it suffices to pick ε and δ small
enough.

It thus remains to prove that such a perturbation h exists. Let us highlight that we will obtain
(3.25) and (3.26) by two different paths. We start with (3.26).

Regarding condition (3.26). Let us fix an arbitrary δ > 0. To prove that we can choose an
admissible perturbation h supported in ω∗ such that ‖h‖L2(∂Ω) = 1 and that satisfies (3.26), we rely
on eigenvalues and eigenfunctions of a Robin-Steklov type operator. More precisely, we introduce
the Hilbert basis {φk}k∈IN of L2(∂Ω) given by{
−∆φk = 0 in Ω,
∂φk
∂ν + β∗φk = σkφk on ∂Ω,

where 0 < σ0 6 σ1 6 . . . 6 σk →
k→∞

∞ and

ˆ
∂Ω

φkφk′ = δk,k′ .

(3.27)
We prove in Appendix C how such eigenpairs are defined; our arguments follow the classical [3,
Section 11].

To see how this elements enable us to obtain (3.26), let us first observe that for any admissible
h, the function −huβ∗ belongs to L2(∂Ω), and thus expands as

− huβ∗ =

∞∑
k=0

αk(h)φk (3.28)

where

∀k ∈ IN , αk(h) =

ˆ
∂Ω

(−huβ∗)φk (3.29)
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Then, since u̇β∗ solves {
−∆u̇β∗ = 0 in Ω,
∂u̇β∗

∂ν + β∗u̇β∗ =
∑∞
k=0 αk(h)φk on ∂Ω,

we have

u̇β∗ =

∞∑
k=0

αk(h)

σk
φk, (3.30)

which then allows us to compute

‖u̇β∗‖2L2(∂Ω) =

∞∑
k=0

αk(h)2

σ2
k

and ‖∇u̇β‖2L2(Ω) +

ˆ
∂Ω

β∗u̇2
β∗ =

∞∑
k=0

αk(h)2

σk
. (3.31)

Therefore, since 0 6 β∗ 6 1, one has

‖∇u̇β∗‖2L2(Ω) >
∞∑
k=0

αk(h)2

σk
−
ˆ
∂Ω

u̇2
β∗ >

∞∑
k=0

αk(h)2

(
1

σk
− 1

σ2
k

)
.

Observe that if K ∈ IN∗ is chosen in such a way that

∀k ∈ J0,K − 1K, αk(h) = 0, (3.32)

the previous estimates imply

‖∇u̇β‖2L2(Ω) >
∞∑
k=K

αk(h)2

(
1

σk
− 1

σ2
k

)
=

∞∑
k=K

αk(h)2

σ2
k

(σk − 1) > (σK − 1) ‖u̇β∗‖2L2(∂Ω). (3.33)

Thus if we fix K ∈ IN∗ such that
1

σK − 1
6 δ (3.34)

and if we pick h such that (3.32) holds, we reach condition (3.26). We now prove that for any
K ∈ IN, there exists an admissible perturbation h 6= 0 supported in ω∗ such that (3.32) is satisfied.
It will be convenient to observe that by the definition of ω∗ and the fact that Hd−1(ω∗) > 0, there
exists ζ > 0 such that

ω∗ζ := {ζ < β∗ < 1− ζ} (3.35)

has positive measure. We will rather work on ω∗ζ , for ζ > 0 small enough, as any function

h ∈ L∞(Ω) supported in ω∗ζ that satisfies
´

Ω
h = 0 is then an admissible perturbation at β∗.

Let K ∈ IN∗ such that (3.34) is satisfied be fixed. According to the discussion above, we want
to prove that there exists h ∈ L2(∂Ω) supported in ω∗ζ such that

1. ‖h‖2L2(∂Ω) = 1,

2.
´
∂Ω
h = 0,

3. ∀k ∈ J0,K − 1K, αk(h) = 0.

Remember that Hd−1(ω∗ζ ) > 0, so that L∞(ω∗ζ ) is infinite dimensional. We introduce the following
family of (K + 1) linear forms on L∞(ω∗ζ ):

R : L∞(ω∗ζ ) 3 h 7→
ˆ
ω∗ζ

h
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Tk : L∞(ω∗ζ ) 3 h 7→
ˆ
ω∗ζ

huβ∗φk

for all k ∈ J0,K − 1K. Since uβ∗ belongs to L∞(∂Ω), each Tk defines a continuous linear form and
R is itself obviously continuous. As a consequence, the subspace

Eδ := ker(R)
⋂(

K⋂
k=0

ker(Tk)

)
(3.36)

is non-trivial: there exists, in particular, h ∈ Eδ\{0}. Up to normalising its L2-norm we can
assume that ‖h‖L2(ω∗ζ ) = 1. It suffices to extend h by 0 to ∂Ω. As h is supported in ω∗ζ and is

bounded, it is an admissible perturbation at β∗ that satisfies all the required conditions.

Satisfying both conditions (3.25) and (3.26). Thus, for a fixed δ > 0 (not necessarily small),
every h ∈ Eδ satisfies (3.26), where Eδ is defined in (3.36). We have also fixed ε > 0. Let us show
that there exists h ∈ Eδ that satisfies (3.25), which suffices to conclude the proof. In other words,
we will prove that

∀C > 0, ∃h ∈ Eδ, ‖u̇β∗‖W 1,2(Ω) > C‖u̇β∗‖L2(Ω). (3.37)

To prove (3.37), let us argue by contradiction, assuming the existence of C > 0 such that

∀h ∈ Eδ, ‖u̇β∗‖W 1,2(Ω) 6 C‖u̇β∗‖L2(Ω). (3.38)

In what follows, we will rather denote u̇β∗ by u̇β∗ [h] to emphasize the dependency of this function
in h. Let us introduce

Xδ := {u̇β∗ [h], h ∈ Eδ} .

Xδ is a subspace of W 1,2(Ω) and since the map Eδ 3 h 7→ u̇β∗ [h] is an injection, Xδ is infinite di-
mensional. Consequently, there exists an L2(Ω)-orthonormal family {vk}k∈IN in Xδ. In particular,
for any k ∈ IN, ‖vk‖L2(Ω) = 1. Furthermore, according to the Parseval inequality, one has

vk ⇀
k→∞

0 weakly in L2(Ω).

However, should (3.38) hold, the family {vk}k∈IN would be uniformly bounded in W 1,2(Ω) and
thus, by the Rellich-Kondrachov theorem, converge strongly in L2 to a closure point v∞ (up to a
subsequence). Since we already know it converges weakly to 0, one must have v∞ = 0 on the one
hand and ‖v∞‖L2(Ω) = 1 on the other hand, leading to a contradiction. The conclusion follows:
there necessarily exists h such that (3.25)-(3.26) holds.

The proof of the Theorem is now complete.

3.3 Proof of Theorem 5

We prove each point of Theorem 5 separately. Once again, notational convenience leads us tu
dropping the ∂Ω subscript, and to just writing

J (β) =

ˆ
∂Ω

j(uβ).
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Proof of (i). Before we get to the core of the Theorem, let us point out a consequence of the
expression of the first order derivative of the criterion given in (3.6). We set, for any β ∈ B(∂Ω),

Φβ := uβpβ

where pβ is the solution of (3.4). Therefore, for any admissible perturbation h at a given β, there
holds

J̇ (β)[h] = −
ˆ
∂Ω

hΦβ . (3.39)

Let β∗ be a solution of (Pmin,∂Ω,B). Since we must have

−J̇ (β∗)[h] =

ˆ
∂Ω

Φβ∗h 6 0

for any admissible perturbation h at β∗, there exists a real number λ (necessarily positive as
Φβ > 0) such that

1. {0 < β∗ < 1} ⊂ {Φβ∗ = λ},

2. {β∗ = 1} ⊂ {Φβ∗ > λ},

3. {β∗ = 0} ⊂ {Φβ∗ 6 λ}.

We shall now prove that for any solution β∗ of (Pmin,∂Ω,B), such optimality conditions imply that

Hd−1 ({β∗ = 0}) = 0, (3.40)

which necessarily yields
Hd−1 ({0 < β∗ < 1}) > 0, (3.41)

the required conclusion. Indeed, this follows from the volume constraint
´
∂Ω
β∗ = V0.

To prove (3.40), we first consider the equation satisfied by the function Φβ∗ = uβ∗pβ∗ . By
direct computation, we have

∇Φβ∗ = uβ∗∇pβ∗ + pβ∗∇uβ∗ ,−∆Φβ∗ = −pβ∗∆uβ∗ − uβ∗∆pβ∗ − 2∇uβ∗ · ∇pβ∗ . (3.42)

Let us set

B := −2
∇pβ∗
pβ∗

and

V :=
f

uβ∗
+ 2
|∇pβ∗ |2

p2
β∗

.

We then note that

∇uβ∗ =
∇Φβ∗

pβ∗
− uβ∗

pβ∗
∇pβ∗ =

∇Φβ∗

pβ∗
− Φβ∗

p2
β∗
∇pβ∗ .

Plugging this expression into (3.42) yields

−∆Φβ∗ = fpβ∗ − 2

(
∇Φβ∗

pβ∗
− Φβ∗

p2
β∗
∇pβ∗

)
· ∇pβ∗

= Φβ∗
f

uβ∗
+ 2Φβ∗

|∇pβ∗ |2

p2
β∗

+ 〈∇Φβ∗ , B〉
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= V Φβ∗ + 〈∇Φβ∗ , B〉.

Since infΩ min{uβ∗ , pβ∗} > 0 it follows that

inf
Ω

Φβ∗ > 0. (3.43)

As f satisfies (Hf ), one has V > 0 according to the definition of V . Thus, Φβ∗ satisfies

−∆Φβ − 〈∇Φβ∗ , B〉 = V Φβ∗ > 0. (3.44)

In the last inequality we used the fact that V > 0 and (3.43). By the strong maximum principle
we necessarily have either

min
Ω

Φβ∗ = min
∂Ω

Φβ∗ and this minimum is never reached inside Ω (3.45)

or
Φβ∗ is constant in Ω. (3.46)

We claim that (3.46) can not occur: if Φβ∗ is constant in Ω then (3.44) implies V Φβ∗ = 0 in Ω
whence, since Φβ∗ > 0 in Ω, V ≡ 0 in Ω. In particular, f ≡ 0, a contradiction. Thus (3.45) holds.
According to the maximum principle of Hopf, if we pick a minimum point x∗ ∈ ∂Ω of Φβ∗ , there
holds

∂Φβ∗

∂ν
(x∗) < 0. (3.47)

We fix this point.
We now argue by contradiction and assume that Hd−1 ({β∗ = 0}) > 0. Given that β∗ satisfies

first order optimality conditions, we can choose such a minimum point x∗ that satisfies

x∗ ∈ {β∗ = 0}.

We finally compute the boundary conditions on Φβ∗ . Since

∂Φβ∗

∂ν
=
∂uβ∗

∂ν
pβ∗ +

∂pβ∗

∂ν
uβ∗ = −2β∗Φβ∗ + j′(uβ∗)uβ∗ ,

we get
∂Φβ∗

∂ν
+ 2β∗Φβ∗ = j′(uβ∗)uβ∗ . (3.48)

Going back to our minimum point x∗ ∈ {β∗ = 0} and to (3.47) we should have
∂Φβ∗

∂ν (x∗) 6 0 on

the one hand, and
∂Φβ∗

∂ν = −2β∗Φβ∗ + j′(uβ∗)uβ∗ = j′(uβ∗)uβ∗ > 0 on the other hand. The last
condition comes from the fact that j satisfies (Hj). This is a contradiction, and the conclusion
follows.

Proof of (ii). Let us use the same notation as in the proof of Theorem 3 in section 3.2. Let
β∗ denote a solution of Problem (Pmin,∂Ω,B), whose existence is guaranteed by Lemma 12. We
use the Hilbert basis {φk}k∈IN of L2(∂Ω) given by (3.27), associated to the sequence of eigenvalues
{σk}k∈IN. According to the first item of Theorem 5, one has Hd−1 ({0 < β∗ < 1}) > 0.

Assume the existence of C > 0 such that

j′′(u) 6 −Cj′(0) = −C sup
u∈[0,U0(f)]

j′(u).

22



Let us argue by contradiction, assuming that Hd−1 ({β∗ = 1}) = 0. Let h ∈ L∞(∂Ω) be an
admissible perturbation of β∗ in B(∂Ω). The function −huβ∗ ∈ L2(∂Ω) expands as

−huβ∗ =

∞∑
k=0

αk(h)φk with αk(h) =

ˆ
∂Ω

(−huβ∗)φk

for every k ∈ IN. Then, we also have

u̇β∗ =

∞∑
k=0

αk(h)

σk
φk.

Recall that, according to (3.7), we have

J̈ (β∗)[h, h] = −2

ˆ
∂Ω

hu̇β∗pβ∗ +

ˆ
∂Ω

j′′(uβ∗) (u̇β∗)
2

= −2

ˆ
∂Ω

Ψβ∗huβ∗ u̇β∗ +

ˆ
∂Ω

j′′(uβ∗) (u̇β∗)
2

where Ψβ∗ :=
pβ∗

uβ∗
. Observe first that pβ∗ 6 zβ∗ supu∈[0,U0] j

′(u) where zβ∗ is the unique solution
to {

−∆zβ∗ = 0 in Ω,
∂zβ∗

∂ν + β∗zβ∗ = 1 on ∂Ω.

Indeed, the function P := pβ∗−zβ∗ supu∈[0,U0] j
′(u) is harmonic, and therefore reaches its maximal

value on ∂Ω. Furthermore, according to the Hopf maximum principle, ∂νP > 0 at this point, which
yields easily that P (·) < 0 on ∂Ω.

We isolate the following result, which follows from exactly the same arguments as in Lemma
11.

Lemma 15. Let Ω be a bounded open set of IRn such that ∂Ω is C 2. For β ∈ B(∂Ω), we define

K(β) =
maxΩ zβ
minΩ uβ

.

One has
K := sup

β∈B(∂Ω)

K(β) < +∞.

Using the notations of this Lemma, we thus have

|Ψβ∗ | 6
max pβ∗

minuβ∗
6 sup

[0;U0(f)]

j′(u)K. (3.49)

Let us introduce

hα1,α2 =
α1φ1 + α2φ2

uβ∗
with α1 =

ˆ
∂Ω

φ2

uβ∗
and α2 = −

ˆ
∂Ω

φ1

uβ∗
,

so that
´

Ω
hα1,α2

= 0. Notice that hα1,α2
is admissible since Hd−1 ({β∗ = 1}) = Hd−1 ({β∗ = 0}) =

0. Indeed, consider a sequence {εn}n∈IN converging to 0 as n→∞. Defining, for any n ∈ IN,

hn := 1{2‖h‖L∞(Ω)εn<β∗<1−2‖h‖L∞(Ω)εn}

(
h−

 
{2‖h‖L∞(Ω)εn<β∗<1−2‖h‖L∞(Ω)εn}

h

)
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it is clear that hn →
n→∞

h in L2(Ω). Furthermore, for any n ∈ IN,
´

Ω
hn = 0. Finally, for any

n ∈ IN,

β∗ + εnhn > 1{2‖h‖L∞(Ω)εn<β∗<1−2‖h‖L∞(Ω)εn}(2‖h‖L∞(Ω)εn − 2‖h‖L∞εn) = 0

and, similarly,
β∗ + εnhn 6 1.

We deduce that h is admissible in the sense of Definition 13.
From the assumption on j and the Cauchy-Schwarz inequality, we have

J̈ (β∗)[hα1,α2
, hα1,α2

] 6 ‖Ψβ∗‖∞
ˆ
∂Ω

|hα1,α2
uβ∗ ||u̇β∗ | − C sup

u∈[0,U0]

j′(u)

ˆ
∂Ω

(u̇β∗)
2

6 ‖Ψβ∗‖∞
(ˆ

∂Ω

h2
α1,α2

u2
β∗

)1/2(ˆ
∂Ω

(u̇β∗)
2

)1/2

− C sup
u∈[0,U0(f)]

j′(u)

ˆ
∂Ω

(u̇β∗)
2

6 sup
u∈[0,U0(f)]

j′(u)

[
K
(
α2

1 + α2
2

)1/2(α2
1

σ2
1

+
α2

2

σ2
2

)1/2

− C
(
α2

1

σ2
1

+
α2

2

σ2
2

)]

6 sup
u∈[0,U0(f)]

j′(u)

(
α2

1

σ2
1

+
α2

2

σ2
2

)1/2
[
K
(
α2

1 + α2
2

)1/2 − C (α2
1

σ2
1

+
α2

2

σ2
2

) 1
2

]

6 sup
u∈[0,U0(f)]

j′(u)

(
α2

1

σ2
1

+
α2

2

σ2
2

)1/2
[
K
(
α2

1 + α2
2

)1/2 − C (α2
1 + α2

2

σ2
2

) 1
2

]

6 sup
u∈[0,U0(f)]

j′(u)
(
α2

1 + α2
2

)1/2(α2
1

σ2
1

+
α2

2

σ2
2

)1/2(
K − C

σ2

)
.

Furthermore, according to the Courant-Fisher principle, one has

σ2 = min
E2⊂W 1,2(Ω)

subspace of dim. 2

max
v∈E2
v 6=0

´
Ω
|∇v2|+

´
∂Ω
β∗v2´

∂Ω
v2

6 min
E2⊂W 1,2(Ω)

subspace of dim. 2

max
v∈E2
v 6=0

´
Ω
|∇v2|+

´
∂Ω
v2´

∂Ω
v2

= Λ2(Ω) > 0,

where Λ2(Ω) denotes the second Robin-Steklov eigenvalue of the domain:{
−∆ϕk = 0 in Ω,
∂ϕk
∂ν + ϕk = Λk(Ω)ϕk on ∂Ω.

Therefore, if C is such that Λ2(Ω)K < C, one has J̈ (β∗)[hα1,α2
, hα1,α2

] < 0 and thus

J (β∗ + εhα1,α2
)− J (β∗) =

ε2

2
J̈ (β∗)[hα1,α2

, hα1,α2
] + o(ε2) < 0,

whenever ε > 0 is chosen small enough. This is in contradiction with the optimality of β∗, whence
the result.
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4 Proof of Theorem 8

We recall that we work with the energy functional

F(β) :=

ˆ
Ω

fuβ .

(i) Proof of (i): Let β ∈ B(∂Ω) and h denote an admissible perturbation at β (see Defini-
tion 13). By mimicking the computations of Section 3.1, one gets

Ḟ(β)[h] = −
ˆ
∂Ω

hu2
β and F̈(β∗)[h, h] = −2

ˆ
∂Ω

huβ∗ u̇β∗ ,

where u̇β solves {
−∆u̇β = 0 in Ω,
∂u̇β
∂ν + βu̇β = −huβ∗ on ∂Ω,

Let us use the Hilbert basis {φk}k∈IN of L2(∂Ω) given by (3.27), associated with the sequence
of eigenvalues {σk}k∈IN. The function −huβ ∈ L2(∂Ω) expands as

−huβ =

∞∑
k=0

αk(h)φk with αk(h) =

ˆ
∂Ω

(−huβ)φk for every k ∈ IN

and we also have

u̇β =

∞∑
k=0

αk(h)

σk
φk.

As a consequence

F̈(β∗)[h, h] = 2

∞∑
k=0

αk(h)2

σk

and we easily infer that J is strictly convex.

Let β∗ be a solution of Problem (Qmax). Let us assume by contradiction that the set
I := {0 < β∗ < 1} has positive measure. Let β̃ denote any element of B(∂Ω) equal to β
on Ω\I, such that β̃ 6= β a.e. on I and

´
I β
∗ =

´
I β̃. Then, β∗ + εh where h = β̃ − β∗ is

admissible and

F(β∗ + εh)−F(β∗) =
ε2

2
J̈ (β∗)[h, h] + o(ε2) > 0

whenever ε is small enough. We have thus reached a contradiction and it follows that
Hd−1(I) = 0.

(iii) Proof of (ii) According to the analysis above, the mapping B(∂Ω) 3 β 7→ F(β) is convex.
Since we are dealing with a minimization problem, we get that β∗ solves Problem (Qmin)
if, and only if J̇ (β)[h] > 0 for every admissible perturbation h. By using the expression of
J̇ (β)[h] obtained previously, it is standard that the first order optimality conditions read as
follows: there exists a positive real number λ such that

1. {0 < β∗ < 1} ⊂
{
u2
β∗ = λ

}
,

2. {β∗ = 1} ⊂ {u2
β∗ > λ},

3. {β∗ = 0} ⊂ {u2
β∗ 6 λ}.
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Since these conditions are sufficient and necessary, it follows that β∗ solves Problem (Qmin)
if and only if uβ∗ solves the overdetermined system given by (Eβ) complemented by the
optimality conditions above. Therefore, to conclude, it is enough to check that the particular
function β∗ given by (1.13) satisfies the optimality system above.

Observe first that, according to the Hopf maximum principle, the function vΩ reaches its
minimal value a.e. on the boundary of Ω. Therefore, one has ∂νvΩ < 0 on ∂Ω, meaning that
β∗ > 0 on ∂Ω. Moreover, because of the assumptions on V0, one has

β∗ < V Ω
0

‖∂νvΩ‖L∞(∂Ω)´
∂Ω
∂νvΩ

= 1 a.e. in ∂Ω and

ˆ
Ω

β∗ = V0,

so that β∗ ∈ B(∂Ω) and {0 < β∗ < 1} = ∂Ω.

We set

λ =
−
´
∂Ω
∂νvΩ

V0
, and uλβ∗ = λ+ vΩ.

Straightforward computations show that uλβ∗ coincide with the solution uβ∗ of (Eβ) and that

{0 < β∗ < 1} =
{
u2
β∗ = λ

}
.

The expected conclusion follows.

(iii) Proof of (iii): Using the same arguments as in (ii), since {0 < β∗V0
< 1} = ∂Ω, one sees

that β∗V0
solves Problem (Qmin) if, and only if there exists λ > 0 such that uβ∗V0

solves the
overdetermined system 

−∆uβ∗V0
= 1 in Ω,

uβ∗V0
= λ on ∂Ω

∂uβ∗V0

∂ν = − V0

|∂Ω|λ on ∂Ω.

Setting vβ∗V0
= uβ∗V0

− λ, this overdetermined system is equivalent with
−∆vβ∗V0

= 1 in Ω,

vβ∗V0
= 0 on ∂Ω

∂vβ∗V0

∂ν = cV0
on ∂Ω.

with cV0
= − V0

|∂Ω|
λ < 0.

We can now apply Serrin’s theorem (see [30] for the original proof, [32] for a simpler proof
that holds in the case f ≡ 1, and [29] for a survey of the proofs of this theorem), which fully
characterises such overdetermined elliptic problems: this system has a solution if, and only
if, Ω is a ball.

This concludes the proof of the Theorem.

Appendix
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A Convergence of uΓ
α towards vΓ as α→ +∞

We investigate in this section the asymptotic behaviour of uΓ
α as α → +∞, in the simple case

where g0 = g0(x, u) does not depend on u. With a slight abuse of notation, we write g0 = g0(x).

Proposition 16. Let Ω be a connected bounded open set of class C 1. Let Γ ⊂ ∂Ω, with Hd−1(Γ) >
0, and let g0 ∈ L2(Ω). Assume there exists σ0 > 0 such that A > σ0 Id a.e. in Ω in the sense of
bilinear forms. The family (uΓ

α)α>0 converges to vΓ, weakly in W 1,2(Ω) and strongly in L2(Ω).

Proof. It should be noted that the regularity assumptions on Ω is central as it guarantees the
compactness of the trace operator Tr : W 1,2(Ω) → L2(∂Ω). We write TrΓ for the operator that
maps u to 1Γ Tru. Multiplying the first equation of (1.1) by uΓ

α and integrating by parts gives

σ0

ˆ
Ω

∣∣∇uΓ
α

∣∣2 + α

ˆ
Γ

(
uΓ
α

)2
6 ‖g‖L2(Ω)‖uΓ

α‖L2(Ω).

By continuity of the trace operator and by Lemma 10, there exists C0 = C0(σ0,Ω) > 0 such that

C0‖uΓ
α‖2W 1,2(Ω) 6 σ0

ˆ
Ω

|∇uΓ
α|2 + α

ˆ
Γ

(uΓ
α)2 6 ‖g‖L2(Ω)‖uΓ

α‖W 1,2(Ω) (A.1)

Let (αn)n∈IN be an increasing sequence of positive number such that limn→+∞ αn = +∞. As the
family

{
uΓ
αn

}
n∈IN

is bounded in W 1,2(Ω) by (A.1), the Rellich-Kondrachov theorem, ensures that

it converges, up to a subsequence, to a certain ū ∈ W 1,2(Ω) weakly in W 1,2(Ω) and strongly in
L2(Ω). With a slight abuse of notation, this subsequence is still written

{
uΓ
αn

}
n∈IN

. Since the trace

operator is compact, the sequence
{

TrΓ u
Γ
αn

}
n∈IN

converges to TrΓ ū in L2(Γ). As the sequence{
αn

´
Γ
(uΓ
αn)2

}
n∈IN

is bounded a we must have TrΓ ū = 0 in L2(Γ).

Let us introduce the space W 1,2
Γ (Ω) as the subspace of functions ϕ in W 1,2(Ω) whose trace

vanishes on Γ. Recall that uΓ
α solves the minimization problem

min
u∈W 1,2(Ω)

Fα(u) where Fα(u) =
1

2

ˆ
Ω

〈A∇u,∇u〉+
α

2

ˆ
Γ

u2 −
ˆ

Ω

fu.

By minimality, one has, for any n ∈ IN,

min
u∈W 1,2(Ω)

Fαn(u) = Fαn(uΓ
αn) 6 min

u∈W 1,2
Γ (Ω)

Fαn(u) = min
u∈W 1,2

Γ (Ω)
F0(u) = F0(vΓ),

where vΓ solves Problem (1.2) with mixed Dirichlet-Neumann boundary conditions. Furthermore,
as A is uniformly positive in the sense of bilinear forms, the map W 1,2(Ω) 3 u 7→

´
Ω
〈A∇u ,∇u〉 is

convex, and, so, weakly lower semi-continuous. Hence, we have

lim inf
n→+∞

1

2

ˆ
Ω

〈A∇uΓ
αn ,∇u

Γ
αn〉+

αn
2

ˆ
Γ

(uΓ
αn)2 −

ˆ
Ω

fuΓ
αn >

1

2

ˆ
Ω

〈A∇ū ,∇ū〉 −
ˆ

Ω

fū

> min
u∈W 1,2

Γ (Ω)
F0(u).

Combining both inequalities above, it follows that

min
u∈W 1,2

Γ (Ω)

1

2

ˆ
Ω

σ|∇u|2 −
ˆ

Ω

fu =
1

2

ˆ
Ω

σ|∇ū|2 −
ˆ

Ω

fū,

and by uniqueness of the minimiser of this last problem, we obtain that ū = vΓ. Thus, the sequence{
uΓ
αn

}
n∈IN

has a unique closure point vΓ. It follows that the entire sequence
{
uΓ
αn

}
n∈IN

converges

to vΓ, weakly in W 1,2(Ω) and strongly in L2(Ω).
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B Proof of results stated in section 2

Proof of Lemma 10. Of course, it suffices to prove that there exists C > 0 such that

∀β ∈ B(∂Ω) ,∀v ∈W 1,2(Ω) , C‖v‖2L2(Ω) 6
ˆ

Ω

|∇v|2 +

ˆ
∂Ω

βv2. (B.1)

To prove (B.1) we argue by contradiction: should no such constant C exist, there exists a sequence

{vn , βn}n∈IN ∈
(
W 1,2(Ω)× B(∂Ω)

)IN
such that

‖vn‖2L2(Ω) = 1 and

ˆ
Ω

|∇vn|2 +

ˆ
∂Ω

βnv
2
n <

1

n

By the Rellich-Kondrachov theorem, there exists v̄ ∈ W 1,2(Ω) such that {vn}n∈IN converges, up
to a subsequence, to v̄, weakly in W 1,2(Ω) and strongly in L2(Ω). Denoting this subsequence by
{vn}n∈IN with a slight abuse of notation, it follows that

‖v̄‖2L2(Ω) = 1 and

ˆ
Ω

|∇v̄|2 6 lim inf
n→+∞

ˆ
Ω

|∇vn|2 = 0.

Thus v is a positive constant, say v0. On the other hand, since B(∂Ω) is compact for the weak
L∞ − ∗ topology, there exists β ∈ B(Ω) such that, still up to a subsequence,

βn ⇀
n→∞

β.

By compactness of the trace operator, {vn}n∈IN converges strongly, in L2(∂Ω), to v. Thus, passing
to the limit in ˆ

Ω

|∇vn|2 +

ˆ
∂Ω

βnv
2
n <

1

n

yields ˆ
Ω

|∇v|2 +

ˆ
∂Ω

βv2
n = 0.

Since
´
∂Ω
β = V0, this is impossible as v is a positive constant.

Proof of Lemma 11. The proof of this result relies results for Neumann boundary conditions: con-
sider the problem {

−∆uNf,g = f in Ω ,
∂uNf,g
∂ν = g on ∂Ω.

(B.2)

The following regularity holds from, for example, [31, Theorem 4.4]: assume Ω has a C 2 boundary.

Let f ∈ Lq(Ω) , g ∈W−
1
q ,q(∂Ω) satisfy the compatibility condition

ˆ
Ω

f =

ˆ
∂Ω

g.

Then, there exists a W 1,q(Ω) solution uf,g of (B.2). Furthermore, for any such solution,

‖∇uf,g‖Lq(Ω) 6 C

(
‖f‖Lq(Ω) + ‖g‖

W
− 1
q
,q

(∂Ω)

)
. (B.3)
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We turn back to the proof of Lemma 11: let us consider, for any β ∈ B(∂Ω), the energy
functional

Eβ,f : W 1,2(Ω) 3 u 7→ 1

2

ˆ
Ω

|∇u|2 +
1

2

ˆ
∂Ω

βu2 −
ˆ

Ω

fu. (B.4)

By Lemma 10 this energy functional is coercive. As a consequence, it admits a minimiser. It
is immediate to see that uniqueness holds for Equation (Eβ). Thus, we have obtained a unique
solution uβ ∈W 1,2(Ω).

From the Sobolev embeddings W 1,2(Ω) ↪→ W
1
2 ,2(∂Ω) ↪→ L2∗∂Ω(∂Ω) where 2∗∂Ω = 2(n−1)

n−2 (if
n > 2, the case n = 1 being trivial) and the fact that β ∈ L∞(∂Ω) we obtain that uβ solves a
Neumann problem with Neumann data g := −βuβ ∈ L2∗∂Ω(∂Ω). Furthermore, for the constant C
given by Lemma 10,

‖g‖
L2∗
∂Ω (∂Ω)

6
1

C
‖f‖L2(Ω).

Indeed, we have

C‖uβ‖2W 1,2(Ω) 6
ˆ

Ω

|∇uβ |2 +

ˆ
∂Ω

βu2
β 6 ‖f‖L2(Ω)‖uβ‖W 1,2(Ω),

and it suffices to invoke the continuity of the trace application, and of the bound |β| 6 1. Since Ω
is C 2, it follows from the regularity for Neumann problems that

uβ ∈W 1,2∗∂Ω(Ω).

We can then bootstrap this argument and obtain successively that

∀k ∈ IN , uβ ∈W 1,qk(Ω) (B.5)

where the sequence {qk}k∈IN is defined, by recurrence, as

qk+1 :=
(n− 1)qk
n− 1− qk

2

if
qk
2
< n− 1 , qk + 1 else.

The conclusion follows: for any β ∈ B(∂Ω), for any p ∈ [1;∞),

uβ ∈W 1,p(Ω)

and furthermore
sup

β∈B(∂Ω)

‖uβ‖W 1,p(Ω) <∞.

To obtain the uniform estimate
sup

β∈B(∂Ω)

sup
Ω
uβ <∞

(the symmetric estimate infβ∈B(∂Ω) infΩ uβ∗ > 0 is obtained in the same way) it suffices to take a
maximising sequence {βk}k∈IN for ‖uβ‖L∞(Ω). Up to a subsequence, {βk}k∈IN weakly converges to
β ∈ B(∂Ω). By Sobolev embeddings, {uβk}k∈IN is uniformly bounded in C 0,α(Ω) for some α > 0.
Hence, it converges, strongly in C 0(Ω), to uβ , which concludes the proof.

Proof of Lemma 12. Let us first underline that the set B(∂Ω) defined in (1.5) endowed with the
weak-star topology of L∞(Ω) is compact. To apply the direct method in the calculus of variations,
it suffices to show that all the functionals that define problems (Pmax,∂Ω,B)-(Pmin,∂Ω,B)-(Pmax,Ω,B)-
(Pmin,Ω,B) are continuous under this weak L∞ − ∗ topology. All these maps write as

´
Ω
j(uβ) or
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´
∂Ω
j(uβ). Since the functions uβ are uniformly bounded from above by Lemma 11, the dominated

convergence theorem implies that these functionals are continuous if the map

B(∂Ω) 3 β 7→ uβ ∈W 1,2(Ω)

is continuous for the weak L∞ − ∗ topology on B(∂Ω) and the weak W 1,2 topology on W 1,2(Ω).
Indeed, it then suffices to invoke the compactness of the embeddings W 1,2(Ω) ↪→ L2(Ω) and
W 1,2(Ω) ↪→ L2(∂Ω).

Let us then prove the continuity of β 7→ uβ for these weak topologies. Let {βn}n∈IN ∈ B(∂Ω)IN

be a weakly converging sequence in B(∂Ω). Let β ∈ B(Ω) be such that

βn ⇀
n→∞

β.

In order to alleviate notations, we define, for any n ∈ IN, un as the solution of (Eβ) associated
with βn. Our goal is to show

un ⇀
n→∞

uβ in W 1,2(Ω). (B.6)

First of all, multiplying the main equation of (Eβ) by un and integrating by parts yields

ˆ
Ω

|∇un|2 +

ˆ
∂Ω

βnu
2
n =

ˆ
Ω

fun 6 ‖f‖L2(∂Ω)‖un‖L2(Ω).

From Lemma 10, it follows that {un}n∈IN is uniformly bounded in L2(Ω) and, in turn, in W 1,2(Ω).
From the Rellich-Kondrachov theorem there exists ū ∈W 1,2(Ω) such that {un}n∈IN converges, up
to a subsequence, to ū weakly in W 1,2(Ω) and strongly in L2(Ω). By the compactness of the trace
operator, {un}n∈IN converges to u strongly in L2(∂Ω). Passing to the limit in the weak formulation
of (Eβ), we obtain that u is the solution of (Eβ) associated with β. This concludes the proof.

C Definition of Steklov eigenvalues and eigenfunctions

Namely, we consider the resolvent operator T : L2(∂Ω)→ L2(∂Ω) defined for all f ∈ L2(∂Ω) by

T (f) = zf |∂Ω where zf is the unique solution of

{
−∆zf = 0 in Ω,
∂zf
∂ν + β∗zf = f on ∂Ω.

By compactness of the trace operator and standard regularity estimates, T is a compact operator.
It is furthermore self-adjoint since, for any f, g ∈ L2(∂Ω) there holds

ˆ
∂Ω

T (f)g =

ˆ
∂Ω

zf

(
∂zg
∂ν

+ β∗zg

)
=

ˆ
∂Ω

β∗zfzg +

ˆ
Ω

zf∆zg −
ˆ

Ω

zg∆zf +

ˆ
∂Ω

zg
∂zf
∂ν

=

ˆ
∂Ω

zg

(
∂zf
∂ν

+ β∗zf

)
=

ˆ
∂Ω

T (g)f.

Finally, T is a positive operator: for any f ∈ L2(∂Ω) we have

ˆ
∂Ω

T (f)f =

ˆ
∂Ω

zf
∂zf
∂ν

+

ˆ
∂Ω

β∗z2
f =

ˆ
Ω

|∇zf |2 +

ˆ
∂Ω

β∗z2
f .

According to the spectral decomposition Theorem, there exists a non-increasing sequence of pos-
itive eigenvalues {rk}k∈IN converging to zero and an associated family {φk}k∈IN of eigenfunctions
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satisfying for all k ∈ IN, T (φk) = rkφk. Furthermore, the family {φk}k∈IN is a Hilbert basis of
L2(∂Ω) and we have{

−∆φk = 0 in Ω,
∂φk
∂ν + β∗φk = 1

rk
φk on ∂Ω,

and

ˆ
∂Ω

φkφk′ = δk,k′ . (C.1)

for all (k, k′) ∈ IN2. Let us set σk := 1
rk

, we have

σp −−−−−→
p→+∞

+∞ and


−∆φk = 0 in Ω,
∂φk
∂ν + β∗φk = σkφk on ∂Ω,´
∂Ω
φ2
k = 1,

(C.2)

for all k ∈ IN. Moreover,

∀k, k′ ∈ IN,

ˆ
∂Ω

φkφk′ = δk,k′ . (C.3)

Alternatively, we can define, for any k ∈ IN, σk via the min-max formula

σk := min
S subspace of dim
k+1 of W 1,2(Ω)

max
v∈S\{0}

´
Ω
|∇v|2 +

´
∂Ω
β∗v2´

∂Ω
v2

. (C.4)

D Proof of Theorem 4

We omit the subscript in J∂Ω and simply write

J (β) :=

ˆ
Ω

j(uβ).

To prove Theorem 4, we simply need to obtain a lower estimate of the second order derivative of
the type given in Proposition 14. Indeed, the rest of the proof can be adapted verbatim. We thus
need the derivatives of the functional under consideration.The first and second order derivatives
of β 7→ uβ are still denoted by u̇β and üβ . The equations on u̇β and üβ remain the same as in the
proof of Theorem 3: u̇β solves (3.1), while üβ satisfies (3.2). We now compute the derivatives of
J ; they write:

J̇ (β)[h] =

ˆ
Ω

u̇βj
′(uβ) and J̈ (β)[h, h] =

ˆ
Ω

üβj
′(uβ) +

ˆ
Ω

(u̇β)
2
j′′(uβ). (D.1)

We define the adjoint state pβ as the unique solution in W 1,2(Ω) of{
−∆pβ = j′(uβ) in Ω,
∂pβ
∂ν + βpβ = 0 on ∂Ω.

(D.2)

Since infΩ uβ > 0 and since j′ > 0 on IR∗+, the maximum principle entails

inf
Ω
pβ > 0. (D.3)

If we multiply (D.2) by u̇β and (3.1) by pβ , integrating by parts leads to

0 =

ˆ
Ω

∇u̇β · ∇pβ +

ˆ
∂Ω

βpβ u̇β −
ˆ

Ω

j′(uβ)u̇β
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0 =

ˆ
Ω

∇u̇β · ∇pβ +

ˆ
∂Ω

βpβ u̇β +

ˆ
∂Ω

huβpβ

so that ˆ
Ω

j′(uβ)u̇β = −
ˆ
∂Ω

huβpβ .

This leads to

J̇ (β)[h] = −
ˆ
∂Ω

huβpβ . (D.4)

Similarly, we get

J̈ (β)[h, h] = −2

ˆ
∂Ω

hu̇βpβ +

ˆ
Ω

j′′(uβ) (u̇β)
2
. (D.5)

We make a proof by contradiction: let β∗ ∈ B(∂Ω) be a maximiser such that the set

ω∗ := {0 < β∗ < 1} (D.6)

has positive measure:
Hd−1(ω∗) > 0.

Thus, for any admissible perturbation h at β∗ supported in ω∗ we must have

J̇ (β∗)[h] = 0. (D.7)

We now prove that there exists an admissible perturbation h supported in ω∗ such that

J̈ (β∗)[h, h] > 0. (D.8)

We aim at obtaining an expression of J̈ that is similar to a Rayleigh quotient, since this is the
main point of the proof. We can show the following adaptation of Proposition 14 there exist three
constants A ,B ,C with A > 0 such that

J̈ (β∗)[h, h] > A

ˆ
Ω

|∇u̇β∗ |2 −B‖u̇β∗‖W 1,2(Ω)‖u̇β∗‖L2(Ω) − C
ˆ
∂Ω

u̇2
β∗ . (D.9)

To that effect, we set

W(β∗)[h, h] := −2

ˆ
∂Ω

hu̇β∗pβ∗ . (D.10)

Using the same computations as in the proof of Proposition 14, if we set

Ψβ∗ :=
pβ∗

uβ∗
,

we get

W(β∗)[h, h] =

ˆ
∂Ω

Ψβ∗
(
∂ν
(
u̇2
β∗
)

+ 2β∗u̇2
β∗
)
. (D.11)

We note that
inf
Ω

Ψβ∗ > 0

and that

∂Ψβ∗

∂ν
=
∂νpβ∗

uβ∗
−Ψβ∗

∂νuβ∗

uβ∗
= −β∗Ψβ∗ + β∗Ψβ∗ = 0. (D.12)
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We use identity (3.15) and get

J̈ (β∗)[h, h] = 2

ˆ
Ω

Ψβ∗ |∇u̇β∗ |2 −
ˆ

Ω

u̇2
β∗∆Ψβ∗ +

ˆ
∂Ω

(2β∗Ψβ∗ + j′′(u)) u̇2
β∗ . (D.13)

Since β∗ and uβ∗ belong to L∞(∂Ω) and since j ∈ C 2, there exists a constant C independent
of h such that, for any admissible perturbation h

ˆ
∂Ω

(2β∗Ψβ∗ + j′′(u)) (u̇β∗)
2 > −C

ˆ
∂Ω

u̇2
β∗ . (D.14)

The rest of the proof follows exactly the same lines: indeed, the rest of the proof of Theorem 3
hinges upon the analysis of u̇β∗ , not on the fact that the criterion to optimise is distributed. The
equation on u̇β∗ remains unchanged, an so does the rest of the analysis.

E Proof of Theorem 7

We define

J (β) =

ˆ
Ω

j(uβ).

We shall make use of the computations of Appendix D.
We recall that the first order derivative of the criterion is given in (D.1). We set, for any

β ∈ B(∂Ω),
Φβ := uβpβ

where pβ is the solution of (D.2). Therefore, for any admissible perturbation h at a given β, there
holds

J̇ (β)[h] = −
ˆ
∂Ω

hΦβ . (E.1)

Let β∗ be a solution of (Pmin,Ω,B). Since we must have

−J̇ (β∗)[h] =

ˆ
∂Ω

Φβ∗h 6 0

for any admissible perturbation h at β∗, there exists a real number λ (necessarily positive as
Φβ > 0) such that

1. {0 < β∗ < 1} ⊂ {Φβ∗ = λ},

2. {β∗ = 1} ⊂ {Φβ∗ > λ},

3. {β∗ = 0} ⊂ {Φβ∗ 6 λ}.

As in the proof of Theorem 5, we show that these conditions imply

Hd−1 ({β∗ = 0}) = 0. (E.2)

The required conclusion then follows.
To prove (E.2), let us first observe that

∇Φβ∗ = uβ∗∇pβ∗ + pβ∗∇uβ∗ ,−∆Φβ∗ = −pβ∗∆uβ∗ − uβ∗∆pβ∗ − 2∇uβ∗ · ∇pβ∗ . (E.3)

First, we set

B := −2
∇pβ∗
pβ∗
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and

V :=
f

uβ∗
+
j′(uβ∗)

pβ∗
+ 2
|∇pβ∗ |2

p2
β∗

.

Second, observe that

∇uβ∗ =
∇Φβ∗

pβ∗
− uβ∗

pβ∗
∇pβ∗ =

∇Φβ∗

pβ∗
− Φβ∗

p2
β∗
∇pβ∗ .

Plugging this expression into (E.3) yields

−∆Φβ∗ = fpβ∗ + j′(uβ∗)uβ∗ − 2

(
∇Φβ∗

pβ∗
− Φβ∗

p2
β∗
∇pβ∗

)
· ∇pβ∗

= Φβ∗

(
f

uβ∗
+
j′(uβ∗)

pβ∗

)
+ 2Φβ∗

|∇pβ∗ |2

p2
β∗

+ 〈∇Φβ∗ , B〉

= V Φβ∗ + 〈∇Φβ∗ , B〉.

Since infΩ min{uβ∗ , pβ∗} > 0 it follows that infΩ Φβ∗ > 0. We also have V > 0. We can then
follow the proof of Theorem 5 verbatim.

F Proof of Theorem 9

We recall that

R(β) :=

ˆ
Ω

j(yβ).

To prove Theorem 9, we need a lower estimate of the second order derivative of the type given in
Proposition 14; in a second step, we will need a set of eigenfunctions different from the ones used
in the proofs of Theorem 3. Although not straightforward, we show how this can be done.

We start by computing the derivatives of the criterion. The first and second order derivatives
of β 7→ yβ are denoted by ẏβ and ÿβ . By Assumptions (HNL)-(Hstab), these derivatives exist.
Furthermore, ẏβ satisfies {

−∆ẏβ = ∂g
∂u (x, yβ)ẏβ in Ω,

∂ẏβ
∂ν + βẏβ = −hyβ on ∂Ω,

(F.1)

while ÿβ satisfies {
−∆ÿβ = ∂2g

∂u2 (x, yβ) (ẏβ)
2

+ ∂g
∂u (x, yβ)ÿβ in Ω,

∂ÿβ
∂ν + βÿβ = −2hẏβ on ∂Ω.

(F.2)

We now compute the derivatives of R; they write:

Ṙ(β)[h] =

ˆ
Ω

ẏβj
′(yβ) and R̈(β)[h, h] =

ˆ
Ω

ÿβj
′(yβ) +

ˆ
Ω

(ẏβ)
2
j′′(yβ). (F.3)

We define the adjoint state pβ as the unique solution in W 1,2(Ω) of{
−∆pβ = ∂g

∂u (x, yβ)pβ + j′(yβ) in Ω,
∂pβ
∂ν + βpβ = 0 on ∂Ω.

(F.4)

We need to check that a solution to this equation indeed exists.
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Lemma 17. There exists a unique solution pβ ∈ W 1,2(Ω) of (F.4). For any p ∈ [1; +∞) , pβ ∈
W 1,p(Ω) and

inf
Ω
pβ > 0.

Proof of Lemma 17. By Assumption (Hstab), the energy functional

E : W 1,2(Ω) 3 p 7→ 1

2

ˆ
Ω

|∇p|2 − 1

2

ˆ
Ω

∂g

∂u
(x, yβ)p2 −

ˆ
Ω

j′(yβ)p+

ˆ
∂Ω

βp2

can be bounded from below as

E(p) > µβ

ˆ
Ω

p2 −
ˆ

Ω

∂g

∂u
(x, yβ)p.

Hence, E is coercive, and so a solution pβ∗ to (F.4) exists. To prove the uniqueness of this solution,
we argue by contradiction: if two solutions pβ , qβ exist, then zβ := pβ − qβ solves{

−∆zβ = ∂g
∂u (x, yβ)zβ in Ω ,

∂zβ
∂ν + βzβ = 0 on ∂Ω.

(F.5)

Hence, if pβ 6= qβ , zβ 6= 0 is an eigenfunction of the operator −∆ − ∂g
∂u (x, yβ), associated with

the eigenvalue 0. However, the lowest eigenvalue of this operator is µβ > 0, a contradiction.
Uniqueness follows.

The W 1,p-regularity of pβ is a consequence of the same arguments as in Lemma 11.
Finally, the positivity of pβ is a consequence of the following version of the maximum principle:

as µβ > 0, should pβ not be positive, the negative part p−β := −pβ1pβ satisfies

ˆ
Ω

|∇p−β |
2 −

ˆ
Ω

∂g

∂u
(x, yβ)(p−β )2 6 −

ˆ
Ω

j′(yβ)p−β 6 0.

By the variational formulation (1.15) of µβ > 0, we necessarily have p−β = 0. So we first have

p−β > 0. It then suffices to apply the classical maximum principle to conclude.

If we multiply (F.4) by ẏβ and (F.1) by pβ , integrating by parts leads to

0 =

ˆ
Ω

∇ẏβ · ∇pβ −
ˆ

Ω

∂g

∂u
(x, yβ)pβ ẏβ +

ˆ
∂Ω

βpβ ẏβ −
ˆ

Ω

j′(yβ)ẏβ

0 =

ˆ
Ω

∇ẏβ · ∇pβ −
ˆ

Ω

∂g

∂u
(x, yβ)pβ ẏβ +

ˆ
∂Ω

βpβ ẏβ +

ˆ
∂Ω

hyβpβ

so that ˆ
Ω

j′(yβ)ẏβ = −
ˆ
∂Ω

hyβpβ .

This leads to

Ṙ(β)[h] = −
ˆ
∂Ω

hyβpβ . (F.6)

Similarly, we get

R̈(β)[h, h] = −2

ˆ
∂Ω

hẏβpβ +

ˆ
Ω

∂2g

∂u2
(x, yβ)pβ (ẏβ)

2
+

ˆ
Ω

j′′(yβ) (ẏβ)
2
. (F.7)
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We argue by contradiction: let β∗ ∈ B(∂Ω) be a maximiser such that the set

ω∗ := {0 < β∗ < 1} (F.8)

has positive measure:
Hd−1(ω∗) > 0.

Thus, for any admissible perturbation h at β∗ supported in ω∗ we must have

Ṙ(β∗)[h] = 0. (F.9)

We now prove that there exists an admissible perturbation h supported in ω∗ such that

R̈(β∗)[h, h] > 0. (F.10)

We aim at obtaining an expression of R̈ that is similar to a Rayleigh quotient, since this is the
main point of the proof. We show the following adaptation of Proposition 14: there exist A > 0
and two constants B ,C > 0 such that

R̈(β∗)[h, h] > A

ˆ
Ω

|∇ẏβ∗ |2 −B‖ẏβ∗‖W 1,2(Ω)‖ẏβ∗‖L2(Ω) − C
ˆ
∂Ω

ẏ2
β∗ . (F.11)

To that effect, we set

W(β∗)[h, h] := −2

ˆ
∂Ω

hẏβ∗pβ∗ . (F.12)

As before, if we set

Ψβ∗ :=
pβ∗

uβ∗
,

we obtain

W(β∗)[h, h] =

ˆ
∂Ω

Ψβ∗
(
∂ν
(
ẏ2
β∗
)

+ 2β∗ẏ2
β∗
)
. (F.13)

We note that
inf
Ω

Ψβ∗ > 0

and that

∂Ψβ∗

∂ν
=
∂νpβ∗

uβ∗
−Ψβ∗

∂νuβ∗

uβ∗
= −β∗Ψβ∗ + β∗Ψβ∗ = 0. (F.14)

From (3.15) we are led to

R̈(β∗)[h, h] = 2

ˆ
Ω

Ψβ∗ |∇ẏβ∗ |2−
ˆ

Ω

ẏ2
β∗∆Ψβ∗+

ˆ
∂Ω

(2β∗Ψβ∗ + j′′(u)) ẏ2
β∗+

ˆ
Ω

∂2g

∂u2
(x, yβ)pβ (ẏβ)

2
.

(F.15)
Since β∗ and uβ∗ belong to L∞(∂Ω), since g ∈ C 2 in its second variable and since j ∈ C 2,

there exists a constant C independent of h such that, for any admissible perturbation h

ˆ
∂Ω

(2β∗Ψβ∗ + j′′(u)) (ẏβ∗)
2

+

ˆ
Ω

∂2g

∂u2
(x, yβ)pβ (ẏβ)

2 > −C
(ˆ

∂Ω

ẏ2
β∗ +

ˆ
Ω

ẏ2
β

)
> −C

ˆ
∂Ω

ẏ2
β − C‖ẏβ‖L2(Ω)‖ẏβ‖W 1,2(Ω).
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The rest of the proof follows exactly the same lines, except that, instead of considering the sequence
of eigenpairs defined in (3.27), we rather need the following: we consider the eigenvalues

0 6 σ0 6 σ1 6 . . . 6 σk →
k→∞

+∞

where, for each k, the eigenvalue σk is associated with the eigenfunction φk solution of

∀k ∈ IN ,

{
−∆φk = ∂g

∂u (x, yβ)pβ in Ω ,
∂φk
∂ν + βφk = σkφk on ∂Ω

and, for any k , k′ ∈ IN ,

ˆ
∂Ω

φkφk′ = δk,k′ . (F.16)

The one thing that needs to be checked is that these eigenpairs are well defined. This is once again
a consequence of the stability Assumption (Hstab): proceeding as in Appendix C, it suffices to
show that the operator T : L2(∂Ω) 3 f 7→ T (f) defined, for any f ∈ L2(∂Ω), as

zf |(∂Ω) where zf is the unique solution of

{
−∆zf − ∂g

∂u (x, yβ)zf = 0 in Ω,
∂zf
∂ν + βzf = f on ∂Ω

is compact. First, we need to check that T is well-defined. However, this follows from the same
arguments as in Lemma 17, considering this time the energy functional

E : W 1,2(Ω) 3 z 7→ 1

2

ˆ
Ω

|∇z|2 − 1

2

ˆ
Ω

∂g

∂u
(x, yβ)z2 +

ˆ
∂Ω

βz2 −
ˆ
∂Ω

zf.

Second, the compactness is a consequence of standard W 1,2-estimates.
We can hence define the eigenpairs described in (F.16). The rest of the proof is adapted

verbatim.
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