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Spontaneous knotting of a flexible fiber in chaotic flows

Benjamin Favier∗

Aix Marseille Univ, CNRS, Centrale Marseille, IRPHE, Marseille, France
(Dated: March 30, 2021)

We consider the problem of an inextensible but flexible fiber advected by a steady chaotic flow,
and ask the simple question whether the fiber can spontaneously knot itself. Using a 1D Cosserat
model, a simple local viscous drag model and discrete contact forces, we explore the probability
of finding knots at any given time when the fiber is interacting with the ABC class of flows. The
bending rigidity is shown to have a marginal effect compared to that of increasing the fiber length.
Complex knots are formed up to 11 crossings, but some knots are more probable than others. The
finite-time Lyapunov exponent of the flow is shown to have a positive effect on the knot probability.
Finally, contact forces appear to be crucial since knotted configurations can remain stable for times
much longer than the turnover time of the flow, something that is not observed when the fiber can
freely cross itself.

I. INTRODUCTION

Knots are fascinating objects that are not only part of
our daily life, but also lead to an incredibly rich branch
of mathematics known as knot theory [1, 2]. Before be-
ing mathematical objects, knots first became the object
of scientific interest with Lord Kelvin’s theory on vortex
atoms [3, 4]. Since then, knots have reappeared in various
forms in a wide variety of scientific fields. In biophysics
[5], their possible functions and the mechanisms by which
they originate in DNA and proteins [6] or in other long
polymers [7, 8] are actively being studied. Topology in
chemical synthesis is becoming more and more impor-
tant as molecules can be synthetically knotted [9, 10].
In material sciences, knots have been formed using col-
loids [11], elastic fibers [12–14] or chains [15–17]. Finally,
knots can also be found in more surprising fields, from
optics [18, 19] to quantum gravity [20].

Another field where knots, and more generally topol-
ogy, are important is fluid dynamics [21–23]. Helicity,
the correlation between velocity and vorticity, is an in-
variant of the Navier-Stokes equations [24, 25] that is
ultimately related to the knottedness of vortex lines in
high Reynolds number flows [26, 27]. Knotted vortices
have even been created experimentally [28] and are con-
jectured to be an important aspect of turbulence in su-
perfluids [29].

In this paper, we combine the study of knots with fluid
dynamics by considering the simple case of a long flex-
ible fiber viscously coupled with an incompressible fluid
flow. The interaction between a flexible object and a fluid
flow leads to a wealth of interesting phenomena [30, 31]
and the deformations of flexible particles by various flows
have been the focus of several recent studies [32–36]. It is
natural to wonder whether knots can spontaneously form
in that situation. While most applications involve the in-
teractions of many fibers, from paper-making industries
[37] to natural agregates [38], we focus on the simpler
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case of a single object interacting with itself. The ob-
jective of this paper is to study a simplified model of
an inextensible and flexible fiber viscously coupled to an
incompressible fluid flow, and quantify the spontaneous
formation of knots along the fiber. By contrast with past
studies where inertia was the dominant factor leading to
the spontaneous formation of knots [16, 39], this paper
explores the possibility of spontaneous knotting in the
low inertia limit for which the viscous coupling between
the fiber and the fluid dominates [32, 40].

The paper is organised as follows. We start by describ-
ing our idealised model and numerical methods to gen-
erate the fiber conformation and detect whether knots
are present or not in section II. The probability of find-
ing knots as a function of the bending rigidity and the
length of the fiber is discussed in section III. Section IV
is focused on the specific types of knots while section V
compares different flows. We finally discuss the role of
the contact forces and the observation of tight knots in
section VI before our conclusions in section VII.

II. MODEL AND NUMERICAL METHODS

A. Cosserat model and hydrodynamic forces

We consider an elastic fiber of length Lf in the slender
body limit a � Lf where a is the typical radius of the
fiber section. At rest, the fiber is assumed to be perfectly
straight. Focusing on the dynamics of the center line and
neglecting extensibility and torsion effects, we model the
dynamics of the fiber using the Cosserat equation [41–43]

σ
∂2X

∂t2
− ∂

∂s

(
T
∂X

∂s

)
+B

∂4X

∂s4
= Fh + Fc , (1)

where X is the position of the fiber centre line and s ∈
[0, Lf ] the curvilinear coordinate. σ and B are the linear
density and the bending modulus of the fiber respectively,
all assumed to be constant along the fiber. T is a tension
term acting as a Lagrange multiplier in order to ensure
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the fiber inextensibility given by∣∣∣∣∂X∂s
∣∣∣∣ = 1 . (2)

Fh are the hydrodynamic forces acting on the fiber while
Fc are the contact forces resulting from the interaction
of the fiber with itself. The latter are detailed below in
section II C 2. We impose free-end boundary conditions
which correspond to T = 0, ∂2sX = 0 and ∂3sX = 0 on
both ends s = 0 and s = Lf .

Assuming that Re � 1, where Re is the Reynolds
number based on the diameter of the fiber, the hydrody-
namic forcing term becomes anisotropic and depends on
the relative orientation of the vector tangent to the fiber
centerline and the slip velocity [42, 44–46]:

Fh =
8πµ

c
D
(
u− ∂X

∂t

)
(3)

where c = −[1 + 2 ln(a/Lf )] � 1 for the slender body
approximation to be valid, u is the local fluid velocity and
µ is the dynamical viscosity of the fluid. The anisotropic
projection tensor is defined as

D = I− 1

2

(
∂X

∂s

)(
∂X

∂s

)T
(4)

which leads to a reduced viscous drag when the slip ve-
locity u− ∂tX is aligned with the tangent vector ∂sX.

Using the characteristic length scale of the flow Lu
and the characteristic flow velocity U as references, and
without introducing new notations for the dimensionless
variables, a dimensionless version of equation (1) is

St
∂2X

∂t2
− ∂

∂s

(
T
∂X

∂s

)
+Γ

∂4X

∂s4
=D

(
u− ∂X

∂t

)
+Fc . (5)

The fiber dynamics depends on three dimensionless pa-
rameters, the Stokes number

St =
cσU

8πµLu
(6)

which compares the inertia to the forcing viscous term,
the dimensionless rigidity

Γ =
cB

8πµUL3
u

(7)

which compares the bending term to the viscous drag,
and the length scale ratio

λ =
Lf
Lu

. (8)

In the rest of the paper, we focus on the case of negligible
inertia by fixing St = 10−2 while systematically varying
the bending rigidity and the length of the fiber.

B. ABC flows

We now discuss our choice of chaotic flows to advect
and deform the fiber. The first major assumption of our
approach is to assume that the fiber does not have any
effect on the flow itself, thus focusing our attention on
one-way coupling. As it will become apparent later, the
spontaneous knotting of the fiber is a rare event in the
sense that the probability of finding a knot on the fiber
at any given time is very low (typically between 10−5

and 10−2, see Figure 2 below) thus requiring very long
temporal integration to gather reliable statistics. Solving
the Navier-Stokes equations for such an extended period
of time would be computationally very demanding and
we thus choose a simpler approach based on analytical
flows. In addition, in order to simplify the problem as
much as possible, we focus on steady flows with a single
well-defined length scale. This means that the flow it-
self does not introduce new control parameters into the
problem and that the only relevant parameter is the ra-
tio λ = Lf/Lu between the fiber length and the flow
characteristic scale. For all these reasons, we choose to
focus our attention on the well-known ABC class of flows
which are simple analytical flows with chaotic particle
trajectories [47, 48].

Following [49], the ABC family is defined as follows

ux = A sin(2πz) +B cos(2πy)

uy = C sin(2πx) +A cos(2πz) (9)

uz = B sin(2πy) + C cos(2πx) ,

where u = (ux, uy, uz) is the velocity field which has
a characteristic length scale of unity. We recall that
the flow velocity is our reference unit so that we impose√
A2 +B2 + C2 = 1. The parameters A, B and C can

then be parametrized using two polar angles φ and ψ
[49]:

A = cos(ψ)

B = sin(ψ) cos(φ) (10)

C = sin(ψ) sin(φ) .

Most of the following results have been obtained for
three particular flows, labeled L7, L11 and 111 in Ta-
ble I. The main reason behind this arbitrary choice is
the ability of the particular flow L7 to form knots, which
is much more efficient than the more classical 111 flow
for example (which corresponds to the particular case
A = B = C, see Table I). This is further discussed in
section V below, where we compare the ability of differ-
ent ABC flows to spontaneously form knots.

C. Numerical methods

1. Elasticity

For the elasticity part of the problem, we solve equa-
tion (5) using a numerical scheme directly inspired from
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TABLE I. Parameters for the different ABC flows used in this
study. We focus on particular flows with

√
A2 +B2 + C2 = 1

and unit length scale. Most of our results are obtained with
the L7 flow, but we also use more classical ABC flows such as
the A = B = C case labeled 111 and the Roberts flow label
RF. The results discussed in section III have been obtained
with the flow L7.

Label A B C φ ψ

RF 0 1/
√

2 1/
√

2 π/4 π/2

111 1/
√

3 1/
√

3 1/
√

3 π/4 arctan(
√

2)
L1 0.9823 0.1325 0.1325 π/4 0.06π
L2 0.7501 0.4676 0.4676 π/4 0.23π
L3 0.9354 0.2499 0.2499 π/4 0.115π
L4 0.8526 0.3695 0.3695 π/4 0.175π
L5 0.2181 0.6901 0.6901 π/4 0.43π
L6 0.1253 0.7015 0.7015 π/4 0.46π
L7 0.9603 0.1973 0.1973 π/4 0.09π
L8 0.5358 0.5970 0.5970 π/4 0.32π
L9 0.8090 0.4156 0.4156 π/4 π/5
L10 0.8838 0.3309 0.3309 π/4 0.155π
L11 0.8763 0.4479 0.1773 0.12π 0.16π
L12 0.4540 0.8800 0.1394 0.05π 0.35π

previous studies on flexible fibers [40, 50–52]. Spatial
derivatives are approximated using sixth-order finite dif-
ferences on a non-uniform grid and we use a semi-implicit
backward difference temporal scheme of third order [53],
the bending term being solved implicitly while the other
terms are solved explicitly. We typically use between 256
and up to 1536 grid points to discretize the center line
of the fiber. The inexensibility of the fiber leads to a
Poisson-type equation on the tension T , which is solved
at each time step. When deriving the equation for the
tension, the time derivative of the exact inextensibility
condition (2) is replaced by the approximate relation

∂

∂t

∣∣∣∣∂X∂s
∣∣∣∣ = K

(
1−

∣∣∣∣∂X∂s
∣∣∣∣) (11)

which penalizes length errors if present [50]. Note that
the role of this artificial term is only to prevent the accu-
mulation of numerical errors over time, while the actual
inextensibility condition is enforced by the computation
of the physical tension term in equation (5). We have
checked that the value of the arbitrary constant K does
not affect our results (we typically use K = 103). The
relative error on the total fiber length is typically smaller
than 10−3 at all times and for all cases discussed here,
even when the fiber is tangled and contact forces become
important.

2. Contact forces

It is natural to assume that contact forces between dif-
ferent part of the fiber will significantly contribute to the
formation of knots. There exists a wide variety of contact

models in the literature, but we again focus our atten-
tion on the simplest description. Here we use a model
whose only objective is to prevent the fiber center-line
to intersect itself. We therefore neglect lubrication forces
between two elements of the fiber as they get close to each
other [54] and the flow generated by the motion of the
fiber itself. We also neglect any tangential forces result-
ing from the contact. The only objective of the contact
forces is therefore to prevent the interpenetration of two
distant elements of the same fiber.

Following previous studies on flexible fibers in fluid
flows [54–56], the following discrete contact force model
is used

F ij
c =


0, if |dij | > 2r0

F0

(
1− |dij |

2r0

)2
dij
|dij |

, otherwise
(12)

where dij is the vector joining two distant grid points
along the fiber. This model introduces two constants:
the magnitude of the contact force F0 and the dimen-
sionless fiber radius r0 = a/Lu. In the rest of the paper,
the maximum force is fixed to F0 = 103 while the radius
of the fiber is fixed to r0 = 10−2. We have checked that
these parameters prevent the fiber from crossing itself
at all times while the numerical scheme remains stable
even for very tangled conformations. Note that we fix
the radius of the fiber while varying its length, so that
the aspect ratio is not constant. The constant c in equa-
tion (3) does not significantly varies over the range of
fiber length considered and remains much greater than
one (10 . c . 13 for 2 < Lf < 12 with r0 = 10−2), so
that we consider it constant here even though the aspect
ratio varies. We have additionally checked that varying
the radius does not quantitatively alter the results dis-
cussed in the following, see Appendix A below for more
details. Note finally that the particular quadratic de-
pendence used in equation (12) is irrelevant and we have
checked that other expressions, such as linear or expo-
nential [54, 55], do not quantitatively affect our results.

3. Finding knots

There are several algorithms available to determine
whether a three-dimensional curve is knotted or not.
Knot theory classically considers a closed loop since an
open loop can always be unknotted [1, 2]. To circum-
vent this issue, several algorithms have been developed.
Here we use the Kymoknot library [57] which is using
the Minimally-Interfering closure [58] to circularize both
linear chains and chain sub-portions. The Kymoknot li-
brary identifies knots based on their Alexander deter-
minant [59]. Since we consider relatively short fibers
in this study, the resulting knots are relatively simple
and rarely exceed 8 crossings so that they can be unam-
biguously identified using simple invariants such as the
Alexander determinant. Note that we have also used the
recent Topoly Python library [60] which can compute
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FIG. 1. (a) Example of three fiber conformations. The fiber is colored in blue when it is not locally knotted while the red
sub-portion corresponds to the knotted part, when present. (b) Arc-length along the fiber versus time where the red color
indicates the sub-portion of the fiber that is knotted. Time is scaled with the flow turnover time Lu/U . The three arbitrary
conformations shown in (a) correspond to the arbitrary times indicated by the vertical dotted lines. Parameters are λ = 6,
Γ = 10−3 and St = 10−2. The ABC flow used for this example is labeled L7 in Table I.

more complex knot invariants. However, we did not find
significant differences between the two libraries except
on rare pathological configurations for which the closure
scheme or the choice of invariant can affect the results.
These libraries have been used to study knots in polymer
chains [61] and our model can be viewed as the macro-
scopic version of this problem [32].

Each fiber conformation X(s, t) is tested using mul-
tiple realizations of the same algorithm where only the
initial random seed is changed. We found that all real-
izations gave the same results when applied to the same
conformation, giving us confidence that the knots are cor-
rectly identified. To illustrate the output of the Kymo-
knot algorithm, we show in Figure 1 an example of the
knots identified versus time for a simulation represen-
tative of the cases discussed below. Using a top-down
approach, the algorithm is able to identify which sub-
portions of the fiber can be considered knotted at any
given point in time. A knot always starts from one of the
fiber extremities and then gradually propagates inwards
until it eventually disappears as the fiber recovers its ini-
tially unknotted configuration. In this paper, we do not
consider the size of the knot nor do we make the distinc-
tion between a loose and a tight knot. In fact, tight knots
are very rarely observed for the parameters explored in
this study (see section VI B below for a more detailed
discussion). From these data, we are then able to com-
pute the knot probability as the fraction of time spent in
a knotted configuration (see section III), irrespective of
the size of the knot or its type. The Alexander polyno-
mial is also stored for each knotted conformation, which

allows us to discuss the different types of knots using
standard classification (see section IV).

III. KNOT PROBABILITY

In this section, we focus on the particular flows labeled
as L7, L11 and 111 in Table I. We consider the particular
flow L7 as it appears to be quite efficient at generating
knots (see section V for more details) thus reducing the
numerical cost to reach statistical convergence. The two
other cases are considered to assess the robustness of the
results when considering different flows from the ABC
class. We recall that all the results discussed here corre-
spond to cases with a Stokes number of St = 10−2 thus
nearly neglecting inertia. We also focus on fibers typi-
cally longer that the correlation length scale of the flow
so that λ = Lf/Lu > 1. Flexible fibers shorter than the
characteristic scale of the flow are known to deform and
buckle [35, 62] and eventually knot in certain circum-
stances [63] but we do not consider this regime in this
study.

For all three flows, the knot probability is estimated
as follows. The fiber is initially straight, with a random
orientation and at rest. We then follow its trajectory and
deformations for 104 turnover times Lu/U of the flow and
save 4 × 104 conformations (4 per turnover time). Each
of these conformations is assumed independent in the
following. In order to reach statistical convergence, the
process is typically repeated over up to 512 independent
realizations initialized with different initial orientations
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FIG. 2. (a) Knot probability as a function of the bending rigidity Γ for a fixed dimensionless length λ = Lf/Lu = 4. The
insert shows the same data plotted as a function of Γ2 in lin-log scale. The dash lines indicate an exponential decay of the
form α exp(−βΓ2) (a best fit leads to α = 2.6× 10−3 and β = 9.6× 104 for the flow L7, α = 1.4× 10−3 and β = 2.4× 104 for
the flow L11, α = 4.2× 10−4 and β = 2.1× 104 for the flow 111). (b) Knot probability as a function of the dimensionless fiber
length λ for a fixed bending rigidities Γ = 10−3. The dash lines indicate a power law increase of the form ∼ (λ− λc)δ (a best
fit leads to λc = 2.1 and δ = 2.9 for the flow L7, λc = 1.6 and δ = 4.2 for the flow L11, λc = 1.8 and δ = 2.8 for the flow 111).
Error bars are computed from the variance of a binomial distribution.

and positions of the fiber. Each conformation is then
tested to identify whether a knot is present, its Alexan-
der polynomial and its location along the fiber. An ex-
ample of a particular realization is shown in Figure 1 and
a movie showing the temporal evolution of a fiber con-
formation is available as a Supplemental Material (see
Knot_low.mp4). For the longest fiber with λ = 12 and
for each realization, solving equation (5) for 104 turnover
times approximately takes 64 hours on a single processor
while computing all the knot properties for the 4 × 104

conformations approximately takes 6 hours.

A. Varying the bending rigidity

A fiber is almost rigid when its bending rigidity is large
enough to dominate over the viscous drag applied by the
surrounding fluid [31, 32]. Some deformations are obvi-
ously required to allow for the initially straight fiber to
fold on itself and eventually form a knot. We therefore
first focus our attention towards the transition from an
unknotted almost rigid conformation to the more flex-
ible regime where knots are expected to spontaneously
form. We consider the particular case of a dimension-
less fiber length λ = Lf/Lu = 4 and systematically vary
the bending rigidity. The knot probability as a function
of the dimensionless bending rigidity Γ is shown in Fig-
ure 2(a) for the three flows considered in this section.
For large values of Γ, no knots have been observed as
expected since the fiber deformations are either negligi-
ble or too small to allow for two distant sub-portions
of the fiber to interact with one another and eventually
for a knot. Here, since the fiber length scale is compa-

rable with that of the flow, the fiber typically starts to
bend around Γ ≈ 1 when the viscous drag is comparable
with the elastic forces. For all three flows discussed here,
the first knots are obtained for Γ ≈ 10−2, two orders
of magnitude below the first transition from a rigid to
a flexible object. The knot probability then rapidly in-
creases as the bending rigidity decreases. An exponential
behavior is observed for which the knot probability can
be approximately fitted by exp(−βΓ2) with β some fit-
ting parameter (see the insert in Figure 2(a)). After this
rapid increase of the knot probability as Γ decreases, it
saturates and stays roughly constant irrespective of the
bending rigidity which is varied here across nearly four
orders of magnitude. Qualitatively similar behaviors are
observed for all three ABC flows considered here. The
exponential behavior at high bending rigidities appears
robust but the exponent acting on Γ is observed to vary
depending on the flow.

Decreasing the bending rigiditiy even further leads to
very complex fiber conformations characterized by large
curvatures and multiple contacts which became numeri-
cally unstable using the current model. While our results
suggest that the knot probability eventually becomes in-
dependent of Γ, the regime of vanishingly small bending
rigidity characteristic of inextensible chains [15, 39] re-
mains to be characterized.

B. Varying the fiber length

We now explore the effect of systematically varying the
length of the fiber. In this section, we fix the bending
rigidity Γ = 10−3 and we systematically vary the dimen-

Knot_low.mp4
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sionless fiber length from λ = 1 up to λ = 12. Results are
shown in Figure 2(b). We observe a power law increase
of the knot probability which is well-fitted by (λ − λc)δ
for all three flows considered here. The critical length be-
low which no knots have been observed, λc, is similar for
all three flows with 1.6 . λc . 2.1. We cannot exclude
the possibility of rare knotting events below this critical
length, but we did not observe any knots for λ < 1.5 even
after analyzing 5×106 independent conformations. Note
that the power exponent δ is also similar for the three
flows considered here with 3 . δ . 4.

Obviously, the power law behavior of the knot proba-
bility observed here will eventually saturate for very long
fibers. Note that we cannot at this stage increase the
fiber length further since the resolution needs to be in-
creased at least linearly with the fiber length, leading to
prohibitive numerical costs both to evolve the fiber con-
formations and to detect whether they are knotted or
not. The rapid increase of the knot probability with the
fiber length is consistent with results obtained with ag-
itated inertial strings [15–17]. However, in that case, a
sigmoidal function of the form N0/(1+(λ/λ0)β) has been
suggested [16]. The accuracy of such a fit when applied
to our data remains moderate since we could not increase
the fiber length to reach the eventual saturation of the
knot probability. In addition, the existence of a critical
length in our problem is confirmed by plotting the prob-
ability versus the distance to the critical length λ − λc,
as in the insert of Figure 2(b), where the power law is
observed over nearly two decades. Note finally that an
exponential behavior has been observed for self-avoiding
random walks [64, 65]. Contrary to the simpler case of
self-avoiding walks, our model involves bending rigidity,
memory effects and spatial correlation in the fluid forc-
ing, which could be responsible for the power law behav-
ior observed here.

Finally, while the critical fiber length λc appears to de-
crease with Γ (not shown), the vanishing bending rigidi-
tiy limit could not be systematically explored with the
current approach. In particular, fibers much shorter than
the flow length scale are known to buckle [35] and it
would be interesting to explore the knot probability in
the regime λ� 1 and Γ→ 0.

IV. KNOT TYPES

We now discuss the different types of knots observed
for the particular flow L7, which appears to be very effi-
cient at forming knots compared to the two other cases
considered in the previous section. In knot theory, knots
are distinguished by their crossing number, which is the
minimum number of crossings on any diagram of the knot
[1, 2]. The classical trefoil knot has three crossings and
is the only knot in that case, and is therefore denoted by
31. The figure-eight knot has four crossings and is again
alone in that category, leading to the notation 41. After
four crossings, there are several knots for each crossing

number, which are distinguished using the subscript: 51,
52, 61, 62, etc. This tabulation dates back to the 19th

century [4] and has not significantly changed since. The
Kymoknot library [57] used in this paper can unambigu-
ously distinguish knots with up to 8 crossings, which is
enough for our application. The knots are classified based
on their Alexander polynomial [59]. Examples of various
knots observed on a fiber with λ = 6 and Γ = 10−3 are
shown in Figure 3(a). Although we only show the most
famous knots, from the trefoil to the figure-eight or cin-
quefoil knots, all 14 independent knots with 7 crossings or
less have been obtained in our simulations, and knots up
to 11 crossings were observed, although simply using the
Alexander polynomial is not sufficient to unambiguously
identify these complex knots.

We plot the ratio between the number of knots of a
particular crossing number and the total number of knots
in Figures 3(b). Results are plotted at a fixed bending
rigidity Γ = 10−3 and varying the fiber length λ, which
corresponds to the results already shown in Figure 2(b).
It is found that the most probable knot for all cases con-
sidered is the classical trefoil knot, classically labeled 31.
It is always the first knot to appear as one gradually
increases the fiber length or decreases its bending rigid-
ity. Knots with increasing crossing numbers generally
become more and more probable as the fiber length is in-
creased. While this is presumably flow dependent, it in-
dicates that knots with large crossing numbers involving
many topological transitions are less likely to be observed
that topologically simpler knots. While this is true for
the results discussed here, the regime of very long fibers
λ � 1, inaccessible to our approach for now, remains to
be explored. We also see that knots with 7 crossings ap-
pear as probable as knots with 8 crossings for all fiber
lengths explored. Additionally, in some cases, the prob-
ability of seeing knots of a particular crossing number
is eventually decreasing with the fiber length, as seen in
Figure 3(b) for knots with 6 or 10 crossings. The ques-
tion of the distribution of different knot types in the limit
of large fiber length thus remains open.

We now distinguish between different knots with the
same crossing number, starting with knots with 5 cross-
ings (there is only one knot with 4 crossings, the figure-
eight knot 41) and up to 8 crossings. For each crossing
number, we plot the ratio between the number of knots
of a given type and the total number of knots with the
same crossing number in Figure 3(c). Since the order-
ing of the classification is arbitrary, we do not expect the
subscript to play any role in the probability of occur-
rence of a given knot. We observe large differences in the
probabilities of seeing a given knot even when considering
knots with the same crossing number. This observation
might not specific to our particular model, but might be
more profoundly rooted in the topological properties of
some of these knots.

It is interesting to note that for each crossing num-
ber, the most probable knot has always an unknotting
number of 1. The unknotting number is the minimum
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FIG. 3. (a) Examples of knots observed on a fiber with λ = 6 and Γ = 10−3 and for the flow L7. The fiber is colored in blue
when it is locally not knotted while the red portion corresponds to the knotted part. The labels correspond to the standard
classification based on the number of crossings [1, 4]. (b) Ratio between the number of knots with a given crossing number and
the total number of knots for Γ = 10−3 and varying the fiber length λ. The subscript x denotes all knots with a given number
of crossings. Error bars are computed from the variance of a binomial distribution. (c) Ratio between the number of knots of
a particular type and the total number of knots having the same crossing number. The dimensionless fiber length is fixed at
λ = 10 and the bending rigidity is Γ = 10−3. The number at the top of the histogram boxes indicates the unknotting number of
each particular knot [1]. The insert shows the fraction of knot as a function of the unknotting number for all crossing numbers
up to 9 (boxes) and for knots with 7, 8 and 9 crossings (yellow, blue and red symbols respectively) independently.

number of times a knot must cross itself to become un-
knot [1]. It can be seen as a measure of the topological
complexity of the knot. The cinquefoil knot 51 has an
unknotting number of 2 and is less observed that the
52 knot which has an unknotting number of unity. The
same can be said of the more probable 72 knot versus the
71 knot. The insert in Figure 3(c) shows the fraction of
knots with a crossing number of 9 or less as a function
of their unknotting number. The probability to observe
a given knot clearly rapidly decreases with the unknot-
ting number. However, there are some exceptions to this
otherwise robust trend. All knots with 6 crossings have a
unit unknotting number, but the 61 knot is nevertheless
far more probable than the other two knots. Some knots
with an unknotting number of 1 remain very rare, such as
the 77 or 814 knots for example. Finally, even though the
probability of observing a knot globally decreases with
its unknotting number, it is not true for each crossing
number taken individually. The symbols in the insert of
Figure 3(c) show the evolution of the knot probability as
a function of the unknotting number for knots with 7, 8
and 9 crossings (boxes correspond to all crossing numbers
up to 9). While a monotonous decrease is observed for

knots with 7 and 8 crossings, knots with 9 crossings and
an unknotting number of 2 are more probable than those
with an unknotting number of 1. This shows that while
the topological complexity of a given knot, as measured
by its unknotting number, is indeed an important aspect,
it is not the only ingredient. In particular, the proper-
ties of the fluid flow used to advect the fiber probably
plays a role in favoring some knots compared to others,
independently of their topological complexities.

Let us finish this section about knot types by discussing
a particular mechanism by which the flow can form spe-
cific complex knots. It is well illustrated by the knot 72
shown in Figure 3(a). Clearly, it is initially formed by a
twisted loop, which is not a knot by itself (see the middle
panel in Figure 1(a)), until one of the fiber extremities
is crossing the surface enclosed by the loop. Depending
on the number of twists forming the loop, the knot will
be of increasing complexity while the mechanical pro-
cess leading to it remains relatively simple. These knots
are called twist knots [2] and always have an unknotting
number of 1 (cutting the loop open is sufficient to remove
the knot). A loop with 3 (resp. 5) twists will eventually
lead to the 52 (resp. 72) knot, which is much more proba-
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a binomial distribution. Other parameters are λ = 4 and
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ble than the 51 (resp. 71) knot. A loop with with 4 twists
will eventually leads to the 61 knot, which is much more
probable than the 62 knot. The same mechanism can
also explained the prevalence of the 81 knot but not of
the 820 knot, whose formation mechanism remains to be
identified. Note finally that the spontaneous formation of
these twisted loops and their stability clearly depend on
the details of the contact model used. Further analysis
involving more refined contact models, including lubrica-
tion [54] and friction forces [12] is therefore required to
confirm the preferential formation of these twist knots.

V. DEPENDENCE ON FLOW PROPERTIES

All of the results discussed above naturally depend on
the flow considered. We recall that the flows considered
up to this stage are the particular cases labeled L7, L11
and 111 in Table I. While it would be premature to con-
sider more complex unsteady or multi-scale flows, it is
natural to wonder if similar flows lead to similar knot
probabilities. We explore this possibility in this section
by considering different ABC or related flows with the
same length scale and root mean square velocity.

Since the formation of knots implies relative displace-
ments of distant sub-portions of the fiber, it is intuitive to
assume that the Lyapunov exponent of the flow is poten-
tially linked with its ability to spontaneously form knots.
To verify this hypothesis, we consider the following set
of parameters: λ = 4, Γ = 2× 10−3 and St = 10−2 as in
the rest of the paper. We compare different ABC flows
chosen for their finite-time Lyapunov exponents (FTLE),
which were computed in [49]. These flows have the same
velocity amplitude and characteristic length scale, and
only differ by their coefficients A, B and C, see Table I
for the details. Figure 4 shows the knot probability for

14 different ABC flows. Although the velocity amplitude
is the same for all of these cases, the knot probability
varies by more than one order of magnitude. If we now
plot the same knot probability as a function of the FTLE
computed by [49], we clearly observe a positive corre-
lation between the FTLE and the knot probability. It
is clearly not the only relevant parameter though. The
Roberts flow (labeled RF) is able to form knots even
though its FTLE is zero, being a two-dimensional flow
(with three velocity components though). Therefore, La-
grangian chaos is not mandatory to form knots, although
it does appear to help. We also observe that the ABC
flow with the maximum FTLE, as computed by [49] and
labeled L10 in Table I and Figure 4, does not correspond
to the maximum knot probability. The maximum actu-
ally corresponds to the flow L7, which was used in sec-
tions III and IV for that exact reason, even if its FTLE
is comparatively low. While a large FTLE seems to fa-
vor the formation of knots, it is only one of the ingredi-
ents behind this topological, and other local or non-local
statistics should be explored in future studies.

VI. DISCUSSIONS

A. Role of contact forces

Up to now, we have considered a physical fiber which
cannot intersect itself. While more realistic, it is inter-
esting to compare it with the idealised case of a “ghost”
fiber for which intersections are allowed. This can still
lead to knotted configurations, but the statistics are ex-
pected to change.

We consider here the parameters Γ = 10−3 and we vary
the fiber length. We compare the results already shown
in Figure 2(b) for the flow L7 with the same results but
without contact forces Fc defined in section II C 2. As
can be seen in Figure 5(a), the knot probability is clearly
reduced when the contact forces are neglected, except for
the short fibers λ < 7 for which the knot probability is
increased. A power law is observed in both cases, but the
exponent is reduced from 2.88 to 1.98 when contact forces
are neglected (see the insert in Figure 5(a)). However,
the critical length λc below which no knots have been
observed is actually increasing from λc = 2.07 when con-
tact forces are included to λc = 2.35 when contact forces
are neglected.

The overall reduction in the knot probability for long
fibers can appear surprising since the ability of the fiber
to cross itself allows for otherwise forbidden topological
changes, which could in turn increase the knot probabil-
ity. However, it also reduces the typical lifetime of a knot,
while contact forces will tend to keep a knot stable for
a while before the hydrodynamic forces can eventually
unknot the fiber. While this is perhaps a little prema-
ture to discuss such dynamical effects, we can neverthe-
less quantify this tendency by comparing the probability
density function of the lifetime of knots, with and with-
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FIG. 5. (a) Knot probability as a function of the fiber length λ, for Γ = 10−3 and for the flow L7. Results with and without
contact forces are shown. Dotted lines correspond to the best fit (λ− λc)δ with λc = 2.1 (resp. λc = 2.35) and δ = 2.9 (resp.
δ = 1.98) with (resp. without) contact forces. (b) Probability density function of a knot lifetime for λ = 12 and Γ = 10−3. We
recall that time is scaled by the turnover time of the flow Lu/U .

out contact forces. This is shown in Figure 5(b) for the
particular case λ = 12, where we can clearly see the emer-
gence of a wide tail for the case with contact forces: once
formed, some knots remain stable for a very long time,
a phenomenon not observed in the case of an idealised
ghost fiber which can freely cross itself. In the latter case,
knots very rarely survive for times much longer than the
turnover time of the flow. This was in fact illustrated in
Figure 1, where a 31 knot survives for tens of turnover
time (see Figure 1(b) from t = 525 to t = 580) which
would not be the case without contact forces.

B. To tie or not to tie?

This question has already been asked by the polymer
community [66]. Up to now, we have discarded the prob-
lem of the knot size and the possibility for the knot to
become tied. The vast majority of the knots obtained
previously are loose in the sense that contacts between
different sections of the fiber remain very localized and
the knot size remains comparable with the length of the
fiber. The Kymoknot library allows for the identification
of knots on sub-portions of the fiber so that the actual
size of the knot can be computed. The probability den-
sity function of the knot size for different fiber lengths are
shown in Figure 6(a). While most knots have a size com-
parable with the fiber length (the maximum of the proba-
bility density function actually occurs for knot sizes close
to half the fiber length), the probability to observe very
small knots increases with the fiber length. There is of
course a lower bound and knots cannot have an arbitrar-
ily small size. The minimal ropelength required to form a
given knot is a classical problem in knot theory, and it is
known that the minimum ropelength required to form a
trefoil knot is at most 16.372r0 [67]. This lower bound is
indicated by the vertical dotted line in Figure 6(a) and is
far from being reached. Our knots are therefore far from

being perfectly tight, which again indicates that a more
refined contact model is probably required to explore this
limit.

We show an example of such a transition in Figure 6(b)
for λ = 6 and Γ = 10−3. A movie is also available as
a Supplemental Material (see Tight_knot.mp4). These
particular cases, which we only observed for long enough
fibers, typically λ > 5, and small enough bending rigidity
often led to numerical instability as the curvature along
the knot becomes large and the simple contact model
used here eventually breaks down. This leads to the inter-
esting question about when and how does a knot become
tight. Once a knot is formed, the two unknotted extrem-
ities need to be advected in opposite directions until the
knot eventually becomes tight. The overall positive role
played by the FTLE on the knot probability might also
apply on the transition to tight knots. However, while
this secondary transition is obviously more important in
practice, since it will ultimately determine the fraction
of long-lived mechanically-stable knots, a detailed sta-
tistical description remains out of reach of the current
modeling approach.

VII. CONCLUSIONS

Using a highly-idealized numerical model, we have
shown that flexible fibers can spontaneously knot when
interacting viscously with a chaotic steady flow. We
have focused our attention on the regime where the fiber
length is larger that the characteristic scale of the flow. In
that case, we observed a transition between nearly rigid
unknotted fibers to flexible knotted fibers as the bend-
ing rigidity is decreased. This transition is characterized
by an exponential behavior before the knot probability
appears to saturate once the bending rigidity is small
enough. In some cases, we even observed a slight de-
crease in the knot probability as the rigidity is decreased

Tight_knot.mp4
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FIG. 6. (a) Probability density function of the knot size for
different fiber length λ and Γ = 10−3. The vertical dash line
indicates the minimum rope-length for the trefoil knot equal
to 16.372r0 [67]. (b) Fiber conformation at three successive
times. Time is increasing from top to bottom and each snap-
shot is separated by approximately 10 turnover times. The
knotted sub-portion of the fiber is shown in red. Parameters
are λ = 6 and Γ = 10−3. A movie of the transition is available
as a Supplemental Material (see Tight_knot.mp4).

even further. This phenomenon remains unexplained but
could be related to the emergence of buckling events
which could reduce the effective fiber length. In any case,
the asymptotic regime of vanishing bending rigidity re-
mains to be characterized. Similarly to self-avoiding ran-
dom walks, a rapid increase of the knot probability is
observed as the length of the fiber is increased, although
we robustly observe a power law increase above a critical
length scale instead of an exponential behavior. We have
observed all types of knots up to 7 crossings but some
knots are much probable than others. While the most
probable knots all have an unknotting number of unity,
the topological complexity of a given knot is not the only
ingredient contributing to its probability of occurence.
Some flow-dependent mechanisms, which remain to be
fully identified, are also at play and probably depend on
specific spatio-temporal correlations. For example, the

formation of twist loops leading to so-called twist knots
has been largely observed but remains to be dynamically
described. Additionally, we observe a significant positive
correlation between the finite-time Lyapunov exponent
and the knot probability, although it is clearly not the
only ingredient since the largest knot probability was not
observed for the flow with the largest FTLE. Finally, we
have quantified the role played by the contact forces in
this problem. The knot probability is overall increased
when contact forces are present, which is explained by
the emergence of long-lived knots.

Much remains to be explored in this problem and some
fascinating questions remain unanswered after this rather
phenomenological description. For example, while a large
Lyapunov exponent does seem to favor the spontaneous
knotting of the fiber, the specific properties a flow must
possess to increase the knot probability are far from clear.
The ABC flows considered in this study are maximally
helical in the sense that the velocity is everywhere co-
linear with the vorticity. This is therefore a very partic-
ular type of flows, called Beltrami flows, and it is nat-
ural to wonder whether this property is in part respon-
sible for the knot probability reported here. We recall
that helicity is itself associated with the entanglement of
vortical structures [26, 27]. Dynamo action, the ability
of an electrically-conducting fluid to sustain a magnetic
field, also relies on the helicity of the flow in certain cases
[68, 69]. The so-called Stretch, Twist and Fold mecha-
nism [70] is a simple topological procedure that can en-
hance the magnetic flux of an existing loop by twisting
and folding it. Finally, in the absence of magnetic diffu-
sion, the evolution equations for the magnetic field and
for an oriented material line are identical [69]. For all
these reasons, we believe it is worth quantifying the po-
tential role of helicity, a cornerstone in fluid dynamics and
magnetohydrodynamics, in our problem. In that respect,
our single-scale steady Beltrami flow appears too simple
to fully unveil the dynamical mechanisms by which a fiber
can knot itself in a fluid flow. An obvious improvement
of this work should be to consider more realistic, helical
as well as non-helical, flows. Note finally that the tran-
sition to a knotted conformation is probably a non-local
effect, for which spatio-temporal correlations of the flow
might play a crucial role.

Our model assumptions should also be critically dis-
cussed, and our results might be quantitatively modified
by the inclusion of lubrication forces and more realistic
contact forces and fluid drag. The role of inertia is also
unclear. While inertial chains have been shown to spon-
taneously knot [17], our problem is very different since
the knot probability crucially depends on the choice of
flow. While the rigorous inertialess regime (St = 0) could
also be investigated, we have observed that the fiber can
reach stable limit cycles when St < 10−2, which is why
we kept a finite Stokes number instead of neglecting iner-
tia completely. This problem could be also prevented by
considering unsteady flows for which periodic solutions
are less likely. Studying the large Stokes limit also ap-

Tight_knot.mp4
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FIG. 7. Composite knot 31#52 corresponding to the suc-
cessive formation of a trefoil knot 31 (colored in red) and a
52 knot (colored in green). The blue portion of the fiber is
unknotted. Parameters are λ = 7, Γ = 10−3 and the flow is
L7 as defined in Table I.

pears as a promising avenue. All of the limitations of
the current model could also be addressed using an ex-
perimental approach, since 3D reconstruction of flexible
objects in fluid flows is now possible [40, 71]. However,
it remains to be seen whether such methods can unam-
biguously reconstruct complex knotted conformations.

Knot theory also does not reduce to the basic con-
cepts used in this paper. We have for example focused
our attention solely on prime knots. However, while
rare compared to prime knots, composite knots have also
been observed in some cases. The 31#52 composite knot
has been observed several times and for different fiber
lengths. An example is shown in Figure 7. A trefoil
knot, colored in red, is formed first and later followed by
a 52 knot, colored in green. Surprisingly, the simplest
composite knots, the so-called granny and square knots,
have not been observed. They are formed by forming two
successive trefoil knots of identical or opposite chirality
[2]. While it might just be due to a lack of statistical
convergence (these knots remain much less probable than
regular prime knots), the emergence of composite knots
versus more regular prime knots therefore remains to be
studied. Another related question concerns the transition
between different knots. It is for example known that the
transition from an unknot to a 51 knot is more topologi-
cally complex and therefore rare than the transition from
a 31 to a 52 knot [72, 73]. We have also observed that the
knot 820 is the most probable knot with 8 crossings even
if it is not a twist knot (see Figure 3(c)). This might be
related to the fact that this particular knot, sometimes
called the Ashley’s stopper knot [74], is composed of a
trefoil knot around a loop which might explain its rela-
tively large occurrence compared to other knots of com-
parable topological complexity. The importance of these
topological transitions between different knots, or struc-
tures eventually leading to knots, is a dynamical aspect
that needs further considerations.

Let us conclude by saying that, while the spontaneous
knotting of a single fiber remains a rather fundamental
problem at this stage, it is plausible that the macroscopic
behavior of long flexible fiber suspensions [31] could cru-
cially depend on the formation of knots on single fibers
or, more likely, on links between different fibers.
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Appendix A: Dependence on the fiber radius

The dimensionless radius of the fiber has been arbi-
trarily fixed to r0 = 10−2 in the main text. We justify
here this particular choice by varying the fiber radius.
We consider the particular case λ = 4, Γ = 10−3 and
St = 10−2. The knot probability as we vary the radius
is shown in Figure 8. We observe a rapid decrease of the
knot probability as the radius increases. As we decrease
the fiber radius, the knot probability tends to a constant.
This indicates that our results, obtained for the particu-
lar case r0 = 10−2 indicated by the vertical gray line in
Figure 8, have reached the asymptotic regime where the
knot probability does not depend on the radius of the
fiber anymore. Note that increasing the radius too much
would be unrealistic since the Cosserat model is derived
under the assumption of an asymptotically small aspect
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FIG. 8. Knot probability as a function of the dimensionless
radius r0. Error bars are computed from the variance of a
binomial distribution. Other parameters are λ = 4 and Γ =
10−3. We use the ABC flow L7 as defined in Table I.
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ratio. The numerical cost however increases rapidly as
we decrease the radius since we aim at keeping a con-
stant number of grid points per length. We have chosen

the particular case r0 = 10−2 as a compromise between
these numerical considerations and the constraint that
large radii would be unrealistic in our simple framework.
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