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ABSTRACT 

Treatment of hydrogen sulfide (H2S) is important in many industrial processes including oil 

refineries, natural and biogas processing, coal gasification. The most mature technology for the 

selective H2S capturing is based on its absorption by chemical or physical solvents. However, only 

several compounds are currently used as physical solvents in industry, and the search for the new 

ones is an important task. The experimental screening of physical solvents requires a lot of time and 

resources, while solubility modeling might enable one to reduce the number of solvents for the 

experimental evaluation. In this study, a workflow for the in silico discovery of new physical 

solvents for H2S absorption was suggested and experimentally validated. A dataset composed of 99 

H2S physical solvents was collected and predictive quantitative structure-property relationships for 

H2S solubility were built using random forest algorithm and two types of molecular descriptors: 

ISIDA fragments and quantum-chemical descriptors. Virtual screening of industrially produced 

chemicals and their structural analogs enabled to identify the ones with high predicted solubility 

values. They can be suggested as starting points for further exploration of H2S physical solvents 

chemical space. The predicted solubility value for one of the compounds found in virtual screening, 

1,3-Dimethyl-2-imidazolidinone, was confirmed experimentally. 
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INTRODUCTION 

 

Hydrogen sulfide (H2S) is a colorless highly toxic gas. It exists naturally in crude petroleum, 

natural gas, and biogas. The main anthropogenic sources of H2S are oil refineries and coal 

gasification, wherein a conversion of the sulfur content of these resources into H2S occurs
1
. For any 

gas stream, including natural gas, biogas, or syngas in order to be useful for energy or chemical 

industrial application, unacceptable amounts of H2S should be removed. Numerous approaches for 

H2S capturing were suggested: absorption with chemical and physical solvents, ionic liquids, 

adsorption with metals, metal oxides and metal-organic frameworks, zeolites, membrane separation, 

cryogenic distillation.
1
 However, the most common industrial approaches for H2S removal are 

based on absorption with either chemical solvents (alkanolamines solutions), which rely on the 

reversible chemical reaction between a solvent and a gas, or physical solvents (methanol, N-methyl-

2-pyrrolidone, polyethylene glycols ethers) in which no chemical reaction occurs.
1
 Purely physical 

solvents are usually used for bulk H2S removal in cases when the amount of H2S is sufficiently 

large.
1
 Although chemical and physical gas absorption is a mature process, existing for nearly 100 

years, only a limited number of physical solvents is being currently used in industry and the search 

for new perspective physical solvents for H2S capture is an important task. 

Experimental screening of physical solvents is a time and cost consuming process. In order to 

reduce the number of solvents being subjected to experimental measurements, predictive modeling 

enabling to suggest the most promising solvents for the experimental evaluation can be utilized. In 

the pioneering work of Bryk et al.
2
 the authors used a multiple linear regression approach with six 

experimentally determined properties (refractive index, dielectric constant, Palm basicity, Reichardt 

electrophilicity, Hildebrand solubility parameter, molar volume) as descriptors, in order to model 

H2S solubility in 49 solvents at 293.15 K, and in 11 solvents at 298.15 K. The calculations for all 49 
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solvents resulted in equations with low multiple correlation coefficient and sequential rejection of 

the outliers (dioxane, ethyl cellosolve, cyclohexane, and dimethylformamide) was performed. In 

this way, a six-parameter equation with a sufficient fitting accuracy for the H2S solubilities in 45 

solvents was obtained, although there was no validation on the external set performed. An analysis 

of the signs and significances of the terms in the equations obtained by the authors showed that the 

major parameters that control H2S solubility are the cohesive energy density and the solvent 

basicity. The former decreases the solubility, since the more associated the solvent is, the more 

energy is consumed to incorporate a foreign molecule into the structure of the liquid. 

The main disadvantage of the modeling approaches based on experimentally determined physico-

chemical parameters is the limited number of compounds for which the parameters are available, 

and thus the narrow set of solvents for which the prediction is possible. Although these physico-

chemical parameters can, in turn, be predicted,
3,4

 the accuracy of such predictions was shown to be 

low. An alternative approach is based on the chemoinformatics-driven methodology, wherein only 

some parameters directly derived from chemical structures are required. Technically, structures are 

encoded by real-value vectors of molecular descriptors used as variables in quantitative structure-

property relationships (QSPR) 
5
 built with the help of machine learning algorithms. To our 

knowledge, only one conference paper related to QSPR modeling of H2S solubility has been 

published so far 
6
. In this paper, multiple linear regression method with genetic algorithm-based 

features selection and descriptors calculated with the Dragon software
7
 were used to model H2S 

solubility at 293.15 K on a set of 44 solvents.
6
 

In this proof-of-concept paper, we investigated the possibility to use machine learning for the in 

silico design of new H2S physical solvents. A dataset consisting of 99 mole fraction solubility 

values (χ) at 298.15 K and 1 atm extracted from the IUPAC report, recent scientific papers and 

patents and two data points experimentally measured by Total S.A. was compiled. The models for –

log(χ) were built using random forest algorithm and two different types of descriptors: ISIDA 
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fragments
8
 and some parameters issued from quantum chemical calculations

9
. Models with 

reasonable predictive performance were used in virtual screening of the industrially produced 

chemicals. It enabled to suggest several potent H2S absorbents one of which, 1,3-Dimethyl-2-

imidazolidinone, was then studied experimentally. Experiment solubility value was found close to 

the predicted one, thus showing good predictive performance of the obtained model.  

 

MATERIALS AND METHODS 

 

Data collection and preprocessing 

 

Data points (χ values) for H2S solubility were collected from several sources: IUPAC solubility 

report
10

, patents
11,12

, and papers
13-32

. In cases, where there were no data available at 298.15 K, but 

several data points at other temperatures were available, the values were extrapolated or 

interpolated. The data points have been extrapolated only if there were at least more than two data 

points at different temperatures available and the deviation of the closest temperature among these 

points was not larger than 10 K. In cases where the pressure needed to be adjusted to 1 atm, solvent 

vapor pressure was estimated by the Antoine equation. Extrapolation of the data to 298.15 K was 

performed using either equations suggested in the original publications or eq. 1: 

               , (1) 

where χ – mole fraction solubility value, T – temperature (K), A, B – constants. 

 

Mole fraction solubilities were converted to the Kuenen coefficients S using eq. 2: 

     
     

  
 

 

    
,  (2) 
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S – Kuenen coefficient (Nm
3
×kg

-1
), R – ideal gas constant (8.314 m

3
×Pa×K

-1
×mol

-1
), T and P – 

standard temperature and pressure (273.15 K and 101.325 kPa), Mw – molecular weight of 

compound (kg/mol), χ – mole fraction solubility value. 

 

According to the IUPAC’s definition
10

, Kuenen coefficient is the volume of saturating gas at 

273.15 K and 1 atm pressure, which is dissolved by unit mass of pure solvent at the temperature of 

measurement and partial pressure of 1 atm. This parameter is widely used in industry applications, 

as it enables one to directly estimate the efficiency of the particular solvent related to its cost and 

dimensions of the required industrial unit (design-capital expenses cost CAPEX). Here, Kuenen 

coefficients were used for the data analysis and models interpretation. 

For the modeling, all χ values were transformed to logarithmic scale, i.e. negative value of 

decimal logarithm was taken.  

 

Chemical structures standardization 

All compounds structures were standardized using in-house standardization procedures based on 

the RDKit tool,
33

 which included aromatization, stereochemistry depletion, etc. 

 

Molecular descriptors 

Two different types of descriptors were used in the modeling: ISIDA fragments
8
 and some 

parameters issued from quantum chemical calculations
9
. 193 different types of ISIDA fragment 

descriptors were generated using Fragmentor17 software.
8,34

 These fragments represent either 

sequences (the shortest topological paths with explicit presentation of all atoms and bonds), atom 

pairs or triplets (all the possible combinations of 3 atoms in a graph with the topological distance 

between each pair indicated). 
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Quantum chemical descriptors resulted from DFT calculations in gas phase, with model wB97X-

D 6-31G* performed with the Spartan 18.0 program.
9
 Default QSAR descriptors available in 

Spartan including energy, dipole moment, EHOMO, ELUMO were calculated. 

 

Machine-learning method.  

Random forest (RF) algorithm implemented in sci-kit learn library (v. 0.22.1) was used. The 

following hyperparameters were tuned during optimization (grid search): number of trees (100, 300, 

1000), number of features (all features, one third of all features). 

 

Model training and validation workflow 

Modeling workflow was implemented using sci-kit learn library (v. 0.22.1) in python 3.7 

scripting language. At the first stage, a random forest (RF) algorithm (sci-kit learn implementation) 

was applied to the entire dataset (parent set) with various hyperparameters (Figure 1a). 

 

Figure 1. Workflows for (a) building ISIDA consensus model and (b) nested cross-

validation procedure. * Only ISIDA descriptors selected for the consensus model in workflow (a) 
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are used. ** Each “instant” model corresponds to particular type of descriptors. Its hyperparameters 

are optimized on related OOB in the grid search *** 5-fold cross-validation repeated 10 times with 

reshuffling. 

 

We used bootstrap aggregation in the process of building the decision trees. For each training 

sample -log  values were calculated as the mean of the values predicted by the trees that did not 

have this training sample in their bootstrap sample. These out-of-bag predictions were used for the 

estimation of model’s performance. The best model for each descriptor space was chosen according 

to the largest coefficient of determination for out-of-bag predictions (Q
2

OOB). Only the models for 

which Q
2

OOB was no less than 0.7 were saved as the “local” models forming the consensus predictor 

trained on the given data set. Two other measures (RMSEOOB, MAEOOB) were also reported. The 

following equations were used to calculate the measures: 

 

    
    

                    
   

               
   

  (3) 

          
                  

 
 
     (4) 

         
                

 

 
     (5) 

Above, n is the number of compounds in the parent set, yi,exp, yi,pred experimental and out-of-bag 

predicted values for compound i from the parent set. 

Each of the selected models was then associated to an Applicability Domain (AD), defined as 

boundary box for Spartan descriptors and by the presence of all fragments from the test set in the 

training set (fragment control) for ISIDA descriptors. The pool of selected models extracted from 

the given data set can now be used as a consensus predictor, returning for each input solvent 

candidate a mean value of solubility estimates and its standard deviation, taken (a) over the 

predictions returned by each model in the pool or, alternatively, (b) over the predictions returned by 

only those models having the candidate within their AD. 
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In the above workflow, the models’ parameters have been selected in such a way to optimize the 

predictive performance on OOB data. In order to assess a propensity to predict data never seen 

during the models training, a nested cross-validation procedure
35

 has been implemented. Here the 

method hyperparameters were found by optimizing the model performance on OOB for each 

training set in the 5-fold cross-validation loop (see Figure 1b). The fragment control and boundary 

box applicability domains were applied upon the model application on a test set compounds. In 

order to avoid a bias with the compounds numbering in the parent set, this procedure was repeated 

10 times after compounds reshuffling. In such a way, the overall performance of the model (Q
2

NCV-

AD, RMSENCV-AD, MAENCV-AD) were estimated as an average of related statistical parameters 

obtained for each (out of 10) individual cross-validation loop. 

Outlier analysis 

Outlying data points were defined as the data points, for which absolute errors (|χexp−χpred|) for 

out-of-bag predictions were larger than 2×RMSENCV-AD threshold. 

Y-randomization test 

The absence of chance correlation was checked through the Y-randomization procedure. Y-

randomization test was performed in the following way: negative log10χ values (y values) were 

shuffled, random forest models were built using shuffled values and the out-of-bag values were 

calculated. This procedure was repeated 200 times and the maximum values of out-of-bag 

coefficient of determination were reported. 

Virtual screening 

 In-house dataset, comprising several hundred industrially produced compounds and their 

structural analogs, was screened in the following way. Only structures containing the same atoms 

(C, H, N, O, S, P, halogens) as in the parent set were kept. All structures were standardized and 

ISIDA descriptors were calculated for them as described above. Then, predictions were made using 



10 

 

the ISIDA consensus model. Compounds, that were inside AD for at least three ISIDA fragment 

types, were considered as being inside AD of the ISIDA consensus model. 

Software implementation 

Developed model was implemented into the ISIDA-Predictor software.
8
 

 

Experimental measurement of H2S solubility 

For the synthetic gas solubility measurements (isothermal P-x data) a static apparatus was used. 

In this synthetic method, the system pressure is measured at constant temperature for different 

overall compositions. The apparatus can be operated at temperatures between 200 K and 500 K and 

pressures up to 20 MPa. 

To determine the global compositions, the quantities of pure substances charged into the stirred 

equilibrium cell, which is evacuated and placed in a thermostatic liquid bath, need to be known 

precisely. The purified and degassed solvents are charged into the cell as compressed liquids using 

thermostatted piston injectors. Then, the gas is added stepwise as a liquefied gas using the same 

injection pumps or as a gaseous component using a thermo-regulated gas bomb. Knowing the 

pressure, temperature, and volume of the gas bomb, the amount of gas inside the bomb can be 

calculated using correlated PvT data of the gas. Thus, the injected amount of gas can be obtained 

from the pressure difference in the bomb before and after each injection. 

Since only temperature, pressure, total loadings and total volumes are measured, the compositions 

of the coexisting phases need to be determined by evaluation of the raw data. From the known 

amount of solvent, the liquid phase volume is determined using precise information about the 

density of the liquid solution inside the equilibrium chamber. From the total volume of the cell, the 

remaining gas phase volume can be calculated precisely. At given equilibrium conditions 

(temperature, gas phase volume and gas pressure) the amounts of gas in the gas phase and thus, also 

in the liquid phase are obtained. In this approach, several effects have influence on the resulting 
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liquid phase compositions. These effects are the small amounts of solvents in the gas phase, the 

compressibility of the solvent under the gas pressure, the partial molar volume of the dissolved gas 

and the solvent activity coefficient. All effects are considered in an iterative isothermal and 

isochoric algorithm by solving the mass and volume balances. 

The partial pressure is obtained during the iterative procedure: 

Pgas = Psys – Psolvent (6) 

where Pgas – partial pressure of the acid gas in the system, Psys – total pressure in the system, 

Psolvent – partial pressure of a solvent vapour. 

 

RESULTS AND DISCUSSION 

 

Data collection, preprocessing and analysis 

 

The core of our dataset was composed from the H2S solubility data available in the IUPAC report 

(Volume 32 of the IUPAC solubility data series) representing the most complete and carefully 

curated source of solubility data.
10

 Most of the data points for various solvents were measured at 

298.15 K, and therefore, these data were chosen for modeling. As noted by IUPAC’s experts, 

reliability of solubility measurements varies as a function of experimental technique used. Thus, 

solubility values measured by chromatographic methods are assumed to be less reliable as they are 

prone to errors due to surface effects. In general, common experimental error estimated by IUPAC’s 

expert varies in the range of ±2% − ±10% of measured solubilities. We relied on the IUPAC’s 

expert opinion on the data reliability in all cases, where it was possible, and retained only those data 

points, that were considered as reliable. Data from recent publications either at 298.15 K or 

obtained by extrapolation of the data measured at close temperatures were also added to the 

dataset.
11-32
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Besides the data collected from IUPAC report and literature, data points for two compounds − 

hexametapol (HMPA) and thiodiglycol (TDG), for which there were no data available at 298.15 K 

and 1 atm, were measured by Total and incorporated in our dataset (Figure 2a; Table S1 in 

Supporting Information). TDG is employed in a commercial mixed chemical/physical solvent 

formulation for mercaptan rich sour gas treating (HySWEET technology) developed by Total S.A.
36

 

In principle, the solubility value for TDG can be estimated by extrapolation of Vahidi et al.
26

 

measurements to 298.15 K. However, taking into account a limited availability of data related to 

H2S solubility in sulfur-containing solvents, we decided to independently measure solubility in 

TDG at 298.15 K.  

HMPA is being used as a solvent for polymers, gases and in organic synthesis.
37

 The only data 

available for HMPA is its Henry coefficient (1.61 atm) from Lenoir’s paper
24

. As noted by IUPAC 

expert
10

, even if the value for HMPA is reliable it is incorrect to assume a linear variation of mole 

fraction solubility with partial pressure to 1.013 bar, as it would give a very high mole fraction 

solubility value (0.62). 
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Figure 2. (a) Variation of mole fraction with partial pressure for H2S in TDG (black) and HMPA 

(grey) at 298.15 K experimentally measured for this paper; (b) Plot of experimental molecular 

fraction values ( exp) vs Kuenen coefficients (Sexp) at 298.15 K and 1 atm. Solvents, that are used for 

gas absorption in industry, are shown in orange. 

 

Variation of mole fraction with partial pressure for H2S in TDG (green) and HMPA (dark yellow) 

at 298.15 K was experimentally measured using static apparatus method. There exists a linear 

relationship of mole fraction with partial pressure for TDG (Figure 1a). Estimated mole fraction 

solubility of TDG at 1 atm is 0.0332, which is close to the value extrapolated from Vahidi et al. 

(0.0296)
26

. On the contrary, for HMPA the relationship is highly non-linear. One can assume that 

non-linearity could be caused by strong ability of HMPA to form hydrogen bonds
38

. 

The final dataset consisted of 99 compounds from diverse classes including non-aromatic 

hydrocarbons (alkanes, cycloalkanes), aromatic hydrocarbons, alcohols, ethers and esters, 

halogenated compounds, nitrogen-, phosphorus-, sulfur- containing compounds. We analyzed the 

data through the prism of interrelationships between mole fractions solubility values and Kuenen 

coefficients of the solvents. Figure 2b shows that, although the mole fractions solubilities in some 

solvents can be large, these solvents are not necessarily the most interesting for the industrial 

application due to relatively low S. The largest mole fraction solubility value was found for HMPA 

(Figure 2b), which is slightly larger than that for esters of phosphoric acid, long-chain ethers, 

lactams and the only representative of amines in the dataset − 1-methylpiperidin-4-one. On the 

other hand, short-chain alcohols (methanol, ethanol, ethylene glycol, etc.), acetic acid and 

hydrocarbons (bicyclohexyl, diphenyl methane) were the worst solvents. The maximal value of 

Kuenen coefficient was found for 1-methylpiperidin-4-one followed by HMPA and 1-

methylpiperidin-2-one (six-membered ring analog of industrially used 1-methylpyrrolidin-2-one 

(NMP) solvent). Notably, the only representative of sulfoxides in the dataset, dimethyl sulfoxide 
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(DMSO), was also among the best solvents according to the Kuenen coefficient. To our knowledge, 

the collected dataset is the largest among publicly available ones. Although, we could not directly 

compare its content with commercial Dortmund Data Bank,
39,40

 we checked that the largest part of 

data for H2S-solvent binary mixtures at 298.15 K available in Dortmund Data Bank is present in our 

dataset. 

 

Quantitative structure - solubility relationships 

 

The QSPR modeling workflow (see Materials and Methods section) was applied to the collected 

dataset. Distribution of the experimental −logχ values, which were used as end-points for modeling, 

is shown in Figure 3a. 16 ISIDA individual models corresponding to different types of ISIDA 

descriptors with Q
2

OOB ≥ 0.7 were selected for the consensus modeling. The propensity of the model 

to return accurate predictions with respect to novel solvent candidates was checked using a nested 

cross-validation procedure (Figure 2b). The validation statistics obtained from the outer cycle of 

nested cross-validation and out-of-bag values for the parent set are present in Table 1. The usage of 

ISIDA consensus approach indeed allows one to achieve reasonably good predictive performance in 

the nested cross-validation. The value of MAENCV-AD (0.094) is close to the variance in 

experimental data. For example, the standard deviation of experimentally measured mole fractions 

for 1-methylpyrrolidin-2-one (NMP) can be estimated from Shokouhi et al. 
18

 and equals 0.7 log 

units. The absence of chance correlations was checked using y-randomization procedure (Table 1). 
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Figure 3. (a) Negative logarithm of mole fraction solubility values distribution; (b) Plot of 

predicted (-log10χpred) vs experimental (-log10χexp) values for ISIDA consensus model in nested-

cross validation procedure. Compounds for which absolute errors were larger than 2×RMSENCV are 

shown in red. Dash lines indicate ±2×RMSENCV threshold. 

 

Table 1. Model validation statistics. 

Model Nested cross-validation Final model 

 Q
2
NCV RMSENCV MAENCV Q

2
OOB

* 
RMSEOOB MAEOOB Yrand

** 

ISIDA 

consensus 

(16 

models) 

0.73±0.01 0.15±0.01 0.10±0.01 0.75±0.03 0.14±0.01 0.10±0.01 0.11 

Spartan 0.72 ±0.01 0.15±0.01 0.10±0.01 0.74 0.14 0.10 0.03 

*
 For ISIDA consensus model Q

2
OOB, RMSEOOB, MAEOOB statistics were calculated as an average 

of the ones of 11 individual ISIDA models participating in consensus. 

** 
Maximum value among all individual ISIDA models is shown. 

 

Unsurprisingly, the model’s largest absolute errors were for HMPA and DMSO containing rare 

fragments. These compounds are the only representatives of phosphoramides and sulfoxides in the 

dataset. The absolute error values for diethylene glycol monomethyl ether (DEGM), ethylene glycol 

(EG) and oxolane (THF) were also found larger than 2×RMSENCV threshold (Figure 3b). Solubility 
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of H2S in THF was measured only by Short et al.
25

 and according to the IUPAC’s expert can be 

used on a tentative basis
10

. Solubility of its closest structural analog – 1,4-dioxane – is 20% lower. 

Further experimental investigation of similar cyclic ethers systems is required to clarify structure- 

solubility relationships in this class of compounds. 

In contrast to the above examples, solubility of H2S in alcohols, glycols and their ethers was 

systematically studied and, hence, the parent dataset contained many structural analogs of EG and 

DEGM. However, the structure-solubility relationships in these compounds’ classes is rather 

complex: small changes in structure (e.g. replacement of hydrogen atom to methyl group in 

DEG/DEGM) may lead to large changes in solubility (see Figure 4, Table S1 in Supporting 

Information). Related pairs of compounds are called “activity cliffs”
 41

. 

In order to check if some other descriptor types may improve predictive performance, the models 

were built on quantum chemical descriptors calculated with the Spartan software. The performance 

of Spartan descriptors-based model was comparable to the one involving ISIDA fragments obtained 

on the parent set, and lower to the latter in the nested cross-validation (Table 1, Figure S1 in 

Supporting Information). Averaging of the results of the ISIDA consensus model and the Spartan 

model predictions does not improve predictive performance (Q
2

NCV 0.76±0.02). It should be noted 

that computation of ISIDA fragment descriptors is very fast comparing to time-consuming quantum 

chemical calculations and, therefore, it enables one to apply ISIDA-based models for the virtual 

screening of large compound libraries
42

. 

Solubility of gases in liquids is governed by gas-solvent and solvent-solvent interactions.
43,44

 

Generally, strong gas-solvent and weak solvent-solvent interactions lead to greater solubility. This 

consideration may help to interpret variation of solubility in small congeneric series of solvents: 

heptane-octane-nonane (Series 1, Figure 4) and TDG-DEG-DEGM-diglyme (Series 2). One may 

see that solubility in alkanes marginally increases
 
with the number of carbon atoms, while terminal 

oxygens of glycols significantly decrease solubility. The replacement of the oxygen atom (strong 
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hydrogen bond acceptor) in DEG with sulfur (TDG) does not significantly affect solubility. Note, 

that the compounds inside DEG-DEGM-diglyme and heptane-octane-nonane series are different 

from each other only by one CH2 group. Nevertheless, the H2S solubility in these compound series 

changes very differently: while the solubility increases significantly from DEG to diglyme, it 

practically does not change from heptane to nonane. This fact can be explained by the strength of 

solvent-solvent interactions, which can be estimated by the values of cohesive energy density. The 

cohesive energy density is the amount of energy needed to completely remove unit volume of 

molecules from their neighbors to infinite separation. While the cohesive energy density is only 

slightly increasing from heptane to nonane (231 – 243 MPa)
45

, it is steeply decreasing from DEG 

(615 MPa)
46

 to diglyme (296 MPa)
45

. This significant drop in the cohesive energy density values 

can be explained by very strong hydrogen bonding between DEG molecules. In general, solvent-

solvent hydrogen bonding seem to play a key role in H2S solubility in polar solvents (compare e.g. 

solubility in aniline/dimethyl aniline, NMA/DMA, etc., Table S1 in Supporting Information): 

intermolecular H2S – solvent interactions are weak and cannot compensate unfavorable solvent-

solvent bonds breaking. Nevertheless, one cannot completely neglect the role of H2S – solvent 

interactions. For example, significantly higher solubility in diglyme can be explained by stronger 

gas-solvent interactions, that apart from London dispersion forces are driven by dipole-dipole 

interactions and hydrogen bonding.
47

 In line with it, extremely high solubility of H2S in HMPA can 

be due to exceptional hydrogen bonding capacity of HMPA.
38
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Figure 4. Variation of H2S solubility in two congeneric series of solvents. The numbers correspond 

to experimental / predicted   values. 

 

Virtual screening 

 

In order to find new solvents with high H2S solubility, the developed models were used to screen 

the in-house library of industrially produced chemicals and their close structural analogs. Only the 

compounds containing the same atoms (C, H, N, O, S, halogens) as in the parent set were 

considered. In total, the screening library comprised more than 8,417 chemicals. Compared to the 

dataset used for the model building, the screening library contained heavier compounds, with a 

larger number of H-bond acceptors and smaller number of H-bond donors, see Figure S2 in 

Supporting Information. However, more than one third of the compounds from the screening set 

(35%) appeared to be inside of AD. 

Although, predicted solubilities for the screening set compounds do not exceed their maximal 

values observed for the experimentally studied solvents (see Figure 5a), the screening results can 

still be useful for the design of industrially applicable solvents. The design of new solvents is, by its 

nature, a multi-objective optimization task, as far as apart from high H2S solubility, a perspective 

solvent should possess high selectivity with respect to other gases, and appropriate physico-

chemical parameters, including density, viscosity, boiling point, flammability, etc. Hence, even the 
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compounds with H2S solubility, that is lower, than the one of the best solvent − HMPA, can still be 

useful as they can be more selective or possess more preferable physico-chemical properties. 

Our calculations show that long-chain ethers (e.g. for pentaglyme χpred = 0.23) display the highest 

H2S solubility, while structural analogs of the industrially used NMP (χexp = 0.133), for instance, 1-

methylazocan-2-one (χpred = 0.21), have the highest predicted Kuenen coefficients. For the 

experimental validation of screening results a compound with high predicted Kuenen coefficient − 

1,3-Dimethylimidazolidin-2-one (DMI) (χpred = 0.146; Spred= 0.33) has been chosen. DMI is a well-

known industrially produced solvent with high thermal and chemical stability,
48

 which was 

suggested as a possible replacement for chemical solvent – aqueous N-methyl diethanolamine
49

. 

However, data on H2S solubility in pure DMI is still lacking. . Thus, the solubility in DMI was 

measured using the same static pressure method as for HMPA and TDG (see Method section). The 

mole fraction solubility at 1 atm was estimated assuming its linear dependence on H2S partial 

pressure (P) in the range P = 0.5 – 2 atm (Figure 5b). Experimental solubility (0.149) well matched 

the predicted one (0.146). 

 

 

Figure 5. (a) Plot of molecular fraction values vs Kuenen coefficients: predicted values for 

compounds inside AD – grey, outside AD – light grey, for DMI – green. Experimental values – 
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black and orange (solvents used in the industry); (b) Variation of mole fraction with partial pressure 

for H2S in DMI at 298.15 K experimentally measured in this paper;  exp – experimental mole 

fraction value at 1 atm and 298.15 K,  pred – predicted value. Fitted linear curve used for the 

interpolation – green solid line. 

 

CONCLUSIONS 

In this proof-of-concept study we showed that the design of new physical solvents for H2S 

capturing can be rationalized via statistical models able to predict solubility as a function of 

molecular structure. A dataset containing 99 mole fraction H2S solubility values at 298.15 K and 

1 atm has been collected. Machine learning algorithm (random forest) and two types of molecular 

descriptors were then used for the modeling. The models displayed reasonably predictive 

performance: the mean absolute error in solubility was about 0.10 log units. Virtual screening of a 

library comprising >8400 industrially produced chemicals and their structural analogs resulted in 

several hits with reasonably high values of solubility and Kuenen coefficients. They can be 

considered as hot spots for further experimental exploration of H2S physical solvents chemical 

space. The predicted solubility value for one of the retrieved hits − 1,3-Dimethylimidazolidin-2-one 

− was confirmed experimentally. Further accumulation of data will allow building more robust 

models which facilitate the progress in the rational design of solvents.  
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ABBREVIATIONS 

DEG – 2-(2-hydroxyethoxy)ethanol (diethylene glycol) 

DEGM – 2-(2-Methoxyethoxy)ethan-1-ol (diethylene glycol monomethyl ether) 

diglyme – 1-methoxy-2-(2-methoxyethoxy)ethane 

DMF – N,N-dimethylformamide 

DMI – 1,3-Dimethylimidazolidin-2-one 
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DMSO – methylsulfinylmethane (dimethyl sulfoxide) 

EG – ethane-1,2-diol (ethylene glycol) 

HMPA – N-[bis(dimethylamino)phosphoryl]-N-methylmethanamine (hexametapol) 

M2CA – methyl 2-cyanoacetate 

NFM – morpholine-4-carbaldehyde (N-formylmorpholine) 

NMP – 1-methylpyrrolidin-2-one 

PC – 4-methyl-1,3-dioxolan-2-one (propylene carbonate) 

TDG – 2-(2-hydroxyethylsulfanyl)ethanol (thiodiglycol) 

pentaglyme – 1-methoxy-2-[2-[2-[2-(2-methoxyethoxy)ethoxy]ethoxy]ethoxy]ethane 

THF – oxolane (tetrahydrofuran) 

TPrP – tripropyl phosphate 

  – mole fraction solubility 

S – Kuenen coefficient 

SI – Kuenen coefficients selectivity index 
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