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INTRODUCTION

Hydrogen sulfide (H 2 S) is a colorless highly toxic gas. It exists naturally in crude petroleum, natural gas, and biogas. The main anthropogenic sources of H 2 S are oil refineries and coal gasification, wherein a conversion of the sulfur content of these resources into H 2 S occurs [START_REF] Shah | Hydrogen Sulfide Capture: From Absorption in Polar Liquids to Oxide, Zeolite, and Metal-Organic Framework Adsorbents and Membranes[END_REF] . For any gas stream, including natural gas, biogas, or syngas in order to be useful for energy or chemical industrial application, unacceptable amounts of H 2 S should be removed. Numerous approaches for H 2 S capturing were suggested: absorption with chemical and physical solvents, ionic liquids, adsorption with metals, metal oxides and metal-organic frameworks, zeolites, membrane separation, cryogenic distillation. [START_REF] Shah | Hydrogen Sulfide Capture: From Absorption in Polar Liquids to Oxide, Zeolite, and Metal-Organic Framework Adsorbents and Membranes[END_REF] However, the most common industrial approaches for H 2 S removal are based on absorption with either chemical solvents (alkanolamines solutions), which rely on the reversible chemical reaction between a solvent and a gas, or physical solvents (methanol, N-methyl-2-pyrrolidone, polyethylene glycols ethers) in which no chemical reaction occurs. [START_REF] Shah | Hydrogen Sulfide Capture: From Absorption in Polar Liquids to Oxide, Zeolite, and Metal-Organic Framework Adsorbents and Membranes[END_REF] Purely physical solvents are usually used for bulk H 2 S removal in cases when the amount of H 2 S is sufficiently large. [START_REF] Shah | Hydrogen Sulfide Capture: From Absorption in Polar Liquids to Oxide, Zeolite, and Metal-Organic Framework Adsorbents and Membranes[END_REF] Although chemical and physical gas absorption is a mature process, existing for nearly 100 years, only a limited number of physical solvents is being currently used in industry and the search for new perspective physical solvents for H 2 S capture is an important task.

Experimental screening of physical solvents is a time and cost consuming process. In order to reduce the number of solvents being subjected to experimental measurements, predictive modeling enabling to suggest the most promising solvents for the experimental evaluation can be utilized. In the pioneering work of Bryk et al. [START_REF] Bryk | Solubility of Hydrogen Sulfide in Organic Solvents[END_REF] the authors used a multiple linear regression approach with six experimentally determined properties (refractive index, dielectric constant, Palm basicity, Reichardt electrophilicity, Hildebrand solubility parameter, molar volume) as descriptors, in order to model H 2 S solubility in 49 solvents at 293.15 K, and in 11 solvents at 298.15 K. The calculations for all 49 solvents resulted in equations with low multiple correlation coefficient and sequential rejection of the outliers (dioxane, ethyl cellosolve, cyclohexane, and dimethylformamide) was performed. In this way, a six-parameter equation with a sufficient fitting accuracy for the H 2 S solubilities in 45 solvents was obtained, although there was no validation on the external set performed. An analysis of the signs and significances of the terms in the equations obtained by the authors showed that the major parameters that control H 2 S solubility are the cohesive energy density and the solvent basicity. The former decreases the solubility, since the more associated the solvent is, the more energy is consumed to incorporate a foreign molecule into the structure of the liquid.

The main disadvantage of the modeling approaches based on experimentally determined physicochemical parameters is the limited number of compounds for which the parameters are available, and thus the narrow set of solvents for which the prediction is possible. Although these physicochemical parameters can, in turn, be predicted, [START_REF] Sanchez-Lengeling | A Bayesian Approach to Predict Solubility Parameters[END_REF][START_REF] Bradley | Predicting Abraham Model Solvent Coefficients[END_REF] the accuracy of such predictions was shown to be low. An alternative approach is based on the chemoinformatics-driven methodology, wherein only some parameters directly derived from chemical structures are required. Technically, structures are encoded by real-value vectors of molecular descriptors used as variables in quantitative structureproperty relationships (QSPR) [START_REF] Muratov | QSAR without Borders[END_REF] built with the help of machine learning algorithms. To our knowledge, only one conference paper related to QSPR modeling of H 2 S solubility has been published so far [START_REF] Rostami | Quantitative Structure-Property Relationship Study on Solubility of Hydrogen Sulfide in Organic Solvent[END_REF] . In this paper, multiple linear regression method with genetic algorithm-based features selection and descriptors calculated with the Dragon software [START_REF] Srl | Dragon (software for molecular descriptor calculation) version 7.0[END_REF] were used to model H 2 S solubility at 293.15 K on a set of 44 solvents. [START_REF] Rostami | Quantitative Structure-Property Relationship Study on Solubility of Hydrogen Sulfide in Organic Solvent[END_REF] In this proof-of-concept paper, we investigated the possibility to use machine learning for the in silico design of new H 2 S physical solvents. A dataset consisting of 99 mole fraction solubility values (χ) at 298.15 K and 1 atm extracted from the IUPAC report, recent scientific papers and patents and two data points experimentally measured by Total S.A. was compiled. The models forlog(χ) were built using random forest algorithm and two different types of descriptors: ISIDA fragments [START_REF] Varnek | ISIDA -Platform for Virtual Screening Based on Fragment and Pharmacophoric Descriptors[END_REF] and some parameters issued from quantum chemical calculations 9 . Models with reasonable predictive performance were used in virtual screening of the industrially produced chemicals. It enabled to suggest several potent H 2 S absorbents one of which, 1,3-Dimethyl-2imidazolidinone, was then studied experimentally. Experiment solubility value was found close to the predicted one, thus showing good predictive performance of the obtained model.

MATERIALS AND METHODS

Data collection and preprocessing

Data points (χ values) for H 2 S solubility were collected from several sources: IUPAC solubility report [START_REF] Fogg | 2 -Hydrogen Sulfide in Non-Aqueous Solvents[END_REF] , patents [START_REF] Atlani | Method of Purifying a Gas Mixture Containing Undesirable Gas Compounds[END_REF][START_REF] Frederick | Removing Sulfur Compounds from Gases. 2245889A[END_REF] , and papers [START_REF] Xu | Solubilities of Carbon Dioxide, Hydrogen Sulfide and Sulfur Dioxide in Physical Solvents[END_REF][START_REF] Gerrard | Solubility of Hydrogen Sulphide, Dimethyl Ether, Methyl Chloride and Sulphur Dioxide in Liquids. The Prediction of Solubility of All Gases[END_REF][15][START_REF] Jou | Solubility of H2S, CO2 and CH4 in N-Formyl Morpholine[END_REF][START_REF] Jou | Solubility of H2S and CO2 in diethylene glycol at elevated pressures[END_REF][START_REF] Shokouhi | Thermodynamical and Artificial Intelligence Approaches of H2S Solubility in N-Methylpyrrolidone[END_REF][START_REF] Murrieta-Guevara | Solubilities of Carbon Dioxide and Hydrogen Sulfide in Propylene Carbonate, N-Methylpyrrolidone and Sulfolane[END_REF][START_REF] Hayduk | The Solubility of Sulfur Dioxide and Hydrogen Sulfide in Associating Solvents[END_REF][START_REF] Tremper | Solubility of Inorganic Gases in High-Boiling Hydrocarbon Solvents[END_REF][START_REF] Shokouhi | Experimental Solubility of Hydrogen Sulfide and Carbon Dioxide in Dimethylformamide and Dimethylsulfoxide[END_REF][START_REF] Haertel | Low-Volatility Polar Organic Solvents for Sulfur Dioxide Hydrogen Sulfide and Carbonyl Sulfide[END_REF][START_REF] Renon | Gas Chromatographic Determination of Henry's Constants of 12 Gases in 19 Solvents[END_REF][START_REF] Short | Solubility of Ammonia and Hydrogen Sulfide in Several Polar Solvents[END_REF][START_REF] Vahidi | Experimental Solubility of Carbon Dioxide and Hydrogen Sulfide in 2,2′-Thiodiglycol[END_REF][START_REF] Rivas | Sweetening of Sour Natural Gases by Mixed-Solvent Absorption: Solubilities of Ethane, Carbon Dioxide, and Hydrogen Sulfide in Mixtures of Physical and Chemical Solvents[END_REF][START_REF] Koolivand Salooki | Experimental and Modelling Investigation of H2S Solubility in N-Methylimidazole and Gamma-Butyrolactone[END_REF][START_REF] Shokouhi | Solubility of Hydrogen Sulfide in Ethanediol, 1,2-Propanediol, 1-Propanol, and 2-Propanol: Experimental Measurement and Modeling[END_REF][START_REF] Tsiklis | The Solubility of Gases in Cyclohexane[END_REF][START_REF] Sciamanna | Development Of A Process For Simultaneous Desulfurication, Drying, And Recovery Of Natural Gas Liquids From Natural Gas Streams[END_REF][32] . In cases, where there were no data available at 298.15 K, but several data points at other temperatures were available, the values were extrapolated or interpolated. The data points have been extrapolated only if there were at least more than two data points at different temperatures available and the deviation of the closest temperature among these points was not larger than 10 K. In cases where the pressure needed to be adjusted to 1 atm, solvent vapor pressure was estimated by the Antoine equation. Extrapolation of the data to 298.15 K was performed using either equations suggested in the original publications or eq. 1:

,

where χ -mole fraction solubility value, T -temperature (K), A, B -constants.

Mole fraction solubilities were converted to the Kuenen coefficients S using eq. 2:

,

S -Kuenen coefficient (Nm 3 ×kg -1 ), R -ideal gas constant (8.314 m 3 ×Pa×K -1 ×mol -1 ), T and Pstandard temperature and pressure (273.15 K and 101.325 kPa), Mw -molecular weight of compound (kg/mol), χ -mole fraction solubility value.

According to the IUPAC's definition [START_REF] Fogg | 2 -Hydrogen Sulfide in Non-Aqueous Solvents[END_REF] , Kuenen coefficient is the volume of saturating gas at 273.15 K and 1 atm pressure, which is dissolved by unit mass of pure solvent at the temperature of measurement and partial pressure of 1 atm. This parameter is widely used in industry applications, as it enables one to directly estimate the efficiency of the particular solvent related to its cost and dimensions of the required industrial unit (design-capital expenses cost CAPEX). Here, Kuenen coefficients were used for the data analysis and models interpretation.

For the modeling, all χ values were transformed to logarithmic scale, i.e. negative value of decimal logarithm was taken.

Chemical structures standardization

All compounds structures were standardized using in-house standardization procedures based on the RDKit tool, 33 which included aromatization, stereochemistry depletion, etc.

Molecular descriptors

Two different types of descriptors were used in the modeling: ISIDA fragments [START_REF] Varnek | ISIDA -Platform for Virtual Screening Based on Fragment and Pharmacophoric Descriptors[END_REF] and some parameters issued from quantum chemical calculations 9 . 193 different types of ISIDA fragment descriptors were generated using Fragmentor17 software. [START_REF] Varnek | ISIDA -Platform for Virtual Screening Based on Fragment and Pharmacophoric Descriptors[END_REF][START_REF] Varnek | Substructural Fragments: An Universal Language to Encode Reactions, Molecular and Supramolecular Structures[END_REF] These fragments represent either sequences (the shortest topological paths with explicit presentation of all atoms and bonds), atom pairs or triplets (all the possible combinations of 3 atoms in a graph with the topological distance between each pair indicated).

Quantum chemical descriptors resulted from DFT calculations in gas phase, with model wB97X-D 6-31G* performed with the Spartan 18.0 program. 9 Default QSAR descriptors available in Spartan including energy, dipole moment, E HOMO , E LUMO were calculated.

Machine-learning method.

Random forest (RF) algorithm implemented in sci-kit learn library (v. 0.22.1) was used. The following hyperparameters were tuned during optimization (grid search): number of trees (100, 300, 1000), number of features (all features, one third of all features).

Model training and validation workflow

Modeling workflow was implemented using sci-kit learn library (v. 0.22.1) in python 3.7

scripting language. At the first stage, a random forest (RF) algorithm (sci-kit learn implementation)

was applied to the entire dataset (parent set) with various hyperparameters (Figure 1a). We used bootstrap aggregation in the process of building the decision trees. For each training sample -log values were calculated as the mean of the values predicted by the trees that did not have this training sample in their bootstrap sample. These out-of-bag predictions were used for the estimation of model's performance. The best model for each descriptor space was chosen according to the largest coefficient of determination for out-of-bag predictions (Q 2 OOB ). Only the models for which Q 2 OOB was no less than 0.7 were saved as the "local" models forming the consensus predictor trained on the given data set. Two other measures (RMSE OOB , MAE OOB ) were also reported. The following equations were used to calculate the measures:

(

Above, n is the number of compounds in the parent set, y i,exp , y i,pred experimental and out-of-bag predicted values for compound i from the parent set.

Each of the selected models was then associated to an Applicability Domain (AD), defined as boundary box for Spartan descriptors and by the presence of all fragments from the test set in the training set (fragment control) for ISIDA descriptors. The pool of selected models extracted from the given data set can now be used as a consensus predictor, returning for each input solvent candidate a mean value of solubility estimates and its standard deviation, taken (a) over the predictions returned by each model in the pool or, alternatively, (b) over the predictions returned by only those models having the candidate within their AD.

In the above workflow, the models' parameters have been selected in such a way to optimize the predictive performance on OOB data. In order to assess a propensity to predict data never seen during the models training, a nested cross-validation procedure [START_REF] Baumann | Reliable Estimation of Prediction Errors for QSAR Models under Model Uncertainty Using Double Cross-Validation[END_REF] has been implemented. Here the method hyperparameters were found by optimizing the model performance on OOB for each training set in the 5-fold cross-validation loop (see Figure 1b). The fragment control and boundary box applicability domains were applied upon the model application on a test set compounds. In order to avoid a bias with the compounds numbering in the parent set, this procedure was repeated 10 times after compounds reshuffling. In such a way, the overall performance of the model (Q 2 NCV-AD , RMSE NCV-AD , MAE NCV-AD ) were estimated as an average of related statistical parameters obtained for each (out of 10) individual cross-validation loop.

Outlier analysis

Outlying data points were defined as the data points, for which absolute errors (|χ exp -χ pred |) for out-of-bag predictions were larger than 2×RMSE NCV-AD threshold.

Y-randomization test

The absence of chance correlation was checked through the Y-randomization procedure. Yrandomization test was performed in the following way: negative log 10 χ values (y values) were shuffled, random forest models were built using shuffled values and the out-of-bag values were calculated. This procedure was repeated 200 times and the maximum values of out-of-bag coefficient of determination were reported.

Virtual screening

In-house dataset, comprising several hundred industrially produced compounds and their structural analogs, was screened in the following way. Only structures containing the same atoms (C, H, N, O, S, P, halogens) as in the parent set were kept. All structures were standardized and ISIDA descriptors were calculated for them as described above. Then, predictions were made using the ISIDA consensus model. Compounds, that were inside AD for at least three ISIDA fragment types, were considered as being inside AD of the ISIDA consensus model.

Software implementation

Developed model was implemented into the ISIDA-Predictor software. 8

Experimental measurement of H 2 S solubility

For the synthetic gas solubility measurements (isothermal P-x data) a static apparatus was used.

In this synthetic method, the system pressure is measured at constant temperature for different overall compositions. The apparatus can be operated at temperatures between 200 K and 500 K and pressures up to 20 MPa.

To determine the global compositions, the quantities of pure substances charged into the stirred equilibrium cell, which is evacuated and placed in a thermostatic liquid bath, need to be known precisely. The purified and degassed solvents are charged into the cell as compressed liquids using thermostatted piston injectors. Then, the gas is added stepwise as a liquefied gas using the same injection pumps or as a gaseous component using a thermo-regulated gas bomb. Knowing the pressure, temperature, and volume of the gas bomb, the amount of gas inside the bomb can be calculated using correlated PvT data of the gas. Thus, the injected amount of gas can be obtained from the pressure difference in the bomb before and after each injection.

Since only temperature, pressure, total loadings and total volumes are measured, the compositions of the coexisting phases need to be determined by evaluation of the raw data. From the known amount of solvent, the liquid phase volume is determined using precise information about the density of the liquid solution inside the equilibrium chamber. From the total volume of the cell, the remaining gas phase volume can be calculated precisely. At given equilibrium conditions (temperature, gas phase volume and gas pressure) the amounts of gas in the gas phase and thus, also in the liquid phase are obtained. In this approach, several effects have influence on the resulting liquid phase compositions. These effects are the small amounts of solvents in the gas phase, the compressibility of the solvent under the gas pressure, the partial molar volume of the dissolved gas and the solvent activity coefficient. All effects are considered in an iterative isothermal and isochoric algorithm by solving the mass and volume balances.

The partial pressure is obtained during the iterative procedure:

P gas = P sys -P solvent (6) where P gas -partial pressure of the acid gas in the system, P sys -total pressure in the system, P solvent -partial pressure of a solvent vapour.

RESULTS AND DISCUSSION

Data collection, preprocessing and analysis

The core of our dataset was composed from the H 2 S solubility data available in the IUPAC report (Volume 32 of the IUPAC solubility data series) representing the most complete and carefully curated source of solubility data. [START_REF] Fogg | 2 -Hydrogen Sulfide in Non-Aqueous Solvents[END_REF] Most of the data points for various solvents were measured at 298.15 K, and therefore, these data were chosen for modeling. As noted by IUPAC's experts, reliability of solubility measurements varies as a function of experimental technique used. Thus, solubility values measured by chromatographic methods are assumed to be less reliable as they are prone to errors due to surface effects. In general, common experimental error estimated by IUPAC's expert varies in the range of ±2% -±10% of measured solubilities. We relied on the IUPAC's expert opinion on the data reliability in all cases, where it was possible, and retained only those data points, that were considered as reliable. Data from recent publications either at 298.15 K or obtained by extrapolation of the data measured at close temperatures were also added to the dataset. Besides the data collected from IUPAC report and literature, data points for two compoundshexametapol (HMPA) and thiodiglycol (TDG), for which there were no data available at 298.15 K and 1 atm, were measured by Total and incorporated in our dataset (Figure 2a; Table S1 in Supporting Information). TDG is employed in a commercial mixed chemical/physical solvent formulation for mercaptan rich sour gas treating (HySWEET technology) developed by Total S.A. 36 In principle, the solubility value for TDG can be estimated by extrapolation of Vahidi et al. [START_REF] Vahidi | Experimental Solubility of Carbon Dioxide and Hydrogen Sulfide in 2,2′-Thiodiglycol[END_REF] measurements to 298.15 K. However, taking into account a limited availability of data related to H 2 S solubility in sulfur-containing solvents, we decided to independently measure solubility in TDG at 298.15 K.

HMPA is being used as a solvent for polymers, gases and in organic synthesis. [START_REF] Reichardt | Solvents and Solvent Effects in Organic Chemistry: Reichardt:Solv[END_REF] The only data available for HMPA is its Henry coefficient (1.61 atm) from Lenoir's paper [START_REF] Renon | Gas Chromatographic Determination of Henry's Constants of 12 Gases in 19 Solvents[END_REF] . As noted by IUPAC expert [START_REF] Fogg | 2 -Hydrogen Sulfide in Non-Aqueous Solvents[END_REF] , even if the value for HMPA is reliable it is incorrect to assume a linear variation of mole fraction solubility with partial pressure to 1.013 bar, as it would give a very high mole fraction solubility value (0.62). Variation of mole fraction with partial pressure for H 2 S in TDG (green) and HMPA (dark yellow) at 298.15 K was experimentally measured using static apparatus method. There exists a linear relationship of mole fraction with partial pressure for TDG (Figure 1a). Estimated mole fraction solubility of TDG at 1 atm is 0.0332, which is close to the value extrapolated from Vahidi et al.

(0.0296) [START_REF] Vahidi | Experimental Solubility of Carbon Dioxide and Hydrogen Sulfide in 2,2′-Thiodiglycol[END_REF] . On the contrary, for HMPA the relationship is highly non-linear. One can assume that non-linearity could be caused by strong ability of HMPA to form hydrogen bonds [START_REF] Ivanov | Volumetric Properties of[END_REF] .

The final dataset consisted of 99 compounds from diverse classes including non-aromatic hydrocarbons (alkanes, cycloalkanes), aromatic hydrocarbons, alcohols, ethers and esters, halogenated compounds, nitrogen-, phosphorus-, sulfur-containing compounds. We analyzed the data through the prism of interrelationships between mole fractions solubility values and Kuenen coefficients of the solvents. Figure 2b shows that, although the mole fractions solubilities in some solvents can be large, these solvents are not necessarily the most interesting for the industrial application due to relatively low S. The largest mole fraction solubility value was found for HMPA (Figure 2b), which is slightly larger than that for esters of phosphoric acid, long-chain ethers, lactams and the only representative of amines in the dataset -1-methylpiperidin-4-one. On the other hand, short-chain alcohols (methanol, ethanol, ethylene glycol, etc.), acetic acid and hydrocarbons (bicyclohexyl, diphenyl methane) were the worst solvents. The maximal value of Kuenen coefficient was found for 1-methylpiperidin-4-one followed by HMPA and 1methylpiperidin-2-one (six-membered ring analog of industrially used 1-methylpyrrolidin-2-one (NMP) solvent). Notably, the only representative of sulfoxides in the dataset, dimethyl sulfoxide (DMSO), was also among the best solvents according to the Kuenen coefficient. To our knowledge, the collected dataset is the largest among publicly available ones. Although, we could not directly compare its content with commercial Dortmund Data Bank, [START_REF] Onken | The Dortmund Data Bank: A Computerized System for Retrieval, Correlation, and Prediction of Thermodynamic Properties of Mixtures[END_REF]40 we checked that the largest part of data for H 2 S-solvent binary mixtures at 298.15 K available in Dortmund Data Bank is present in our dataset.

Quantitative structure -solubility relationships

The QSPR modeling workflow (see Materials and Methods section) was applied to the collected dataset. Distribution of the experimental -logχ values, which were used as end-points for modeling, is shown in Figure 3a. 16 ISIDA individual models corresponding to different types of ISIDA descriptors with Q 2 OOB ≥ 0.7 were selected for the consensus modeling. The propensity of the model to return accurate predictions with respect to novel solvent candidates was checked using a nested cross-validation procedure (Figure 2b). The validation statistics obtained from the outer cycle of nested cross-validation and out-of-bag values for the parent set are present in Table 1. The usage of ISIDA consensus approach indeed allows one to achieve reasonably good predictive performance in the nested cross-validation. The value of MAE NCV-AD (0.094) is close to the variance in experimental data. For example, the standard deviation of experimentally measured mole fractions for 1-methylpyrrolidin-2-one (NMP) can be estimated from Shokouhi et al. [START_REF] Shokouhi | Thermodynamical and Artificial Intelligence Approaches of H2S Solubility in N-Methylpyrrolidone[END_REF] and equals 0.7 log units. The absence of chance correlations was checked using y-randomization procedure (Table 1). Unsurprisingly, the model's largest absolute errors were for HMPA and DMSO containing rare fragments. These compounds are the only representatives of phosphoramides and sulfoxides in the dataset. The absolute error values for diethylene glycol monomethyl ether (DEGM), ethylene glycol (EG) and oxolane (THF) were also found larger than 2×RMSE NCV threshold (Figure 3b). Solubility of H 2 S in THF was measured only by Short et al. [START_REF] Short | Solubility of Ammonia and Hydrogen Sulfide in Several Polar Solvents[END_REF] and according to the IUPAC's expert can be used on a tentative basis [START_REF] Fogg | 2 -Hydrogen Sulfide in Non-Aqueous Solvents[END_REF] . Solubility of its closest structural analog -1,4-dioxane -is 20% lower.

Further experimental investigation of similar cyclic ethers systems is required to clarify structuresolubility relationships in this class of compounds.

In contrast to the above examples, solubility of H 2 S in alcohols, glycols and their ethers was systematically studied and, hence, the parent dataset contained many structural analogs of EG and DEGM. However, the structure-solubility relationships in these compounds' classes is rather complex: small changes in structure (e.g. replacement of hydrogen atom to methyl group in DEG/DEGM) may lead to large changes in solubility (see Figure 4, Table S1 in Supporting Information). Related pairs of compounds are called "activity cliffs" [START_REF] Tropsha | Best Practices for QSAR Model Development, Validation, and Exploitation[END_REF] .

In order to check if some other descriptor types may improve predictive performance, the models were built on quantum chemical descriptors calculated with the Spartan software. The performance of Spartan descriptors-based model was comparable to the one involving ISIDA fragments obtained on the parent set, and lower to the latter in the nested cross-validation (Table 1, Figure S1 in Supporting Information). Averaging of the results of the ISIDA consensus model and the Spartan model predictions does not improve predictive performance (Q 2 NCV 0.76±0.02). It should be noted that computation of ISIDA fragment descriptors is very fast comparing to time-consuming quantum chemical calculations and, therefore, it enables one to apply ISIDA-based models for the virtual screening of large compound libraries [START_REF] Lin | Multi-task generative topographic mapping in virtual screening[END_REF] .

Solubility of gases in liquids is governed by gas-solvent and solvent-solvent interactions. [START_REF] Battino | The Solubility of Gases in Liquids[END_REF][START_REF] Pierotti | A Scaled Particle Theory of Aqueous and Nonaqueous Solutions[END_REF] Generally, strong gas-solvent and weak solvent-solvent interactions lead to greater solubility. This consideration may help to interpret variation of solubility in small congeneric series of solvents:

heptane-octane-nonane (Series 1, Figure 4) and TDG-DEG-DEGM-diglyme (Series 2). One may see that solubility in alkanes marginally increases with the number of carbon atoms, while terminal oxygens of glycols significantly decrease solubility. The replacement of the oxygen atom (strong hydrogen bond acceptor) in DEG with sulfur (TDG) does not significantly affect solubility. Note, that the compounds inside DEG-DEGM-diglyme and heptane-octane-nonane series are different from each other only by one CH 2 group. Nevertheless, the H 2 S solubility in these compound series changes very differently: while the solubility increases significantly from DEG to diglyme, it practically does not change from heptane to nonane. This fact can be explained by the strength of solvent-solvent interactions, which can be estimated by the values of cohesive energy density. The cohesive energy density is the amount of energy needed to completely remove unit volume of molecules from their neighbors to infinite separation. While the cohesive energy density is only slightly increasing from heptane to nonane (231 -243 MPa) [START_REF] Abboud | Critical Compilation of Scales of Solvent Parameters. Part I. Pure, Non-Hydrogen Bond Donor Solvents[END_REF] , it is steeply decreasing from DEG (615 MPa) [START_REF] Zeng | Solubility Parameters[END_REF] to diglyme (296 MPa) [START_REF] Abboud | Critical Compilation of Scales of Solvent Parameters. Part I. Pure, Non-Hydrogen Bond Donor Solvents[END_REF] . This significant drop in the cohesive energy density values can be explained by very strong hydrogen bonding between DEG molecules. In general, solventsolvent hydrogen bonding seem to play a key role in H 2 S solubility in polar solvents (compare e.g. solubility in aniline/dimethyl aniline, NMA/DMA, etc., Table S1 in Supporting Information):

intermolecular H 2 S -solvent interactions are weak and cannot compensate unfavorable solventsolvent bonds breaking. Nevertheless, one cannot completely neglect the role of H 2 S -solvent interactions. For example, significantly higher solubility in diglyme can be explained by stronger gas-solvent interactions, that apart from London dispersion forces are driven by dipole-dipole interactions and hydrogen bonding. [START_REF] Biswal | Nature and Strength of Sulfur-Centred Hydrogen Bonds: Laser Spectroscopic Investigations in the Gas Phase and Quantum-Chemical Calculations[END_REF] In line with it, extremely high solubility of H 2 S in HMPA can be due to exceptional hydrogen bonding capacity of HMPA. 38 

Virtual screening

In order to find new solvents with high H 2 S solubility, the developed models were used to screen the in-house library of industrially produced chemicals and their close structural analogs. Only the compounds containing the same atoms (C, H, N, O, S, halogens) as in the parent set were considered. In total, the screening library comprised more than 8,417 chemicals. Compared to the dataset used for the model building, the screening library contained heavier compounds, with a larger number of H-bond acceptors and smaller number of H-bond donors, see Figure S2 in Supporting Information. However, more than one third of the compounds from the screening set (35%) appeared to be inside of AD.

Although, predicted solubilities for the screening set compounds do not exceed their maximal values observed for the experimentally studied solvents (see Figure 5a), the screening results can still be useful for the design of industrially applicable solvents. The design of new solvents is, by its nature, a multi-objective optimization task, as far as apart from high H 2 S solubility, a perspective solvent should possess high selectivity with respect to other gases, and appropriate physicochemical parameters, including density, viscosity, boiling point, flammability, etc. Hence, even the compounds with H 2 S solubility, that is lower, than the one of the best solvent -HMPA, can still be useful as they can be more selective or possess more preferable physico-chemical properties.

Our calculations show that long-chain ethers (e.g. for pentaglyme χ pred = 0.23) display the highest H 2 S solubility, while structural analogs of the industrially used NMP (χ exp = 0.133), for instance, 1methylazocan-2-one (χ pred = 0.21), have the highest predicted Kuenen coefficients. For the experimental validation of screening results a compound with high predicted Kuenen coefficient -1,3-Dimethylimidazolidin-2-one (DMI) (χ pred = 0.146; S pred = 0.33) has been chosen. DMI is a wellknown industrially produced solvent with high thermal and chemical stability, [START_REF] Leahy | 3-Dimethyl-2-Imidazolidinone[END_REF] which was suggested as a possible replacement for chemical solvent -aqueous N-methyl diethanolamine [START_REF] Ganizheva | Accelerated Method Of Choosingselective Absorbents For Extractionof Hydrogen Sulfide From Hydrocarbon Gases[END_REF] .

However, data on H 2 S solubility in pure DMI is still lacking. . Thus, the solubility in DMI was measured using the same static pressure method as for HMPA and TDG (see Method section). The mole fraction solubility at 1 atm was estimated assuming its linear dependence on H 2 S partial pressure (P) in the range P = 0.5 -2 atm (Figure 5b). Experimental solubility (0.149) well matched the predicted one (0.146). 

Figure 1 .

 1 Figure 1. Workflows for (a) building ISIDA consensus model and (b) nested crossvalidation procedure. * Only ISIDA descriptors selected for the consensus model in workflow (a)
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 2 Figure 2. (a) Variation of mole fraction with partial pressure for H 2 S in TDG (black) and HMPA
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 3 Figure 3. (a) Negative logarithm of mole fraction solubility values distribution; (b) Plot of predicted (-log 10 χ pred ) vs experimental (-log 10 χ exp ) values for ISIDA consensus model in nestedcross validation procedure. Compounds for which absolute errors were larger than 2×RMSE NCV are shown in red. Dash lines indicate ±2×RMSE NCV threshold.

Figure 4 .

 4 Figure 4. Variation of H 2 S solubility in two congeneric series of solvents. The numbers correspond

Figure 5 .

 5 Figure 5. (a) Plot of molecular fraction values vs Kuenen coefficients: predicted values for

  

Table 1 .

 1 Model validation statistics. For ISIDA consensus model Q 2 OOB , RMSE OOB , MAE OOB statistics were calculated as an average of the ones of 11 individual ISIDA models participating in consensus. * Maximum value among all individual ISIDA models is shown.

	Model	Nested cross-validation		Final model		
		Q 2	NCV	RMSE NCV	MAE NCV	Q 2 OOB	*	RMSE OOB MAE OOB	Y rand	**
	ISIDA								
	consensus (16	0.73±0.01	0.15±0.01	0.10±0.01	0.75±0.03	0.14±0.01	0.10±0.01	0.11
	models)								
	Spartan	0.72 ±0.01	0.15±0.01	0.10±0.01	0.74		0.14	0.10	0.03

* *

ACKNOWLEDGMENT

The authors are grateful to Dr. Fanny Bonachera for her help with the models implementation.

The authors also thank Dr. Igor Baskin for fruitful discussion. ABBREVIATIONS DEG -2-(2-hydroxyethoxy)ethanol (diethylene glycol) DEGM -2-(2-Methoxyethoxy)ethan-1-ol (diethylene glycol monomethyl ether) diglyme -1-methoxy-2-(2-methoxyethoxy)ethane DMF -N,N-dimethylformamide DMI -1,3-Dimethylimidazolidin-2-one

Funding Sources

This work was supported by the Gas Solutions and Sustainable Development R&D program from Total S.A. Exploration & Production.

AUTHOR INFORMATION

Corresponding Authors

*Professor Alexandre Varnek. Laboratory of Chemoinformatics, Faculty of Chemistry, University of Strasbourg, 4, Blaise Pascal Str., 67081, Strasbourg, France. email: varnek@unistra. *Doctor Frédérick de Meyer. TOTAL SA, Total Exploration Production, Development and Support to Operations, Liquefied Natural Gas -Acid Gas Entity, Paris, 92078 France. email: frederick.demeyer@total.com.

Author Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.