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Kondo breakdown is one of the most intriguing problems in strongly correlated electron systems, as
it is rooted in many anomalous electron behaviors found in heavy-fermion materials. In Kondo lattice
systems, Kondo breakdown can arise from either strong magnetic frustrations or critical fluctuations
of collective modes. Here, we reveal a new type of Kondo breakdown with a fully different origin
in interacting topological Kondo insulators. By employing numerically exact quantum Monte Carlo
simulations, we show that with open boundary conditions, Kondo screening is inexorably destroyed
by interaction effects on edges or corners in these systems. We argue that the Kondo breakdown
is enforced by the symmetries of the system, because the ground states are symmetry protected
Haldane phases.

PACS numbers: 71.27.+a, 71.30.+h, 71.10.Fd

Introduction- Kondo screening involves scattering be-
tween localized magnetic moments and conduction elec-
trons. At low temperatures, local moments can some-
times be completely quenched by screening and turned
into spinless scattering centers. Kondo systems can then
be described by Fermi liquid theory and have a non-
degenerated singlet ground state [1, 2]. Heavy fermion
metals, which usually consist of a lattice of f− spins im-
mersed in a sea of itinerant conduction electrons, are a
remarkable manifestation of such a picture. In heavy
fermion systems [3], a highly non-trivial and challenging
question is how the screening between f− and conduction
(c−) electrons can be broken and the standard Landau
Fermi liquid theory no longer apply [4, 5].

There are two widely accepted scenarios for Kondo
breakdown (KB) transitions in Kondo lattice models
(KLM), or the periodic Anderson models (PAM) so far.
Senthil and co-workers [6, 7] proposed that in the pres-
ence of strong quantum fluctuations, Kondo screening
can be destroyed in the manner of an orbital selective
Mott transition (OSMT) [8, 9]. The essential idea is
that in an f − c two-orbital lattice system with suffi-
ciently strong fluctuations, the f− orbital can acquire a
diverging self-energy at low-energies as it Mott localizes.
Below a certain energy scale, this diverging self-energy
renormalizes the f − c hybridization, or equivalently, the
Kondo screening to zero. In this scenario of KB, the geo-
metrical frustration usually plays a vital role, since it can
greatly amplify magnetic fluctuations. The f− moments
decoupled from the c− electrons in a KB phase can conse-
quently form exotic fractionalized spin-liquid states [10]
due to frustration.

Another scenario for KB is put forward by Qimiao
Si and co-workers [11, 12], which suggests that the
Kondo screening can be destroyed at an antiferromag-
netic (AFM) phase transition by critical spin fluctua-
tions. A characteristic feature of this scenario is that

the two transitions, KB and AFM ordering, must co-
incide in a finite regime of parameter space. Si et
al have shown that in the extended dynamical mean-
field theory (EDMFT) [13], KLM near an AFM phase
transition can be mapped into a microscopic sub-ohmic
Bose-Fermi Kondo model which has a Kondo breakdown
fixed point [14–16]. In particular, for the temperature-
dependent spin susceptibility χ(T )−1 = Θ + ATα,
EDMFT finds an anomalous exponent α ≈ 0.75, which is
in remarkable agreement with the experimental value α =
0.75 ± 0.05 found in the CeCu5.9Au0.1 material [17, 18].
In addition, in CeCu6−xAux, CeRhIn5 [19], or doped
YbRh2Si2 [12], the sudden collapse of Fermi surface that
signals a KB, is indeed observed in the vicinity of the on-
set of AFM order. It is notable that similar to the spin
fluctuations, the critical charge fluctuations may also give
rise to KB [5]. From a unified perspective, the above two
scenarios can be summarized as a global phase diagram
in the parameter space of degree of quantum fluctua-
tions G, which represents magnetic frustration or spatial
dimensionality, and the Kondo coupling strength Jk [20].
In this global phase diagram, the two different scenar-
ios for KB can be understood as two different quantum
transition trajectories [20].

In this work, we introduce a novel type of KB that
can occur in certain interacting topological Kondo insu-
lators (TKI) [21]. By using numerically exact determi-
nant quantum Monte Carlo (DQMC) simulations [22, 23],
we investigate correlation effects in two periodic An-
derson models (PAM): the one-dimensional interacting
topological Kondo insulator (1d-TKI) [24], and the two-
dimensional interacting quadrupole TKI (2d-QTKI) [25,
26]. We show that with open boundary conditions
(OBC), a Kondo singlet ground state is unstable in these
systems. A KB is inexorably happening on edge sites of
the 1d-TKI model, or corner sites of the 2d-QTKI model.
We find that like the 1d-TKI model [24], the interacting
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2d-QTKI model has a Haldane phase ground-state. We
argue that in these models the occurrence of KB is dic-
tated by the symmetry-protected topological (SPT) Hal-
dane phase ground state [27, 28]. In this sense, edge KB
is “protected” by system symmetries, hence insensitive to
the details of system parameters such as disorder, inter-
acting strength, etc. The edge KB revealed here therefore
represents a new mechanism for Kondo effects breakdown
that is distinct from the aforementioned OSMT or critical
fluctuation scenarios.

Models and methods- We use periodic Anderson mod-
els to construct the one-dimensional (1D) and two-
dimensional (2D) interacting topological Kondo insula-
tors,

H= H0 +HU ,

H0=
∑
k,σ

Ψ†σ(k)H(k)Ψσ(k), HU = Uf
∑
i

nfi↑n
f
i↓,

Ψ1D= (f, c), Ψ2D = (f1, f2, c1, c2),

H (k)1D=

(
hf (k) V0(k)
V0(k) hc(k)

)
,

H (k)2D=

(
hf (k)σz + V2(k)σy V1(k)σx

V ∗1 (k)σx hc(k)σz + V2(k)σy

)
.

(1)

whereH (k)1D describes a 1D Su-Schrieffer-Heeger (SSH)
like two-band TKI model [24] with V0(k) = 2iV0 sin(k),
and H (k)2D is a four-band second order topological insu-
lator [25, 26, 29]. Here the V1(k) = 2V1(sin kx − i sin ky)
hybridization term can be interpreted as spin-orbital cou-
pling that is widely used in usual (first order) topological
Kondo insulators, while the V2(k) = 2V2(cos kx − cos ky)
term is essential to generate the quadrupole (or sec-
ond order) TKI [25]. In other words, the V2(k) term
of H (k)2D can give rise to zero dimensional topologi-
cal corner states when open boundary conditions are ap-
plied on both x− and y− directions of the 2d-QTKI, as
shown in Fig. 1. For both H (k)1D and H (k)2D, hf (k) =
−2tf (cos kx + cos ky) + µf and hc(k) = −2tc(cos kx +
cos ky) + µc are respectively the f− and c− intra-band
dispersions. We set tc = 1 as energy unit throughout
this work, and without loss of generality, tf is fixed to
tf = 0.2 denoting a narrow f− band dispersion. To
study interaction effects, we use the numerically exact
determinant quantum Monte Carlo (DQMC) simulation
for finite temperature [22] and projector quantum Monte
Carlo (PQMC) for zero temperature computations [23] .
The DQMC time discretization is set to ∆τ = 0.05 and
for each data point we use typically millions of Monte
Carlo sweeps to reach the required precision.

Results: Effective f − c hybridization in interacting
topological Kondo Insulators- We first study the Kondo
screening of the 1d-TKI model with H (k)1D at finite
temperatures, then extrapolate to T = 0 to reveal the
zero temperature behavior. The DQMC simulations are
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FIG. 1. Non-interacting properties of the 1d-TKI and 2d-
QTKI models. (a) and (b): Energy spectra of H (k)1D and
H (k)2D respectively show edge modes of the 1d-TKI and cor-
ner states of the 2d-QTKI with OBC. (c): Illustration of the
periodic Anderson model for the 1d-TKI. (d): Probability
amplitude of a corner eigenstate in real-space, showing the it
is essentially localized at the outermost corner site.

carried out on an 192×2 sites chain with two open ends.
The lowest temperature reached here is T = 0.02, where
the finite size effects are negligible since the inverse tem-
perature β = 1/T = 50 is significantly smaller than the
length of the chain L = 192. We find that for the pa-
rameters we study (V0 = 1, U = 0 ∼ 4), the non-local
self-energies are much smaller than the local ones. Hence
the low-energy effective hybridization Ṽ at the real-space
site i is essentially determined by the local self-energies
Σii,

Ṽi(T ) =
V√
Zi(T )

=
V√

1− ImΣii(ω0)
ω0

|T
. (2)

we note that Zi(T → 0) becomes quasiparticle residue
weight Z in the Fermi liquid theory. Hence Ṽi(T ) ex-
trapolated to T = 0 estimates the zero temperature low-
energy effective hybridization between the f− and c−
electrons. For the 1d-TKI model, we display Ṽi(T ) in
Fig. 2a and Fig. 2c as a function of temperature T for
site i located on the edge and in the bulk respectively.
One can clearly see that Ṽi(T ) at a bulk site (in the center
of the chain, Fig. 2c) changes mildly with temperature
at different Uf . For Uf = 0.5 ∼ 4, all Ṽi(T ) approach
finite values as T → 0, indicating that Kondo screen-
ing is always intact in the bulk. In stark contrast to
the bulk case, see Fig. 2a, edge sites (at the open end
of the chain) display strong temperature dependence of
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FIG. 2. Low energy effective f − c hybridization Ṽ (T ) as a
function of temperature T of one dimensional TKI models.
(a): Ṽ (T ) at edge sites of the 1d-TKI. (c): Ṽ (T ) at a bulk
site of the 1d-TKI. (b): Low energy effective f − c hybridiza-

tion Ṽi(T ) as a function of temperature T for the 2d-QTKI

with OBC. (d): Ṽ (T ) for the trivial 1D Kondo insulator (see
text). Lines show quadratic polynomial fittings.

Ṽi(T ), suggesting that interaction effects greatly renor-
malize Kondo screening on the edge. Importantly, for dif-
ferent Uf , all effective hybridizations Ṽi(T ) on the edges
eventually vanish as T → 0. Decreasing Uf does not al-
ter the edge KB in the T → 0 limit, which indicates that
the edge KB occurs in the 1D TKI model at any finite
Uf .

We further study KB in the 2d-QTKI model, where
DQMC simulations on a 16 × 16 × 4 lattice under OBC
have been carried out. In Fig. 2b, the result of Ṽi(T )
for a bulk and a corner site are plotted as a function
of temperature T . Similarly to the 1d-TKI model, the
f − c effective hybridizations Ṽi(T ) again have a fully
different temperature dependence at different locations:
at low temperatures, as T decreases, Ṽi(T ) in the bulk
grows while Ṽi(T ) on the corner decreases, signaling an
edge KB in the 2d-QTKI model as in the 1d-TKI model
case.

One may suspect that the edge KB is a consequence
of edge (corner) sites having less neighboring sites than
bulk sites: Due to the reduction of dimensionality, edge
sites suffer stronger fluctuations than bulk sites, hence
the edge KB can happen while bulk Kondo screening re-
mains intact. To clarify this point, in Fig. 2d, we plot
Ṽi(T ) for a normal 1D Kondo insulator model (1d-KI)
with OBC and an f−c hybridization V0(k) = 2V0 cos(k).
As one can see, at a typical Uf = 4, Ṽi(T ) for bulk and
edge sites are almost the same at different temperatures
T and both extrapolate to finite values at zero T , in-
dicating the absence of edge KB in the 1d-KI model.
Therefore one cannot attribute the edge KB to the re-
duced dimensionality of the edge sites. Instead, as we
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FIG. 3. Entropy S(T ) as a function of temperature T .
For the 2d-QTKI model with OBC, S(T ) approaches ln(16)
as T → 0, while for the 1d-TKI S(T ) approaches ln(4) as
T → 0. For PBC, all cases (dashed lines) have S(T ) → 0
as T is lowered. Here for OBC in the 2d-QTKI, Uf = 4,
V1 = 0.8, V2 = 0.4, 0.2; for PBC in the 2d-QTKI, Uf = 4,
V1 = 0.8, V2 = 0.2. In the 1d-TKI case, Uf = 4, V0 = 0.8.

will show below, the Kondo breakdown observed here is
related to the interaction effects of the topological edge
modes in the TKI models. As such, it is absent in the
1d-KI model.

Results: Entropy and ground-state properties of the
TKI models- In order to understand the striking edge
KB at infinitesimal electron-electron interactions, we now
investigate the ground-state properties of the interacting
TKI models. We note that if KB happens, even if it only
occurs at the edge or corner sites of the lattice, the system
is deemed to transit to a new phase whose ground-state
is distinct from that of a Kondo screened state. In par-
ticular, the dangling edge f− moments that decoupled
from conduction electrons in edge KB, can give rise to
ground-state degeneracy. The degree of ground-state de-
generacy can be directly identified by the value of the
zero temperature entropy S(T = 0), which can be ob-
tained by extrapolating the temperature dependent en-
tropy S(T ) [30] to zero T ,

S(T ) = N ln(4) +
1

T
E(T )−

∫ T

∞
E(T ′)d(

1

T ′
). (3)

where N is the total number of sites and ln(4) is the
entropy per site of a spin− 1

2 fermionic system in the high-
temperature (T → ∞) limit. E(T ) is the total energy
calculated by DQMC at temperature T .

In Fig. 3, the S(T ) results from DQMC can be di-
vided into two groups: dashed lines show interacting
TKI models with periodic boundary conditions (PBC)
while solid curves show cases with open boundary con-
ditions. As we can see, S(T ) for PBC in the 1d-TKI
and 2d-QTKI models both approach zero at low temper-
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atures, indicating the existence of a unique ground-state
in these systems. This is in agreement with our result
above that KB only happens at the edge or corner sites of
the TKI models. With PBC, the topological edge modes
in the 1d-TKI and 2d-QTKI models are both absent,
hence the systems preserve Kondo screening and their
ground-states are non-degenerate Kondo singlets. The
more compelling results for S(T ) are with OBC which,
as a function of temperature T , become flat and satu-
rate at small T , suggesting that the 1d-TKI model has
a four-fold ground-state degeneracy [S(T → 0) ≈ ln(4)],
and the 2d-QTKI model has a sixteen-fold ground-state
degeneracy [S(T → 0) ≈ ln(16)]. Note that here the
ground-state degeneracy is insensitive to the hybridiza-
tion strength V or to the linear size of lattice L. For ex-
ample, for the 2d-QTKI model with V1 = 0.8, V2 = 0.4,
S(T ) and L = 4 (back squares) or L = 6 (blue dots)
both approach ln(16) at almost the same onset tempera-
ture T ∼ 0.07. Switching to a different case with smaller
V2 = 0.2 (green diamonds), entropy S(T ) again saturates
at ln(16) at low T .

We point out that here the non-zero S(T ) in the T → 0
limit apparently cannot be explained in the Ginzburg-
Landau phase transition framework, since the small lat-
tice size L = 4 leaves no room for any amplitute or
phase fluctuations to become soft. Note that it is estab-
lished that the interacting 1d-TKI model can be mapped
onto a spin − 1 Haldane chain [24], whose ground-state
is a topologically nontrivial Haldane phase protected by
a set of global symmetries [27, 31, 32]. The two un-
screened f− moments have long-range entanglement and
the ground-state is four-fold degenerate, which agrees
with our explicit computation of the entropy S(T ). Here
we have a similar mechanism mapping the 1d-TKI onto
the a spin − 1 Haldane chain: in the periodic Anderson
model described by H (k)1D, the charge degree of free-
dom is frozen by the hybridization gap (see Fig. 1a), when
Uf is turned on, the spin correlations between nearest-
neighboring f − c sites lead to an effective local spin− 1
state [24]. The only difference is that here the charge
gap in the conduction band is embodied by hybridiza-
tion while in Ref. [24] it is a dynamically generated Mott
gap in the Kondo lattice model [1]. For the 2d-QTKI
model with OBC, assuming four dangling f− moments
located at the four corners accounts for the 24 = 16
fold ground-state degeneracy. Hence we conclude that
the ground-state of the interacting 2d-QTKI model is
in a 2D Haldane phase, resembling the two-dimensional
Affleck-Kennedy-Lieb-Tasaki (AKLT) model [31, 33, 34],
in regards to the symmetry protected topological ground-
state. Below we display results of magnetic correlations
of 2d-QTKI to further demonstrate this is indeed true.

A characteristic feature of the Haldane phases is its
long-range entanglement between the edge spins [24]. To
demonstrate that the interacting 2d-QTKI model is in-
deed in a Haldane phase, we display the zero-temperature
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FIG. 4. Zero-temperature magnetic properties of the 2d-
QTKI model with OBC suggest that its ground-state is a
two-dimensional Haldane phase with four dangling S = 1

2
spins located at the four corner sites. (a) 〈Sx

0,0S
x
i,0〉 as a func-

tion of site distance i between corner site (0, 0) and site (i, 0)
on the Ry = 0 open edge (Rx = i) of an L = 16 lattice. Here
we see that magnetic correlations decays rapidly with dis-
tance but are finite between two corner sites. (b) Magnetic
correlations between corner-bulk sites and corner-corner sites
extrapolated to the thermodynamic limits 1/L → 0 for dif-
ferent values of the hybridization strength V , here Uf = 4.
Inset: AFM structure factor extrapolates to zero as L → 0
which suggest that long-range magnetic correlations between
corner sites are not due to a Landau phase transition.

magnetic properties of the 2d-QTKI model in Fig. 4 ob-
tained by PQMC simulation. Fig. 4a shows the magnetic
correlations 〈Sx0,0Sxi,0〉 as a function of distance i between
corner site (0, 0) and site (i, 0) on the Ry = 0 open edge
(Rx = i), for a typical parameter set V1 = 0.8, V2 =
0.4, Uf = 4. As one can see, 〈Sx0,0Sxi,0〉 decays rapidly
with distance i and the magnetic correlations between
corner and bulk sites essentially vanishes. However, as
the distance i is further increased to reach another cor-
ner site (i = 16), 〈Sx0,0Sxi,0〉 gains a negative finite value,
〈Sx0,0Sxi,0〉 ≈ −0.16, showing a long-range antiferromag-
netic correlation. In Fig. 4b, magnetic correlations be-
tween corner-corner and corner-center sites are plotted at
different hybridization strengths V1, V2 with fixed Uf = 4.
Extrapolating to the thermodynamic limit 1/L → 0,
we indeed find a non-vanishing long-range corner-corner
magnetic correlation, while the magnetic correlation be-
tween corner-center sites is essentially zero. This result
suggests that the interacting 2d-QTKI model with OBC
is indeed in a Haldane phase state. We stress that the
corner-center correlation vanishes in the thermodynamic
limit suggesting there is no Landau long-range order in
this system. This is also evidenced in the inset of Fig. 4,
where the magnetic structure factor is plotted for the 2d-
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QTKI model with PBC, which extrapolated to zero for
all the studied hybridization strength V .

The results above provide a roadmap to the under-
standing of KB in interacting topological Kondo insula-
tors with edge/corner states: As the repulsion between
f− electrons is turned on, the f− spins of the topologi-
cal edge or corner modes become localized and suspended
by correlation effects, which is required by the underly-
ing Haldane phase ground state. This means that the
low-energy hybridizations between f− and c− orbitals
at edge/corner sites have to be broken to release the f−
spins, which in turn gives rise to a KB. Hence, in these
systems, the strong quantum fluctuations that destroy
Kondo screening neither stem from magnetic frustration
nor critical spin fluctuations. They are instead generated
by the long-range f− spin entanglement between edge
or corner sites. It is worth noting that here as in the
1D spin-1 chain or 2D AKLT models, the ground-state
degeneracy or equivalently the breakdown of the Kondo
singlet ground-state, can in principle be stabilized by any
of the Z2 × Z2, time reversal, or inversion symmetries of
the systems [27, 31].

A few discussions are in order. Recently, the discov-
ery of unusual surface transport properties of Kondo in-
sulator samarium hexaboride SmB6 [35–38] has stim-
ulated renewed interest in Kondo breakdown problems.
Although a direct Monte Carlo simulation with the full
consideration of SmB6 lattice structure would be diffi-
cult, the mean-field theory studies on simplify models
have been carried out [39–42]. It is proposed that the
surprisingly light surface quasiparticles of SmB6 is due
to a surface Kondo breakdown that can be attributed
to the reduction of coordination number at the surface
[43–45]. In this sense, the possible surface KB of SmB6

is unrelated to the symmetry-enforced KB we find here.
It can rather be seen as a special form of OSMT Kondo
breakdown. On the experimental side, it is predicted
that higher-order topological insulators can be realized
in bismuth [46, 47] and strained SnTe [48]. A similar re-
alization of higher-order topological Kondo insulators in
real materials can be challenging. However, an ultracold-
atom experiment realization of a higher-order topological
Kondo insulator might be feasible [49, 50].

Conclusions- We have studied the interaction effects
on Kondo screening in a one-dimensional topological
Kondo insulator and a two-dimensional quadrupole topo-
logical Kondo insulator. We found that the Kondo
screening can be destroyed on edge or corner sites in
these systems and is enforced by the system symme-
tries. This special type of Kondo breakdown represents a
novel mechanism for the destruction of Kondo screening
in Kondo lattice systems.
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[8] C. Pépin, Phys. Rev. Lett. 98, 206401 (2007).
[9] L. De Leo, M. Civelli, and G. Kotliar, Phys. Rev. Lett.

101, 256404 (2008).
[10] J. S. Hofmann, F. F. Assaad, and T. Grover, Phys. Rev.

B 100, 035118 (2019).
[11] Q. Si, S. Rabello, K. Ingersent, and J. L. Smith, Nature

413, 804 (2001).
[12] Q. Siand F. Steglich, Science 329, 1161 (2010).
[13] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg,

Rev. Mod. Phys. 68, 13 (1996).
[14] Q. Si, S. Rabello, K. Ingersent, and J. L. Smith, Phys.

Rev. B 68, 115103 (2003).
[15] S. Pankov, G. Kotliar, and Y. Motome, Phys. Rev. B 66,

045117 (2002).
[16] L. Zhu, S. Kirchner, Q. Si, and A. Georges, Phys. Rev.

Lett. 93, 267201 (2004).
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of the Physical Society of Japan 74, 1103 (2005).

[20] Q. Si, physica status solidi (b) 247, 476 (2010).
[21] M. Dzero, J. Xia, V. Galitski, and P. Coleman, Annual

Review of Condensed Matter Physics 7, 249 (2016).
[22] R. Blankenbecler, D. J. Scalapino, and R. L. Sugar, Phys.

Rev. D 24, 2278 (1981).

mailto:yaodaox@mail.sysu.edu.cn
mailto:wuwei69@mail.sysu.edu.cn
https://doi.org/10.1051/jphys:01980004103019300
https://doi.org/10.1051/jphys:01980004103019300
https://doi.org/10.1002/9780470022184.hmm105
https://doi.org/10.1002/9780470022184.hmm105
https://doi.org/10.1103/RevModPhys.56.755
https://doi.org/10.1103/RevModPhys.78.743
https://doi.org/10.1103/PhysRevLett.122.217001
https://doi.org/10.1103/PhysRevLett.122.217001
https://doi.org/10.1103/PhysRevLett.90.216403
https://doi.org/10.1103/PhysRevLett.90.216403
https://doi.org/10.1007/s10909-010-0206-3
https://doi.org/10.1007/s10909-010-0206-3
https://doi.org/10.1103/PhysRevLett.98.206401
https://doi.org/10.1103/PhysRevLett.101.256404
https://doi.org/10.1103/PhysRevLett.101.256404
https://doi.org/10.1103/PhysRevB.100.035118
https://doi.org/10.1103/PhysRevB.100.035118
https://doi.org/10.1126/science.1191195
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/PhysRevB.68.115103
https://doi.org/10.1103/PhysRevB.68.115103
https://doi.org/10.1103/PhysRevB.66.045117
https://doi.org/10.1103/PhysRevB.66.045117
https://doi.org/10.1103/PhysRevLett.93.267201
https://doi.org/10.1103/PhysRevLett.93.267201
https://doi.org/10.1103/PhysRevLett.80.5623
http://www.nature.com/nature/journal/v407/n6802/abs/407351a0.html
https://doi.org/10.1146/annurev-conmatphys-031214-014749
https://doi.org/10.1146/annurev-conmatphys-031214-014749
https://doi.org/10.1103/PhysRevD.24.2278
https://doi.org/10.1103/PhysRevD.24.2278


6

[23] F. F. Assaad, Quantum Simulations of Complex Many-
Body Systems: From Theory to Algorithms 10, 99
(2002).

[24] A. M. Lobos, A. O. Dobry, and V. Galitski, Phys. Rev.
X 5, 021017 (2015).

[25] W. A. Benalcazar, B. A. Bernevig, and
T. L. Hughes, Science 357, 61 (2017),
https://science.sciencemag.org/content/357/6346/61.full.pdf.

[26] R. Seshadri, A. Dutta, and D. Sen, Phys. Rev. B 100,
115403 (2019).

[27] F. Pollmann, E. Berg, A. M. Turner, and M. Oshikawa,
Phys. Rev. B 85, 075125 (2012).

[28] X. Chen, Z.-C. Gu, Z.-X. Liu, and X.-G. Wen, Phys. Rev.
B 87, 155114 (2013).

[29] C. Peng, R.-Q. He, and Z.-Y. Lu, Phys. Rev. B 102,
045110 (2020).

[30] K. Binder, Zeitschrift für Physik B Condensed Matter
45, 61 (1981).

[31] Z.-C. Guand X.-G. Wen, Phys. Rev. B 80, 155131 (2009).
[32] X. Chen, Z.-C. Gu, Z.-X. Liu, and X.-G. Wen, Science

338, 1604 (2012).
[33] I. Affleck, T. Kennedy, E. H. Lieb, and H. Tasaki, Comm.

Math. Phys. 115, 477 (1988).
[34] X. Chen, Z.-X. Liu, and X.-G. Wen, Phys. Rev. B 84,

235141 (2011).
[35] S. Wolgast, i. m. c. b. u. i. e. i. f. Kurdak, K. Sun, J. W.

Allen, D.-J. Kim, and Z. Fisk, Phys. Rev. B 88, 180405
(2013).

[36] D. Kim, S. Thomas, T. Grant, J. Botimer, Z. Fisk, and
J. Xia, Scientific reports 3, 1 (2013).

[37] O. Erten, P. Ghaemi, and P. Coleman, Phys. Rev. Lett.
116, 046403 (2016).

[38] K. Chen, T.-C. Weng, G. Schmerber, V. N. Gurin, J.-P.
Kappler, Q. Kong, F. Baudelet, A. Polian, and L. Nataf,

Phys. Rev. B 97, 235153 (2018).
[39] J. Jiang, S. Li, T. Zhang, Z. Sun, F. Chen, Z. Ye, M. Xu,

Q. Ge, S. Tan, X. Niu, et al., Nature communications 4,
1 (2013).

[40] G. Li, Z. Xiang, F. Yu, T. Asaba, B. Lawson, P. Cai,
C. Tinsman, A. Berkley, S. Wolgast, Y. S. Eo, et al.,
Science 346, 1208 (2014).
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