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Short title: A glossary of plant cell organelles 
 

 
One-sentence summary: A collection of short reviews of plant cell organelles covering 
our up-to-date understanding, novel findings, and future research outlooks. 
 
 
ABSTRACT 
In this glossary of plant cell structures, we asked experts to summarize a present-day 
view of plant organelles and structures, including a discussion of outstanding questions. 
In the following short reviews, the authors discuss the complexities of the plant cell 
endomembrane system, exciting connections between organelles, novel insights into 
peroxisome structure and function, dynamics of mitochondria, and the mysteries that 
need to be unlocked from the plant cell wall. These discussions are focused through a 
lens of new microscopy techniques. Advanced imaging has uncovered unexpected 
shapes, dynamics, and intricate membrane formations. With a continued focus in the next 
decade, these imaging modalities coupled with functional studies are sure to begin to 
unravel mysteries of the plant cell.  
 
 

INTRODUCTION 1 

For the Cell Biology Special Focus Issue, we wanted readers to have a modern view of 2 

plant cell structures that are sure to come up in research articles and other reviews. A 3 

common theme found throughout is how advancements in microscopy have illuminated 4 

fascinating new aspects of the plant cell, in particular the ability to generate 3-dimensional 5 

images using electron tomography whereby thicker specimens are imaged through a tilt 6 

series in the electron microscope, enabling the generation of a 3-dimensional image. In 7 

this glossary, we gathered experts in the field to share their striking images as well as 8 

their intellectual insights on how plant cell structures are understood today. This journey 9 

through the plant cell begins at the nucleus, where new insights into the protein 10 

composition of the nuclear envelope and its connections with the cytoplasm are beginning 11 

to decipher the functional diversity of the nucleus and how the nucleus is organized and 12 

linked to cytoplasmic status. The plant nucleus also hosts many phase-separated 13 
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biomolecular condensates, making it an ideal place to study this exciting new cell 14 

biological phenomenon.  15 

 16 

Continuous with the nuclear envelope, the endoplasmic reticulum (ER) in all of its spatial 17 

and temporal complexity holds many unresolved questions. The Golgi, of central 18 

importance in polysaccharide biosynthesis for building the plant body, has several plant-19 

specific features. The trans-Golgi network (TGN) and endosomes comprise a nexus of 20 

membrane-intricate compartments with vastly different shaping mechanisms, ultimately 21 

linking trafficking to the plasma membrane (PM) or the vacuole. The vacuole is the largest 22 

organelle in mature plant cells, playing multiple roles from cellular homeostasis, storage, 23 

growth, and development to plant responses to biotic/abiotic stresses. Long known to be 24 

a reservoir for lipids, lipid droplets (LDs) are emerging as important for plant responses 25 

to environmental stress. New insights into the molecular mechanisms driving LD 26 

formation from the ER are discussed.  27 

 28 

Recent imaging of peroxisomes in developing seedlings has revealed strikingly complex 29 

membrane topologies. Imaging of live mitochondria demonstrates how dynamic plant 30 

mitochondria are, with many fusion and fission events occurring to generate a syncytial 31 

mitochondrial network within cells. High-resolution imaging of chloroplasts during 32 

developmental transitions underscores the structural complexity of these organelles and 33 

provides new models for populating the essential thylakoid membranes. Contact sites 34 

couple organelles to each other, creating a mechanism to communicate status across 35 

different subcellular structures. Plasmodesmata (PD) connect cells to each other, 36 

providing routes for short and long-distance communication. Finally, the cell wall not only 37 

patterns the cell but also builds the plant body and protects the plant from both abiotic 38 

and biotic stresses. The research described in this review has been performed in 39 

Arabidopsis thaliana unless otherwise stated. 40 

 41 

THE PLANT NUCLEUS: A GIANT IN THE ORGANELLE GALAXY 42 

 43 

(Written by Yu Tang and Yangnan Gu) 44 
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 45 

The nucleus can be thought of as a gigantic organelle defined by a double-layered 46 

membrane structure called the nuclear envelope. The nuclear envelope sequesters the 47 

nuclear genome and spatially separates transcription from translation, an evolutionary 48 

invention that enables remarkable functions and regulatory mechanisms that are 49 

fundamentally important to the eukaryotic cell (e.g. intricate spatial-temporal regulation of 50 

gene expression and signal transduction). Here, we briefly summarize current views in 51 

key aspects of the plant nucleus, including structure, composition, dynamics, and 52 

function, from the surface to the interior. 53 

 54 

Nuclear envelope protein composition and function 55 

The nuclear envelope surrounds the nucleus (Figure 1A) and is composed of the outer 56 

and inner nuclear membranes (Figure 1B), both of which harbor distinct collections of 57 

proteins that make the nuclear envelope a platform for versatile functions and 58 

communication. Plant nuclear envelope proteins have been reported to function in nuclear 59 

calcium signaling (Capoen et al., 2011; Charpentier et al., 2016), chromatin organization 60 

and dynamics (Pawar et al., 2016; Gumber et al., 2019), immune activation (Gu et al., 61 

2016), cell cycle progression (Wang et al., 2019), mechanical shielding (Goswami et al., 62 

2020), and so on (Figure 1D). Among these protein complexes, the LINC (linker of 63 

nucleoskeleton and cytoskeleton) complex is one of the best characterized. The LINC 64 

complex is composed of the inner nuclear membrane-localized SUN (Sad1/UNC48 65 

homology) protein and the outer nuclear membrane-localized KASH (Klarsicht/ANC-66 

1/Syne Homology) protein, with the former associated with the nucleoskeleton and 67 

chromatin and the latter bound with cytoskeleton and motor proteins (Figure 1D). SUN 68 

and KASH physically interact in the perinuclear region, thus establishing a molecular 69 

structure that enables the translation of cytoplasmic mechanical forces into nuclear 70 

movement and chromatin activities. The plant LINC complexes have been shown to play 71 

critical roles in stomatal development and responses to light and hormone signals 72 

(Gumber et al., 2019; Biel et al., 2020a, b), male gametophyte development (Tamura et 73 

al., 2013; Varas et al., 2015; Zhou et al., 2015; Moser et al., 2020), and plant-microbe 74 

interactions (Zhou et al., 2014; Newman-Griffis et al., 2019). Nonetheless, compared with 75 
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animals and yeast, we still lack a comprehensive understanding of nuclear envelope 76 

protein composition and function in plants. Recent applications of advanced proteomic 77 

tools in plants (e.g. proximity labeling proteomics), however, have empowered the 78 

identification of novel nuclear envelope components (Goto et al., 2019; Tang et al., 79 

2020a) and nuclear envelope-specific biological processes (e.g. inner nuclear 80 

membrane-associated membrane protein degradation (Huang et al., 2020)). Future 81 

studies using continuously evolving proteomics and microscopy techniques will greatly 82 

expand our view of the global protein landscape of the plant nuclear envelope and unravel 83 

both eukaryote-conserved and plant-specific nuclear envelope functions. 84 

  85 

The nuclear pore complex: more than a conduit for nucleocytoplasmic transport 86 

The nucleus, a special membrane compartment, evolved a sophisticated communication 87 

system that allows remarkably efficient but highly selective exchange of materials across 88 

the nuclear envelope. The outer and inner nuclear membranes fuse at numerous sites to 89 

form physical openings, each ~120 nm in diameter, termed nuclear pores (Figure 1C). 90 

The surface of individual plant nuclear pores is covered by ~1,000 nucleoporin proteins 91 

of ~40 different types, which are assembled into a structurally conserved mega protein 92 

complex called the nuclear pore complex (Tamura et al., 2010; Mosalaganti et al., 2018) 93 

(Figure 1D). The central channel of the nuclear pore complex is filled with a protein 94 

meshwork made up of intrinsically disordered phenylalanine-glycine (FG)-rich 95 

nucleoporins, which are capable of interacting with nuclear transport receptors (importin 96 

and exportin) that carry out selective transport of cargo molecules. Besides playing a 97 

conserved role in mediating nucleocytoplasmic transport, individual plant nucleoporins 98 

have been reported to play specific roles in regulating flowering time, hormone signaling, 99 

and activation of abiotic and biotic stress responses, suggesting that the nuclear pore 100 

complex may function as a versatile signaling platform in addition to a conserved 101 

trafficking apparatus in plants (Meier et al., 2017; Gu, 2018; de Leone et al., 2020; Li and 102 

Gu, 2020). Efforts in identifying novel nucleoporins and dissecting their functional 103 

importance in different aspects of plant physiology are still undergoing (Tang et al., 104 

2020b), which may help to address fundamental biological principles underlying the 105 

nuclear pore complex in both plants and animals.  106 
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  107 

The nucleoskeleton 108 

Underneath the inner nuclear membrane lies the plant nucleoskeleton, assembled by long 109 

coiled-coil lamin-like proteins (e.g., CRWNs, named for the crowded nuclei mutants) and 110 

CRWN-associated proteins (e.g. KAKU4), which bear no sequence homology with animal 111 

lamin proteins. These proteins are required for proper nuclear morphology (Wang et al., 112 

2013; Goto et al., 2014; McKenna et al., 2021) and potentially interact extensively with 113 

the nuclear pore complex basket (Mermet et al., 2021) and membrane-bound inner 114 

nuclear membrane proteins to form the plant nuclear lamina. CRWNs were recently 115 

shown to also interact with histone modifiers and to be necessary for tethering chromatin 116 

to the inner nuclear membrane to suppress stress-related gene expression (Hu et al., 117 

2019; Mikulski et al., 2019; Choi and Richards, 2020; Sakamoto et al., 2020; Wang et al., 118 

2021). These studies suggest a critical role of the plant nuclear lamina in maintaining 119 

heterochromatin organization and repression at the nuclear rim, similar to what was found 120 

in animals. Future studies will determine whether other plant nuclear lamina components, 121 

such as inner nuclear membrane proteins, also contribute to this process. 122 

  123 

Organization of the nuclear interior  124 

Within the nucleus, the genome is organized three-dimensionally with chromosomes 125 

occupying specific territories and active and inactive chromatin regions separated from 126 

each other. Most heterochromatic regions and chromocenters are typically positioned 127 

near the nuclear periphery. However, the distribution of telomeres and some other 128 

transcriptionally quiescent regions varies between plant species (Figure 1D). For 129 

example, most telomeres are attached to the nuclear surface in wheat and barley but are 130 

associated with the nucleolus in Arabidopsis and maize (Zea mays) (Pontvianne et al., 131 

2016). Recent genome-wide high throughput chromosome conformation capture (Hi-C) 132 

analyses in both diploid and polyploid plant species revealed extensive inter- and intra-133 

chromosomal interactions that define higher-order chromosomal packing during 134 

interphase (Bi et al., 2017; Liu et al., 2017; Dong et al., 2018; Concia et al., 2020). Both 135 

the spatial positioning (nuclear envelope tethering) and the three-dimensional 136 

organization of chromatin are tightly linked to local epigenetic states and can profoundly 137 
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influence chromatin activities, such as transcription regulation and the timing of DNA 138 

replication (Grob et al., 2014; Wear et al., 2017; Karaaslan et al., 2020; Sakamoto et al., 139 

2020; Bishop et al., 2021). 140 

 141 

Like chromatin, many biomolecules are also organized in a dynamic and heterogeneous 142 

manner within the nucleus. Spontaneous nucleation of biomolecules drives the formation 143 

of many membrane-less compartments observed in plant nuclei, including nucleoli, Cajal 144 

bodies, photobodies, dicing bodies, splicing speckles, DNA damage foci, and immune-145 

activated condensates (Emenecker et al., 2020; Zavaliev et al., 2020; Huang et al., 146 

2021b) (Figure 1D). In these nuclear bodies, multivalent proteins/nucleic acids capable 147 

of forming extensive inter- and intra-molecular interactions undergo liquid-liquid phase 148 

separation, a physical principle that compositionally demixes a homogenous solution into 149 

distinct liquid phases, to concentrate  functionally relevant molecules and create a specific 150 

subnuclear environment that is integral to nuclear functions such as ribosome biogenesis, 151 

mRNA and miRNA processing, transcription activation, and signaling (Liu et al., 2012; 152 

Van Buskirk et al., 2012; Fang et al., 2019; Powers et al., 2019; Jung et al., 2020; Zavaliev 153 

et al., 2020; Huang et al., 2021a; Huang et al., 2021b). Further exploring the role of phase 154 

separation-promoted biomolecular condensates in plants and elucidating how phase 155 

separation may be regulated by internal and external signals represents an exciting new 156 

research area for plant science in the next decade. 157 

  158 

Movement and dynamics of the nucleus 159 

Like most other organelles, the entire nucleus is capable of directional movement 160 

triggered by environmental and developmental cues (e.g., towards pathogen-invading loci 161 

or with the rapid elongation of pollen tubes) (Griffis et al., 2014) and can establish 162 

connections with other organelles (e.g. chloroplast stromules) for signal exchange 163 

(Caplan et al., 2015; Gu and Dong, 2015). Plant nuclei also exhibit distinct morphology in 164 

different cell types and membrane dynamics during cell cycle progression. As an extreme 165 

example, the nuclear envelope undergoes a complete breakdown and subsequent 166 

reformation during mitosis. These aspects of plant nuclear dynamics have been 167 

extensively reviewed elsewhere (Meier et al., 2016; Meier et al., 2017; Groves et al., 2018; 168 
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Groves et al., 2020; Goto et al., 2021), and mechanisms that regulate plant nuclear 169 

movement, nuclear envelope dynamics, inter-organellar communication, and their 170 

functional importance are currently under active investigation. 171 

 172 

OPEN QUESTIONS ON THE NETWORK STRUCTURE OF THE PLANT ER 173 

 174 

(Written by Federica Brandizzi) 175 

 176 

The ER is a large membrane-extension organelle at the core of the secretory pathway. 177 

The ER is responsible for several important processes that are essential for the life of the 178 

cell and the entire organism. For example, the ER initiates the biosynthesis of secretory 179 

proteins and essential lipids, functions as a calcium storage organelle, and houses 180 

several receptors of hormone signaling. Morphologically, the plant ER network is 181 

composed of interconnected tubules and cisternae that form a highly dynamic membrane 182 

network (Figure 2), which is anchored to the PM, similar to a spider web hanging off 183 

surfaces. ER tubules connect with other tubules and flatten themselves in enlarged areas, 184 

also known as cisternae, forming small, triangular sheets that are called three-way 185 

junctions (Shemesh et al., 2014) (Figure 2). In fully expanded plant cells, much of the cell 186 

volume is occupied by the vacuole. As a consequence, the bulk of the plant ER is 187 

distributed at the cell cortex where it is sandwiched between the PM and the tonoplast 188 

(vacuolar membrane), in continuum with the nuclear envelope and the transvacuolar 189 

strands. The transvacuolar strands form a tightly packed meshwork of ER tubules and 190 

cisternae that connect distal portions of the ER across the cell through tonoplast 191 

invaginations. The nature of the plant ER cisternae is unknown: they may be continuous 192 

membrane sheets and tightly packed tubules or perforated sheets of membranes, as 193 

described in non-plant species (Nixon-Abell et al., 2016; Schroeder et al., 2019). 194 

 195 

The ER network undergoes continuous remodeling through processes that include 196 

homotypic fusion of ER tubules and the interconversion of ER tubules and cisternae due 197 

to the action of ER shapers, the cytoskeleton and associated motors, and ER-198 

cytoskeleton connectors (Brandizzi, 2021). Together, these processes and ER shapers 199 
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contribute to the overall movement or streaming of the ER. This is distinct from the 200 

movement of other organelles (e.g., peroxisomes, mitochondria, endosomes), which 201 

translocate across the cytoplasm. The relative abundance of ER tubules and cisternae 202 

varies during cell growth. As cells expand, the ER shape transitions from a more 203 

predominantly cisternal form, typical of non-expanded cells, to a more tubular form that 204 

is visible in mature cells (Ridge et al., 1999; Stefano et al., 2014), through mechanisms 205 

that are yet to be established. 206 

 207 

In vitro and in vivo experiments have demonstrated that the ER membrane-associated 208 

GTPase ROOT HAIR DEFECTIVE3 (RHD3) is responsible for the homotypic fusion of 209 

the ER membrane (Chen et al., 2011; Stefano et al., 2012; Zhang et al., 2013; Ueda et 210 

al., 2016) in a manner similar to the mammalian and yeast homologs atlastins and Sey1p, 211 

respectively (McNew et al., 2013); however, the mechanisms underlying the fast and 212 

dynamic interconversion of ER tubules and cisternae are yet to be discovered. A 213 

redistribution of membrane curvature-inducing proteins, such as the conserved reticulons 214 

(Tolley et al., 2008; Sparkes et al., 2009b), and the three-way junction-stabilizing 215 

LUNAPARK proteins (Lnps; named for the amino acid sequence LNPARK) 216 

(Kriechbaumer et al., 2018; Ueda et al., 2018; Sun et al., 2020a), is likely responsible for 217 

the dynamic interconversion of ER forms, but the underlying regulatory mechanisms 218 

remain largely unknown. 219 

 220 

The biological function of the reshaping of the plant ER is still unclear. Confocal 221 

microscopy analyses have demonstrated that ER movement increases during cell growth 222 

concomitant with an increase in the streaming of other organelles with whom the ER is in 223 

close association, such as Golgi stacks, mitochondria, peroxisomes, and endosomes. 224 

Furthermore, defects in ER network structure due to the loss of RHD3 compromise cell 225 

expansion as well as the streaming of the ER and closely associated organelles (Stefano 226 

et al., 2014; Stefano et al., 2015). Therefore, the ER contributes to the dynamics and 227 

spatial organization of other organelles, possibly through ER-organelle contact sites, and 228 

this may be necessary for the organelles’ functions. This is supported by the finding that 229 

in an rhd3 loss-of-function mutant, the streaming of endosomes is reduced and clathrin-230 
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mediated endocytosis is compromised (Stefano et al., 2015). These results support the 231 

hypothesis that the streaming of the ER and closely associated organelles is ultimately 232 

important for cell growth, but the underlying mechanisms are yet to be fully elucidated. 233 

 234 

A double loss-of-function mutant of the two Arabidopsis Lnps shows an increased 235 

abundance of ER sheets with dense fenestration and ER conglomerates (Kriechbaumer 236 

et al., 2018; Ueda et al., 2018; Sun et al., 2020a). Combined, the finding that the localized 237 

distribution of Lnps in the ER depends on the cellular availability of their interacting protein 238 

RHD3, and that Lnps antagonize the role of RHD3 in ER shaping and induce RHD3 239 

degradation via the proteasome pathway (Sun et al., 2020a) mechanistically support the 240 

notion that certain ER shapers are dependent on the abundance of other ER shapers for 241 

their distribution and function in the ER. Curiously, mutants with a loss of RHD3 alone are 242 

viable and show only limited phenotypic defects in plant growth (Stefano et al., 2012); 243 

however, the loss of RHD3 with either member of the RHD3-like family of proteins, RHD3-244 

like 1 or RHD3-like 2, is either lethal or causes pollen defects, respectively (Zhang et al., 245 

2013). Conversely, mutants with the loss of both Lnps are viable, with only minor defects 246 

in plant growth (Sun et al., 2020a). Therefore, certain ER shapers may have a more 247 

relevant role in the life of the cell than others, either because associated ER shaping 248 

events are essential compared to others or because the shapers carry out other functions, 249 

in addition to ER reshaping. For example, maize reticulons 1 and 2 function in shaping 250 

the ER but also as autophagy receptors and are involved in degradation of the ER through 251 

the regulated process known as ER-phagy (Zhang et al., 2020). Furthermore, RHD3 has 252 

been found to interact with ARK1, an armadillo-repeat containing kinesin, which is thought 253 

to pull an ER tubule toward another tubule (Sun et al., 2020b). While these findings 254 

support the earlier discovery that the remodeling of a subset of ER tubules depends on 255 

their sliding on pre-existing microtubules (Hamada et al., 2014), they also highlight 256 

additional functions of RHD3 besides its fusogenic activity of the plant ER membranes.  257 

 258 

Future characterization of the broader roles of the plant ER shapers may provide 259 

opportunities to establish how physiologically and developmentally relevant processes 260 

are connected to ER network integrity. For example, the loss of RHD3 leads to an 261 
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attenuation of signaling in the unfolded protein response (Lai et al., 2014), a conserved 262 

cytoprotective pathway that is designed to attenuate proteotoxic stress in the ER (Pastor-263 

Cantizano et al., 2020). While these findings support the idea that the homeostasis of the 264 

ER network structure is critical for cell health, a challenge for the future is to establish a 265 

mechanistic framework connecting ER shape integrity with the functions of essential 266 

signaling pathways. 267 

 268 

Despite the functional conservation of shapers such as RHD3, reticulons, and Lnps, the 269 

plant ER structure depends on plant-unique factors. For example, a minor role for 270 

microtubules in ER reshaping is consistent with the predominant role of actin in this 271 

process (Sparkes et al., 2009a); this is markedly different from the dependence of ER 272 

network shaping on microtubules in mammalian cells (Waterman-Storer and Salmon, 273 

1998; English et al., 2009). The existence of plant-unique ER-actin interactors (i.e., 274 

SYP73 and NETWORKED 3B) (Cao et al., 2016; Wang and Hussey, 2017), plant-specific 275 

molecular motors (i.e. Myosin XI family) (Peremyslov et al., 2010; Ueda et al., 2010), and 276 

the absence in plants of CLIMP63, the connector of the mammalian ER to microtubules 277 

and a spacer of the cisternal lumen (Klopfenstein et al., 2001; Shibata et al., 2010), further 278 

support the notion that plants have developed specific mechanisms of ER shaping across 279 

kingdoms. An obvious challenge for the future is to determine the nature or such 280 

mechanisms via the identification of additional players. For example, proteomics of 281 

cellular compartments or targeted proteomics based on pull-downs of ER shapers have 282 

yielded opportunities to identify proteins making up the plant ER (Dunkley et al., 2006; 283 

Kriechbaumer et al., 2018), but the challenge ahead is to define a functional pipeline to 284 

identify proteins specifically involved in ER structure. Forward genetics screening based 285 

on confocal microscopy analyses of Arabidopsis seedlings expressing fluorescent 286 

markers to identify mutants with defective organization of secretory organelles (Faso et 287 

al., 2009; Nakano et al., 2009; Takagi et al., 2013) offers a realistic opportunity to identify 288 

mutations that compromise the ER, although an innate limitation of these screens is their 289 

labor-intensive nature. Automation of this type of screen, along with the implementation 290 

of software capable of quantitatively analyzing the dynamics of the ER (Pain et al., 2019), 291 
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will likely offer a platform for the rapid identification of modifiers of ER shape and 292 

dynamics. 293 

 294 

PLANT GOLGI STACKS: VERSATILE GLYCOSYLATION FACTORIES ON THE 295 

MOVE 296 

 297 

(Written by Byung-Ho Kang) 298 

 299 

The Golgi lies at the center of the secretory pathway, importing cargoes from the ER, 300 

adding glycosyl groups, and exporting these cargoes to post-Golgi compartments or the 301 

extracellular space (Alberts et al., 2014). The role of the Golgi as a processing trader is 302 

illustrated in its polarized stack architecture, where entry (cis) and exit (trans) sides can 303 

be discerned (Figure 3A and C) (Farquhar and Palade, 1981; Moore et al., 1991). In 304 

addition to serving as the site of protein and lipid glycosylation, the plant Golgi synthesizes 305 

non-cellulosic cell wall polysaccharides (Zhang and Staehelin, 1992; Carpita and 306 

McCann, 2000). The Golgi in plants consists of many discrete stacks (Figure 3B) whose 307 

numbers per cell vary from dozens to hundreds (Dupree and Sherrier, 1998). Each stack 308 

is thought to function independently (Nebenfuhr and Staehelin, 2001). The stacks travel 309 

in the cytosol at speeds of up to several microns per second; this movement is dependent 310 

on myosin motors (Boevink et al., 1998; Madison et al., 2015). The decentralized 311 

organization of plant Golgi contrasts with that of mammalian Golgi, whose stacks are 312 

stitched side-by-side to form a ribbon or a complex next to the nucleus (Ito et al., 2014). 313 

Therefore, ER-to-Golgi transport and post-Golgi secretion require long-distance vesicular 314 

trafficking to and from the Golgi (Gillingham and Munro, 2016). Mobile Golgi stacks in 315 

plants, by contrast, can visit ER export sites (ERES), concentrate to sites of secretion, 316 

and redistribute for cell division (Nebenfuhr et al., 2000; Kang and Staehelin, 2008; 317 

Ndinyanka Fabrice et al., 2017).  318 

       319 

Transport through the plant Golgi 320 

During ER-to-Golgi transport, Golgi stacks slow down at ERES and receive COPII-type 321 

vesicles (Nebenfuhr et al., 1999; Yang et al., 2005). In mammalian cells, the ER-to-Golgi 322 
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intermediate compartment (ERGIC) assembles at the ERES, and ER-resident proteins 323 

are retrieved from the ERGIC (Appenzeller-Herzog and Hauri, 2006). Plant cells lack 324 

ERGICs, as COPII vesicles are directly transferred to the cis-side of Golgi stacks in 325 

association with the ER. ERES in mammalian cells are marked by ERGICs (Weigel et al., 326 

2021). Due to the absence of discrete ERGICs, plant ERES are spotted under an electron 327 

microscope based on their COPII buds and Golgi stacks in their vicinity. Biosynthetic 328 

activities are observed from the medial Golgi after the recycling of ER proteins is complete 329 

in the cis-Golgi (Donohoe et al., 2013), indicating that the cis cisternae take the place of 330 

the ERGIC in plant cells (Ito and Boutte, 2020). 331 

 332 

Among the models describing intra-Golgi transport, the cisternal progression/maturation 333 

model has been supported by electron microscopy studies of the plant Golgi (Robinson, 334 

2020). It is evident from electron micrographs of plant Golgi stacks that Golgi cisternae 335 

are peeled off from the trans-side, supporting the notion that Golgi cisternae are transient 336 

entities (Day et al., 2013). Electron tomography analysis has revealed assembly 337 

intermediates of new cisternae on the cis-side that exhibit highly diverse sizes and shapes 338 

(Donohoe et al., 2013). Cell wall polysaccharides were detected in the cisternal lumen 339 

but not in COPI-type vesicles at the cisternal margins, which are thought to retrieve Golgi-340 

resident proteins against the cisternal membrane flux (Donohoe et al., 2007). 341 

 342 

On the trans-side, TGN compartments arise from the trans-most cisternae. This 343 

transformation involves a significant reduction in the amount of membrane, suggesting 344 

that Golgi-resident proteins are retrieved from the TGN (Kang et al., 2011). Secretory 345 

vesicles carrying cell wall polysaccharides, clathrin-coated vesicles, and COPI vesicles 346 

arise from the TGN. In cotyledon cells, darkly stained vesicles, termed dense vesicles, 347 

transport globulins from the TGN to protein storage vacuoles (Robinson, 2020).  348 

 349 

The aforementioned transport steps occur within a ribosome-excluding matrix that 350 

encloses the region from COPII vesicles to TGN cisternae (Figure 3D) (Staehelin and 351 

Kang, 2008). The matrix likely corresponds to a dense network of proteins involved in 352 

Golgi membrane assembly, maturation, TGN formation, and fastening cisternae into a 353 
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stack. Golgins are Golgi-localized long coiled-coil proteins, and some of them are 354 

tethering factors (Latijnhouwers et al., 2005) and, given their rod-like shape, they 355 

constitute scaffolds for the matrix. Mammalian Golgins are required for Golgi integrity, 356 

vesicular trafficking to the Golgi, and protein glycosylation (Wong and Munro, 2014; Liu 357 

et al., 2017; Witkos et al., 2019). Arabidopsis Golgins have been shown to play roles in 358 

COPII vesicular transport (Kang and Staehelin, 2008) and interactions of cis-Golgi with 359 

ERES (Osterrieder et al., 2017).  360 

 361 

Biosynthesis in the plant Golgi 362 

Production and export of cell wall matrix polysaccharides distinguish the plant Golgi from 363 

its animal counterpart. The reaction cascades for polysaccharide synthesis are arranged 364 

sequentially over the stack from the cis-to-trans direction. As the amounts of 365 

glycosyltransferases and sugar transporters per stack are small, their localization within 366 

the Golgi has been investigated using overexpressor lines or by localizing reaction 367 

products (Chevalier et al., 2010; Meents et al., 2019). The constitutive secretion of cell 368 

wall polysaccharides and several mechanisms for retaining Golgi proteins from the bulk 369 

flow have been characterized (Brandizzi, 2002; Gao et al., 2014; Schoberer et al., 2019). 370 

 371 

TGN cisternae consist of distinct domains where secretory and vacuolar cargoes are 372 

separately packaged (Shimizu et al., 2021). Electron tomography imaging of Golgi/TGN 373 

complexes revealed that varying ratios of secretory and clathrin-coated vesicle buds in a 374 

TGN cisterna, suggesting that the biosynthetic functions of each Golgi stack are not 375 

uniform in a plant cell (Staehelin and Kang, 2008). Golgi stacks appear to be versatile 376 

factories whose activities are determined by the proteins imported from the ER. Golgi 377 

stacks enriched with enzymes for synthesizing cell wall polysaccharides would give rise 378 

to more secretory vesicles than Golgi stacks that process proteins for the vacuole. 379 

 380 

Future research perspectives 381 

The structures and functions of Golgi stacks change as plant cells differentiate, but the 382 

molecular mechanisms governing their remodeling remain elusive. For example, small 383 

Golgi stacks in root meristem cells undergo sequential remodeling as meristem cells 384 
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develop into gravity-sensing columella cells and eventually into mucilage-secreting 385 

border cells in the root cap (Figure 3E and F) (Wang et al., 2017). Since several cell-386 

specific markers for the Arabidopsis root cap have been identified (Kamiya et al., 2016), 387 

it would be possible to uncover novel genes involved in cell type-specific polysaccharide 388 

synthesis and protein targeting in the Golgi after performing single-cell sequencing of root 389 

cap isolates (Shaw et al., 2021). Indeed, a proteomic analysis of fractions enriched with 390 

cis-, medial-, or trans-Golgi expanded the list of Golgi-resident proteins with their cisternal 391 

localization (Parsons et al., 2019). Expression profiling of genes encoding Golgi proteins 392 

during cell differentiation will provide insights into the regulation of Golgi functions.  393 

 394 

Correlative light and electron microscopy refers to protocols in which macromolecules are 395 

first localized with fluorescence microscopy and the volume enclosing the 396 

macromolecules is then imaged by electron microscopy. This correlative approach will be 397 

useful for analyzing organelles composed of heterogeneous members (Wang et al., 398 

2019). Golgi stacks labeled by specific fluorescent markers could be examined by 399 

electron microscopy to characterize their nanoscale architectures and interactions with 400 

other organelles. Examining the dynamics of Golgi subpopulations under stress 401 

conditions will shed light on how the secretory pathway reorganizes in response to threats 402 

from the outside. As export from the Golgi is mediated by the TGN, this analysis should 403 

be combined with exploring TGN dynamics (Uemura et al., 2019). 404 

 405 

Advances in cryo-electron microscopy and sample processing technology allowed for 406 

electron tomography analysis of frozen-hydrated cells to visualize macromolecular 407 

complexes in situ (Otegui and Pennington, 2018). Due to the limitation in section 408 

thickness for electron microscopy, frozen cells must either be sliced or thinned by focused 409 

ion beam milling (FIB). Golgi vesicles and intraluminal filaments were delineated in 410 

Chlamydomonas cells by cryo-electron tomography (Engel et al., 2015). Although intact 411 

plant tissues are too thick for FIB, in vitro germinated pollen tube tips are amenable to 412 

FIB thinning (Liu et al., 2021). As Golgi stacks produce numerous secretory vesicles to 413 

sustain tip growth, it would be exciting to capture images of plant Golgi stacks by cryo- 414 
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electron tomography to uncover novel features not observed in plastic-embedded 415 

electron microscopy samples. 416 

 417 

PLANT ENDOSOMES: PROTEIN SORTING MASTERS 418 

 419 

(Written by Marisa Otegui) 420 

 421 

The ability to regulate the composition of the PM and the endomembrane system is critical 422 

for cell survival. Endosomes play a central role in this process by regulating protein and 423 

lipid (cargo) trafficking in the endomembrane system through both the anterograde and 424 

retrograde pathways. As part of the anterograde pathways, that is, transport from the site 425 

of synthesis to the place of residence and function, proteins and lipids synthesized in the 426 

ER are typically transported in vesicles to the Golgi, to the TGN, and from there, either to 427 

the PM (exocytosis) or to the vacuole. Retrograde pathways mediate the transport of 428 

cargo or trafficking factors in the opposite direction from the anterograde pathway, usually 429 

back to their original donor compartments. Proteins removed from the PM in vesicles 430 

through clathrin-mediated endocytosis are delivered to early endosomes, where they can 431 

be either recycled to the PM or carried to multivesicular endosomes (MVEs, also referred 432 

to as multivesicular bodies or prevacuolar compartments) for further sorting into 433 

intralumenal vesicles and subsequent degradation in the vacuolar lumen (Valencia et al., 434 

2016) (Figure 4A-D). In plants, the TGN functions as the early endosome since it is the 435 

first compartment that receives endocytosed cargo (Dettmer et al., 2006; Lam et al., 436 

2007). Thus, in contrast to animal cells, plant cells do not have separate early endosomes 437 

but instead combine both endocytic and biosynthetic sorting at the TGN (Viotti et al., 438 

2010). 439 

 440 

TGNs and MVEs, the two types of plant endosomes, arise, mature, and are consumed 441 

as part of their membrane trafficking function. Therefore, both types of organelles are in 442 

continuous flux and can be found as subpopulations at different stages of maturation. 443 

  444 

The TGN 445 
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As part of the endosomal pathway, the TGN receives PM cargo, which is either recycled 446 

back to the PM or retained for further sorting in MVEs and degradation in vacuoles. As 447 

part of the secretory pathway, the TGN produces both vesicles carrying cargo (proteins, 448 

membrane lipids, and cell wall polysaccharides) to the PM and vesicles containing 449 

vacuolar cargo (Rosquete et al., 2018). The TGN mediates retrograde recycling back to 450 

the Golgi and ER through COPI- (Bykov et al., 2017) and retromer-mediated trafficking 451 

(Niemes et al., 2010). 452 

 453 

The TGN forms largely through cisternal maturation of the trans-most Golgi cisterna 454 

(Golgi-associated TGN or GA-TGN) but eventually detaches from the Golgi, becoming an 455 

independent organelle (free or Golgi-independent TGN) that fragments into vesicles 456 

(Toyooka et al., 2009; Kang et al., 2011; Uemura et al., 2014; Uemura et al., 2019) (Figure 457 

4A and B). There are approximately 35 Golgi stacks and GA-TGNs in an Arabidopsis 458 

shoot apical meristematic cell at interphase (Segui-Simarro and Staehelin, 2006). In 459 

Arabidopsis root cells, as the trans-most cisterna matures into the TGN, it develops 460 

numerous vesicle buds, loses 30-35% of its total membrane surface area, and becomes 461 

enriched in the Rab GTPases RAB-A2a and RAB-A4b, the phosphatidylinositol 4-kinase 462 

PI4Kb1, the vacuolar V-ATPase subunit VHA1a (Figure 4D), and the SNAREs (Soluble 463 

N-ethylmaleimide sensitive factor Attachment protein Receptor) SYP61 (Syntaxin of 464 

Plants 61), SYP43 , VAMP721 (Vesicle-Associated Membrane Protein 721), VAMP722, 465 

and VAMP727 (Dettmer et al., 2006; Chow et al., 2008; Kang et al., 2011; Zhang et al., 466 

2011). As the Golgi-associated TGN detaches from the Golgi stacks to become 467 

free/Golgi-independent TGNs, the budding profiles become more abundant (Figure 4B). 468 

 469 

These Golgi-associated and Golgi-independent TGN subpopulations play distinct roles in 470 

trafficking (Renna et al., 2018; Uemura et al., 2019; Ito and Boutte, 2020). For example, 471 

GA-TGN but not free/Golgi-independent TGNs label with the endocytic tracer FM4-64 472 

(Uemura et al., 2019), suggesting that endosomal function is carried out by the GA-TGN, 473 

whereas free Golgi-independent TGNs seem to be primarily involved in exocytosis. The 474 

different trafficking functions of the TGN are spatially separated in subdomains that differ 475 

both in their protein and membrane lipid composition (Wattelet-Boyer et al., 2016; Shimizu 476 
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et al., 2021) and their ability to recruit specific vesicle-forming coat proteins, such as 477 

clathrin. Thus, within the GA-TGN, there are at least two “zones”, the secretory (exocytic) 478 

and the vacuolar-trafficking zones. The secretory zone generates exocytic vesicles and 479 

is enriched in the SNARE VAMP721, the adaptor complex AP-1, the accessory protein 480 

EPSIN1, and clathrin. The vacuolar trafficking zone sends vesicles to MVEs for vacuolar 481 

delivery and is enriched in VAMP727, the adaptor complex AP-4, and the accessory 482 

protein MODIFIED TRANSPORT TO THE VACUOLE1 (MTV1) (Heinze et al., 2020; 483 

Shimizu et al., 2021). In addition, a plant-specific TRAPPII complex is thought to mediate 484 

the recruitment/tethering of endocytosed vesicles to subdomains of the TGN (Rosquete 485 

et al., 2019). 486 

 487 

The TGN not only has subdomains for exocytic, endocytic, and vacuolar trafficking, but it 488 

also associates with protein complexes that control the trafficking of specific cargo 489 

proteins. Thus, for example, the TGN-localized protein ECHIDNA controls the secretion 490 

of only a subset of PM proteins, such as the auxin influx carrier AUX1 (Boutte et al., 2013). 491 

By contrast, a module formed by seven transmembrane domain-containing proteins 492 

(7TM) and components of guanine nucleotide-binding (G) protein signaling function 493 

together at the Golgi and TGN to regulate the exocytosis of cellulose synthases, but not 494 

the endocytosis or general exocytosis of soluble or PM cargoes (McFarlane et al., 2021). 495 

  496 

MVEs 497 

MVEs arise from membranes derived from the TGN and are characterized by a rounded 498 

shape, the presence of intralumenal vesicles (Figure 4A and B), and their association with 499 

RAB-F GTPases such as ARA6, ARA7, and RHA1 (Figure 4C) (Haas et al., 2007). There 500 

are approximately 17-20 MVEs in interphase meristematic cells, which are usually found 501 

in close proximity to the GA-TGN (Segui-Simarro and Staehelin, 2006). PM proteins 502 

targeted for degradation are usually ubiquitinated at the PM, internalized by endocytosis, 503 

and delivered first to the TGN and then to MVEs (Figure 4A). 504 

 505 

The MVE intralumenal vesicles contain cargo proteins targeted for degradation in the 506 

vacuole. Failure to properly sort PM components into intralumenal vesicles results in the 507 
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accumulation of PM proteins in the vacuolar membrane (Figure 4A), which leads to 508 

severe developmental defects, and most frequently, to lethality.  509 

 510 

At the surface of the MVE limiting membrane (the single membrane that surrounds the 511 

MVE), a group of cytosolic proteins called ESCRTs (Endosomal Sorting Complex 512 

Required for Transport) bind, cluster, and sort the ubiquitinated cargo into membrane 513 

domains that bend away from the cytoplasm, forming the intralumenal vesicles typical of 514 

these organelles. This membrane bending event occurs in the reverse (negative) topology 515 

of the better understood process of vesiculation, such as clathrin-mediated endocytosis. 516 

Although it has long been assumed that ESCRTs orchestrate the formation and release 517 

of a single endosomal vesicle at a time, studies performed in Arabidopsis have shown 518 

that at least in plants, these vesicles do not bud off individually but form in concatenated 519 

networks (Buono et al., 2017; Goodman et al., 2021). 520 

 521 

In general, ESCRT proteins are well conserved across organisms, from Archaea 522 

(Makarova et al., 2010; Dobro et al., 2013; Pulschen et al., 2020) to Eukarya. In fungi and 523 

metazoans, five multimeric ESCRT complexes have been identified: ESCRT-0 to III and 524 

the triple AAA ATPase SKD1 (SUPPRESSOR OF K+ TRANSPORT GROWTH 525 

DEFECT1) with its activator LIP5. Plants contain putative orthologs for most of the 526 

ESCRT proteins originally identified in metazoans and fungi (Spitzer et al., 2006; Haas et 527 

al., 2007; Spitzer et al., 2009; Kalinowska et al., 2015; Buono et al., 2016; Yu et al., 2016; 528 

Wang et al., 2017a), with the exception of ESCRT-0 (Winter and Hauser, 2006), which is 529 

an early acting complex that binds phosphoinositide-3-phosphate (PI3P), a lipid enriched 530 

in endosomal membranes that is critical for the recruitment of ESCRT proteins to 531 

endosomes. However, a group of proteins called TOL (TOML1-LIKE) are likely to play the 532 

role of ESCRT-0 in plants (Korbei et al., 2013; Moulinier-Anzola et al., 2020). 533 

 534 

How do ESCRT proteins mediate intralumenal vesicle formation and sequestration of 535 

cargo proteins? ESCRT-0, -I, and -II contain ubiquitin-binding domains and contribute to 536 

the clustering of ubiquitinated cargo on the endosomal membrane and to membrane 537 

deformation (Liese et al., 2020). De-ubiquitinating enzymes remove the ubiquitin on cargo 538 
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before their final sequestration into intralumenal vesicles. Critical for the final steps in 539 

vesicle formation is the presence of membrane cargo (Chiaruttini et al., 2015) as well as 540 

ESCRT-III and ESCRT-III-associated proteins, which are able to trigger membrane 541 

deformation and neck constriction (Hanson et al., 2008; Fyfe et al., 2011; McCullough et 542 

al., 2013; Chiaruttini et al., 2015). 543 

 544 

Plants commonly contain several isoforms for each ESCRT subunit and even have 545 

evolved plant-specific ESCRT proteins, such as PROS (Positive Regulator of SKD1, 546 

which enhances SKD1 activity) (Reyes et al., 2014), FREE1/FYVE1(Gao et al., 2014), 547 

and FYVE4 (Liu et al., 2021a). Interestingly, both proteins contain FYVE domains able to 548 

bind PI3P. FREE1 interacts with ESCRT-I subunits and is essential for endosomal sorting 549 

(Gao et al., 2014), whereas FYVE4 is required for the recruitment of ESCRT-III subunits 550 

(Liu et al., 2021a).      551 

 552 

In Arabidopsis, the loss of critical ESCRT subunits such as CHMP1 and FREE1 results 553 

in serious protein mis-sorting defects and embryo and/or seedling lethality (Spitzer et al, 554 

2009; Gao et al 2014), whereas the loss of the SKD1-activator LIP5 causes abnormal 555 

root gravitropic responses (Buono et al 2016), reduced tolerance to heat and drought 556 

stress (Wang et al 2015; Xia et al 2016), and compromised resistance to pathogens 557 

(Wang et al 2014).  558 

  559 

Future perspectives 560 

Our understanding of endosomal biogenesis and the molecular machinery mediating its 561 

multiple sorting functions has increased dramatically during the past decades. However, 562 

new regulatory and sorting components are being discovered and many more remain 563 

elusive, making it still challenging to comprehend how sorting functions are both 564 

segregated and integrated in TGNs and MVEs. The plant endosomes have many distinct 565 

features that make them different from their counterparts in other organisms. For 566 

example, whether the concatenation of MVE intralumenal vesicles in complex networks 567 

is unique to plants or is a universal mechanism in all eukaryotes is presently unknown. It 568 

is tempting to speculate that the evolution of unique ESCRT components and the drastic 569 
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diversification of some ESCRT isoforms may have contributed to the unique features of 570 

intralumenal vesicle formation in plants. 571 

 572 

 573 

THE MULTIFUNCTIONAL VACUOLE 574 

 575 

(Written by Kai Dünser and Jürgen Kleine-Vehn) 576 

 577 

The plant vacuole fulfills a plethora of indispensable and sometimes seemingly 578 

contradictory functions. This multifunctional compartment ensures lytic degradation, but 579 

also stores proteins, carbohydrates, and secondary metabolites. The vacuole is a place 580 

for detoxification of harmful molecules, but also accumulates allelochemicals for plant 581 

defense against herbivory. It is central in pH as well as ion homeostasis, thereby also 582 

contributing to the control of turgor pressure (reviewed in Wink 1993; Marty, 1999; 583 

Eisenach and De Angeli 2017; de Brito Francisco and Martinoia 2018; Krüger and 584 

Schumacher 2018; Hara-Nishimura and Hatsugai, 2011) (Figure 5A and B). Besides all 585 

this, the vacuole fulfills a remarkable space-filling function, enabling enormously rapid 586 

plant cell enlargement with little de novo production of cytosolic components (reviewed in 587 

Dünser and Kleine-Vehn, 2015; Kaiser and Scheuring, 2020), but on the other hand must 588 

get out of the way to allow cell division (Figure 5A and B). 589 

 590 

Vacuolar biogenesis 591 

Genetic interference with vacuole biogenesis, as observed in Arabidopsis vacuoleless1 592 

mutants, leads to embryonic lethality, which indicates that the formation of vacuoles is 593 

essential for plant cells (Rojo et al., 2001). Depending on the cell type and developmental 594 

context, vacuoles may be formed de novo or inherited to daughter cells during cell division 595 

(reviewed in Cui et al., 2020). Mechanisms for vacuole biogenesis in roots include the so 596 

called provacuoles and the small vacuoles. Provacuoles are double membrane, tubular 597 

structures that bud off from the ER, constituting a major membrane source for the 598 

establishment of large vacuolar structures (Viotti et al. 2013). On the other hand, whole-599 

cell electron tomography proposed that multivesicular bodies (also called Pre-Vacuolar 600 
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Compartments (PVC) in plants) undergo homotypic fusion to form small vacuoles prior to 601 

their fusion, resulting in the development of large central vacuoles (Cui et al., 2019). 602 

 603 

Specialized vacuoles and their functions 604 

Although some vacuoles fulfill multiple roles simultaneously, others specialize. Different 605 

types of vacuoles carry distinct sets of vacuolar membrane (tonoplast) marker proteins, 606 

and different types can co-exist in some plant cells (Frigerio et al., 2008). The lytic 607 

vacuole, often considered equivalent to the animal lysosome, is most common and plays 608 

central roles in virtually all tissues. By contrast, protein storage vacuoles are 609 

predominantly found in seeds and serve as nutrient reservoirs during germination 610 

(Ludevid et al., 1992; Höfte et al., 1992; Rojo et al., 2001). Vacuolar identity can be 611 

dynamic and undergo transitions, such as lytic vacuole to protein storage vacuole or vice 612 

versa, often marking crucial developmental fate changes (Gattolin et al., 2011; Zheng and 613 

Staehlin, 2011; Feeney et al., 2018).  614 

 615 

Autophagy is the regulated degradation of proteins and organelles. During autophagy, 616 

the autophagic body is released into the vacuole lumen for degradation by hydrolytic 617 

enzymes. Hence, lytic vacuoles contribute to the autophagic processes that maintain 618 

basal cellular homeostasis, act in environmental stress responses, or play roles during 619 

pathogen defense, not the least of which is the vacuolar contribution to programmed cell 620 

death (reviewed in Su et al., 2020; Bassham et al., 2006; Yoshimoto and Ohsumi 2018; 621 

Merkulova et al., 2014; Phillips et al., 2008; Chung et al., 2010). Age-related 622 

developmental transitions are marked by senescence-associated vacuoles, which are 623 

implicated in the degradation of chloroplasts by autophagy (Otegui et al., 2005).  624 

 625 

pH, ion, and water homeostasis 626 

Vacuolar pH, ion, and water homeostasis are crucial for all of its functions. Vacuole 627 

acidification is essential for the lytic degradation of various cellular components. The 628 

vacuolar H+-pyrophosphatase (V-PPase) AVP1 and two vacuolar H+-ATPase (V-ATPase) 629 

proton pumps are the main actors in vacuolar pH. In addition, the P-type H+-ATPase 630 

AHA10 contributes to vacuolar acidification in some cell types (Appelhagen et al., 2015). 631 
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V-ATPase VHA-a1 activity at the TGN likely contributes to vesicle-based delivery of 632 

protons to the vacuole, suggesting that other endomembranes can also affect the pH of 633 

the vacuole (Kriegel et al., 2015).  634 

 635 

Cellular ion homeostasis is maintained by a myriad of transporters and channels that are 636 

energized by either the proton gradient (ΔpH) or the membrane potential difference (Δψ) 637 

(reviewed in Martinoia et al., 2012; Martinoia 2018). The vacuolar contribution to cellular 638 

ion homeostasis is, among other processes, important for the regulation of turgor 639 

pressure (Barragán et al., 2012). Reversible stomatal movements are controlled by 640 

changes in guard cell volume, accompanied by drastic changes in vacuole morphology 641 

and volume (Franks et al., 2001; Shope et al., 2003; Tanaka et al., 2007; Gao et al., 2009; 642 

Bak et al., 2013; Eisenach and De Angeli, 2017). Stomatal opening has mainly been 643 

linked to the accumulation of K+ within the vacuole, whereas stomatal closure is facilitated 644 

by K+ release from the vacuole (Barragán et al., 2012; Andrés et al., 2014; Wege et al., 645 

2014; De Angeli et al., 2013; Gobert et al., 2007; Isner et al., 2018). Water channels 646 

(aquaporins) such as TIP1;1 contribute to the water permeability of the tonoplast and 647 

buffering the water content of the cytoplasm. Because the expression of TIP1;1 correlates 648 

with the onset of cell elongation, it may link intracellular water exchange with cellular 649 

enlargement (Beebo et al., 2009).  650 

  651 

Vacuolar size and its impact on cell size control 652 

The size of the vacuole correlates with cell size in plants, implying that vacuoles are 653 

involved in cell size determination (Owens and Poole 1979; Berger et al., 1998; Löfke et 654 

al., 2013; Dünser and Kleine-Vehn, 2015). Comparisons of whole-cell 3-D reconstructions 655 

in the meristem and elongation zone show that the cellular space occupied by the vacuole 656 

gradually increases during cellular elongation, while the cytoplasmic volume remains 657 

relatively constant. Therefore, the space-filling function of vacuoles enables rapid cell 658 

expansion in a metabolically cost-effective way by obviating the need for considerable de 659 

novo production of cytosolic content (Dünser and Kleine-Vehn, 2015; Dünser et al., 2019) 660 

(Figure 5B). Vacuolar size is controlled by the phytohormone auxin, which restricts the 661 

rate of cellular expansion (Löfke et al., 2015). Auxin interferes with the delivery and fusion 662 
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of vesicles to the tonoplast, as well as with actin/myosin-dependent constriction of the 663 

vacuole, contributing to the volume of the vacuole and its cellular occupation (Löfke et al., 664 

2015; Scheuring et al., 2016; Kaiser et al., 2019). A cell wall sensing mechanism allows 665 

for the alignment of cell wall acidification/loosening with intracellular vacuole expansion, 666 

consequently ensuring cytosol homeostasis required for rapid cell expansion (Dünser et 667 

al., 2019; reviewed in Herger et al., 2019). 668 

 669 

Multiple cargos and multiple trafficking routes towards the vacuole 670 

The vacuolar membrane is a highly connected part of the endomembrane system that 671 

receives cargos and membrane from various trafficking routes. Anterograde vacuolar 672 

cargo sorting to the vacuole occurs early in the secretory pathway, at the level of the ER 673 

and the Golgi apparatus, and includes cargo binding to vacuolar sorting receptors. Upon 674 

reaching the TGN, cargo proteins are typically released, and the vacuolar sorting 675 

receptors are recycled back to the Golgi and the ER (Künzl et al., 2016), although 676 

vacuolar storage proteins in dense vesicles may already be sorted at the cis-cisternae of 677 

the Golgi (Hillmer et al., 2001). 678 

 679 

Multiple trafficking routes from the TGN to the vacuole exist, including delivery via PVCs 680 

in a RAB5 and RAB7-dependent manner as well as through clathrin-coated vesicles, 681 

which are formed in an adaptor protein complex-dependent fashion (Cui et al., 2014; 682 

Ebine et al., 2014; Singh et al. 2014; Heinze et al. 2020; Feraru et al., 2010; Zwiewka et 683 

al., 2011) (Figure 5A). Notably, two of the most abundant tonoplast proteins, the vacuolar 684 

H+-ATPase VHA-a3 and the vacuolar H+-pyrophosphatase AVP1/VHP1, completely 685 

bypass the PVC and/or Golgi trafficking route and are delivered to the vacuole via ER-686 

derived provacuoles (Viotti et al. 2013). 687 

 688 

The vacuole is the endpoint of the endocytic pathway, through which ubiquitylated 689 

membrane proteins are likely directed to sub-compartments of the TGN. These sub-690 

compartments mature into or transit towards the PVC (Scheuring et al., 2011). 691 

 692 
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The incorporation of PVCs, AP1-, AP4-, and AP-3/RAB5 vesicles, provacuoles, small 693 

vacuoles, and autophagosomes into the central vacuole requires membrane tethering, 694 

and finally membrane fusion. Recent findings confirm that class c core vacuole/endosome 695 

tethering (CORVET) and homotypic fusion and protein sorting (HOPS) complexes are 696 

involved in mediating tethering events for different vacuolar transport pathways in plants. 697 

They ultimately activate the vacuolar soluble N-ethylmaleimide-sensitive-factor 698 

attachment receptor (SNARE) complex, which selectively catalyzes the fusion of adjacent 699 

membranes (Takemoto et al., 2018; Ebine et al., 2008; Uemura et al., 2010). 700 

 701 

Open questions about vacuolar functions 702 

Due to its multifunctional roles, the vacuole needs to process multiple and possibly 703 

conflicting information. As such, it is a central integrative signaling hub for plant cells. Very 704 

little is known about how its functions evolved over time. Evolutionary analysis could shed 705 

further light on this and could also tackle some conceptual questions on vacuolar 706 

biogenesis. 707 

 708 

The multitude of trafficking pathways reflects the plethora of cargoes that need to traffic 709 

independently to the vacuole; these processes have been subject to intense study, 710 

leading to our quite detailed understanding. On the other hand, mechanisms that control 711 

the dimension of the vacuole and its contribution to the plant-specific lifestyle are less well 712 

understood. We don’t yet understand how plant cells monitor the size of the vacuole, 713 

which seems especially challenging considering the dazzling complexity of membrane 714 

flow towards the vacuole and the dynamic housekeeping processes that the vacuole 715 

coordinates.  716 

 717 

The control of vacuole size is not only crucial for its role in rapid cell expansion but also 718 

cell division, if only because the vacuole can physically occupy the location specified for 719 

cell plate formation. Formative, asymmetric cell divisions that initiate distinct cell fates 720 

require the dedicated control of intracellular space and nuclear migration. Therefore, it is 721 

not surprising that cells undergoing formative/asymmetric cell divisions contain small, 722 

fragmented vacuoles (as seen in lateral root founder cells) or polarized vacuoles (as seen 723 
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in zygotes (Jansen et al., 2012; Kimata et al., 2019; Matsumoto et al., 2021). Interestingly, 724 

the steric control of vacuolar shape during cell division or nuclear migration is somewhat 725 

reminiscent of statolith sedimentation in gravitropic shoots, which also requires constant 726 

reshaping of the central vacuole (Kato et al., 2002).  727 

 728 

It is apparent that a feedback-based, dynamic remodeling of the vacuole is required to 729 

ensure basic cellular functions, but the underlying mechanisms are largely unknown. 730 

These open questions ensure that research on vacuoles will continue to amaze us in the 731 

future. 732 

 733 

 734 

LIPID DROPLETS: SPECIALIZED SUBCELLULAR HYDROPHOBIC 735 

COMPARTMENTS 736 

 737 

(Written by Kent Chapman) 738 

 739 

Like all cells, plant cells accumulate storage lipids in their cytoplasm as discrete LDs, 740 

most often consisting of a hydrophobic core of non-bilayer forming lipids such as 741 

triacylglycerols (TAGs) or sterol esters surrounded by an emulsifying monolayer of 742 

phospholipids (Pyc et al., 2017a; Huang, 2018; Ischebeck et al., 2020). Although less 743 

commonly considered, rubber particles of rubber-producing plant species with a 744 

polyisoprenoid hydrophobic core share the same overall structure (Yamashita and 745 

Takahashi, 2020). This thermodynamically stable structure was originally observed in 746 

transmission electron microscopy (TEM) micrographs and described by various terms 747 

such as lipid bodies, oil bodies, spherosomes, or oleosomes (Wanner and Theimer, 748 

1978). However, the contemporary, unifying terminology of “lipid droplets” emphasizes 749 

the evolutionary conservation of this compartment across kingdoms of life where there 750 

are increasing reports of functions beyond the efficient storage of carbon (Lundquist et 751 

al., 2020).  752 

 753 
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In plants, LDs are most commonly associated with oilseeds and oleaginous fruits, where 754 

they compartmentalize the well-known “vegetable oils” (Chapman et al., 2012). However, 755 

LDs are present in essentially all cell types in plants, ranging from a few LDs per cell in 756 

leaves to thousands of LDs per cell in seeds. Because the most abundant LD proteins in 757 

seeds—oleosins—are not produced in most plant cell types, recent efforts to identify LD 758 

proteins through proteomics approaches in non-seed tissues (Horn et al., 2013; Brocard 759 

et al., 2017; Kretzschmar et al., 2018; Fernandez-Santos et al., 2020) have expanded the 760 

inventory of LD proteins in plant cells. These proteins and their partners have begun to 761 

suggest previously unrecognized participants in LD formation, stability, turnover, and 762 

functions. 763 

 764 

Among the recently recognized LD proteins are the so-called LDAPs (LIPID DROPLET- 765 

ASSOCIATED PROTEINs), which share homology with small rubber particle proteins 766 

from rubber producing plants. LDAPs were identified as prominent proteins in purified 767 

LDs isolated from avocado (Persea americana) mesocarp (Horn et al., 2013) and have 768 

since become appreciated for their widespread occurrence throughout the plant kingdom 769 

(Gidda et al., 2016; Brocard et al., 2017; de Vries and Ischebeck, 2020) as well as for 770 

their induction by drought stress (Kim et al., 2016). The LDAPs are relatively small 771 

proteins without extended hydrophobic regions, and they have been shown to localize 772 

specifically to the LD surface, perhaps through their extensive amphipathic helices. 773 

Screens for potential protein interactors, which might serve as protein recognition sites 774 

for LDAPs on the organelle surface, identified the protein LDIP (LDAP-INTERACTING 775 

PROTEIN), which also is widely distributed in the plant kingdom (Pyc et al., 2017b; Coulon 776 

et al., 2020) (de Vries and Ischebeck, 2020). LDAPs and LDIP are expressed in both 777 

seed and non-seed tissues of plants and are suspected of playing broader roles in 778 

compartmentalization of neutral lipids in cells beyond those found in seed tissues.  779 

 780 

Another recently identified LD protein is the PLANT UBX DOMAIN-CONTAINING 781 

PROTEIN10 (PUX10). PUX10 localizes to LDs through a hydrophobic polypeptide 782 

sequence and recruits the AAA-type ATPase CELL DIVISION CYCLE48 (CDC48) protein 783 

to the LD surface (Deruyffelaere et al., 2018; Kretzschmar et al., 2018). This interaction 784 
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is believed to support the selective extraction of LD surface proteins, such as oleosins 785 

and LDAPs, for their ubiquitin-mediated protein degradation. This LD-associated 786 

degradation pathway likely operates in all cells of plants to repurpose the surface and/or 787 

contents of the LD compartment during development or in response to environmental 788 

stresses. 789 

  790 

LD formation at the ER 791 

Like in most eukaryotes, LD formation in plant cells originates in the ER where the 792 

enzymes for storage lipid assembly are present (Figure 6). Ultrastructural studies 793 

frequently reveal intimate connections of LDs with the ER (Figure 6B) (Herman, 2009; 794 

Brocard et al., 2017), which can also be captured by confocal fluorescence laser scanning 795 

microscopy (Figure 6A). The process of LD proliferation can be capitulated at the 796 

subcellular level in Nicotiana benthamiana cells. In these cells, LDs are normally low in 797 

abundance, and the transient expression of cDNAs encoding proteins implicated in LD 798 

formation can readily be studied, such as the transcription factor LEAFY COTYLEDON 2 799 

(LEC2), which is preferentially expressed in developing seeds (Figure 6A). A transient 800 

system for LD studies also has been developed using tobacco pollen tubes (Muller et al., 801 

2017), which has been particularly useful for protein localization studies due to the large 802 

number of LDs normally present in these cells. 803 

 804 

Existing models for LD formation suggest that newly synthesized TAGs aggregate and 805 

form foci or “lipid lens” structures between the two leaflets of the ER bilayer (Figure 6C) 806 

(Pyc et al., 2017a). An oligomeric protein complex comprising SEIPIN subunits in the ER 807 

bilayer coordinates these TAG foci as they grow (Chapman et al., 2019). SEIPIN proteins 808 

direct a bulge of newly accumulating neutral lipids to emerge into the cytoplasm covered 809 

with a monolayer of ER-derived phospholipid. Unlike fungi and metazoans, plants have 810 

multiple genes encoding SEIPIN isoforms (Cai et al., 2015). In Arabidopsis, SEIPIN1 is 811 

expressed mostly in seed and seedling tissues, whereas SEIPIN2 and SEIPIN3 are 812 

expressed in essentially all issues. While loss-of-function mutants in a single SEIPIN gene 813 

in Arabidopsis resulted in negligible phenotypes, double and especially triple seipin 814 

mutants showed dramatic cellular disruptions in normal LD formation (Taurino et al., 815 
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2018). Seeds and pollen of sei1 sei2 sei3 mutants accumulated large aberrant-shaped 816 

LDs, sometimes observable in the nucleus and ER lumen in addition to the cytoplasm. 817 

These results indicate that SEIPINs play critical and partially redundant roles in the 818 

normal formation of LDs in plant cells. Structural models based on homology with known 819 

structures of Drosophila and human SEIPIN suggest that the three Arabidopsis SEIPINS 820 

can form homo-oligomeric structures with different numbers of subunits (Chapman et al., 821 

2019), but further work is required to understand the functional interactions of the three 822 

SEIPIN proteins in plant cells, their potential for hetero-oligomeric interactions, as well as 823 

their partners in LD biogenesis. 824 

 825 

The loss-of-function of two other Arabidopsis genes led to similar, large and aberrant LD 826 

phenotypes in seeds, reminiscent of seipin mutants. These two genes encode VESICLE-827 

ASSOCIATED MEMBRANE PROTEIN-ASSOCIATED PROTEIN 27-1 (VAP27-1) and 828 

LDIP, respectively, which were both shown to interact with SEIPINs and with LDs (Pyc et 829 

al., 2017b; Greer et al., 2020). In other work, higher order oleosin mutants also displayed 830 

aberrant formation of LDs during early seed development, which resulted from changes 831 

in the fusion dynamics of very small LDs, not necessarily during LD formation at the ER 832 

(Miquel et al., 2014). LDAPs also occur in seeds but at lower amounts than oleosins 833 

(Kretzschmar et al., 2018). Finally, while LDAPs are interactors of LDIP (Pyc et al., 834 

2017b), their loss-of-function in ldap mutants did not result in dramatic alterations of LD 835 

morphology in seeds (Gidda et al., 2016), although there may have been some increase 836 

in LD size in the leaves of ldap knockdown mutants (Brocard et al., 2017). Future work 837 

will be required to piece together the mechanistic associations between SEIPINs, LDIP, 838 

VAP27-1, oleosins, LDAPs and other LD proteins; nevertheless, results to date support 839 

the notion that these proteins play cooperative roles in the cellular process of LD formation 840 

in plant cells (Greer et al, 2020; Pyc et al., 2021). 841 

  842 

Engineering the LD compartment 843 

Because of their high energy density and caloric value, LDs have become a target 844 

compartment for metabolic engineering strategies to overproduce storage lipids in the 845 

vegetative parts of plants. This process has met with remarkable success, leading to 846 

D
ow

nloaded from
 https://academ

ic.oup.com
/plcell/advance-article/doi/10.1093/plcell/koab247/6388043 by C

N
R

S user on 11 O
ctober 2021



 

30 

tobacco plants with lipid yields from their leaves equivalent to oil yields from oilseed crops. 847 

This overall engineering process has been described as the “push, pull, and protect” 848 

concept for the efficient production and packaging of storage lipids in plant tissues 849 

(Vanhercke et al., 2017; Vanhercke et al., 2019). Apparently, the accumulation of lipids 850 

in leaves is at the expense of transient starch (Chu et al., 2020), illustrating a plasticity in 851 

leaves for carbon storage that may ultimately be exploited for bioenergy and/or feed 852 

energy-densification applications. 853 

 854 

In addition to bioenergy applications, LDs offer a stable compartment for the 855 

sequestration of various hydrophobic compounds. As such, several recent reports 856 

indicate that manipulation of the LD machinery can be exploited for the subcellular 857 

storage of secondary metabolites. For example, (Sadre et al., 2019) engineered the 858 

accumulation of sesquiterpenes (patchoulol) and diterpenes (abetadiene) into 859 

cytoplasmic LDs. Elsewhere, the expression of lipogenic proteins from mouse 860 

dramatically elevated LD levels in N. benthamiana leaves and supported the increased 861 

accumulation of the sesquiterpene phytoalexin, capsidiol, along with TAGs (Cai et al., 862 

2019). With the preponderance of bioactive hydrophobic secondary metabolites, these 863 

studies illustrate the utility of engineering the cytoplasmic LD compartment in plants as a 864 

repository for additional high-value isoprenoids in the future. 865 

  866 

Future prospects for LD biology 867 

In the last decade, increasing attention on cytoplasmic LDs has revealed a growing 868 

inventory of proteins that support the formation, stability, and turnover of this compartment 869 

in plant cells. Some proteins appear to have specific plant lineages, while others are 870 

conserved across kingdoms. The identification of this LD machinery will support a 871 

mechanistic examination of the interplay of these and other proteins in LD biogenesis, 872 

both in oilseeds and in non-seed tissues of plants. In addition, functions beyond neutral 873 

lipid storage continue to be revealed for LDs in different plant cell types, including as a 874 

reservoir for membrane lipid remodeling (Xu and Shanklin, 2016), a platform for the 875 

production of lipophilic signals (Shimada et al., 2014; Fernandez-Santos et al., 2020), and 876 

responses to environmental stress (Yang and Benning, 2018) (Lu et al., 2020). Finally, 877 
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an improved understanding of the cellular processes for LD formation, neutral lipid 878 

deposition, and LD stability will accelerate and expand promising applications for lipid 879 

engineering. 880 

 881 

 882 

THE DYNAMIC NATURE OF PEROXISOME STRUCTURES, ABUNDANCE, AND 883 

SUBCELLULAR INTERACTIONS 884 

 885 

(Written by Bethany Zolman) 886 

 887 

Peroxisomes compartmentalize diverse oxidative reactions, allowing metabolic, 888 

signaling, and detoxification roles to be carried out while limiting the potential for damage 889 

(Kao et al., 2018; Pan et al., 2020). Peroxisomes are a closed system, permeable only to 890 

small (300-400 Da) molecules (Charton et al., 2019; Plett et al., 2020). Membrane 891 

transporters import lipid substrates and ATP, NAD+, and CoA cofactors into peroxisomes 892 

(Charton et al., 2019; Plett et al., 2020), whereas enzymes are imported by cytosolic 893 

receptors that recognize one of two Peroxisomal Targeting Signals (PTS1/PTS2; 894 

(Reumann and Chowdhary, 2018; Pan et al., 2020). Plant peroxisomes are indispensable 895 

during early development, when seedlings rely on lipid breakdown prior to photosynthetic 896 

initiation (Graham, 2008). They are also crucial for photorespiration in leaf cells and 897 

reactive oxygen species (ROS) and nitrogen species metabolism throughout 898 

development and under changing conditions (Del Rio and Lopez-Huertas, 2016; Kao et 899 

al., 2018; Corpas et al., 2020; Pan et al., 2020; Su et al., 2020). These organelles are 900 

essential for life in all eukaryotes and have many evolutionarily conserved pathways and 901 

proteins (Gabaldon, 2010).   902 

 903 

Peroxisome abundance varies based on cell type, developmental stage, and 904 

environmental conditions. Although peroxisome abundance has not been characterized 905 

systematically, 10-100 peroxisomes per cell have been observed (for example, (Germain 906 

et al., 2001; Orth et al., 2007; Lingard et al., 2008; Kim et al., 2013; Shibata et al., 2013). 907 

Peroxisome numbers increase in response to stress, including salt (Mitsuya et al., 2010; 908 
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Fahy et al., 2017; Frick and Strader, 2018), light (Desai and Hu, 2008), and cadmium 909 

stress (Rodríguez-Serrano et al., 2016; Terron-Camero et al., 2020), as well as prior to 910 

cell division (Lingard et al., 2008). Peroxisome division occurs via fission or the budding 911 

of pre-peroxisomes from the ER (Agrawal and Subramani, 2016; Kao et al., 2018; Pan et 912 

al., 2020; Su et al., 2020). Peroxisomes can be degraded via pexophagy, an organelle-913 

specific type of autophagy (Young and Bartel, 2016; Su et al., 2019), as part of a natural 914 

turnover (Kao et al., 2018; Yamauchi et al., 2019) or when excess organelles are not 915 

necessary following stress (Calero-Muñoz et al., 2019) or developmental transitions (Kim 916 

et al., 2013).  917 

 918 

Peroxisomes are small, measuring 1-2 𝜇m in diameter in Arabidopsis (Rinaldi et al., 2016) 919 

but with notable variability. Larger structures can be visualized 3-4 days post imbibition 920 

(Rinaldi et al., 2016), with some peroxisomes over 10 𝜇m in diameter in 4-day-old 921 

seedlings. This expansion is temporary and is thought to occur following an influx of seed-922 

storage lipids (Rinaldi et al., 2016). Although their morphology can differ, peroxisomes 923 

are primarily spherical.  924 

 925 

Since their identification, peroxisomes have been considered simple organelles, with 926 

typical definitions highlighting their small size, lack of a genome, and a single membrane 927 

surrounding a defined matrix. However, recent investigations by Wright and Bartel (2020) 928 

have led to an enhanced description of peroxisomes, one in which extensive internal 929 

membranes are present. The authors combined two high-sensitivity fluorescence 930 

reporters: an mRuby3-PTS to visualize the peroxisome interior and mNeonGreen tagged 931 

with an mPTS membrane peroxisomal targeting signal to label the membrane (Figure 7A-932 

B) (Wright and Bartel, 2020). This combination revealed the unexpected presence of 933 

internal structures, coined intralumenal vesicles (ILVs).  934 

 935 

In 3 to 4-day-old Arabidopsis seedlings, membrane reporters localized around these 936 

structures, but also within the interior of the organelles (Wright and Bartel, 2020). Many 937 

peroxisomes contained numerous internal vesicles, which varied in size (Figure 7A-B). 938 

As discussed above, 5-day-old seedlings showed expanded organelles that rapidly 939 
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decreased in size. These size changes were concurrent with increasing ILV and 940 

internalized membrane contents. By 8 days, the seedlings continued to show membrane 941 

reporters within the peroxisome lumen, with some images showing membrane signals 942 

throughout the entire structure. Following this process, dense packing likely occurred over 943 

time that precluded the observation of individual vesicles, such that the membrane 944 

reporter appeared uniform within the lumen at this age (Wright and Bartel, 2020). These 945 

seedling experiments suggest how peroxisomes mature, beginning as larger, variable 946 

structures but stabilizing at a smaller size as membranes are internalized and lipid 947 

metabolism slows. 948 

 949 

These microscopic images led to an enhanced understanding of peroxisomal structure: 950 

peroxisomes have an outer membrane surrounding the lumenal space that contains 951 

imported matrix proteins, as well as a dynamic number of membrane-bound vesicles clear 952 

of matrix proteins (Figure 7A-B) (Wright and Bartel, 2020). Indeed, two proteins with 953 

unique peroxisomal localization (SNOWY COTYLEDON3/UNKNOWN PROTEIN9; 954 

(Albrecht et al., 2010; Quan et al., 2013) accumulated within a subset of ILVs that lacked 955 

matrix proteins (Wright and Bartel, 2020). This apparent segregation yields at least three 956 

distinct spaces within peroxisomes, potentially housing unique proteins, substrates, 957 

cofactors, and/or environments. 958 

 959 

Mutants with disrupted β-oxidation showed alterations in ILV number, size, composition, 960 

and orientation, suggesting that β-oxidation activity is required for inner membrane 961 

formation (Wright and Bartel, 2020). Long-chain seed storage lipids are insoluble; Wright 962 

and Bartel (2020) hypothesized that membrane internalization may reduce the solubility 963 

challenges associated with lipid mobilization in an aqueous matrix. Lipids could be 964 

degraded from the membrane, with the subsequent release and degradation of the 965 

shorter, more soluble substrates, leading to the reduced organelle size common in older 966 

seedlings.      967 

 968 

Association with other organelles 969 
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Beyond this structural understanding, imaging and biochemical studies have revealed the 970 

physical associations of peroxisomes with LDs, plastids, mitochondria, and the ER 971 

(Figure 7C; (Shai et al., 2016) (Oikawa et al., 2019). Peroxisomal enzymes catalyze 972 

specific reactions within metabolic pathways, which often extend to two (or more) 973 

subcellular spaces. These organelle interactions are dynamic: peroxisomes in seedlings 974 

associate with LDs, for instance, whereas peroxisomes in leaves associate with 975 

chloroplasts and mitochondria (Oikawa et al., 2019). Such interaction points enhance the 976 

transfer efficiency of pathway intermediates. These sites also may facilitate the transfer 977 

of hydrogen peroxide and other reactive species from other organelles to peroxisomes 978 

for sequestration and degradation (Shai et al., 2016; Su et al., 2019). 979 

 980 

As detailed above, many plant species contain LDs that store TAGs for energy reserves 981 

(Esnay et al., 2020). Peroxisome-LD association facilitates the efficient transfer of stored 982 

material for metabolism via fatty acid β-oxidation and the glyoxylate cycle. Extended 983 

interactions and peroxisomal clusters in proximity to LDs occur in β-oxidation mutants 984 

(Hayashi et al., 2001; Rinaldi et al., 2016), while exogenous sucrose reduces this 985 

association (Cui et al., 2016), suggesting that such interactions are critical during 986 

development and are mediated by cellular requirements for lipid mobilization.  987 

 988 

Peroxisomes and chloroplasts can form specific pairs that remain intact over time 989 

(Oikawa et al., 2015). Changes in peroxisome shape expand the surface area to increase 990 

chloroplast interactions. In the light, peroxisomes extend into an elliptical shape versus a 991 

spherical shape in darkness. Tethering factors connecting peroxisomes and chloroplasts 992 

may facilitate this interaction (Oikawa et al., 2015; Gao et al., 2016), potentially including 993 

the PEROXIN10 (PEX10) RING finger protein (Schumann et al., 2003; Sparkes et al., 994 

2003; Schumann et al., 2007). A dominant-negative PEX10 line had clustered 995 

peroxisomes that did not associate with chloroplasts; this line had phenotypes similar to 996 

photorespiration mutants (Schumann et al., 2007), which is consistent with a role for 997 

organelle association in efficient metabolic transfer.  998 

 999 
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Mitochondria also appear in close proximity to both peroxisomes and chloroplasts in the 1000 

light, which is consistent with their interactive metabolic roles (Oikawa et al., 2015). 1001 

Peroxisomes associate with mitochondria under stress conditions as well; increasing 1002 

interactions are seen in cells exposed to high ROS levels and might be important for ROS 1003 

neutralization (Jaipargas et al., 2016; Mathur, 2021). 1004 

 1005 

Finally, peroxisomes show a close proximity with the ER (Barton et al., 2013; Oikawa et 1006 

al., 2019). Interestingly, one of the two mPTS signals used by Wright and Bartel (2020) 1007 

revealed accumulation in peroxisomes and reticular membranes thought to be ER. This 1008 

finding is consistent with the hypothesis that the membrane protein was trafficked through 1009 

the ER or has a dual function at both sites (Wright and Bartel, 2020). 1010 

 1011 

Another shape change in peroxisomes is the formation of thin organelle protrusions 1012 

known as peroxules (Mathur, 2021). These structures are up to 15 𝜇m in length, 1013 

dramatically increasing the surface area (Sinclair et al., 2009; Barton et al., 2013). The 1014 

formation of these organelle extensions is transient and dynamic (Mathur, 2021). The 1015 

interactions between organelles described above may be mediated by peroxules, 1016 

including the proposed interactions with LDs (Thazar-Poulot et al., 2015), chloroplasts 1017 

(Schumann et al., 2007), mitochondria (Jaipargas et al., 2016), and the ER (Sinclair et 1018 

al., 2009). Extended structures are seen following H2O2, UV-A, and hydroxyl radical 1019 

stress, but retract when stress is minimized (Sinclair et al., 2009). In addition, elongations 1020 

are common during the constriction and fission steps of peroxisome division (Sinclair et 1021 

al., 2009; Barton et al., 2013). Cadmium induces ROS production and leads to peroxule 1022 

formation that results in division to increase peroxisome numbers (Rodríguez-Serrano et 1023 

al., 2016). These ROS-induced increases in peroxule frequency led to the hypothesis that 1024 

these extensions facilitate neutralization to prevent or reduce damage (Sinclair et al., 1025 

2009; Barton et al., 2013; Rodríguez-Serrano et al., 2016). Separately, peroxule-1026 

mediated contacts might assist in protein localization. The SUGAR-DEPENDENT1 1027 

(SDP1) lipase (Eastmond, 2006) localizes to peroxisomal membranes and then the LD, 1028 

a transition concurrent with peroxule development (Thazar-Poulot et al., 2015).  1029 

 1030 
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The refined visualization of peroxisome structures using advanced microscopy 1031 

techniques and our increasing understanding of organelle interactions have led to an 1032 

enhanced view of peroxisomes compared to the previously simple model. Many open 1033 

questions about peroxisome biology remain. What is the mechanism for (and importance 1034 

of) dynamic membrane changes for peroxisomes in adult tissues and under changing 1035 

environmental conditions? How do peroxisome substructures form, and how are 1036 

membrane and matrix proteins sorted to create unique environments or to provide specific 1037 

functionality? Understanding such details about peroxisome structures, as well as the 1038 

factors promoting and mediating peroxisome interactions with other organelles, will 1039 

continue to increase our understanding of these dynamic organelles.  1040 

 1041 

 1042 

PLANT MITOCHONDRIA 1043 

 1044 

(Written by Shin-ichi Arimura) 1045 

 1046 

In plants, mitochondria provide a large portion of the ATP in the cytosol through oxidative 1047 

phosphorylation. In addition, these organelles are the sites of metabolism of some amino 1048 

acids, nucleic acids, lipids, and plant hormones. Plant mitochondria also control redox 1049 

balance when photosynthesis is on, off, or fluctuating (Noguchi and Yoshida, 2008; 1050 

Finkemeier and Schwarzlander, 2018) and play roles in cellular signaling (Huang et al., 1051 

2016; Welchen et al., 2021) and in resistance to diseases (Fuchs et al., 2020). In 1052 

agriculture, cytoplasmic male sterility, which is caused by genes encoded in the 1053 

mitochondrial genome, is used for the production of F1 hybrid seeds in diverse crops, 1054 

including vegetables. The fine structure and dynamics of plant mitochondria are briefly 1055 

reviewed here. 1056 

 1057 

Mitochondria contain two lipid bilayers that form the outer and inner membrane. Some 1058 

parts of the inner membrane are invaginated to form sacs, called cristae, which increase 1059 

the area of oxidative phosphorylation complexes. Five diverse eukaryotic-conserved 1060 

complexes are embedded in the cristae membrane. By contrast, plant-specific proteins 1061 
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(alternative oxidases and extra NDH and NDPH dehydrogenases) for alternative 1062 

respiration pathways mainly reside in the non-cristae parts of the inner-membrane 1063 

(Schwarzlander and Fuchs, 2017). Plant ATP synthase dimers (complex V) are located 1064 

in the cristae membrane, where they contribute to its curvature (Zancani et al., 2020. 1065 

Complexes I to V play roles in oxidative phosphorylation. Some of these complexes form 1066 

super-complexes for functional efficiency and to regulate oxidative phosphorylation 1067 

(Braun, 2020). Protein-protein interactions and metabolite channeling are also observed 1068 

in the TCA cycle in the matrix (Zhang, 2017). Additionally, glycolysis enzymes in the 1069 

cytosol dynamically associate on the outer surfaces of mitochondria (Giege et al., 2003; 1070 

Graham et al., 2007), probably to more efficiently transport metabolites. 1071 

 1072 

The mitochondrial outer membrane contains the most abundant protein in plant 1073 

mitochondria, the Voltage-Dependent Anion Channel (VDAC1). A single mitochondrion 1074 

contains 40,000 VDACs out of a total of 1.4 million proteins (Fuchs et al., 2020). The outer 1075 

membrane does not just encapsulate the inner membrane but also sometimes extends 1076 

into the cytosol and other organelles (without extending the inner-membrane); 1077 

occasionally, the extensions are pinched off to form small vesicle-like structures 1078 

(Yamashita et al., 2016); Figure 8A). In mammals, mitochondria-derived vesicles that do 1079 

not contain inner membranes are involved in the transport of specific proteins to 1080 

peroxisomes, endosomes, and multivesicular bodies (Sugiura et al., 2014) and in the 1081 

biogenesis of peroxisomes (Sugiura et al., 2017). 1082 

 1083 

Each Arabidopsis leaf cell contains 300-450 mitochondria. Many plant mitochondria move 1084 

along actin microfilaments at 0.05 - 3 µm/sec (Doniwa et al., 2007, Oikawa et al., 2021). 1085 

This speed is approximately an order of magnitude faster than that of mammalian and 1086 

yeast mitochondria, which mainly move along microtubules. Some plant mitochondria 1087 

stop and wiggle, as if they were anchored to the cytoskeleton or other organelles, such 1088 

as plastids and peroxisomes (Jaipargas et al., 2016; Oikawa et al., 2021). Moving plant 1089 

mitochondria can change their speed and can also change their shapes from granular to 1090 

linear to attach to other organelles in response to the presence of sucrose or light 1091 

(Jaipargas et al., 2016). A single plant cell can contain mitochondria with different shapes 1092 
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(Jaipargas et al., 2015), different DNA contents (Figure 8B) (Arimura et al., 2004b; 1093 

Preuten et al., 2010), and transiently fluctuating membrane potentials (Schwarzlander et 1094 

al., 2012). In addition, as shown in Figure 8C, differently groups of mitochondria stained 1095 

in different colors in a cell achieve a unified color in two hours, indicating that mitochondria 1096 

undergo frequent fusion and fission, resulting in the sharing of internal proteins. 1097 

Mitochondria involved in such dynamic sharing of materials in a plant cell are referred to 1098 

as a dynamic syncytium (Lonsdale et al., 1988), and the collective mitochondria in a cell 1099 

are thought to exist as a discontinuous whole (Logan, 2017). Fusion of mitochondria 1100 

results in the formation of elongated and/or branched mitochondria in some meristematic 1101 

tissues, such as shoot apices (Segui-Simarro and Staehelin, 2006), germinating seeds 1102 

(Paszkiewicz et al., 2017), and dedifferentiating protoplasts (Sheahan et al., 2005; Rose 1103 

and McCurdy, 2017). 1104 

 1105 

Mitochondrial fission is achieved by dynamin-related proteins that are well-conserved in 1106 

eukaryotes (e.g. DRP3A and 3B in Arabidopsis (Arimura and Tsutsumi, 2002; Arimura et 1107 

al., 2004a; Arimura et al., 2004b; Fujimoto et al., 2009), Figure 8D), which polymerize to 1108 

form ring-like structures outside mitochondria (Ingerman et al., 2005). Plant-specific 1109 

ELM1, an outer surface protein, localizes DRP3s from the cytosol to the mitochondria 1110 

(Arimura et al., 2008). An outer-membrane embedded protein that is conserved in 1111 

eukaryotes (Fis1) functions as a molecular adapter for DRP in budding yeast (Okamoto 1112 

and Shaw, 2005). Fis1 had been thought to carry out similar functions but is now thought 1113 

to play only a rather minor and indirect role in mitochondrial fission in both mammals 1114 

(Otera et al., 2010; Giacomello et al., 2020) and plants (Nagaoka et al., 2017; Arimura, 1115 

2018). Other factors may be involved in plant mitochondrial fission, such as factors 1116 

involved in cold-induced fission (Arimura et al., 2017) or factors that are independent of 1117 

DRP and specific to Brassicaceae (Aung and Hu, 2011). On the other hand, no orthologs, 1118 

factors, or molecular mechanisms are known with certainty to be involved in mitochondrial 1119 

fusion in plants. However, FRIENDLY (FMT) is thought to mediate inter-mitochondrial 1120 

association before mitochondrial fusion because in Arabidopsis fmt mutants, 1121 

mitochondria gather together (Logan et al., 2003) but do not fuse (El Zawily et al., 2014). 1122 

 1123 
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Mitochondrial-specific autophagy (mitophagy) has been extensively studied in mammals 1124 

and yeasts (Onishi et al., 2021), where it is involved in mitochondrial quality control. In 1125 

these organisms, degraded mitochondria with low membrane potential could not fuse with 1126 

other “healthy” mitochondria, but they were specifically recognized, captured, and 1127 

engulfed by autophagosome membranes (Figure 8E). The engulfed mitochondria were 1128 

transported to the vacuole to be digested to prevent accidental ROS generation and/or 1129 

other negative effects. Therefore, mitophagy, fission, and fusion are thought to function 1130 

as a quality control system for all the mitochondria in a cell (Twig et al., 2008). 1131 

Mitochondrial-specific degradation in Arabidopsis has also been observed in several 1132 

situations, including during leaf senescence (Broda et al., 2018), during the greening of 1133 

cotyledons (Ma et al., 2021), after UV-irradiation (Nakamura et al., 2021), and after 1134 

treating the inner membrane with ionophores (Ma et al., 2021). Orthologs of factors 1135 

specific to mitophagy in mammals and yeasts have not yet been found in plant genomes, 1136 

although FMT was recently reported to be involved in mitophagy in Arabidopsis (Ma et 1137 

al., 2021). 1138 

 1139 

Super resolution microscopy is a promising new technique that can clarify the internal 1140 

structures of mitochondria, with their diverse physiology and functions, in more detail. In 1141 

addition, recent trials to understand the types and numbers of molecules in an average 1142 

single mitochondrion (Fuchs et al., 2020) or in a hypothetical single mitochondrion (Moller, 1143 

2016) will hopefully give rise to the next stage of analysis of the exact number of individual 1144 

mitochondria. Such information would help uncover the actual quantitative dynamics of 1145 

molecules among diverse mitochondria underlying the functions of each cell. Until 1146 

recently, the transformation of mitochondrial genomes in multicellular plants had been 1147 

impossible, but new genome editing methods (Kazama et al., 2019; Arimura et al., 2020) 1148 

have opened the door to analyzing the functions of mitochondrial genes, as well as 1149 

regulating their expression in order to breed crops with agriculturally important 1150 

characteristics. 1151 

 1152 

CHLOROPLAST: A PLANT’S POWERHOUSE WITH TUNABLE PERFORMANCE 1153 

 1154 
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(Written by Helmut Kirchhoff) 1155 

 1156 

A unique endosymbiotic event more than 900 million years ago was the starting point for 1157 

the evolution of the chloroplast from a free-living cyanobacterial precursor (Sibbald and 1158 

Archibald, 2020). Every second, the thylakoid membrane system of a modern chloroplast 1159 

in Viridiplantae can convert energy from the sun into up to 80 million ATP and NADPH + 1160 

H+ molecules. This fuels a number of anabolic reactions localized in the chloroplast 1161 

stroma, including the synthesis of sugars, lipids/fatty acids, amino acids, nucleotides, 1162 

pigments, alkaloids, hormones, and vitamins (Kirchhoff, 2019). Furthermore, a battery of 1163 

membrane-embedded chloroplast envelope transporters makes the capacity for 1164 

photosynthetic energy transformation available to the entire cell and beyond (Weber and 1165 

Linka, 2011). In C3 plants, a typical leaf cell contains 20-100 chloroplasts in the palisade 1166 

parenchyma and 10-50 in the spongy parenchyma (Antal et al. 2013).  1167 

  1168 

Chloroplast lifecycle 1169 

During the last decade, electron tomography has provided detailed structural insights into 1170 

the morphological transitions from an undifferentiated, non-photosynthetic proplastid to a 1171 

mature chloroplast in the shoot apical meristem for illuminated shoots (Adam et al., 2011; 1172 

Charuvi et al., 2012) or via the etioplasts, with its characteristic para-crystalline 1173 

prolamellar body (Kowalewska et al., 2016). The correlation between the sequential 1174 

appearance of proteins such as photosystem I and II, light-harvesting complex II, CURT1 1175 

proteins, ATPase, protochlorophyllide oxidoreductase, and plastidial ribosomes on the 1176 

one hand and structural development of the plastid on the other hand provides a first 1177 

glimpse of the roles of particular proteins in proplastid-chloroplast differentiation 1178 

(Kowalewska et al., 2016; Liang et al., 2018a; Floris and Kuehlbrandt, 2021). Proplastid 1179 

development requires the massive import of proteins from the cytoplasm into the 1180 

chloroplast, mainly by the TOC/TIC translocase system (Aronsson and Jarvis, 2008; Ling 1181 

et al., 2012), since ~95% of chloroplast proteins are encoded in the nucleus.  1182 

 1183 

Currently, there are two major non-exclusive models describing how hydrophobic 1184 

nucleus-encoded proteins (along with lipids and pigments) that are synthesized at the 1185 
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plastid envelope membranes are transported through the aqueous stroma to reach their 1186 

thylakoid membrane destination: (1) invaginations of the inner envelope membrane/direct 1187 

contact sites with thylakoids and (2) vesicle transport (Lindquist and Aronsson, 2018; 1188 

Mechela et al., 2019). Evidence exists that the invagination/direct contact site pathway is 1189 

realized only in the proplastid-to-chloroplast transition, whereas vesicle transport seems 1190 

to be dominant in mature chloroplasts (Vothknecht and Westhoff, 2001; Andersson and 1191 

D’ormann, 2008; Lindquist and Aronsson, 2018). For the latter, the roles of typical vesicle-1192 

forming proteins such as COPI, COPII, SNARE, and VIPP1 in plastid biogenesis remain 1193 

to be determined (Mechela et al., 2019). However, for cyanobacterial VIPP1, a structure-1194 

based molecular understanding was recently achieved (Gupta et al., 2021). 1195 

 1196 

In contrast to proplastids, mature chloroplasts propagate by binary fission (Osteryoung 1197 

and Pyke, 2014; Yoshida, 2018). The plastid division machinery is made up of four 1198 

physically connected supramolecular ring structures: two outside (an outer polyglucan 1199 

plastid-dividing ring and a dynamin-related ring) and two inside the chloroplast (an inner 1200 

plastid-dividing ring and a tubulin-like FtsZ-ring beneath the inner envelope membrane). 1201 

In a concerted mechanism, the rings generate the mechanical force required for plastid 1202 

constriction and eventually division. An example of the crucial role of regulatory proteins 1203 

in plastid morphogenesis, such as the FZL-fusion protein, is visualized in Figure 9. Open 1204 

questions in the field are the composition of the inner plastid-dividing ring, how thylakoid 1205 

membranes divide, and how chloroplast division is coordinated with the division of cells 1206 

and other organelles (Osteryoung and Pyke, 2014; Yoshida, 2018).  1207 

 1208 

At the end of their lifespan, chloroplasts enter highly coordinated dismantling processes 1209 

with the goals of minimizing ROS production and recycling their abundant 1210 

macromolecules to sink tissues of the plant (Avila-Ospina et al., 2014). Strikingly, 1211 

chloroplasts hold ~80% of leaf nitrogen (Makino and Osmond, 1991), making their 1212 

recycling very valuable for plant resource management. It seems that ROS-dependent 1213 

retrograde signaling plays a key role in coordinating chloroplast degradation via multiple 1214 

breakdown pathways including chlorophagy (Woodson, 2019; Dominguez and Cejudo, 1215 

2021). Current research focuses on elucidating how particular environmental conditions 1216 
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trigger specific dismantling pathways and deciphering the corresponding signal 1217 

cascades. 1218 

  1219 

Interactions of chloroplasts with other organelles 1220 

Chloroplast metabolism is highly integrated into plant cell metabolism. Two prominent 1221 

examples of the tight functional cooperation between chloroplasts and other organelles 1222 

are photorespiration and lipid trafficking. The oxygenation of ribulose-1,5-bisphospate by 1223 

Rubisco in the chloroplast stroma can lead to a loss of up to 30% of fixed carbon (Walker 1224 

et al. 2016) and the production of cell-toxic 2-phosphoglycolate (2-PG). 2-PG is detoxified 1225 

by the photorespiratory pathway, which converts two 2-PG molecules into one molecule 1226 

of glycerate (recycled to the Calvin-Benson cycle) and CO2. Photorespiratory 1227 

metabolization of 2-PG requires the metabolic competence of three organelles: the 1228 

chloroplast, peroxisomes, and mitochondria. The efficient exchange of photorespiratory 1229 

metabolites between these three organelles is tuned and controlled by organellar 1230 

membrane transport proteins (Kuhnert et al. 2021) and the spatial interaction of the three 1231 

organelles. For example, the area of physical contact between peroxisomes and 1232 

chloroplasts increases significantly under photorespiratory conditions fostered by 1233 

changes in peroxisome shape from spherical to elliptical (Oikawa et al. 2015).  1234 

 1235 

Another intriguing example of tight organelle cooperation is lipid trafficking (Hurlock et al. 1236 

2014). Chloroplast lipids are synthesized both entirely in the chloroplast (prokaryotic 1237 

pathway) and by the cooperation between chloroplasts and the ER (eukaryotic pathway) 1238 

(Hölz and Dörmann 2019). Some plants such as pea (Pisum sativum; also known as 18:3 1239 

fatty acid plants) have lost their ability to synthesize lipids via the prokaryotic pathway, 1240 

depending entirely on the eukaryotic one (Roughan and Slack 1984, Mongrand et al. 1241 

1998). Due to their crucial roles in membrane function, integrity, and maintenance, as well 1242 

as storage (triacylglycerol) and determining the composition of extracellular hydrophobic 1243 

components (i.e. waxes), acclimative changes in chloroplastic fatty acid and lipid 1244 

composition is key for plant survival under unfavorable conditions or during plant 1245 

development (Hölz and Dörmann 2019). This plasticity of lipid composition relies heavily 1246 
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on the dynamic interaction between chloroplasts, the ER, lipid bodies, Golgi, and 1247 

mitochondria (Hurlock et al. 2014).    1248 

 1249 

Structural membrane dynamics as a means to control energy conversion 1250 

The fact that photosynthetic energy conversion has to integrate and balance significant 1251 

fluctuations in both cell metabolism (including CO2 availability) and energy input by 1252 

sunlight in an oxidizing environment calls for its strict regulation to minimize toxic ROS 1253 

production. In the last decade, a central regulatory element for tuning photosynthetic 1254 

performance in plants has been uncovered: the dynamic adjustment of lateral and 1255 

transversal geometric (grana) thylakoid dimensions that regulate electron transport, light-1256 

harvesting, and protein repair (Kirchhoff et al. 2011, Herbstova et al. 2012, Hepworth et 1257 

al. 2021). For example, changes in the vertical width of the thylakoid lumen as well as the 1258 

lateral diameter of the grana disc were reported to control the mobility of the small electron 1259 

carriers plastoquinone and the lumen-hosted plastocyanin and therefore linear electron 1260 

transport from water to ferredoxin (Kirchhoff et al. 2011, Hepworth et al. 2021). 1261 

Furthermore, lateral shrinkage of the grana diameter is beneficial for the repair of 1262 

photodamaged, grana-hosted PSII complexes, since the shrinkage makes it easier for 1263 

PSII to reach the protein repair machinery localized in distant (separated by a few hundred 1264 

nanometers) unstacked thylakoid domains (Herbstova et al. 2012). It is an open question 1265 

how reversible protein phosphorylation, physicochemical membrane properties, and 1266 

protein composition dynamics work together to control architectural thylakoid features and 1267 

subsequently energy conversion. 1268 

  1269 

Future perspectives 1270 

Over the next five to ten years, the rapid methodical and technological development of 1271 

(cryo)electron tomography (Bussi et al. 2019, Wietrzynski et al. 2020) is expected to 1272 

provide detailed new insights into chloroplast structure-function relationships not only for 1273 

the mature plastid but also for its biogenesis and dismantling. Furthermore, studying 1274 

chloroplast diversity in non-model, less commonly studies species as well as in 1275 

specialized plant tissues and organs (including transitions between different plastid types) 1276 

will gain increasing attention because it will uncover the metabolic plasticity and diversity 1277 
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of this organelle. Along these lines, current and future bioengineering and synthetic 1278 

biology tools for chloroplasts offer the potential for improving crop plants by tuning 1279 

processes such as non-photochemical quenching (Kromdijk et al. 2016) or 1280 

photorespiratory pathways (South et al. 2016, Roell et al. 2021) or for using the anabolic 1281 

competence of the plastid to employ these organelles as metabolic factories for valuable 1282 

chemicals (Bock 2021). 1283 

 1284 

 1285 

PLANT MEMBRANE CONTACT SITES: QUESTIONS FROM THE MEMBRANE 1286 

INTERFACE 1287 

 1288 

(Written by Emmanuelle Bayer, Federica Brandizzi, Yvon Jaillais, Miguel A. Botella, 1289 

Pengwei Wang, and Abel Rosado) 1290 

 1291 

Membrane contact sites: Does one definition fit all? 1292 

Membrane Contact Sites (MCS) are evolutionarily conserved structures where the 1293 

physical proximity between two or more membrane-bound organelles enables the direct 1294 

exchange of molecules and facilitates coordinated inter-organelle adaptive responses 1295 

(examples of MCS membrane proximity using TEM are shown in Figure 10A-B). Recent 1296 

advances in plant cell imaging and the development of novel genetic and molecular tools 1297 

have fueled an emerging field of research devoted to the investigation of their structural 1298 

organization, dynamics, and physiological functions. This interest is uncovering plant-1299 

specific MCS structures and molecular mechanisms, but it is also exposing some 1300 

limitations of the commonly accepted definitions and physiological functions inferred from 1301 

different model organisms. As in yeast and animal cells, the plant ER is an interconnected 1302 

organelle that establishes MCS with multiple cellular structures including the PM, 1303 

mitochondria, endosomes, peroxisomes, Golgi ,and TGN (Barton et al., 2013; Stefano et 1304 

al., 2014; Wang et al., 2014; Perez-Sancho et al., 2015; Wang et al., 2019b; Brandizzi, 1305 

2021). Unique to plants, however, are the functional interactions at ER-plastid MCS for 1306 

lipid synthesis and transport (Liu and Li, 2019), the control of intercellular communication 1307 

through PD MCS-regulated intercellular bridges (Tilsner et al., 2016), and the MCS 1308 
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activities driven by a super-continuum that encompasses the cell wall, PM, ER, and 1309 

cytoskeleton (Wang et al., 2014; Perez-Sancho et al., 2015; Zang et al., 2021). These 1310 

plant-specific features are placing MCS research in plants at the forefront of discovery, 1311 

broadening the definition of MCS beyond yeast and animal systems. 1312 

 1313 

In plants, MCS can be defined as environmentally and developmentally regulated 1314 

microdomains with an intermembrane gap as small as 3 nm in PD and an arbitrarily 1315 

defined upper limit of 80-100 nm. Plant MCS are enriched with a variety of protein-protein, 1316 

and/or protein-cytoskeleton tethering assemblies, such as those including the SYT1 and 1317 

VAP27 tethers (Zang et al., 2021; Rosado and Bayer, 2021, Figure 10C-E). These 1318 

complexes establish dynamic interactions with membrane phospholipids and/or the cell 1319 

wall and carry out essential cellular functions, including (but not restricted to) the 1320 

maintenance of membrane lipid homeostasis, cell-to-cell communication, organelle 1321 

biogenesis, autophagy, endocytosis, receptor kinase signaling, and the regulation of 1322 

Ca2+-dependent stress responses (reviewed in Perez-Sancho et al., 2016; Wang and 1323 

Hussey, 2017; Liu and Li, 2019; Petit et al., 2020; Rosado and Bayer, 2021). 1324 

 1325 

Lipid transfer at MCS: Is that what plant tethers do? 1326 

Due to their hydrophobicity, the transport of lipids between organelles relies on either 1327 

vesicle-mediated delivery mechanisms or MCS-localized lipid transport proteins (LTPs) 1328 

(Scorrano et al., 2019). Most MCS-localized LTPs contain an internal hydrophobic cavity 1329 

adapted to solubilize water-insoluble molecules (Wong and Levine, 2016), are anchored 1330 

to the ER by either transmembrane domains or stable interactions with ER-anchored 1331 

proteins (Scorrano et al., 2019), and interact with the opposing membrane, mainly through 1332 

domains that bind anionic lipids (Perez-Lara and Jahn, 2015). In animal cells or yeast, 1333 

direct lipid transport using MCS-localized LTPs may be one of the best characterized and 1334 

documented MCS functions. The lipid species transferred using this mechanism include 1335 

sterols, ceramides, phosphatidylserine (PS), phosphatidylinositol 4-phosphate (PI4P), 1336 

and diacylglycerol (DAG) (Wu et al., 2018). Similarly, in plants, the emerging view is that 1337 

MCS-localized LTPs participate in the delivery of lipids between the ER and organelles 1338 

not linked by vesicular trafficking (e.g. mitochondria and plastids) but also in the bulk 1339 
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transport of lipids between organelles connected by the secretory pathway. In a recent 1340 

landmark study, Ruiz-Lopez et al. showed that stress signals regulate the activity of two 1341 

members of the Synaptotagmin (SYT) family of LTPs at ER-PM MCS (SYT1 and SYT3) 1342 

and demonstrated their function as LTPs that transfer DAG between the PM and the ER 1343 

in vivo (Ruiz-Lopez et al., 2021). The authors propose a geometrical model where SYT 1344 

activities counteract the stress-induced build-up of conically shaped DAG at the PM and 1345 

prevent the generation of areas of negative membrane curvature that could disrupt the 1346 

stability of the PM during stress episodes. 1347 

 1348 

MCS in motion: What controls MCS plasticity and dynamics? 1349 

The molecular composition, geometry, and plasticity of inter-organelle junctions 1350 

determine their ability to integrate and respond to cellular signals. Recent studies have 1351 

provided an emerging picture in which MCS tethers do not act in isolation but instead 1352 

interact with anionic lipids and cytoskeletal elements and regulate the plasticity, function, 1353 

and dynamics of these cellular microdomains. 1354 

 1355 

Anionic phospholipids represent only a few percent of total lipids, but they are critical 1356 

biochemical and biophysical landmarks of membrane identity (Noack and Jaillais, 2020). 1357 

Within the endomembrane system, anionic phospholipids, including the 1358 

phosphoinositides (PIPs), phosphatidic acid (PA), and phosphatidylserine (PS), 1359 

determine the electrostatic potential of each membrane, which is highest at the PM, 1360 

intermediate in endosomes, and low in the ER (Platre et al., 2018; Dubois and Jaillais, 1361 

2021). In vitro or in silico data for MCS tethers such as the synaptotagmins (SYTs), 1362 

Multiple C2 domains and transmembrane region (MCTPs), and Vesicle-associated 1363 

membrane protein (VAMP)-associated proteins (VAPs) families support the notion that 1364 

anionic lipids profoundly affect the structure and function of MCSs by enabling protein-1365 

lipid interactions that regulate the association of the ER with the PM, TGN, and early 1366 

endosomes (Perez-Sancho et al., 2015; Stefano et al., 2018; Brault et al., 2019; Ruiz-1367 

Lopez et al., 2021). Interestingly, these interactions appear to be mostly non-specific, the 1368 

primary determinants being the negative charge carried by the anionic lipids and, in some 1369 

cases, the presence of Ca2+ (Schapire et al., 2008). Accordingly, electrostatic interactions 1370 
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between phosphatidylinositol-4-phosphate (PI4P) and SYT1/SYT3 underpin the 1371 

localization of SYT1/SYT3 to ER-PM MCS (Ruiz-Lopez et al., 2021), MCTP4 to PD-MCS, 1372 

(Brault et al., 2019), and the remodeling of SYT1 ER-PM MCS in response to rare-earth 1373 

elements (Lee et al., 2020). Similarly, the accumulation of phosphatidylinositol 4,5-1374 

biphosphate [PI(4,5)P2] at the PM enables interactions with SYT1 and correlates with the 1375 

rearrangement and expansion of ER-PM MCS in response to ionic stress (Lee et al., 1376 

2019). 1377 

 1378 

MCS plasticity is also controlled by components that crosslink the actin cytoskeleton at 1379 

MCS and create trapping mechanisms that influence MCS architecture and expansion. 1380 

In plants, this cross-linking seems to be carried out by a plant-specific complex that 1381 

includes the actin-associated NET3C protein and the microtubule-associated Kinesin light 1382 

chain related (KLCRs) and IQ67-Domain (IQD) proteins (Zang et al., 2021) (Figure 10E). 1383 

Remarkably, in plants, the presence of cell walls underlies the formation of a plant-specific 1384 

supramolecular assembly known as the MCS super-continuum. This super-continuum 1385 

encompasses the cell wall, PM, ER, and cytoskeleton and renders MCS with distinct 1386 

kinetics, shapes, geometries, and functions (Rosado and Bayer, 2021; Zang et al., 2021). 1387 

Recent studies proposed that the MCS super-continuum serves as a nexus that limits the 1388 

mobility of MCS tethering assemblies (Wang et al., 2016; Lee et al., 2019; Zang et al., 1389 

2021) and controls their activities. Examples of regulation mediated by this continuum 1390 

include the activity of receptor-like kinases in pollen and/or stomatal cells (Ho et al., 2016; 1391 

Duckney et al., 2021) and the regulation of phospholipase C-mediated stress signals at 1392 

the PM (Ruiz-Lopez et al., 2021). Finally, a unique type of regulation occurs at PD MCS 1393 

where the transfer of molecules occurs parallel to the membranes, as opposed to 1394 

orthogonal to them. In these ER-PM MCS, the intermembrane space may not be solely 1395 

regulated by the tethers, lipids, and cytoskeleton elements in the super-continuum, but 1396 

also by wall polymers (e.g. callose), which are locally synthesized around the PD structure 1397 

(Petit et al., 2020). 1398 

 1399 

Future MCS research: What’s in the plant toolkit? 1400 
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MCS are microdomains with an intermembrane distance below the resolution limit of 1401 

conventional fluorescence microscopy and with a dynamic behavior that requires the use 1402 

of live-cell compatible techniques (McFarlane et al., 2017). In recent years, advances in 1403 

super-resolution microscopy (e.g. Total Internal Reflection Fluorescence, Structure 1404 

illumination microscopy, (Figure 10F), and electron tomography (Figure 10G) are 1405 

providing for the first time detailed high-resolution visualizations and 3D reconstructions 1406 

of the MCS ultrastructure in plants (Baillie et al., 2020). In parallel, the use of optical laser 1407 

tweezers to manipulate plant MCS in vivo is facilitating the characterization of putative 1408 

MCS components such as the AtCASP tether identified at ER-Golgi MCSs (Osterrieder 1409 

et al., 2017) and the mitochondria-associated GTPase AtMiro2 at ER-mitochondria 1410 

contact sites (White et al., 2020). Plant MCS research is also adopting genetically 1411 

encoded tools such as synthetic tethers that bridge nearby membranes (e.g. MAPPER-1412 

GFP, (Lee et al., 2019), or split-fluorescence systems (e.g. split super-folder (sp) GFP 1413 

proteins, (Li et al., 2020) to visualize MCS contacts. These artificial systems, however, 1414 

have limited use in functional studies, as their expression could induce non-physiological 1415 

changes in the MCS structure. Additional molecular tools with broad applications, such 1416 

as inducible phosphoinositide depletion systems (Doumane et al., 2021) and 1417 

phosphoinositide fluorescent markers (Simon et al., 2014) are currently being adopted for 1418 

MCS research and represent promising avenues to elucidate the roles of anionic 1419 

phospholipids in plant MCS function and dynamics. 1420 

 1421 

We predict that the combination of collaborative research, technical advances, and novel 1422 

molecular tools in this quickly evolving field will provide breakthroughs that will transcend 1423 

plant MCS research.  1424 

 1425 

 1426 

 1427 

DIVERSITY IN PD FORM AND FUNCTION 1428 

 1429 

(Written by Tessa M. Burch-Smith) 1430 

 1431 
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General PD structure 1432 

PD evolved multiple times in the plant lineage and are present in some groups of algae 1433 

and in all land plants (Brunkard et al., 2015; Azim and Burch-Smith, 2020), 2020). In 1434 

general, PD provide continuity of the PMs and cytoplasm across cell walls. In land plants 1435 

and some algae, PD also include a central strand of the ER (Botha, 1992),(Ding et al., 1436 

1992; Franceschi et al., 1994; Cook et al., 1997). The cytoplasmic and membrane 1437 

connectivity provided by the PD is the route for intercellular trafficking of numerous 1438 

biomolecules, effectively rendering the plant a continuous cytoplasm (a symplast). PD are 1439 

therefore essential for plant growth, development and environmental responses. Some 1440 

molecules traffic through PD by passive diffusion, and their movement depends on the 1441 

size of the molecules and the trafficking capacity of the pores. Other molecules are 1442 

targeted to PD through the use of the endomembrane system (Spiegelman et al., 2019). 1443 

A typical cell wall is pervaded by hundreds or thousands of PD that are often clustered 1444 

into groups (pitfields), and as such the continuity between adjacent cells can be extensive. 1445 

 1446 

PD are nanopores with outer diameters (delimited by the PMs of connected cells) ranging 1447 

from 25 to 50 nm, depending on the tissue and species, and they extend for the length of 1448 

cell wall thickness. Thus, much of what is known about PD structure is derived from TEM 1449 

(Figure 11). The center of land plant PD is occupied by a structure called the desmotubule 1450 

(DT). The DT was observed to be continuous with the cortical ER of connected cells and 1451 

is now recognized as an intercellular strand of modified ER. The DT diameter is 1452 

constrained to approximately 15-20 nm (Ding et al., 1992; Schulz, 1995), and so the 1453 

desmotubule comprises the most tightly curved biological membranes described to date 1454 

(Tilsner et al., 2011). The DT does not include a typical ER lumen. Instead, the space is 1455 

largely occupied by proteins (Tilney et al., 1991), whose likely function is to enable the 1456 

tight curvature of the membranes, e.g. the ER tubulating reticulon proteins (Tilsner et al., 1457 

2011; Knox et al., 2015; Kriechbaumer et al., 2015). The DT is tightly connected to the 1458 

PM of the PD by structures originally described as spokes (Ding et al., 1992). The cytosol-1459 

filled space between the DT and PM is called the cytoplasmic sleeve or annulus and is 1460 

likely the main route for PD trafficking, although the spoke proteins divide it into 1461 

nanochannels 2-3 nm wide. 1462 
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 1463 

Analysis of PD isolated from Arabidopsis suspension cell culture identified 1,341 proteins 1464 

as the putative PD proteome (Fernandez-Calvino et al., 2011). Of these, 21% were 1465 

membrane proteins and included proteins previously identified as PD resident, e.g. 1466 

PDLP1 (Thomas et al., 2008) and ATBG_papp (Levy et al., 2007). In addition, several 1467 

GPI (glycosylphosphatidylinositol)-anchored proteins and proteins associated with the 1468 

secretory pathway were identified. Further refinement of the PD proteome identified 1469 

Multiple C2 domains and transmembrane region proteins (MCTPs) as PD constituents, 1470 

and they have been designated as the likely spokes of PD (Brault et al., 2019). The 1471 

spokes control spacing between the DT and PM, and this distance is correlated with the 1472 

developmental states of PD (Nicolas et al., 2017a). Interestingly, in Arabidopsis roots, PD 1473 

lacking cytoplasmic sleeves apparently had a higher trafficking capacity than PD with 1474 

cytoplasmic sleeves (Nicolas et al., 2017a), raising questions about how trafficking via 1475 

those PD is achieved. There are a few reports of trafficking through the DT lumen, 1476 

although the DT membranes appear to provide a surface for cell-to-cell movement 1477 

(Guenoune-Gelbart et al., 2008; Barton et al., 2011). The DT membranes are important 1478 

conduits for the transport of at least some viruses between cells (Guenoune-Gelbart et 1479 

al., 2008). The routes for PD trafficking and the contributions of the membranes and 1480 

spaces to the movement of cargo molecules remain open questions in PD biology. 1481 

 1482 

The lipid composition of the PM of PD is also distinct from the bulk PM. The PM of PD 1483 

from Arabidopsis suspension cells is enriched in sterols and sphingolipids with saturated 1484 

very long chain fatty acids (Grison et al., 2015), which is consistent with the presence of 1485 

lipid microdomains akin to lipid rafts in PD (Raffaele et al., 2009; Tilsner et al., 2013) and 1486 

GPI-anchored proteins in the PD proteome (Fernandez-Calvino et al., 2011). PD lipid 1487 

composition is also important for PD protein composition and function, as changes in 1488 

lipids affect the ultrastructure and permeability of PD (Grison et al., 2015; Yan et al., 2019; 1489 

Iswanto et al., 2020; Liu et al., 2020). As described in the section on plant MCS, a modern 1490 

view of PD considers both its unique lipid and protein composition to describe PD as 1491 

specialized MCS (Brault et al., 2019; Petit et al., 2019; Ishikawa et al., 2020). A simple 1492 

generalized PD structure is represented in Figure 11A. 1493 
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 1494 

PD formation and distribution 1495 

PD are intrinsic components of the cell walls found in almost all connected cell walls in a 1496 

plant. Primary PD form at the end of cell division, during cytokinesis, when strands of ER 1497 

become encased in the developing cell plate. The reticulon proteins RTNLB3 and 6 and 1498 

MCTPs are involved in this process (Knox et al., 2015; Brault et al., 2019). The presence 1499 

of substructures like the DT in newly formed PD is uncertain, as revealed by TEM (Ehlers 1500 

and van Bel, 2010). Secondary PD form across existing cell walls where cell division is 1501 

not occurring. The insertion of these new PD is likely necessary to establish or maintain 1502 

symplastic connectivity, as in graft unions or when cells divide and grow (Ehlers and 1503 

Kollmann, 2001). Studies in Arabidopsis trichomes suggest that new secondary PD form 1504 

in close proximity to existing PD, as described in the multiple twinning model (Faulkner et 1505 

al., 2008). It is proposed that PD divide by fission, although the mechanism for this is 1506 

unclear. 1507 

 1508 

PD may also be removed from existing cell walls by a still unknown process. Studies on 1509 

cambial division and vascular differentiation have shown that PD numbers can increase 1510 

and decrease over the lifespan of a given cell-cell interface; this would necessarily involve 1511 

the removal and insertion of PD at a given interface (Ehlers and van Bel, 2010; Fuchs et 1512 

al., 2010). In other instances, PD can be drastically modified or even truncated to disrupt 1513 

intercellular trafficking. For example, guard cell initials contain PD, and PD trafficking is 1514 

critical for guard cell development (Guseman et al., 2010). As stomata develop, however, 1515 

PD are lost from the guard-cells, rendering them symplastically isolated (Wille and Lucas, 1516 

1984). It may be that PD removal is a more common occurrence in plant cell development 1517 

and differentiation than previously reported. How secondary PD form and how PD are 1518 

removed are other open questions that await exploration: advanced imaging approaches 1519 

hold promise for generating answers to these questions. 1520 

 1521 

Structure-function relationships in PD 1522 

PD are often depicted as simple linear structures traversing the cell wall (Figure 11A), but 1523 

PD structure is much more diversified. PD are often branched, consisting of multiple pores 1524 
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that connect in the vicinity of the cell wall middle lamella (Figure 11B-D). This is captured 1525 

by studies on PD structure using three-dimensional approaches such as electron 1526 

tomography. 1527 

 1528 

The formation and origins of branched PD are unclear, but they likely arise through 1529 

modification of existing simple PD (Burch-Smith et al., 2011). This diversity in structure 1530 

suggests diversity in function. Exemplary studies of PD in tobacco leaves undergoing the 1531 

sink-source transition demonstrated that simple PD were converted to branched PD 1532 

contemporaneously with decreased import of fluorescent dye (Oparka et al., 1999; 1533 

Roberts et al., 2001). Another common variation of PD form is the dilation of PD pores 1534 

away from the PD openings or the constriction of PD at their necks (region just below the 1535 

opening, Figure 11B). This PD variation seems to correlate with PD maturation (Nicolas 1536 

et al., 2017b) or with trafficking capacity (Ding et al., 1992). Mathematical modeling 1537 

supports the notion that dilation increases trafficking capacity as the cell wall thickens 1538 

(Deinum et al., 2019), a correlation previously observed by TEM (Nicolas et al., 2017b). 1539 

Another PD form that has a specialized role in trafficking is the ‘funnel PD’ in sink root 1540 

tissue (Ross-Elliott et al., 2017). These PD have wide openings at the phloem sieve 1541 

elements that narrow considerably as they cross the cell wall and open on the phloem-1542 

pole pericycle, creating a ‘funnel’ shape (Figure 11B). The specialized PD shape appears 1543 

to facilitate the unloading of sucrose in the root phloem. Mathematical modelling supports 1544 

the need for this unusual PD form to allow phloem unloading at physiological sucrose 1545 

concentrations.  1546 

 1547 

Specialized PD forms have also been reported at sites where sugars are loaded into the 1548 

phloem in source tissues. For example, PD at the phloem parenchyma-companion cell 1549 

interface in Arabidopsis leaf veins have many openings to the phloem parenchyma but 1550 

only one to the companion cells (Haritatos et al., 2000). These distinct PD forms correlate 1551 

with specialized functions, and they raise the possibility of PD sub-functionalization 1552 

between tissues and even at a given cell-interface. PD sub-functionalization is an 1553 

intriguing concept that has proven difficult to investigate due to the lack of experimental 1554 

approaches that allow perturbation of specific PD. The development of appropriate 1555 
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genetic, imaging, and computational methods will be necessary to address this critical 1556 

aspect of PD function. Undoubtedly, a comprehensive understanding of PD will enable 1557 

novel approaches to engineering solutions to help overcome challenges in plant growth 1558 

and development. 1559 

 1560 

 1561 

SO MUCH MORE THAN BRICKS AND MORTAR: PLANT CELL WALLS AS DYNAMIC 1562 

EXTRACELLULAR “ORGANELLES” 1563 

 1564 

(Written by Charles T. Anderson) 1565 

 1566 

Much as our skin protects us from the environment but is also itself an organ, the plant 1567 

cell wall can be thought of as a protective “organelle” for the plant cell; however, it is not 1568 

bound by a membrane but instead encases the PM-delimited protoplast that contains the 1569 

intracellular organelles. Our understanding of cell wall composition, structure, and 1570 

mechanics has expanded rapidly over the past decade due to advances in high-resolution 1571 

imaging (Zeng et al., 2017; Rydahl et al., 2018; Voiniciuc et al., 2018; Zhao et al., 2019), 1572 

biochemical and spectroscopic analyses of wall polymers and their interactions down to 1573 

single-molecule and nanoscale levels (Voxeur et al., 2019; Zhao et al., 2020; Cai et al., 1574 

2021), and new computational modeling methods that relate wall mechanics to the 1575 

deformations, movements, and interactions of individual wall polymers (Zhang et al., 1576 

2021). In contrast to its previous conception as simply “dead wood” that is the inert 1577 

product of polymer secretion by plant cells, the plant cell wall is starting to be appreciated 1578 

as a dynamic structure that changes over time and encompasses specialized metabolic 1579 

processes, including the polymerization, coalescence, binding/unbinding, cleavage, and 1580 

re-ligation of wall polymers that facilitates both plant growth and the processing of plant 1581 

biomass for human use (Obro et al., 2011). Cell walls serve as conduits of intercellular 1582 

transport of nutrients, secreted peptides, hormones, and other metabolites (Ramakrishna 1583 

and Barberon, 2019), arenas where extracellular vesicles can deliver small RNAs to 1584 

silence virulence genes in plant pathogens (Cai et al., 2018), and surveillance zones 1585 

where plants can sense pathogen-generated wall fragments (Vaahtera et al., 2019) to 1586 
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help maintain wall integrity (Rui and Dinneny, 2020). Together, these ideas highlight how 1587 

the apoplast, the extracellular compartment in which the cell wall resides, enables 1588 

previously unappreciated forms of trafficking and acts as a molecular frontier in the 1589 

interactions between plants and their abiotic and biotic environments. 1590 

  1591 

Cell wall assembly and structure 1592 

Extending the analogy with human skin, the plant cell wall can expand along with the cell 1593 

it encases, and it also helps sense and transduce important environmental and 1594 

mechanical information. However, the analogy is not perfect: as a biomaterial with 1595 

elements approaching the tensile strength of steel, the cell wall also acts as a flexible but 1596 

strong coating that shapes its occupying cell, determining its final shape. Cellulose, the 1597 

most abundant biopolymer on Earth, forms the “girders” of the cell wall as its primary load-1598 

bearing component. Cellulose is extruded directly into the apoplast by multi-subunit 1599 

Cellulose Synthase Complexes (Wilson et al., 2021), which move through the PM along 1600 

trajectories that are likely driven by the force of polymerization and are guided by either 1601 

cortical microtubules (Figure 12) or existing wall patterning (Chan and Coen, 2020). The 1602 

estimated 18 catalytic subunits in each Cellulose Synthase Complex (Nixon et al., 2016) 1603 

produce strands of β-1,4-linked glucose that coalesce into cable-like microfibrils that are 1604 

predicted to have 18-24 chains (Yang and Kubicki, 2020). Forming the “cross-beams” 1605 

and “insulation” between the cellulose “girders” are matrix polysaccharides that include 1606 

pectins and hemicelluloses. Pectins are acidic polysaccharides that are composed of 1607 

homogalacturonan, rhamnogalacturonan-I, and rhamnogalacturonan-II domains 1608 

(Anderson, 2019), whereas hemicelluloses contain mostly neutral sugars and include 1609 

xyloglucans, xylans, and mannans (Scheller and Ulvskov, 2010). In growing cells, matrix 1610 

polysaccharides initially interact with cellulose upon their secretion at the cell surface, 1611 

following polymerization in the Golgi lumen and post-Golgi trafficking (Hoffmann et al., 1612 

2021) (Figure 12). Both pectins and hemicelluloses can associate with the surfaces of 1613 

cellulose microfibrils, potentially preventing cellulose agglomeration and thus assembling 1614 

a strong but deformable wall that also contains glycoproteins, enzymes, metabolites, ions, 1615 

and water (Cosgrove, 2018). In the secondary walls produced by certain cell types, a 1616 

polyphenolic, hydrophobic compound called lignin is also deposited (Dixon and Barros, 1617 
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2019). In many cell types, the wall is deposited in layers with differing cellulose 1618 

orientations, conferring multidirectional resistance to mechanical failure. 1619 

  1620 

Dynamics and functions of plant cell walls 1621 

What happens to the strong but flexible wall as a plant cell grows? Atomic force 1622 

microscopy (Zhang et al., 2017) and coarse-grained modeling (Zhang et al., 2021) 1623 

indicate that cellulose microfibrils bend, bundle, unbundle, and slide during experimentally 1624 

imposed or computationally simulated wall deformation, respectively. One open question 1625 

is exactly how cellulose behaves in the growing cells of living plants, where wall deposition 1626 

is often ongoing, matrix polysaccharides can also undergo reorganization (Anderson et 1627 

al., 2012), and wall-modifying enzymes act to modulate cell growth (Xiao et al., 2014). 1628 

Also unclear is the extent to which extracellular ATP and other energetic compounds 1629 

might be used in wall metabolism, in addition to their functions as signaling molecules 1630 

(Pietrowska-Borek et al., 2020). PD allow for rapid communication and transport between 1631 

adjacent plant cells; however, some cell types, such as stomatal guard cells, lack these 1632 

connections but must nonetheless transmit and receive information with other cells, 1633 

underscoring the importance of apoplastic trafficking as a mode of intercellular 1634 

communication in plants. Membrane receptors on the cell surface link events in the cell 1635 

wall to intracellular signaling pathways (Vaahtera et al., 2019), allowing the plant cell to 1636 

adapt to changing environmental conditions and withstand pathogen attack, although the 1637 

extent to which these receptors sense biochemical, chemical, and/or mechanical cues 1638 

has not been fully worked out. Cell walls are highly diverse across plant tissues and taxa 1639 

(Hoffmann et al., 2021) and allow cells to adopt myriad shapes and perform specialized 1640 

functions that include nutrient and water absorption (e.g., root epidermal cells), transport 1641 

(e.g., xylem and phloem), and secretion (e.g., aerial epidermal and nectary cells). 1642 

Autodegradation of the plant cell wall allows for developmental processes that include 1643 

organ abscission and pollen dehiscence, and might allow for the recycling of some wall 1644 

components to produce new wall polymers (Barnes and Anderson, 2018). Overall, the 1645 

plant cell wall is a fascinating biological environment, one that we are only beginning to 1646 

be able to understand well enough to be able to engineer ourselves. 1647 

 1648 
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Figure 1. The nucleus and its constituents. A, A fluorescence micrograph of a nucleus in a Nicotiana 
benthamiana epidermal cell. The nuclear envelope (NE)-localized CPR5 protein (pseudo-colored in green) 
was coexpressed with the nucleoplasmic-localized cyclin kinase inhibitor SIM (pseudo-colored in magenta). 
B, An electron micrograph of a nucleus in an Arabidopsis root cell. Arrowheads indicate the outer nuclear 
membrane (ONM) and the inner nuclear membrane (INM) of the NE. C, An electron micrograph showing a 
tangential section through the nuclear envelope in an Arabidopsis root cell. Arrowheads indicate nuclear 
pores distributed at the surface of the NE. Scale bars are 10 μm in A and 500 nm in B and C. D, The nucleus 
is defined by the double-layered NE composed of the ONM and the INM, which join at the nuclear pore 
membrane. The NE hosts a specific population of proteins. SUN and KASH proteins comprise the LINC 
complex and function in various aspects of plant cell biology and physiology, as discussed in the main text. 
CPR5, PNET1, GP210, and NDC1 are structural components of the plant nuclear pore complex (NPC) 
membrane ring (MR). CNGC15, DMI1, and MCA8 regulate nuclear calcium transport and signaling and 
affect symbiotic interaction with arbuscular mycorrhiza. GCP3 and GIP proteins are part of the microtubule 
nucleation complex and regulate nuclear stiffness. CRWN and KAKU4 proteins assemble the plant nuclear 
skeleton and also function as a platform to interact with INM proteins and regulate chromatin organization 
by binding to chromatin-associating proteins (such as the PRC2 complex). NEAP proteins bind to the 
transcription factor bZIP18 and may also influence chromatin organization. The CDC48-UFD1-NPL4 
trimeric complex and PUX3/4/5 proteins mediate plant INM-associated protein degradation (INMAD). The 
nuclear interior is organized heterogeneously. Heterochromatic regions and chromocenters are typically 
located near the nuclear periphery and the nucleolus. Other multivalent biomolecules (e.g., proteins and 
RNAs) aggregate to form various types of membrane-less condensates via the liquid-liquid phase 
separation mechanism.  
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Figure 2. The plant ER forms a distinctive network of membranes at the cell cortex. Left panel: 
Confocal microscopy image of a Nicotiana benthamiana leaf epidermal cell transiently expressing the 
fluorescent lumenal marker ER-mCherry (Nelson et al., 2007), which labels the lumen of the bulk ER 
network. Scale bar = 40 mm. Right panel: magnified view of the boxed region in the left panel highlighting 
some of the characteristic ER structures discussed in the main text. 
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Figure 3.  Plant Golgi stacks.  A, Transmission electron micrograph showing a cluster of Golgi stacks in 
an Arabidopsis root tip cell. Plastids (P), mitochondria (M), and vacuoles (V) are marked. B, Confocal laser 
scanning micrograph of Arabidopsis root tip cells expressing a Golgi-localized green fluorescent protein. 
The plasma membrane was counterstained. C, ET slice image of a Golgi stack. The cis-side, trans-side 
and trans-Golgi network (TGN) are labeled. D, ET model of an Arabidopsis Golgi stack associated with the 
endoplasmic reticulum (ER). The entire Golgi and TGN are encompassed by a ribosome-ribosome 
excluding matrix (Golgi matrix). E, ET slice image of a Golgi stack in a root cap border cell. F, ET model of 
the Golgi in E. Swollen cisternal margins containing mucilage are marked with arrowheads in E and F. 
Scale bars in A, B, D, E, and F: 500 nm. Scale bar in C: 10 μm. 
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Figure 4. Plant endosomes. A, Diagram of plant endosomes and the major associated pathways, 
highlighting the effects on MVE mis-sorting in ESCRT mutants. B, Tomographic reconstructions of a Golgi 
stack, Golgi-associated TGN (GA-TGN), and free/Golgi independent (GI-TGN) in an Arabidopsis embryo 
cells. C-D, Confocal images of MVE-localized RabF2a/RHA1-GFP (C) and TGN-localized VHAa1-GFP (D) 
in Arabidopsis root cells. Scale bar = 200 nm in (B) and 5 mm in (C) and (D).  
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Figure 5. The multifunctional roles of the plant vacuole. A, There are various trafficking routes towards 
the vacuole, including pathways from the pre-vacuolar compartment (PVC), trans-Golgi network (TGN), 
Golgi, endoplasmic reticulum (ER), and autophagosomes. The vacuole carries out numerous indispensable 
functions as indicated. B, Confocal-based 3D reconstruction of the cell (in purple, based on cell wall staining 
with propidium iodide) and the vacuole (in green, based on BCECF-AM staining) visualizes the vacuolar 
occupancy of meristematic (left) and elongating cells (right). Scale bars: 6 µm. 
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Figure 6. Spatial association of LDs with the ER and a model of LD biogenesis. A, Enhanced-
resolution fluorescence imaging of the relationship of the ER to LDs in leaf mesophyll cells of N. 
benthamiana infiltrated with an ER marker and stained with the LD-specific fluorescent dye BODIPY 
493/503. The ER network was marked in cyan with the ER-lumen marker protein Kar2-CFP-HDEL, and 
LDs are false-colored in yellow (white arrows). In leaves, small LDs are normally associated with the ER 
(top row). In this system, LDs were induced to proliferate by expressing lipogenic factors to study LD 
proteins and their roles in LD formation (second row). Here this process is illustrated by expressing LEAFY 
COTYLEDON2 (LEC2) in these leaves; this transcription factor is preferentially expressed in developing 
seeds and promotes storage lipid synthesis and LD formation. Under semi-normal conditions, the LD 
phenotype of tobacco shows few small LD’s intimately connected to the ER. Scale bars: 5 µm. B, TEM 
micrographs showing LDs (labeled as OB for oil body) emerging from the ER in cells of developing soybean 
(Glycine max) cotyledons. Left to right- freeze-fracture; cryofixation; chemical fixation. Arrows mark ER-LD 
junctions. For scale, ribosomes on the ER membrane are approximately 20 nm in diameter. Electron 
micrographs are courtesy of Dr. Eliot Herman, University of Arizona. C, Diagram illustrating the current, 
general model for LD biogenesis. Initial LD formation begins with the coalescence of the “lipid lens” within 
the ER bilayer. Various LD-associated proteins such as SEIPINs, LDIP, LDAPs, VAP27-1, oleosins (in 
seeds), and LDIP are recruited, which together facilitate the formation and stabilization of the nascent LD 
as it emerges into the cytoplasm. Adapted in part from a model presented and described in Greer et al. 
(2020). 
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Figure 7. Microscopic images of peroxisomal structures in Arabidopsis cells. A, Microscopic image 
of 4-day-old Arabidopsis cotyledons expressing mNeonGreen with a membrane peroxisomal targeting 
signal (mNeonGree-mPTSPEX26; green) and mRuby with a matrix-bound peroxisomal targeting signal 
(mRuby3-PTS1; magenta) showing the presence of intralumenal vesicles (ILVs) in peroxisomes. The close-
up image highlights the variable sizes of the vesicles. B, Separate images of fluorescent molecules in the 
membrane (green) and matrix (magenta) highlight the different substructures within the peroxisome, 
including ILVs with (yellow arrowheads) or without (blue arrowheads) matrix proteins and a separate area 
with denser membrane accumulation. Images in (A) and (B) are Figures 1G and 6A from Wright and Bartel 
(2020; reprinted with permission). C, ET slice image of a young root cell highlighting the interactions 
between a peroxisome (P), lipid droplets (*), and other organelles. Scale bar: 500 nm. 
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Figure 8. Microscopy imaging of plant mitochondrial dynamics. A, An apparent mitochondrial outer-
membrane derived vesicle (MDV) (arrow) in an Arabidopsis cell. On the right is a mitochondrion whose 
outer membrane was stained with ELM1-GFP and whose matrix was stained with RFP. The MDV contains 
only the outer membranes and no matrix (Yamashita et al., 2016, reprinted with permission). B, 
Heterogeneity of DNA contents in mitochondria. The mitochondria were stained red with MitoTracker Red 
and DNA was stained with SYBR Green I. Green signals in red regions are shown in yellow. Therefore, red 
particles with yellow dots represent mitochondria containing DNA, and red mitochondria without yellow dots 
represent mitochondria lacking DNA (Arimura et al., 2004, reprinted with permission). C, Fusion of 
mitochondria in an onion bulb epidermal cell. The cell contains thousands of mitochondria. The 
mitochondria on the left and right sides of the cell were labeled green and red, respectively, by the 
(irreversibly) color-changing fluorescent protein Kaede. The photographs show the movement and mixing 
of the mitochondria after 10 minutes (upper), one hour (middle), and two hours (bottom). Yellow 
mitochondria are the result of fusion between green and red mitochondria (Arimura et al., 2004, reprinted 
with permission). D, Five consecutive frames showing mitochondria fission in a tobacco BY-2 cell. The 
mitochondria were stained with MitoTracker Red and dynamin-related protein 3A was labeled with GFP 
(Arimura 2018, reprinted with permission). E, Progression of mitophagy in an Arabidopsis cell, in which the 
mitochondria were stained with MitoTracker Red and autophagosomes were visualized by expression of 
YFP-ATG8e. The autophagosome on the right (arrowhead) is shown engulfing a mitochondrion over a 300 
s interval (Ma et al., 2021, reprinted with permission). F, ET image of a mitochondrion in an Arabidopsis 
root meristematic cell. Black dots in the cytosol and mitochondrial matrix are ribosomes. Scale bars. A, D, 
and E, 2 μm; B, 1 μm; C, 40 μm; F, 500 nm. 
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Figure 9. Chloroplast morphogenesis is a highly regulated process. A, ET slice image of a normal-
sized wild-type (WT) chloroplast with typical thylakoid differentiation into stacked (grana) and unstacked 
domains. B, 3D model based on the chloroplast in (A). Green represents thylakoid membrane; blue 
represents starch grains. C, ET slice image of an oversized chloroplast (compare scale bars) with aberrant 
thylakoid membrane organization in an Arabidopsis flz mutant (Liang et al., 2018b). FLZ is a dynamin-like 
protein, and thylakoid fusion is inhibited in the mutant (Gao et al., 2006; Findinier et al., 2019). Instead of a 
stroma-wide network, thylakoids form discrete spirals in the mutant. D, 3D model based on the chloroplast 
in (C). Scale bars = 500 nm. 
 

D
ow

nloaded from
 https://academ

ic.oup.com
/plcell/advance-article/doi/10.1093/plcell/koab247/6388043 by C

N
R

S user on 11 O
ctober 2021



 
Figure 10. Examples of membrane contact sites in plants. A-B, ET slice images showing different MCS 
present in plant cells; an ER-PM contact site (A) and an ER-mitochondrion contact site (B) are shown. 
Arrowheads mark plasmodesmata. CW: cell wall, M: mitochondrion. Scale bars = 500 nm. C-D, The 
distribution of SYT1-GFP- and VAP27-1-YFP-labelled tethering assemblies in different regions of the 
cortical ER (indicated by the RFP-HDEL or GFP-HDEL markers) highlights the presence of spatially 
separated ER-PM MCS within the cell. E, The co-expression of the actin-associated NET3C cytoskeletal 
adaptor, the microtubule-associated IQ67-domain 2 (IQD2) bridging component, and the VAP27-1 tether 
highlights the interaction of the Arabidopsis ER-PM MCS with the cortical cytoskeleton. Scale bars in (C-E) 
= 10 µM. F, The appearance of putative SYT1-GFP labelled ER-PM contact sites changes depending on 
the microscopy technique used. The intermembrane distances at MCS are below the light diffraction limit 
and are not properly resolved using conventional confocal microscopy (Laser Scanning/Spinning Disc, left 
two panels). More accurate visualizations are obtained using super-resolution techniques (TIRF/SIM, right 
two panels). Scale bar in (F) = 20 µM. G, Advances in electron tomography techniques are enabling 
accurate 3D reconstructions of PD MCS. In the current functional models, the cytosolic space between the 
ER and the PM inside the PD serves as a trafficking conduit for mobile molecules, and the adjustment of 
its width is believed to regulate their flow rate, effectively controlling inter-cellular trafficking. Dark blue: 
Plasma Membrane. Light Blue: Cortical ER across the PD pore. (Panel E is from Zang et al. 2021, reprinted 
with permission.) 
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Figure 11. Structural diversity in PD and their constituents. A, A cartoon depiction of a simple 
plasmodesma showing details of the plasma membrane, lipid composition, and select protein constituents 
as described in the text. ER, endoplasmic reticulum; DT, desmotubule. B, Cartoons depicting some PD 
morphologies. (i) is a branched PD with a ‘Y’ shape, (ii) represents a simple pore with constrictions near 
the openings (necks) and dilation of the central region of the DT; (iii) is a funnel plasmodesma. (A) and (B) 
were drawn with BioRender. C-D, Structure of branched PD in Arabidopsis leaf tissue revealed by ET. (C) 
Four representative individual frames from a tomogram (1/4 - 4/4). While the PM is readily visible in these 
images, the desmotubule is difficult to discern. Central cavities are found in the vicinity of the middle lamella. 
(D) 3D model of PD generated by tracing the inner (yellow) and outer (blue) leaflets of the PM in the 
tomogram in (C). The PD on the left consists of two pores in Cell 2 and one in Cell 1. The PD on the left 
has two openings to Cell 2 but three to Cell 1. Ribosomes (red) are shown for scale. (C) and (D) were 
generated in the author’s lab. 
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Figure 12. 
 Micrograph and model of the plant cell wall, showing wall patterning at the tissue and nanometer 
scales. A, Cellulose labelled with Pontamine Fast Scarlet 4B (S4B, magenta) and newly synthesized pectin 
labelled with fucose-alkyne and Alexa488-azide (green) in epidermal cells of the root differentiation zone in 
a 5-day-old Arabidopsis seedling. Note oblique, punctate labelling of the Alexa488 signal, predominantly 
longitudinal labelling of the S4B signal, and variation in intensity of the Alexa488 signal between different 
cells. Bar = 10 µm. B, Model of cell wall assembly viewed from outside the plasma membrane (yellow), 
showing Cellulose Synthase Complexes (purple) producing cellulose microfibrils (magenta) and a vesicle 
(orange) fusing with the plasma membrane to deliver pectin (green) and hemicellulose (cyan) to the wall. 
Cortical microtubules and an intracellular vesicle are shown in grey in the background. Objects are drawn 
approximately to scale, bar = 25 nm. Part B of this figure was inspired by a dynamic model of cell wall 
assembly created by Drew Berry for the Australian Research Council Center of Excellence in Plant Cell 
Walls and directed by Tony Bacic (University of Melbourne), Monika Doblin (University of Melbourne), and 
Mike Gidley (University of Queensland), which can be viewed on YouTube 
(https://youtu.be/zp2WW2TYcng). 
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