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Centre for Digital Systems,
Univ. Lille, CNRS, Centrale Lille,

UMR 9189 CRIStAL,
F-59000 Lille, France

Email: vincent.itier@imt-lille-douai.fr

Jérémie Boulanger and Patrick Bas
Univ. Lille, CNRS, Centrale Lille,

UMR 9189 CRIStAL,
F-59000 Lille, France

Email: {jeremie.boulanger,patrick.bas}
@univ-lille.fr

Abstract—Domain adaptation is a major issue for doing
practical forensics. Since examined images are likely to come
from a different development pipeline compared to the ones
used for training our models, that may disturb them by a
lot, degrading their performances. In this paper, we present a
method enabling to make a forgery detector more robust to
distributions different but related to its training one, inspired by
[1]. The strategy exhibited in this paper foster a detector to find
a feature invariant space where source and target distributions
are close. Our study deals more precisely with discrepancies
observed due to JPEG compressions and our experiments reveal
that the proposed adaptation scheme can reasonably reduce the
mismatch, even with a rather small target set with no labels when
the source domain is properly selected. On top of that, when a
small portion of labelled target images is available this method
reduces the gap with mix training while being unsupervised.

I. INTRODUCTION

In the growing context of fake news, digital images are
easily tampered in order to change their meaning. Main
malicious image manipulation are copy-paste, copy-move and
inpainting. Copy-paste detection focuses on retrieving two
different noise distributions which are dependent of the image
acquisition chain. Basic inpainting methods tend to not repro-
duce the image intrinsic noise. Whereas, copy-move operation
duplicates a part of the image. Nevertheless, it may leave
traces due to resampling, rescaling or rotation transformation.
Usually, after forgery, some post processing operations are
done. The goal is twofold, make the detection more arduous,
for instance with smoothing or sharpening, and share them
easily i.e. with compression. Lossy compression, by nature,
is seen as a counterattack upon detection. State-of-the-art
methods for forgeries detection [2], [3], [4] rely on deep
learning which requires a huge amount of annotated data.
These kind of dataset are very cumbersome to produce or to
annotate.

If multimedia forensics schemes can be very effective at
detecting image tampering or localizing tampered areas [3],
[4], they are very often extremely sensitive to the very nature
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Fig. 2. Principle of the Update approach (unsupervised).

of the analyzed signal. For image forensics schemes relying
on machine learning, this means that if the image database
used for training (a.k.a. the source) does not exactly undergo
the same development pipeline as the scrutinized test images
(a.k.a. the target), the performance of the detector can then be
jeopardized.

To illustrate this point, we implemented a forgery detector
largely inspired by [4] and observed its performances in
different contexts. To construct our source and target domains,
we considered two independent set of images coming from the
splicing category of the database DEFACTO [5]. All the details
about our training protocol are explained in III. We notably
trained this detector on different sources before evaluating it
on a common target so that, we can disclose the influence of
the training from the source on the performances on the target.

Table I shows the performances of our forensics detector
when the training set comes either from uncompressed images
or from images compressed at a very low JPEG quality



Accuracy Training QF5 Training uncompressed
Test QF5 76.9% 60.3%

TABLE I
EFFECT OF SOURCE AND TARGET DOMAIN MISMATCHES FOR TWO

DIFFERENT JPEG QF (THE FORENSICS SETUP IS DESCRIBED IN
SECTION III).

factor. On this example, we can see that the impact on the
performance is substantial with a loss of accuracy of more
than 15%.

This problem of mismatch, a.k.a. cover-source mismatch in
steganalysis [6], [7], can be mitigated using different strategies
that depend of the practical context. We describe them in what
follows using the same terminology proposed in [8], [9], see
also Figs 1 and 2:

- If the set of test images can be associated with another
training-set containing both genuine and forged images ori-
ginating from the same source, then the learning problem
becomes supervised. Usually in forensics, this scenario is not
very realistic since it can be extremely time-consuming to gen-
erate forged images. In this supervised context, TgtOnly setup,
i.e. re-training using the specific target set instead of using the
source (coined as the SrcOnly setup), can be performed. If the
size of the Target set is small, weak supervised learning can
also be applied [10].

- Another strategy can also be used to counter the effect of
heterogeneity if the number of sources is sufficiently small,
denoted as the mix setup, i.e. training with all the different
sources from the beginning or to augment the dataset using
adversarial contents.

Note that these two strategies have been used for example
for practical steganalysis, forensics or computer vision in order
to cope with numerous processes [7], [11], [12], [13].

- However, if the test images cannot be associated with any
training set, which is the case when the development pipeline
cannot be identified, then the problem is unsupervised and
unsupervised domain adaptation [14] has to be considered.
We believe that this class of methods is particularly suited
for the forensics analyst since the practitioner usually has to
analyze a possibly small set of images belonging to the same
unknown domain. In this case, the classifier trained on the
source domain needs to be directly modified to consider the
target domain, we call it the Update setup (see Fig. 2).

We review briefly few schemes that consider unsupervised
domain adaptation for IFS related problems.

To detect face spoofing when the heterogeneity of the
domain is due to acquisition and illumination, [15] proposes
to perform subspace alignment, i.e. to compute the linear
mapping between the eigenvectors of the source and target
domain by minimizing the Maximum Mean Discrepancy [16].
A similar idea is proposed in [17] when we want to detect
image resizing operations. Here a set of mappings computed
by Riemannian Procrustes Analysis [18] is derived to trans-
form the covariance matrices derived from mixture of Gaussian
models. For audio steganalysis, the use of adversarial training
was proposed to perform domain adaptation [19] when the

recording is performed by different devices. Following the
methodology of [20], a discriminator differentiating the source
and target domain is trained from the training and testing sets
and then used during the learning process. Here again, the
number of test contents needed to train the discriminator is
substantial.

This paper proposes to perform unsupervised domain adap-
tation for deep-learning based image forensics schemes, up-
dating the network trained on the source set using a back-
propagation mechanism. Similarly to what was proposed
in [21] but in an unsupervised setting, the investigated source
and target come from JPEG coding. Note that double compres-
sion artefacts prevent the automatic update from the source
domain to the target domain. The adaptation scheme, relying
on [1], updates the weights of the network by minimizing
conjointly the binary cross entropy loss computed with the
source labels and the MMDs between the embeddings of the
source and target distributions at each dense layer. One benefit
of this approach is that the adaptation of the network does not
rely on an additional network to be trained, but solely on an
adaptation parameter σ (see Section II).

Section III presents the forensics setup, i.e. the CNN detec-
tor and the different databases. Finally, section IV presents
different results, including an analysis of the effect of the
adaptation parameter, the impact of the size of the target
domain, and the choice of the source domain. A comparison
with supervised approaches is also performed.

II. UNSUPERVISED DOMAIN ADAPTATION

We consider a source dataset Ds = {(xs
i , y

s
i )}ns

i=1 made of
ns labeled observations and a target dataset Dt =

{
xt
j

}nt

j=1
made of nt unlabeled observations. The distribution that
generated the observations from the source dataset is denoted
ps and the distribution that generated the observations from
the target dataset is denoted pt. We suppose that ps 6= pt
while being “reasonably” close. A common goal in domain
adaptation consists in designing a classifier f :
• able to embed the two domains in a feature space F

within which we can’t consider them as coming from
two different distributions. In that case, we say that the
features obtained are domain invariant,

• which minimizes the target risk:

Rt(f) = E(x,y)∼pt
(1f(x)6=y) (1)

= P(x,y)∼pt
[f(x) 6= y].

Let ΦF be a mapping which allows us to obtain relevant
features from the source and target domains. Finding a proper
feature mapping ΦF is not an easy task but recent approaches
show that it is possible to learn it using a neural network. In
this context, the feature mapping is learned so that the domain
adaptation is the most effective possible.

Long et al. [1] proposed an architecture in which the last
dense layers of a CNN are forced to embed the two domains
in feature spaces where their distributions are similar using the
Maximum Mean Discrepancy [16] (MMD), a famous kernel-
based metric enabling to judge to what extent two distributions



look similar. To enforce adaptation, their idea consists in
adding to the classification loss, an adaptation loss which is
the sum of MMDs between the source and target distributions
embedded at each dense layer. This additional loss can be seen
as a way to regularize the model so that it does not rely too
strongly on the source distribution and is defined as:

L =
∑

i=1,...,ns
domain=source

Lclassification(Φfinal
F (xsi ), y

s
i ) (2)

+ λ
∑

layer l=1,...,L

 ∑
i=1,...,min(ns,nt),

domain=source + target

MMD2(Φl
F (xsi ),Φ

l
F (xti))

 ,
where Φl

F is the feature map obtained at the level of the layer
l in the network and λ > 0 is a regularization parameter.
It is important to know that the MMD is a revelant metric
for estimating the discrepancy between two distributions only
if it is associated to a characteristic kernel, in which case
it is minimized if and only if the two distributions are
identical. That’s why the authors proposed to use a convex
combination of characteristic kernels for computing the MMD
ensuring that their resulting kernel is also characteristic . They
tested their strategy using a combination of gaussian kernels
with varying bandwiths σ against standard domain adaptation
datasets and, they obtained state of the art results for image
classification. Gaussian kernels are chosen for the computation
of the MMD making the MMD differentiable and hence, the
gradient descent algorithm can be used for backpropagation.

III. PROPOSED METHOD

For our experiments, we choose to use the well-known
forgery detector proposed by Bayar and Stamm [4]. It is a
simple architecture that is efficient on standard databases and
satisfying to demonstrate the benefits of the proposed strategy.
As it can be observed in Fig. 4, this detector has a classical
architecture (Conv + Maxpool + Linear Layers) except for the
first convolution which comply with the specific constraint :{

w
(1)
k (0, 0) = −1,∑
m,n6=0 w

(1)
k (m,n) = 1.

This constraint is applied to the very first convolutional
layer and fosters the extraction of relevant low-level forensic
features. The other layers are non-constrained and act as usual.
Notably, the convolutions help to extract high-level manipula-
tion features and, the linear layers generate the classification
output. The architecture of this network is presented in Fig. 3.

Concerning the domain adaptation, we compute the sum of
the MMDs between the final embeddings (Φl

F )l=1,...,3 of our
images from the source and the target, at the level of each
final layer. This metric acts as a regularization term on the
cost function. Minimizing it stimulates the network to find
meaningful embeddings for the forgery detection in our two
domains. To keep things simple, only one Gaussian kernel is
chosen for the computation of the MMD. However, we test
the adaptation with different bandwidths (denoted σ) since

Fig. 3. Architecture of our forgery detector largely inspired by [4], in red:
Batch Norm + ReLU, in orange: Flatten, in purple: ReLU + Dropout(0.5).

this parameter has a great impact on the learning phase . An
illustration of our domain adaptative strategy is available in
Fig. 4. The regularization parameter λ from eq. (2) is set to
1.0 as its role is somehow redundant with the bandwidth σ.

Fig. 4. Illustration of our domain adaptation strategy.

A. Construction of the databases

We selected randomly 40, 000 images from the “Splicing”
category of the public base DEFACTO [5], which has been
specifically designed for tampering detection. It offers a large
variety of forgery and has been generated using the MS COCO
database [22] which was designed for detection, segmentation
and captioning. The main assets of the DEFACTO database
are its large size and the high quality of the images (their size
and their realism). We focus on splicing forgeries since it is
the most challenging category. Spliced images are made by
inserting objects that do not depend too much of the point of
view. The authors also take care of the position of the splicing
to avoid objects overlapping. Finally, images are saved in TIF
format that allows us to control splicing post processing such
as JPEG compression. To construct the source and target bases
for the following experiments, we split these images into two
independent sets of 20, 000 images. Since these images are
not of the same size, they are cut into 128×128 patches. This
ensures a simple training phase in constant time.

For each patch from the source and target base, the “fake”
class is constructed from the 128 × 128 patches which have
a tampered surface ratio between 20% and 80% of the to-
tal surface. This is realized thanks to the tampering masks



provided from the DEFACTO base. Selecting this range of
tampered surfaces is not innocuous since spotting a very small
tampered area could be very difficult for the detector and, on
the contrary, when the tampered area is too big it would be
difficult to see it clearly. In the extreme situation where the
whole patch is tampered, it is very difficult to assume any
forgeries as the detector will not be able to spot two modes
in the feature distribution.

Based on the number of “fake” patches, “genuine” patches
are then selected in equal quantity to constitutes balanced
classes. It should be noted that in the case where transfor-
mations such as JPEG compression are applied, it is realized
on the images themselves before cutting them into patches, to
prevent artifacts.

B. Experimental protocol

In order to obtain more accurate results about the gener-
alization of our detector on the different bases, we design a
5-fold cross validation for each experiment. This process is
applied both to the source and the target at the same time.
For each fold, we have a cut for the source into train/test with
the proportion 80%/20%. The same processing is applied to
the target base, with other patches, potentially coming from a
different distribution compared to the source.

To get the best of our model and avoid overfitting, we
consider for each experiment an early stopping callback based
on the accuracies obtained on the source test sets and, observed
the results on the target test sets. We can consider that the
source test sets play the role of the traditional validation sets
meanwhile, our target test sets, the role of the genuine test
sets, independent of the training phase.

The following choices were made concerning the optimiza-
tion strategy and the hyperparameters:
• The maximal number of epochs is fixed at 30, a reason-

able amount of epochs enabling to observe a convergence
in practice.

• The optimizer is the Adam one, famous for its efficiency
in general.

• The batch size is fixed at 64, a reasonable size for
computation on a regular GPU while ensuring a good
convergence of our detector.

• The learning rate is fixed to 10−3 for most of the
experiments except for the mix setup, where we observed
better results with a learning rate of 10−4.

• The initialization of our weights is the one by default on
pytorch [23]. For each study, we initialized our forgery
detector with the common seed 2021 in order to make
our results reproductible and ensuring a fair comparison
of our results.

IV. EXPERIMENTAL RESULTS

In this section, we present and interpret the results of various
experiments to assess to what extent the presented strategy
helps to achieve domain adaptation. Note that in such an
unsupervised setup, we have not access to the target labels

and simulate the mix setup to underline the maximal accuracy
achievable on the target.

A. Image forgeries detection after JPEG compression

JPEG compression efficiency relies on the quantization of
high-frequency coefficients in the DCT domain. This trans-
formation is usually done after image forgeries to hide the
malicious manipulation. In this section, we observe the impact
of this type of transformation on the performance of the
detector, and its capability of generalizing over different JPEG
quality factors.

To illustrate that point we consider a first experiment where
we train our forgery detector on our uncompressed source
images without performing any adaptation just like in Fig. 3.
Then, we simply observe the performance of this detector with
several targets on which different quality factors are applied.

Table II illustrates that datasets built with specific JPEG
quality factors have different underlying distributions on which
the detector focuses for achieving his task. We can clearly
see here that applying JPEG compression on our images
is sufficient for disturbing seriously the detector and this
behaviour is observed, even when we compress with a factor
of 100%. That little fact on its own illustrates the need of
domain adaptation.

Quality factor QF5 QF10 QF20 QF50 QF100 None
Target accuracy 60.3% 63.1% 67.3% 70.3% 73.1% 95.1%
Standard deviation 3% 3% 4% 4% 3% 2%

TABLE II
EFFICIENCY OF OUR DETECTOR WITHIN THE SRCONLY SETUP ON
SEVERAL TARGETS CREATED BY APPLYING JPEG COMPRESSIONS

(5-FOLD CROSS-VALIDATION)
(TRAIN) Nsource = Ntarget = 16, 000 IMAGES.

(TEST) Nsource = Ntarget = 4, 000 IMAGES.

B. JPEG quality factor adaptation

Models built for image tampering detection are designed
to look for the presence of two different distributions in the
image. The feature extraction step done by the CNN part is
conditioned by the JPEG quality factor as seen before.

The biggest gap observed previously is, without surprise,
between an uncompressed target and a strongly compressed
target with a quality factor QF5. Hence, we can decide to
consider the adaptation from an uncompressed source to a
strongly compressed target (QF5 for instance). We present in
Table III our results with our domain adaptative strategy for
this precise case varying the bandwidth σ.

SrcOnly σ = 0.01 σ = 50 σ = 1000 Mix
Target Accuracy 60.3% 50% 72.5% 62.8% 81.4%
Std 3% <1% 1% 5% <1%

TABLE III
ADAPTATION FROM AN UNCOMPRESSED SOURCE TO A TARGET

COMPRESSED TO QF5 : STUDY OF THE IMPACT OF THE PARAMETER σ
(THE BANDWIDTH OF THE GAUSSIAN KERNEL) ON ACCURACY.

(5-FOLD CROSS-VALIDATION)
(TRAIN) Nsource = Ntarget = 16, 000 IMAGES.

(TEST) Nsource = Ntarget = 4, 000 IMAGES.



When σ = 0.01, the adaptation is so constraining that the
forgery detector becomes inefficient. In that case, our learning
phase leads the detector to predict everytime the same class
so that it will perform exactly similarly on the source and the
target. It is the easiest option but also the less satisfying one.

On the contrary, when σ = 1000, we are so flexible in
the adaptation that the behaviour of the forgery detector is
becoming more or less the same than when no adaptation is
performed. Indeed, with only 2.5% of difference and such a
standard deviation, we can’t conclude that there is an increase
in performance on the target.

However, for σ = 50, the change becomes significant
(+12.2%) and shows that our strategy may indeed improve
performances on the target given that σ is carefully tuned. In
practice we tested several σ and σ = 50 was actually the best
candidate found in our case.

That being said, we see that we are far from the performance
we would have achieved in a supervised setting where both
source and target labels are available. Moreover, it’s important
to precise that improving the performance on the target results
often in a decrease in performance on the source. This can be
seen on Table V.

C. Adaptation efficiency

In order to assess the full potential of our domain adaptation
strategy, we observe the influence of the size of the training
set from the target, on the performances observed on the
whole target testing set with our domain adaptative strategy.
Moreover, to compare our results with a relevant baseline, we
also train our detector in a supervised setting with only 1, 000
random patches from the target. It corresponds to a situation
where someone had the time to label only 1, 000 patches from
the target. The results are presented in Table IV.

Target Acc. Std
SrcOnly 60.3% 3%
Nt = 10 (unsupervised) 67.5% 8%
Nt = 100 (unsupervised) 69.3% 3%
Nt = 1, 000 (unsupervised) 71.7% 3%
Nt = max (unsupervised) 72.5% 1%
Nt = 1, 000 (supervised) 68.6% 2%
TgtOnly (supervised) 76.9% 1%
Mix (supervised) 81.4% 1%

TABLE IV
EFFICIENCY ON THE ADAPTATION FROM AN UNCOMPRESSED SOURCE TO
A TARGET COMPRESSED TO QF5 W.R.T. NUMBER OF PATCHES AVAILABLE

FROM THE TARGET.

Using our strategy with only 1, 000 patches of our target
for the training, we observe performances rather close to the
ones obtained after having labelled these patches. This is an
important observation since it might be very time consuming
to label these 1, 000 patches. However, there is still a net
discrepancy of performance and more variance observed in
the results when domain adaptation is performed with a small
number of labelled patches. In the supervised setting, we also
noticed that one epoch is sufficient to get an accuracy similar
to the one obtained with domain adaptation after several
epochs. Having said this, we think that this adaptation may
be better with an architecture more complex.

D. Performance on intermediate quality factors

When we adapt our forgery detector from an uncompressed
source to a strongly compressed target, we expect to perform
better on our target while maintaining good performance on
our source. Now, intuitively, if this adaptation is correctly
achieved, we could expect a better performance on a target
compressed with a quality factor higher than the one we chose
for the adapatation. To confirm it, we compute the target
accuracy on several targets during our experiment in IV-B.
The results are presented in Table V.

SrcOnly σ = 50 TgtOnly Mix
QF5 60.3% 72.5% (+/- 1%) 76.9% 81.3%
QF10 63.1% 76.3% (+/- 1%) 78.4% 83%
QF20 67.3% 78.4% (+/- 2%) 78.2% 83.5%
QF50 70.3% 78.4% (+/- 3%) 78.1% 84.1%
QF100 73.1% 79.0% (+/- 5%) 77.4% 85.2%
No comp. 95.1% 88.4% (+/- 4%) 77.8% 88.1%
Max std 4% 5% 2% 2%

TABLE V
RESULTS ON INTERMEDIATE QFS FOR THE EXPERIMENT IN IV-B. Max std
DENOTES THE MAXIMUM STANDARD DEVIATION OVER ALL RUNS (5-FOLD

CV).

The case where no compression is applied to the target is
a specific case where the target is equivalent to the source. It
enables to observe the loss in performance in the source due
to the adaptation. We can see that this loss is reasonable with
a bandwidth σ correctly tuned.

As expected, the adaptation achieved with σ = 50 on a
target compressed to QF5 has a positive and net impact on
the efficiency of the detector on targets compressed to higher
quality factors . However, we loose in efficiency within the
source domain highlighting the compromise in the generaliza-
tion ability of the detector.

At last, we would like to point out an odd result. It seems
that, in the mix setting, where we train with a labeled source
and a labeled target our detector, the performances observed
on the source are worse than the ones observed training the
detector only on the source. We reasonably think that this
observation is due to a lack of complexity of our model or
a lack of data from both source and target for the training.
Nevertheless the performance achieved by this model on the
target is the best observed as planned.

E. Choice of the source domain

An important question when we try to do domain adaptation
is the choice of our source domain. If we want to transfer
the knowledge acquired from a source to a target, we expect
generally that the source is richer in information compared
to the target. To illustrate that point, we consider here two
domain adaptations with our forgery detector where the role
of the source and the target are swapped. More precisely, we
compare adaptation from QF100 to QF5 to adaptation from
QF5 to QF100. The results are presented in Tables VI and VII.



As shown by these tables, we are unable to achieve a
relevant domain adaptation from QF5 to QF100. In reality,
when the detector is trained on QF5 without adaptation, its
performances on QF5 are very similar to the ones observed on
QF100. This is visible via the TgtOnly set up presented in V.
We suspect that this is because compressed images are made
of low-level features that can be completely retrieved from
images compressed with QF100. Nevertheless, in that case, we
have a net discrepancy between the best results achievable on
QF100 from QF5 and the best results achievable on QF100 from
directly QF100. This is expected since images compressed
with QF100 contains much more information compared to the
images compressed with QF5.

SrcOnly σ = 50 TgtOnly Mix
Target Acc. 77.4% 75.7% 84.9% 85.8%
Std 2% 3% 3% 1%

TABLE VI
ADAPTATION FROM QF5 TO QF100

(TRAIN) Nsource = Ntarget = 16000 IMAGES
(TEST) Nsource = Ntarget = 4000 IMAGES.

SrcOnly σ = 50 TgtOnly Mix
Target Acc. 68.4% 72.8% 76.9% 81.6%
Std 1% 2% 1% <1%

TABLE VII
ADAPTATION FROM QF100 TO QF5

(TRAIN) Nsource = Ntarget = 16, 000 IMAGES
(TEST) Nsource = Ntarget = 4, 000 IMAGES.

Even if the adaptation from QF5 to QF100 is a failure, we
observe a success in the reverse case, from QF100 to QF5.
This experiment illustrates the importance to choose properly
the source domain when we can do it.

V. CONCLUSION AND PERSPECTIVES

In this paper, we propose to use domain adaptation in order
to overcome the mismatch problem, which arises in digital
images forensics in a blind situation where it is not possible
to have access to any target label. We show that domain
adaptation for different JPEG quality is possible using the
MMD associated to a Gaussian kernel defined with a well
chosen σ. One should prefer training its detector on a source
dataset with none or low compression and adapt it to the
more compressed target. The proposed update method does
not require additional labelling of the target dataset. Moreover,
the adaptation does not require a huge amount of images which
may be not available in practical cases. Broadly speaking,
domain adaptation should be investigated for other splicing
post process.
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