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ABSTRACT 

Generating meaningful interpretations of gene lists remains a challenge for all large-

scale studies. Many approaches exist, often based on evaluating gene enrichment 
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among pre-determined gene classes. Here, we conceived and implemented yet another 

analysis tool (YAAT), specifically for data from the widely-used model organism 

C. elegans. YAAT extends standard enrichment analyses, using a combination of co-

expression data and profiles of phylogenetic conservation, to identify groups of 

functionally-related genes. It additionally allows class clustering, providing inference of 

functional links between groups of genes. We give examples of the utility of YAAT for 

uncovering unsuspected links between genes and show how the approach can be used 

to prioritise genes for in-depth study. Our analyses revealed several limitations to the 

meaningful interpretation of gene lists, specifically related to data sources and the 

“universe” of gene lists used. We hope that YAAT will represent a model for integrated 

analysis that could be useful for large-scale exploration of biological function in other 

species. 

 

INTRODUCTION 

In recent years, there has been a boom in genomic, transcriptomic and epigenomic 

studies, largely fuelled by advances in sequencing technologies and the attendant 

reduction in costs. They often result in the production of long lists of candidate genes. 

Various publicly-available resources classify genes on the basis of their structure, 

interactions or function. A common way to interpret a new gene list is to exploit this 

available knowledge, looking for enrichment of genes in defined classes. Despite 

inherent limitations and the tendency for results to be moulded to fit “a sensible 

biological narrative” (Pavlidis, et al., 2012), particularly in hypothesis-driven research 

(Yanai and Lercher, 2020), this technique of gene functional enrichment has been used 
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for more than a decade (Huang da, et al., 2009) and there are currently dozens of 

available tool, many listed at http://omictools.com/. 

There are, however, concerns about these tools, even for the most highly cited ones. A 

major problem with many of them is that they are not regularly updated. Among the 21 

most popular tools in 2016, 12 had not been updated since 2011; 84% of citations to 

gene enrichment tools refer to those that are outdated (Wadi, et al., 2016). For example, 

the data in DAVID was not updated for 7 years, between version 6.7, made public in 

2009, and version 6.8, released in 2016, and according to the DAVID website has not 

been updated since. Despite this, the tool is still being cited several thousand times 

each year. This is a problem for 2 reasons. Firstly, gene predictions change. For the 

model organism Caenorhabditis elegans, between the WS220 release of the database 

Wormbase in 2009 and WS255 (released in 2016), for instance, more than 1700 new 

genes were defined, and the predicted structure of hundreds of existing genes modified. 

If tools do not update their source data, an increasing number of genes may be either 

incorrectly associated with an annotation, or simply absent. Secondly, these tools lack 

up-to-date information about gene function. Recently, gene ontology (GO) annotations 

have increased on average by 12.5% every year (Wadi, et al., 2016). There is a similar 

trend for other annotations, like those from Reactome (Fabregat, et al., 2016) and 

KEGG (Kanehisa, et al., 2010). Thus, for example, fully 80% of functional annotations 

available in mid-2016 were absent from DAVID 6.7. This is clearly a severe limitation, 

and can substantially bias analyses of gene lists (Wadi, et al., 2016). 

Some tools that perform gene enrichment analyses are regularly updated. One example 

is g:Profiler (Reimand, et al., 2016). Despite its power, in common with similar tools, 
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g:Profiler captures annotations for multiple species from centralized databases, rather 

than leveraging the annotations available in species-specific databases. The GO data 

for C. elegans, for example, is derived from GO Consortium’s compendium, so that it 

almost always lags behind Wormbase releases. Further, Wormbase contains more-or-

less detailed descriptions of the phenotypes associated with mutation or RNAi-

knockdown for ~40% of genes. Although much of this information in time reaches 

generic databases, there is always a delay, so at a given moment, for some 

annotations, Wormbase is the sole source. Wormbase also harbours more than 1600 

transcriptome expression datasets that are manually curated to a standard machine-

readable format, allowing automated retrieval and data integration. This represents a 

powerful resource for functional enrichment analysis that is more readily exploited than 

the raw data available through the main transcriptome databases such as the Gene 

Expression Omnibus (GEO). 

Thus while generic databases tools have a broad appeal, there is a clear demand for 

model organism databases (MODs) (Oliver, et al., 2016) and tools that are species-

specific. WormExp is one of many C. elegans-specific bioinformatic tools. It overcomes 

some of the limitations of the more generic ones, but is deliberately limited in its scope 

of data, principally from transcriptome studies (Yang, et al., 2016). Others include a 

database of time-resolved expression data (Grun, et al., 2014; Stoeckius, et al., 2014), 

catalogues of potential transcription factor binding sites, established on the basis of the 

DNA conservation (cisRED (Sleumer, et al., 2009)) or ChiPseq experiments (motif-disc 

(Araya, et al., 2014)), tools such as Worm-Cat, GExplore and WormMine for large-scale 

data mining related to gene or protein function (Ding, et al., 2018; Harris, et al., 2014; 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 12, 2021. ; https://doi.org/10.1101/2021.07.12.452009doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.12.452009
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5 

Hutter, et al., 2009), Tissue Enrichment Analysis among gene sets (Angeles-Albores, et 

al., 2016), WormNet that can generate new members for a pathway, infer functions from 

network neighbours, or predict “hub” genes, on the basis of annotations and expression 

data (Cho, et al., 2014) and GeneModules to identify active “modules” in gene 

expression data (Cary, et al., 2020). On the other hand, to the best of our knowledge, 

there is no single tool for enrichment analysis that exploits the diverse sets of data 

available for C. elegans. As reported here, we created a tool YAAT (for “yet another 

analysis tool”) that performs enrichment analysis using a very extensive dataset (> 

10000 classes) gathered from multiple sources. To increase its utility, we supplemented 

it with several complementary analytical methods, enriched class clustering, evaluation 

of conservation, phylogenetic and co-expression profiling, as well as tools for visual 

exploration of links between classes. 

In the course of benchmarking to explore the robustness of test results, we revealed 

biases that have the potential to skew the results of broad-category enrichment 

analyses. Our results show how caution is needed when interpreting any result from 

gene enrichment analyses in C. elegans. These concerns are likely to be true across 

species. 

 

SYSTEM AND METHODS 

 

Data collection 

To constitute the database for functional enrichment analysis, we expanded our 

previous collection of expression and phenotypic data from diverse resources (Zugasti, 
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et al., 2016). Firstly, for expression data we extracted ~1600 Serial Pattern of 

Expression Levels Locator (SPELL; (Hibbs, et al., 2007)) expression clusters, curated 

from several hundred articles, from the Wormbase FTP site 

ftp://caltech.wormbase.org/pub/wormbase/spell_download/tables/. We supplemented 

this data with non-redundant datasets from WormExp (Yang, et al., 2016). As neither 

Wormbase expression clusters nor WormExp are comprehensive, we manually curated 

a further 188 datasets from 71 articles, building on our previously described in-house 

set derived from 69 articles (Engelmann, et al., 2011). Most of the phenotypic data was 

extracted from Wormbase. Thus 1907 phenotypic classes, associated with a total of 

8077 genes, were downloaded from Wormbase release WS255 

(ftp://ftp.wormbase.org/pub/wormbase/releases/WS255/ONTOLOGY/phenotype_association.W

S255.wb). Further, 101 phenotypic classes were extracted from DRSC FlyRNAi 

database (http://www.flyrnai.org/RNAi_all_hits.txt) and the correspondence between fly 

genes and their nematode homologues established as previously described (Zugasti, et 

al., 2016). We also automatically extracted the list of genes associated with each of the 

132 C. elegans pathways present in KEGG. Finally, we added regulatory information 

into YAAT by including 202 datasets for the putative gene targets for 94 transcription 

factors from the last modENCODE release (Araya, et al., 2014). In addition, we pulled 

into YAAT the gene associations for 5668 GO terms.  

Maintaining data up to date 

The database for functional enrichment analysis includes categories of “static” data from 

sources that are not updated, such as from the DRSC FlyRNAi database, modENCODE 

and any transcriptome data referenced to gene not a specific sequence, and “dynamic” 
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data, for example RNAi phenotypes from Wormbase that are referenced to specific 

genomic coordinates. The static data was kept up to date by tracking changes in gene 

structure prediction for each set, using an R script based on the algorithms underlying 

Wormbase Converter (Engelmann, et al., 2011). The different sources of dynamic data 

have their particular release schedules. Our aim was to match YAAT updates to the 

Wormbase release cycle, with an interval of 5 releases 

(http://www.wormbase.org/about/release_schedule). We were successful in completing 

one update cycle and therefore data were generated for WS255 and WS260. The latter 

is a very extensive resource of 10395 datasets. 

 

Enrichment analysis 

For functional enrichment statistics, we used the hypergeometric distribution using the R 

“stats” package. The p-value is calculated as  

phyper(q = x-1, m = m, n = n, k = k, lower.tail = FALSE) 

Where k is the number of genes in the user’s query. 

N is total number of genes annotated in the catalogue of reference classes (e.g. 20129 

genes for the analyses of data from WS255 reported here). 

m is the number of genes annotated in the functional class of interest. 

x is number of genes in the user list that are annotated in the functional class of interest. 

n= N - m 

For multiple comparisons, p-values are corrected with the p.adjust function in the R 

“stats” package, with various types of correctional statistics: "holm" (Holm, 1979), 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 12, 2021. ; https://doi.org/10.1101/2021.07.12.452009doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.12.452009
http://creativecommons.org/licenses/by-nc-nd/4.0/


 8 

"hochberg" (Hochberg, 1988), "hommel" (Hommel, 1988), "BH" or its alias "fdr" and 

"BY" (Benjamini and Yekutieli, 2001). 

 

Clustering of enriched classes. 

Having defined the enriched classes for the user’s list of genes, a binary matrix of 

enriched classes and the overlapping genes in each class is generated, where rows 

represent genes found in at least one enriched class and columns represents enriched 

classes. Genes common to the user list and the enriched class are set to be “1”, 

otherwise genes are assigned the value “0”. The distance between all the genes and all 

the enriched classes are calculated and based on the distances, hierarchical clustering 

is performed using “hclust” function in R. 

 

Constructing a network of enriched classes. 

Johnson2 similarity scores (sim = (a/(a+b))+(a/(a+c)); a = number of shared genes, b = 

number of genes only found in one class, c = number of genes only found in the other 

class) were calculated between each pair of enriched classes. Nodes represent the 

enriched functional classes and edges represent the similarity between different 

classes. The user sets a threshold for the maximum distance between nodes, thereby 

defining the number of edges. Nodes representing functional classes found in the same 

hierarchical cluster are given the same colour. This representation complements the 

heatmap display that suffers from the usual drawback of occasional incorrect clustering 

seen with agglomerative methods. 
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Phylogenetic profiles 

For phylogenetic profile analysis, using WS255 we made a reference set of 101 

proteomes from 72 free-living nematode and 29 parasitic species (nematodes and 

platyhelminths, collectively referred to as helminths), based on the complete set of 

proteins predicted from genome sequences, extracted from Wormbase. With the 

inclusion of more species in WS260, this was subsequently expanded to 127 helminth 

proteomes when the YAAT database was updated. A second reference set was 

constructed from the proteomes of 113 species (vertebrates, invertebrates, fungi, plants 

protists and prokaryotes). For this, we downloaded from Ensembl/Ensemblgenomes the 

sequences for the proteins of 66 reference proteomes defined by the Quest For 

Orthologs consortium (http://questfororthologs.org/; original data release 2016/05/03 

2016_04, based on UniProt Release 2016_04, Ensembl release 84 and Ensembl 

Genome release 31). The complete predicted protein sets for a further 57 metazoan 

species, chosen for their phylogenetic diversity, but including all 5 available 

Caenorhabditis species, were downloaded from Ensembl (http://metazoa.ensembl.org; 

release 32). Each C. elegans protein was compared to the complete set of proteins in 

each of the helminths or diverse proteomes (including C. elegans) using BLASTP. 

When multiple isoforms existed for a single protein, the longest one was selected. For 

each C. elegans query protein, only the best hit in each species was considered. Based 

on this analysis, for each of the 2 datasets, we generated a “BinMat” matrix (n proteins 

× m species), where for each entry Cij, if there was a BLASTP hit in species “j” for 

C. elegans protein “i” with a P-value less than 10-5, then Cij was set to “1”, and otherwise 

to “0”. Users provide lists of proteins or genes. In the latter case, for each gene, the 
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corresponding protein (the longest isoform, if applicable) is identified. Starting with this 

list of “N” genes, the tool will extract a “QuBinMat” matrix (N proteins × m species) from 

“BinMat”. Next, the distances between the “N” proteins within the QuBinMat matrix are 

calculated and based on these distances, clustering is performed with the “hclust” 

clustering algorithm in R. 

To calculate an average conservation score across the N species for a given list of n 

genes, first, for each gene, the number of species predicted to contain an ortholog, as 

defined above, was determined (o1, o2,..on). Next, the sum of the number of orthologues 

was divided by the maximum possible score (∑1-n o /Nn). 

 

Co-expression dataset 

A coherent set of the results from 240 independent RNAseq experiments performed by 

the modENCODE consortium was assembled. In addition to transcriptome profiling of 

worms at different developmental stages, the set included data from different mutant 

strains and worms exposed to a variety of pathogens. The raw sequencing reads for 

each experiment were treated in an identical fashion, with expression level reported as 

average depth of coverage per base per million reads (dcpm). The data, at a gene level 

in WS220, was converted to WS255 using WormBase Converter. Pearson correlations 

are calculated for the genes of interest within the dataset, the calculated correlations 

clustered as above and plotted using the function heatmap.2 within the R package 

ggplot. 

 

Fungal infection dataset 
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To define a test set of genes strongly induced by D. coniospora (“Dc_Up” genes), using 

published data (Table S7 in (Engelmann, et al., 2011)), we selected those with a >2.5-

fold increase in infected versus control worms and with a minimum expression level of 

0.1 dcpm in infected worms. The list of 145 genes was converted from WS170 to 

WS260 using WormBase Converter (Engelmann, et al., 2011), giving a list of 146 

genes, including 2 that are non-coding. 

 

IMPLEMENTATION 

Constitution of reference gene sets for YAAT 

In order to analyse a large dataset of genes derived from a genome-wide RNAi screen, 

we developed a functional class enrichment and clustering tool (Zugasti, et al., 2016). 

Given the interest generated by this tool, we decided to improve it and adapt it with the 

aim of providing a web-based resource, YAAT. The first improvement was to expand 

the range of underlying data. Our primary data source was Wormbase. From there, we 

extracted, for example, the genes associated with each of ca. 2000 phenotypic classes. 

A single gene can give rise to multiple transcripts, and hence to different protein 

isoforms. Some functional annotations are associated with a specific transcript, but we 

did not attempt to capture this level of detail in YAAT. Thus the reference object within 

YAAT is a gene (with unique Wormbase gene identifier; WBGene). Indeed, for 

annotations associated with proteins (e.g. for enzyme activities or derived from 

proteomic studies), the corresponding gene name was used. Thus for the sake of 

simplicity, here we use the term “gene” in an indiscriminate way when describing 

classes that were defined on the gene, transcript or protein level. 
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Wormbase has a regular release schedule, with updates available in principal every 2 

months. Some data sources for YAAT are static. For example, the association of 

transcription factors and putative target genes established by the modENCODE 

consortium was generated using WS220 (Araya, et al., 2014) and although this large-

scale study has been extended in the context of modERN (Kudron, et al., 2018), the 

modENCODE mapping of transcription factor targets has not been updated, despite 

subsequent changes in gene predictions. Other data sources, including KEGG (Tanabe 

and Kanehisa, 2012), are updated regularly. We previously developed a tool, 

Wormbase Converter, to deal specifically with this issue (Engelmann, et al., 2011). We 

used a script based on the Wormbase Converter algorithm to ensure that we had a 

homogeneous set of data, using a single reference release of Wormbase genes, 

irrespective of the data’s source. 

Although we successfully performed one semi-automatic update of the YAAT database 

(from WS255 to WS260), with the passage of time, this became unfeasible for a number 

of reasons. One barrier to updating YAAT was changes in the location and availability of 

third party data. Common problems included out-dated URLs (e.g. the broken link to “a 

tab-delimited file of all public 'hits' (positive results) from DRSC screens” from 

https://fgr.hms.harvard.edu/utility-tools) and re-organisation of ftp data repositories. The 

use of database-specific gene identifiers (e.g. in KEGG) also presented a challenge as 

the inevitable occasional parsing errors required manual correction. Further, the release 

cycles of the different databases are not synchronised with Wormbase updates. For 

example, the Ensembl database is a variable number of releases behind Wormbase. 

This was particularly problematic for the establishment of phylogenetic profiles (see 
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below) and could only be resolved by fastidious and very time-consuming cross-

validation and error checking. Thus although YAAT was designed at the outset to be 

readily updated, we failed in that aim and have not yet been able to implement a robust 

pipeline for semi-automatic updating. Nevertheless, compared to many other tools, 

YAAT is based on relatively recent data and provides functions that they cannot. 

Two major sources of transcriptome data for YAAT were the pre-computed expression 

clusters from the C. elegans implementation of Serial Pattern of Expression Levels 

Locator (SPELL (Hibbs, et al., 2007)) and WormExp (Yang, et al., 2016). SPELL 

includes only published datasets, while the underlying data in WormExp comes from the 

many public transcriptome databases and includes unpublished data. These sources 

thus provided a partially redundant coverage of transcriptome data. We also expanded 

our pre-existing in-house functional class database (Engelmann, et al., 2011) by 

manually extracting data from transcriptome studies. Since this dataset only references 

gene identities, not expression values, it includes some studies for which the expression 

values were never made publicly available and that are therefore absent from SPELL 

and WormExp (Figure 1A). This transcriptome information was combined with functional 

and structural categories from different sources to constitute the YAAT database (Figure 

1B).  

This set covers essentially all (>99%) protein-coding genes in C. elegans. The average 

class size was 272, with a median of 28 and a maximum of 10,705 genes (Figure 1C). 

Classes from different sources had markedly different size distributions. Thus the 1907 

classes derived from Wormbase phenotypes were biased towards small classes 
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(median 6, average 34), while those derived from SPELL (1662 classes) were biased 

towards large classes (median 104, average 484; Figure 1C).  

Less than 130 genes (0.6%) were associated with a single category, in most cases 

(67/127 genes), the class “C. elegans-specific genes” (Zhou, et al., 2015). On the other 

hand, 95% of genes were associated with at least 10 classes, most frequently 21, with 

the median number of classes for each gene being 58 (Figure 1D). The complete 

dataset therefore has good gene coverage and the potential to provide insight into the 

functional relationships between the members of most gene lists. 

 

Gene sets analysis using YAAT 

In its most basic implementation, a user inputs a list of genes of interest and sets 

analysis parameters. Users can choose between different methods to determine the 

statistical significance of each gene set enrichment; the default is by false discovery rate 

(FDR). Thresholds for FDR or P-values and for the maximum reference class size can 

be defined. In the context of enrichment analysis, including gene classes that contain as 

many as 50% of all protein-coding genes makes relatively little sense; we generally, and 

arbitrarily set this parameter to 1500 genes (i.e. ca. 7.5% of all protein-coding genes). 

Enriched functional classes are returned in a hyperlinked table that gives access to the 

underlying data. The results are also available as a downloadable text file and, as 

detailed further below, in different graphical formats. 

 

Analysis of the composition of the YAAT dataset reveals intrinsic biases 
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To characterise the dataset and the tool, we took the list of genes for each and every 

gene class and input this in turn into YAAT, to investigate the relationship between class 

sizes and number of enriched gene classes. We observed a positive correlatory trend 

between the number of genes in a class and the number of enriched functional classes 

for the entire set, and also for subsets corresponding to the Wormbase phenotype, 

WormExp or SPELL classes (Figure 2). There were, however, numerous classes that 

did not follow this trend. There were, for example, 4 large SPELL classes (of >5000 

genes) associated with an unexpectedly low number of enriched categories (≤120, 

compared to a median of 416). It is not clear whether this reflects a technical artefact, 

but they come from a single study that transcriptionally profiled different cell types 

(Spencer, et al., 2011). At the other end of the scale, the class “Down <-1.5 by 

tunicamycin in N2”, with 126 genes returned more than 400 enriched classes (Table 

S1). 

During the analysis, we noticed an apparent bias in the categories of classes returned 

for different gene lists. When the gene list used as a query was derived from a SPELL 

class, overall there appeared to be an over-representation of classes comprised of 

transcriptionally regulated genes (i.e. SPELL or WormExp). This was not seen with 

gene lists derived from WBPhenotype classes (Table S1). To probe this further, and to 

avoid the confounding effect of class size, we took the results for the 22 WBPhenotype 

classes constituted of 200-300 genes, and selected the 25 SPELL classes (only one per 

published study, chosen at random) of the same size that gave at least 300 enriched 

classes when run through YAAT (Figure 3A). Within these groups of gene lists, there 

was a striking difference in distribution of the enriched gene classes. While groups of 
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genes defined by transcriptome studies (i.e. SPELL classes) were found to be enriched 

almost exclusively for other SPELL or WormExp classes, the groups defined on the 

basis of a phenotype were enriched for a far more diverse range of categories (Figure 

3B), in proportions that approached their overall distribution (Figure 1B). Part of the 

reason for this result, as discussed further below, is that the respective gene 

“universes”, i.e. the non-redundant list of genes covered by all the classes of the various 

categories, are very different. The universe of SPELL or WormExp classes includes 

essentially all protein coding genes, while the other categories of classes only provide a 

partial coverage of the entire gene set. For example, most of the genes (57 ± 8 %, n = 

13) in the SPELL-derived lists of 200-300 genes that returned the fewest (<5) 

WBPhenotype classes (Figure 3B), are not contained within the WBPhenotype universe 

of 8077 genes. The consistent bias that was observed is a caveat for the interpretation 

of this type of global enrichment analysis that draws its results from multiple types of 

gene annotations. In order to circumvent this potential issue, YAAT provides users with 

the possibility of restricting the enrichment analysis to defined categories of data.  

 

Enriched class clustering to investigate functional connections 

When a list of genes is entered, YAAT performs a standard enrichment analysis. To 

provide a graphical representation of the relationship between the members of the 

enriched classes, YAAT returns the results as a hierarchical cluster plot. Users can 

choose between 7 standard clustering methods, with Euclidean-distance based 

clustering being the default. The source data used for YAAT contains many related data 

sets. As a single example, from SPELL, there are 4 gene sets,  
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“B.thuringiensis_0.5mix_upregulated_12h”, “B.thuringiensis_0.1mix_upregulated_12h”, 

“B.thuringiensis_0.5mix_upregulated_6h” and “B.thuringiensis_0.1mix_upregulated_6h” 

(Yang, et al., 2015) for which >70% of all the constituent genes are in more than one 

class, with 24% common to all 4. Such groups of related genes can strongly influence 

the clustering analysis and mask relationships that would otherwise be apparent 

between less-related classes. To counter this, YAAT offers the user the possibility to 

exclude classes that have too great an overlap from the analysis. Additionally, YAAT 

offers users the possibility to exclude any number of defined gene lists, which is useful, 

for example, when querying YAAT with part, or all, of a gene list that is in the database. 

Although hierarchical clustering is very powerful, and the utility of these analyses has 

been demonstrated previously (Kim, et al., 2016; Zugasti, et al., 2016), it can be biased 

because of the hierarchical nature of tree building. This can be avoided by calculating n-

to-n distances between all classes and displaying the result as a network, where nodes 

represent enriched classes and edges represent the similarity between the different 

classes. YAAT therefore includes such a complementary network representation of 

these results, illustrating the degree of overlap of genes between different significantly 

enriched classes. 

As an example, a set of 144 C. elegans protein-coding genes that are strongly up-

regulated upon infection with the fungal pathogen D. coniospora (Dc_Up genes; see 

Methods), returns 39 highly enriched (p<10-15) gene classes. As expected from the 

global analysis of the dataset, there was a very strong bias of enriched classes; all were 

derived from transcriptome analyses (Table S2). In part this reflects the lack of 

representation of these genes in the other categories; only 34/144 were present in the 
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WBPhenotype universe. Relaxing the threshold (P-value < 0.01) revealed the common 

functional annotation, “pathogen susceptibility increased” for 5 of these genes (fmo-2; 

thn-1; thn-2; ilys-3; Y65B4BR.1), since their individual or compound knockdown was 

associated with loss of resistance to one or more pathogens (Evans, et al., 2008; 

Luhachack, et al., 2012; O'Rourke, et al., 2006; Sahu, et al., 2012; Shapira, et al., 

2006). They are likely to form part of a general but relatively unexplored pathogen 

defence strategy that is the subject of current investigation (Dasgupta, et al., 2020; 

Naim, et al., 2021). This illustrates one way in which YAAT can be used to generate 

new knowledge at the gene level. 

YAAT provides a link to the sets of genes shared between the query list and each 

enriched class, allowing iterative rounds of analysis, to explore in more depth the 

relationships between classes. Since the results are available as a downloadable text 

file, users can represent the results graphically, such as with volcano plots. To provide a 

graphical representation of the relationship between the members of the enriched 

classes, YAAT returns the results as a hierarchical cluster plot. With the Dc_Up set of 

query genes, there were several distinct clusters. Within them, a number of classes 

clustered as expected. For example, the genes regulated upon D. coniospora infection 

and in the osmotic stress-related mutants osm-7 and osm-11 overlap significantly 

(Rohlfing, et al., 2010) and so co-clustered (Figure 4A; Table S2). 

When the similarity between the enriched classes is calculated and then represented in 

the form of a class linkage network, the connections between a more select group of 

classes becomes evident (Figure 4B). In this case, the analysis highlights 3 known 

connections with the anti-fungal innate immunity, again, the overlap with the response 
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to osmotic stress (Dodd, et al., 2018; Pujol, et al., 2008; Rohlfing, et al., 2010; Zugasti, 

et al., 2016); the reciprocal relationship with the response to bacterial pathogens that 

colonize the intestine (Engelmann, et al., 2011); and the link to acs-3/nhr-25 signalling 

(Ward, et al., 2014). These last 2 categories were not in the same sub-cluster in the 

dendrogram (Figure 4A, Table S2), illustrating the utility of this complementary analysis. 

There was also an overlap with lists corresponding to genes induced upon exposure to 

2 concentrations of the bioactive polyphenol quercetin acid (Pietsch, et al., 2012), in 

part explicable by the >90% overlap between these 2 latter classes. Perhaps more 

interestingly, this representation revealed an overlap between the Drechmeria-induced 

genes and genes up-regulated by Burkholderia pseudomallei infection (Lee, et al., 

2013) but repressed by allantoin (Calvert, et al., 2016). The commonly regulated genes 

include a hallmark of epidermal antifungal immunity, 8 antimicrobial peptide genes 

(Figure 4B). B. pseudomallei degrades ELT-2, an intestinal GATA transcription factor, 

and so switches off defence gene expression in the gut (Lee, et al., 2013). How this 

would switch on immune gene expression in the epidermis is not known. Allantoin 

extends C. elegans lifespan in a DAF‐16‐independent manner through a mechanism 

that is not fully understood (Calvert, et al., 2016). The potential for allantoin to modulate 

innate immunity merits further investigation. While the results with this test dataset 

illustrate the confounding effect of including highly-related gene lists in the database, 

more importantly they suggest that YAAT has the potential to identify functional 

connections linking different regulatory mechanisms. 

 

Establishing functional connections using co-expression analysis  
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Genes that function together often are expressed together. Therefore, as well as 

calculating and returning measures of gene class enrichment, YAAT generates, from a 

set of ModENCODE RNAseq data (Agarwal, et al., 2010), information about gene co-

expression. Taking the same set of 144 Dc_Up genes, a number of separate clusters 

can be resolved, including one that includes several antimicrobial peptides genes 

(Figure 4C). In addition to the annotated cnc, fip and nlp genes (Pujol, et al., 2008), this 

clustering draws attention not only to F48C1.9, recently demonstrated to be up-

regulated specifically in the epidermis upon D. coniospora infection (Omi and Pujol, 

2019) but also to B0563.9 predicted to encode a secreted peptide of around 50 amino 

acids structural unrelated to previously characterised antimicrobial peptides, and 

F07C3.9, predicted to encode a 53 amino acid peptide, without a signal peptide, with 

homologues only in some Caenorhabditis species. Both of these merit further study. 

Another clearly discernable cluster contained 5 ttr (TransThyretin-Related family 

domain) genes (Figure 4C). Several members of this large family of 59 genes have 

been implicated in C. elegans host defence (e.g. (Simonsen, et al., 2011; Treitz, et al., 

2015)), but their role in the interaction with D. coniospora has not yet been investigated. 

These results clearly illustrate how YAAT can help prioritise genes for in-depth study. 

 

Establishing functional connections using phylogenetic analysis  

Genes that function together are also often observed to co-evolve (Pellegrini, et al., 

1999). To provide a comparative measure of gene conservation, YAAT displays the 

average level of conservation across a broad range of species for the entire query list. It 

also includes in the table of results a comparison between the average level of 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 12, 2021. ; https://doi.org/10.1101/2021.07.12.452009doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.12.452009
http://creativecommons.org/licenses/by-nc-nd/4.0/


 21 

conservation for the entire list of genes in an enriched class and for the genes that are 

shared between that list and the genes input as a query. The figures for overall 

conservation for the members of the different classes varied widely. There was a strong 

bias towards conservation among the “phenotype” classes but not among those derived 

from the SPELL expression studies (Table S3). Not surprisingly, among the larger 

classes (>200 genes), the lowest score was associated with the class of lineage-specific 

genes (Zhou, et al., 2015). It was notable that 6 of 30 classes with the least conserved 

genes were lists of infection-regulated genes, presumably reflecting the lineage-specific 

adaptation to selection pressure from natural pathogens. At the other end of the scale, 

with high scores, apart from the classes transposed from Drosophila, which were by 

their very nature conserved, those related to fundamental cellular processes, including 

KEGG gene classes, were prominent. The observed skew in the conservation of genes 

found in the different types of functional classes could lead to another type of bias when 

analysing datasets. 

In addition to giving a global measure of conservation, to provide insight into the pattern 

of conservation of the members of a gene list, YAAT performs phylogenetic profiling. By 

default, the results of a broad analysis against 113 diverse species are presented. 

Given the increasing interest in translating research from C. elegans to parasitic worms 

(e.g. (Keiser, 2015)), users can opt for a more targeted one, using data from 127 

nematode and helminth species. With the list of 144 Dc_Up, most genes were either 

found only in nematode species or just in C. elegans (Figure 4D). The 5 ttr genes 

mentioned above were found in the same sub-branch of the phylogenetic tree, 
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increasing the likelihood that they function together in an unexplored aspect of innate 

defence. 

 

Simultaneous clustering of class enrichment, co-expression and phylogenetic 

data  

Genes that have the same pattern of class membership, co-expression and 

conservation may very well function together. To facilitate the identification of such 

groups of genes, YAAT uses a powerful new form of representation. For each set of 

class enrichment, co-expression and phylogenetic data, the order of genes in the 

clustering is enforced for the results of the other two sets. To demonstrate the utility of 

the approach, we queried YAAT with a combined list of genes corresponding to 2 large 

protein complexes with no common members (Table S4). Clustering by class 

enrichment resulted in a very good separation of the 2 lists. When this clustering was 

enforced on the co-expression data, clear groups were discernable (Figure 5A). 

Similarly, clustering on the basis of co-expression separated the genes from the 2 

complexes in a very satisfactory manner, while projection of this clustering on the class 

enrichment data also resulted in clear groups of genes (Figure 5B). With this data set, 

clustering on the basis of evolutionary conservation separated the 2 gene sets relatively 

poorly, presumably as a consequence of the fact that almost all the genes, regardless of 

the set, exhibit the same pattern of conservation. There was one marked exception, a 

group of genes specific to only one complex with a unique pattern of conservation 

(Figure 5C) that could represent the ancestral core complex.  
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As another example, we took a published list of genes determined to be induced by the 

immunostimulatory xenobiotic RPW-24 in an nhr-86-dependent manner (Peterson, et 

al., 2019). In this case, there was a broader phylogenetic distribution. Looking at the 

clustering based on evolutionary conservation, one can see a coherent group of genes 

that were specific to the 5 Caenorhabditis species that also gave a clear cluster of 26 

genes across the other 2 graphs (Figure 5D). Despite representing less than 1/5 of the 

input list, these genes were the majority of those found in 2 classes, 

“N2_UV_upregulated” and “PA14_vs_OP50_upregulated_8hr” (Table S5). As could be 

expected, at the gene level, 8 had annotations linked to the response to a range of 

bacterial pathogens, and 4 to abiotic stress.  Interestingly, several correspond to 

proteins of the same family, in close proximity to each other in the genome (Table S5). 

These are all indications for recently evolved genes potentially in cellular defence, and 

again illustrate how YAAT can help identify groups of genes for in-depth functional 

study.   

 

DISCUSSION 

Various stand-alone or web-based functional enrichment analysis tools have been 

developed over the last 20 years. The results of our tests with YAAT indicate that 

enrichment analyses should be based on comparisons with the broadest possible 

collection of functional classes to avoid the biases inherent to each type of gene set. 

Indeed, by collecting transcriptomic, functional and phenotypic data from the literature, 

Wormbase, KEGG and other resources, we amassed more than 10,000 gene classes, 

covering essentially all protein coding genes in Wormbase. Since data evolves, from the 
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outset, we included a pipeline to update data from the respective resources 

automatically. For the static data such as modENCODE assigned transcription factor 

targets, the most accurate updating would involve reassigning genes to ChIP-seq peaks 

on the basis of revised gene structure predictions. Even for RNA seq data, each 

revision of gene predictions should be accompanied by a re-calling of alignments and 

read counts. Such practices are today unfeasible. Indeed, even our intermediate 

strategy, tracking changes in gene identity (and associated annotations) over 

successive Wormbase releases using an established methodology (Engelmann, et al., 

2011) proved unworkable after just one update cycle. We are well aware of the material 

and theoretical difficulties in maintaining any biological database, but have no concrete 

solutions to the multiple problems we encountered trying to keep YAAT up to date. 

Regarding the analyses themselves, rigorous statistical enrichment analysis requires 

knowledge of the gene “universe” sampled when a class was defined. It matters 

whether a class was defined after sampling all genes or only a subset. For example, in 

our previous transcriptome studies to determine the response of C. elegans to infection, 

we have used cDNA (Mallo, et al., 2002), long oligonucleotide (Wong, et al., 2007) and 

tiling microarrays (Engelmann, et al., 2011). These theoretically cover between 35% 

and close to 100% of the predicted protein coding genes. In reality, because of the 

sensitivity of the techniques, these figures are upper limits. Similarly, for analyses by 

RNA-seq, in principal all genes are assayed, but in fact the number is determined by the 

depth of sequencing (Tarazona, et al., 2011), and in some studies may be restricted to 

a particular category. For example, a recent study looked specifically for non-coding 

transcripts regulated by CEP-1 (Xu, et al., 2014). All of the genes identified in this study 
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that are associated with a Wormbase SPELL class included in YAAT have both protein-

coding and non-coding transcripts. Currently <550 such genes are predicted, and this 

would be the relevant universe for these classes, not the >25,000 non-protein-coding 

genes. For other types of class, determining the universe is problematic, be it because 

of the high rate of false negatives in RNAi screens, or lack of relevant information (i.e. 

degree of saturation) for genetic screens. Indeed, it is very rare for the sampled 

universe to be reported, and even when it is, this information is generally not available 

in a machine-readable standardised format. In common with most current functional 

enrichment analysis tools, in YAAT we assumed that the universe for each set is the 

entire complement of protein coding genes. This will introduce inevitable inaccuracy in 

the calculation of the statistical significance of any given enrichment, especially if the 

universe of a class of interest is small. 

YAAT goes beyond the functionality of standard enrichment analysis since it provides 

class clustering, allowing the inference of functional links between groups of genes. 

Further, we have included the option to perform co-expression and phylogenetic 

profiling, complementary methods for establishing groups of functionally-related genes. 

YAAT was originally provided as a web-based service on an academic web server. 

Following alteration to the host site’s security protocols, external access was lost. 

Despite our best efforts over many months, we have not succeeded in reinstalling YAAT 

elsewhere, in part because of the complexity of the underlying programming 

environment with the attendant multiplicity of dependencies. Unfortunately, YAAT was 

conceived before the widespread implementation of containers like Singularity that are 

specifically designed to circumvent such constraints. We will continue to try to restore 
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and online version of YAAT and implement methods to allow it to be updated. Even if 

we do not succeed, we hope that our work with YAAT will serve as a model for the type 

of integrated analysis tool that could be useful for any large-scale exploration of 

biological function as well as illustrating the various pitfalls that can plague meaningful 

interpretation of gene lists. 

 

 

FIGURE LEGENDS 

 

Figure 1. Sources and types of data in YAAT (WS255). A. Venn diagram showing 

transcriptome data coverage by SPELL, WormExp and our in-house collection. The 

figures indicate the number of articles from which data was extracted. B. Distribution of 

the major types of data in YAAT. DRS: phenotypes transposed from Drosophila RNAi 

screens. C. Distribution of class sizes, for all classes (black), and those from SPELL 

(orange) and Wormbase phenotypes (blue). D. Distribution of the number of classes 

associated with each gene. The inset graph is an alternative representation of the same 

data.  

 

Figure 2. Distribution of the number of classes returned as a function of the size of the 

class used as a query, for classes derived from WormExp (black), SPELL (green), 

Wormbase phenotype (WBPhenotype; red) and others (blue). The line indicates the log 

fit using the entire set (WS255). 
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Figure 3. Sets of genes defined by transcriptome, but not phenotype, are preferentially 

enriched for certain gene classes. A. Characteristics of defined sets of genes from 

either the SPELL or WBPhenotype categories (see text for details). B. Graph showing 

the distribution of types of enriched gene classes for the same sets of genes. WS255 

referenced data sets. 

 

Figure 4. A. Clustering of enriched classes for 144 D. coniospora up-regulated genes. 

Each row is a gene, each column is a class; the labels are not shown here. The 

positions on the dendogram of the classes “SpellEC_706_osm.7_regulated” and 

“SpellEC_708_osm.11_regulated” is indicated in yellow. The colour scale indicates the 

number of genes in the overlap between the input gene list and each enriched class. B. 

Network of enriched gene classes. The colour of each node (gene class) corresponds to 

a position in the hierarchical cluster, its size indicates the significance (p-value) of the 

overlap between the class and the query list of genes (larger diameter, higher 

significance). In YAAT, the gene class labels are reported directly in the network. Here, 

they are replaced by a number in each node (in their order, from left to right, in the 

graph in A, with the correspondence table on the right), for the sake of legibility. The 

boxes indicate the number of genes shared between each pair of gene classes and the 

query list. The correspondence table gives the gene class, with m/n, n the total number 

of genes of that class and m the number that overlap with the query set. The righthand 

list of genes highlights antimicrobial peptide genes common to the overlaps of classes 

#19 and #20. C. Clustering of 144 D. coniospora up-regulated genes on the basis of 

their patterns of co-expression. Two subclusters are highlighted, with the positions of 
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the indicated genes marked by the vertical lines on the right. The colour scale indicates 

the degree of co-expression between gene pairs. D. Clustering of 144 D. coniospora up-

regulated genes on the basis of their patterns of conservation (red indicates the 

presence of an orthologue) across 113 species (coloured bar at bottom), ranging from 

Archaea and bacteria (red; left) to chordates, including human (brown; right). Among the 

invertebrates (blue), the 5 Caenorhabditis species are indicated by the darker blue box. 

One gene subcluster is highlighted, with the positions of the indicated genes marked by 

the vertical line on the right. The query parameters and full results for all panels are in 

Table S2. 

 

Figure 5. A. Clustering of enriched classes for genes from 2 independent protein 

complexes, indicated by the green and yellow bars on the right. Each row is a gene, 

each column is a class; the labels are not shown here. The gene order obtained from 

the class clustering (right panel) is imposed on the co-expression (middle panel) and 

conservation (left panel) data. Clustering of the same genes on the basis of co-

expression (B) or conservation (C; one group of genes is highlighted by the black box 

on the right; species colour code as in Figure 4), with in each case the respective gene 

order being imposed on the 2 other panels. D. Clustering of genes induced by exposure 

to RPW-24 on the basis of conservation (left panel), with this gene order being imposed 

on the 2 other panels. The identity of the boxed group of genes is shown on the right. 

The query parameters, the full species colour code and full results for all panels are in 

Tables S4 and S5. 
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