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Parallelism in Soft Linear Logic1
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CNRS, Université Paris 13, Sorbonne Paris Cité, LIPN, UMR 7030, F-93430 Villetaneuse, France.3

Abstract4

We extend the Soft Linear Logic of Lafont with a new kind of modality, called parallel. Contractions5

on parallel modalities are only allowed in the cut and the left ⊸ rules, in a controlled, uniformly6

distributive way. We show that SLL, extended with this parallel modality, is sound and complete7

for PSPACE. We propose a corresponding typing discipline for the λ-calculus, extending the STA8

typing system of Gaboardi and Ronchi, and establish its PSPACE soundness and completeness. The9

use of the parallel modality in the cut-rule drives a polynomial-time, parallel call-by-value evaluation10

strategy of the terms.11
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Introduction17

Implicit Complexity aims at providing purely syntactical, machine independent criteria on18

programs, in order to ensure they respect some complexity bounds upon execution. In19

the context of functional programming, the use of tailored proof systems, and subsequent20

type systems for λ-calculus, has been very successful: using subsystems of Linear Logic [8],21

several proof systems have been proposed, where cut-elimination has a bounded complexity.22

Consequently, under the Curry-Howard isomorphism, type systems for λ-calculus based on23

these logics have been proposed, where β-normalization of the typed terms follows the same24

complexity bounds. Such results include, among many others, Bounded Linear Logic [10, 14]25

and Light Linear Logic [9, 2] for polynomial time computation, and Stratified Bounded Affine26

Logic [17, 15] for logarithmic space computations. Our interest in this paper lies in the27

Soft Linear Logic of Lafont [13], which proposes a simple and elegant approach for ensuring28

polynomial time bounds by controlling contractions on exponential formulas, and in the29

subsequent type systems for polynomial time λ-calculus [1, 7, 5].30

At this point, it is relevant to note that the complexity classes captured thus far are all31

sequential, deterministic in essence. While Soft Linear Logic type systems have been extended32

to express the classes NP and PSPACE [6], it is important to note that the construction relies33

on Soft Type Assignment (STA), a deterministic, sequential polynomial time type system, by34

extending the λ-calculus with an additional construct (if then else), for which an ad hoc,35

alternating polynomial time evaluation strategy is imposed - the core of the language retaining36

its sequential polynomial time evaluation. While being indeed extensionally complete for37

PSPACE, this approach lacks intensionality: many natural algorithms, that are easily38

computable in parallel, are hardly expressible in this setting. Let us take as simple example39

the numerical evaluation of a balanced, arithmetic expression on bounded integer values. In40

order to compute it in alternating polynomial time with the (if then else) defined in [6],41

one would need to express the value of all bits of the result as boolean expressions on the bits42

of the input numbers, and use the alternating evaluation of the (if then else) construct43

to speed up the parallel computation time - not quite a practical method. Furthermore,44

this approach is no longer doable in real world functional programming languages, where45
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integers are given as a base type, and arithmetical operations as unitary functions of the46

language. Our approach, on the other hand, extends very naturally to such programs: indeed,47

our complexity bounds still hold in this context, and the encodings used in Lemma 27 and48

Theorem 28 can seamlessly be used to encode uniform families of algebraic formulae, or49

algebraic circuits, of polynomial depth, provided the base type for numbers (be they integers50

or floating numbers, or even real or complex numbers) and for the algebraic basic operations51

are given in the typing context.52

A reason why these approaches are all essentially sequential, deterministic is that they53

use the typing discipline to control the amount of resources the calculus uses (e.g. by54

controlling contractions on exponentials), not the way these resources are distributed along55

the computation. In order to truly denote parallel computation in a functional programming56

language, our proposal here is to use a parallel, call-by-value evaluation strategy for the57

λ-calculus: in an application, both terms can be normalized in parallel, before the substitution58

of the redex takes place. If both terms share the same normalization time bound, the parallel59

evaluation strategy is efficient. Note that in first order functional programming, this is already60

the approach used by Leivant and Marion [16] with their safe recursion with substitutions:61

using sequential resource bounds from Ptime Safe Recursion [3], and a parallel call-by-62

value evaluation strategy, the authors characterize the class FPAR (Parallel polynomial63

time), which coincides with PSPACE. This approach has also been later on extended to64

sub-polynomial complexity classes [12, 4, 11]. For higher order functional programming, we65

rely on the Curry-Howard isomorphism: ensuring an homogeneous computation time on66

the parallel evaluation of both arguments of an application amounts to ensuring that both67

premises of a cut-rule share a homogeneous bound on the resource usage in the corresponding68

type system.69

In order to achieve this, we can no longer rely on the usual linear cut-rule. We propose70

therefore a modification of the linear cut-rule, that internalizes a controlled number of71

contractions on some formulas, that are uniformly distributed among the premises. These72

formulas are decorated with a dedicated modality, called parallel modality. This approach is73

applied here on the Soft Type Assignment (STA) of Gaboardi and Ronchi [7], in order to74

propose a sound and complete type system for PSPACE, with a truly parallel evaluation75

strategy.76

Of course, breaking linearity in the cut-rule comes with a price: while proof nets for this77

logic are still definable, the additional bureaucracy needed to deal with the side condition of78

the cut-rule makes them much less meaningful than those for simpler logical systems such as79

MLL or SLL.80

The paper is organized as follows. Section 1 recalls the Soft Linear Logic rules, introduces81

the parallel modality �, and the modified, parallel (cut) rules, yielding the system PSLL.82

Cut-elimination for PSLL is also shown. Section 2 provides a parallel, polynomial time83

normalization bound. Section 3 extends STA with the rules of PSLL, yielding PSTA. A84

parallel polynomial time call-by-value strategy for PSTA is described. FPAR completeness85

of PSTA is proven in Section 4.86

1 Parallel Soft Linear Logic87

1.1 Soft Linear Logic88

Let us recall the SLL rules of Lafont [13], in its intuitionistic fashion. In the following, !Γ89

stands for a multiset of formulae of the form !F , and (A)n stands for n copies of a formula A.90
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(Id)
U ⊢ U

Γ ⊢ U ∆, U ⊢ V (cut)Γ, ∆ ⊢ V

Γ, U ⊢ V (⊸ R)Γ ⊢ U ⊸ V
91

Γ ⊢ U V, ∆ ⊢ Z (⊸ L)Γ, U ⊸ V, ∆ ⊢ Z
Γ ⊢ A Γ ⊢ B (&R)Γ ⊢ A&B

Γ, A ⊢ V (&L1)Γ, A&B ⊢ V
92

Γ, B ⊢ V (&L2)Γ, A&B ⊢ V
Γ ⊢ U (∀R)Γ ⊢ ∀αU

Γ, U [V/α] ⊢ Z
(∀L)Γ, ∀αU ⊢ Z

93

Γ ⊢ U (sp)!Γ ⊢!U
Γ, (U)n ⊢ V n ≥ 0

(m), of rank nΓ, !U ⊢ V
94

where, in the (∀R)-rule, there is no free occurrence of α in Γ. SLL proofs (of a given95

degree) normalize in polynomial time. Let the rank of a proof be the maximal rank of its96

(m) rules, and its degree the maximal nesting of its (sp) rules:97

▶ Theorem 1 ( [13]). A SLL proof of rank n and degree d normalizes in nd steps.98

SLL is also complete for the class FP: inputs of size n are encoded with proofs of rank n,99

degree 1, and programs running in time O(nd) by proofs of degree d. Applying a program100

on an input amounts to performing a (cut) of the two proof derivations.101

1.2 Parallel Modalities102

PSLL is built upon SLL. An additional modality, called the parallel modality �, is introduced,103

with corresponding elimination rules. Finally, the (sp), and the (cut) and (⊸ L)-rules are104

modified to accommodate this new modality, implementing the controlled contractions and105

homogeneous distribution of � formulas on the premises of the cut, as follows.106

Polarities107

Let us define as usual inductively the polarity of a sub-formula in an intuitionistic sequent108

Γ ⊢ V . Polarities are either positive or negative, one being the opposite of the other.109

1. in Γ ⊢ V , every occurrence of a formula F in Γ is negative, and V is positive.110

2. If F is ∀αA, !A or �A, the polarity of A is the polarity of F .111

3. If F is ANB, the polarity of A and the polarity of B are the polarity of F .112

4. If F is A ⊸ B, the polarity of A is the opposite of the polarity of F , and the polarity of113

B is the polarity of F .114

In the sequel we only admit �A sub-formulas with negative polarities in a sequent. An115

immediate consequence is that no � modality can appear in a cut formula, since a cut-formula116

has both a positive and a negative occurrence in a proof tree.117

Rules for Parallel Modalities118

(�W ) (weakening) and (�D) (dereliction) rules eliminate the � modality, (�sp) (soft pro-119

motion for the ! modality) and (�ax) replace the linear (sp) and (Id) rules. Contraction120

for the � modality is not dealt with a dedicated rule, but is instead internalized in the side121

condition of the modified (cut) rule, as detailed in the next section.122

Γ ⊢ B (�W )
Γ, �A ⊢ B

Γ, A ⊢ B (�D)
Γ, �A ⊢ B

�∆, Γ, ⊢ U
(�sp)

�∆, !Γ ⊢!U
(�ax)

�Γ, A ⊢ A123

where (�ax), is derivable from (Id) and (�W ), and used for convenience only.124
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1.2.1 (�Cut) and (� ⊸) Rules125

Contraction for parallel formulas is internalized into the PSLL (�cut)-rule and (� ⊸ L)-rule,126

in a controlled fashion. As for the usual (cut) and (⊸ L)-rules in linear logic, linear and127

exponential formulas are linearly distributed among the two premises. Denote by ⊊ the strict128

inclusion relation on multisets. The (binary) (�cut) and (� ⊸ L) rules are the following.129

�∆1, Γ1 ⊢ A1 �∆2, Γ2, A1 ⊢ A2 (�cut)
�∆, Γ1, Γ2 ⊢ A2

�∆1, Γ1 ⊢ A1 �∆2, Γ2, A2 ⊢ A3 (� ⊸ L)
�∆, Γ1, A1 ⊸ A2, Γ2 ⊢ A3

130

These two rules hold under the side condition SP : (�∆1 ⊊ �∆, �∆2 ⊊ �∆). The131

(�cut)- rule has the principal cut-formula A1 and the cut-pair of premises the pair (�∆1, Γ1 ⊢132

A1) → (�∆2, Γ2, A1 ⊢ A2). The (� ⊸ L) rule has the principal ⊸-formula A1 ⊸ A2 and133

the ⊸-pair of premises the pair (�∆1, Γ1 ⊢ A1) → (�∆2, Γ2, A2 ⊢ A3).134

In a proof tree consisting only in (n − 1) binary linear (cut)-rules, these (cut)-rules can135

be freely permuted, and a generalized, n-ary linear (cut)-rule can be derived. The non-linear136

distribution of parallel modalities in PSLL breaks this isomorphism: permuting two binary137

(�cut)-rules may come in conflict with the side condition �∆i ⊊ �∆. A similar remark can138

be made for ⊸ L rules as well. Since we want a uniform bound on the parallel normalization139

of the premises, we define a n-ary parallel (cut)-rule, exemplified in Example 5, as a parallel140

extension of the linear one, where the side condition for � modalities is adapted accordingly.141

▶ Definition 2 (n-ary (cut/ ⊸ L) rule). We define the following n-ary (cut/ ⊸ L)-rule,142

together with its cut-pairs and ⊸-pairs, and principal formulae. To each cut-pair (respectively143

⊸-pair) corresponds one principal cut-formula (resp. ⊸-formula).144

The following rule Γ1 ⊢ A1 Γ2 ⊢ A2 · · · Γd ⊢ Ad R : (cut/ ⊸ L)Γ, Λ ⊢ Ad
is either a bin-145

ary (⊸ L) or a binary (cut)-rule, or a n-ary rule obtained by several of the following proof146

tree (cut/ ⊸ L)-merge rewriting steps:147

T1 · · ·
T2 · · · Tn R1Tt · · · Tm R2Γ, Λ ⊢ Ad

→
T1 · · · T2 · · · Tn · · · Tm

RΓ, Λ ⊢ Ad

148

provided the ⊸ principal formulae of R1 are not sub-formulae of any principal formulae149

of R2 corresponding Tt.150

The multiset of ⊸ (respectively (cut)) principal formulae of R is then the union of those151

of R1 and R2.152

The cut - and ⊸-pairs of R are obtained from the union of those of R1 and R2 with the153

following update procedure: whenever Tt belongs to a ⊸ or cut-pair of premises Tt → Tw154

( respectively Tw → Tt) of R2, with corresponding principal formula F belonging to one of155

the premises Tv of R1, the pair Tt → Tw (resp. Tw → Tt) is replaced by Tv → Tw (resp.156

Tw → Tv), with the same corresponding principal formula.157

We derive from this linear n-ary (cut/ ⊸ L) rule its parallel version (�,⊸ cut) as follows.158

▶ Definition 3 (n-ary (�,⊸ cut) rule). A n-ary (�,⊸ cut) rule is159

�∆1, Γ1 ⊢ A1 �∆2, Γ2 ⊢ A2 · · · �∆d, Γd ⊢ Ad (�,⊸ cut)
�∆, Γ, Λ ⊢ Ad

160

where the side condition SP : ∀i = 1, · · · , d, �∆i ⊊ �∆ holds, and the linear rule instance161

Γ1 ⊢ A1 Γ2 ⊢ A2 · · · Γd ⊢ Ad (cut/ ⊸ L)Λ, Γ ⊢ Ad
162

holds as per Definition 2, with corresponding pairs of premises and principal formulae.163
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The following Lemma follows from the intuitionistic nature of the PSLL sequents, and164

will play a role in our elimination strategy.165

▶ Lemma 4. The cut-pairing relation on the premises of a (�, cut/ ⊸ L) rule R defines a166

forest structure F (R), called the pairing forest of the (�, cut/ ⊸ L), on the premises of R;167

the edges of the pairing forest are the cut-pairs of the rule.168

▶ Example 5. A tree of linear (⊸ L) and (cut) rules is169

Γ1 ⊢ A1

Γ2 ⊢ A2 Γ3, A2 ⊢ U (cut)Γ2, Γ3 ⊢ U

Γ4 ⊢ A3 Γ5, A1, A3, V ⊢ W (cut)Γ4, Γ5, A1, V ⊢ W (⊸ L)Γ2, Γ3, Γ4, Γ5, U ⊸ V, A1 ⊢ W (cut)Γ1, Γ2, Γ3, Γ4, Γ5, U ⊸ V ⊢ W

170

171

The corresponding 5-ary linear (cut/ ⊸ L) rule is172

Γ1 ⊢ A1 Γ2 ⊢ A2 Γ3, A2 ⊢ U Γ4 ⊢ A3 Γ5, A1, A3, V ⊢ W (cut,⊸ L)Γ1, Γ2, Γ3, Γ4, Γ5, U ⊸ V ⊢ W
173

174

A corresponding 5-ary (�,⊸ cut) rule, with �-formulae satisfying the side condition, is175

�F, Γ1 ⊢ A1 �G, Γ2 ⊢ A2 Γ3, A2 ⊢ U �G, Γ4 ⊢ A3 �F, Γ5, A1, A3, V ⊢ W

�F, �G, Γ1, Γ2, Γ3, Γ4, Γ5, U ⊸ V ⊢ W
176

177

The cut-pairs are178

(�F, Γ1 ⊢ A1) → (�F, Γ5, A1, A3, V ⊢ W ) with principal formula A1,179

(�G, Γ2 ⊢ A2) → (Γ3, A2 ⊢ U) with principal formula A2, and180

(�G, Γ4 ⊢ A3) → (�F, Γ5, A1, A3, V ⊢ W ) with principal formula A3,181

which defines the pairing forest, with two roots (�F, Γ5, A1, A3, V ⊢ W ) and (Γ3, A2 ⊢ U).182

The ⊸-pair is (Γ3, A2 ⊢ U) → (�F, Γ5, A1, A3, V ⊢ W ) with principal formula U ⊸ V .183

We now define PSLL by the rules (�ax), (⊸ R), (∀R), (∀L), (&R), (&Li), (m) (�sp),184

(�W ), (�D) and (�,⊸ cut).185

A PSLL proof Π is said to be in normal form if it contains no cut: more precisely,186

no (�,⊸ cut)-rule in Π admits any cut-pair of premises. Cut-elimination in this context187

amounts to rewrite the proof into a new equivalent proof in normal form. The cut-elimination188

procedure stems on the usual one for SLL, with some refinements.189

1.3 Parallel Cut Elimination190

▶ Lemma 6. Sequent calculus rules preserve the polarities of subformulae.191

The proof is straightforward. This allows us to state the following rule commutation result.192

▶ Lemma 7.193

1. A (�,⊸ cut) rule (R1), with premise Γ ⊢ V commutes with any non (�,⊸ cut), non194

(�W ), non (�D), non (�sp) rule (R2) with conclusion Γ ⊢ V , provided the principal195

formula of (R2) is not a sub-formula of any principal formula of (R1) with respect to the196

premise Γ ⊢ V .197

2. A (�W ) or a (�D) rule (R1), with premise Γ ⊢ V commutes with any non (�ax) rule198

(R2) with conclusion Γ ⊢ V , provided the principal formula of (R2) is not a subformula199

of the principal formula of (R1).200
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3. A non (�,⊸ cut), non (�sp) rule (R1) with premise Γ ⊢ V commutes with any non201

(�,⊸ cut), non (�sp) rule (R2) with conclusion Γ ⊢ V , provided the principal formula of202

(R2) is not a sub-formula of the principal formula of (R1).203

▶ Proposition 8. PSLL enjoys cut elimination.204

Proof. Let Π be a PSLL proof and R be a (�,⊸ cut) rule in Π with cut-pair205

(S = Γ ⊢ A, T = Λ, A ⊢ V ). Since the cut formula A may not contain any � modality, the206

commutation rules of Lemma 7 allow us to rewrite Π into an equivalent proof Π′, where S207

is conclusion of a right rule with principal formula A, and T conclusion of a left rule with208

principal formula A. The cut-elimination cases are then the following, where, for all cases but209

(�Sp), (m), the other premises of the rule are left unchanged, and omitted. Side conditions210

as well are omitted, but it is straightforward to see that they are preserved. The modification211

induced by each of the elimination cases below on the pairing forest is also detailed.212

Rules (⊸ L),(⊸ R)213

�∆1, Γ, B ⊢ C
(⊸ R)

�∆1, Γ ⊢ B ⊸ C

�∆3, Φ ⊢ B �∆4, Λ, C ⊢ V
(� ⊸ L)

�∆2, Φ, Λ, B ⊸ C ⊢ V
(�,⊸ cut)

�∆, Γ, Φ, Λ ⊢ V

214

reduces to �∆1, Γ, B ⊢ C �∆3, Φ ⊢ B �∆4, Λ, C ⊢ V
(�,⊸ cut)

�∆, Γ, Φ, Λ ⊢ V
.215

In the pairing forest, the premise �∆1, Γ ⊢ B ⊸ C is replaced by �∆1, Γ, B ⊢ C,216

the premise �∆2, Φ, Λ, B ⊸ C ⊢ V by �∆4, Λ, C ⊢ V , and a cut-pair (�∆3, Φ ⊢ B) →217

(�∆1, Γ, B ⊢ C) is added.218

Rule (�ax)219

(�ax)
�∆1, B ⊢ B �∆2, Γ, B ⊢ V

(�,⊸ cut)
�∆, Γ, B ⊢ V

220

when no other premise exists, reduces to �∆2, Γ, B ⊢ V
(�W ∗),

�∆, Γ, B ⊢ V
, Where (�W )∗ stands221

for several applications of the (�W ) rule.222

Similarly,223

Π1 · · ·
(�ax)

�∆1, B ⊢ B Πt · · · � ∆2, Γ, B ⊢ V · · · Πn (�,⊸ cut)
�∆, Γ, B ⊢ V

224

reduces to Π1 · · · Πt · · · �∆2, Γ, B ⊢ V · · · Πn (�,⊸ cut)
�∆, Γ, B ⊢ V

.225

In the pairing forest, the premise �∆1, B ⊢ B is removed, and the paths in the forest are226

shortened accordingly, if necessary.227

Rules (�sp), (m)228

S1, · · · , Sk

�∆1, Γ ⊢ B
(�sp)

�∆1, !Γ ⊢!B
�∆2, Λ, Bn ⊢ V

(m)
�∆2, Λ, !B ⊢ V

(�,⊸ cut)
�∆, !Γ, Λ ⊢ V

229
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reduces to
Sn

1 , · · · , Sn
k � ∆1, Γ ⊢ B · · · �∆1, Γ ⊢ B �∆2, Λ, Bn ⊢ V

(�,⊸ cut)
�∆, Γn, Λ, ⊢ V

(m)∗
�∆, !Γ, Λ ⊢ V

230

Where S1, · · · , Sk are the premises of the (�,⊸ cut) belonging to the pairing tree rooted in231

�∆1, !Γ ⊢!B, and Sn
1 , · · · , Sn

k are n copies of these premises. Then, in the pairing forest, the232

tree rooted in�∆1, !Γ ⊢!B is copied n times, and the pair (�∆1, !Γ ⊢!B) → (�∆2, Λ, !B ⊢ V )233

is replaced by n pairs (�∆1, Γ ⊢ B) → (�∆2, Λ, Bn ⊢ V ), one connected to each of the copies234

above.235

Rules (∀L), (∀R)236

�∆1, Γ ⊢ U
(∀R)

�∆1, Γ ⊢ ∀αU

�∆2, Λ, U [V/α] ⊢ V
(∀L)

�∆2, Λ, ∀αU ⊢ V
(�,⊸ cut)

�∆, Γ, Λ ⊢ V

237

reduces to �∆1, Γ ⊢ U [V/α] �∆2, Λ, U [V/α] ⊢ V
(�,⊸ cut)

�∆, Γ, Λ ⊢ V
.238

Rules (&L), (&R)239

�∆1, Γ ⊢ A �∆1Γ ⊢ B
(&R)

�∆1, Γ ⊢ A&B

�∆2, Λ, A ⊢ V
(&L1)

�∆2, Λ, A&B ⊢ V
(�,⊸ cut)

�∆, Γ, Λ ⊢ V

240

reduces to �∆1, Γ ⊢ A �∆2, Λ, A ⊢ V
(�,⊸ cut)

�∆, Γ, Λ ⊢ V
, and, of course, the cut elimina-241

tion rule for (&L2), (&R) follows a similar pattern.242

In each of the cases above, for each path in the pairing forest modified by the elimination243

case, the sum of the sizes of the sequents labelling the vertices along that path decreases244

strictly. As a consequence, the procedure terminates in a finite number of steps.245

2 Complexity Bounds246

Let us now show that the contraction discipline ensures that PSLL admits cut-elimination in247

parallel polynomial time. The bounds are actually more straightforward than for SLL.248

▶ Definition 9. Let Π be a PSLL proof, with conclusion sequent S = Γ ⊢ V . We define249

The size |S| of S is the number of connectives in S.250

The size |Π| of Π is the number of nodes in the proof-tree.251

The depth of a node R in Π is the length of the path from S to R in Π; the depth d(Π) of252

Π is the maximal depth of its nodes.253

The rank r(Π) of Π is the maximal rank of its (m) rules.254

The degree d(f) of a formula f is the maximal nesting of its ! modalities. The degree255

d(S) of a sequent S is the maximal degree of its formulas. The degree d(Π) of a proof is256

the maximal degree of its sequents.257

PSLL proofs have bounded depth, and bounded number of (cut)-rules.258

▶ Lemma 10. Let Π be a PSLL cut-free proof, of rank n, with conclusion sequent S of degree259

d. The depth of Π is then bounded by O(|S|.nd).260
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▶ Lemma 11. Let Π be a PSLL proof, of rank n, with conclusion sequent S of degree d.261

Then, on any path from S to an axiom in Π, there are at most O(|S|.nd) (�,⊸ cut)-rules262

with cut-pairs of premises.263

Combining these two lemmas, we obtain a bound on the depth of PSLL proofs.264

▶ Lemma 12. Let Π be a PSLL proof, of rank n and degree d, with conclusion sequent S.Let265

M be the maximal size of its cut-formulas. Then, the depth of Π is O(M.|S|.n2d).266

▶ Lemma 13. Let R be a (�,⊸ cut) rule with cut-pairs (S1 = Γ1 ⊢ A1) → S, · · · , (St =267

Γt ⊢ At) → S and cut-formulae A1, · · · , At. Assume moreover that268

each of the proof trees with conclusion Si, for i = 1, · · · , t, ends with the PSLL rule with269

right principal formula Ai, and270

the proof tree with conclusion S ends with the t PSLL rules with left principal formula271

Ai, for i = 1, · · · , t.272

Then, the cut-elimination steps of Proposition 8 for the cut-pairs (S1, S), · · · , (St, S) can be273

performed in parallel.274

Proof. The cut-elimination steps of Proposition 8 act on distinct left sub-formulae of S,275

and distinct premises (other than S) of the (�,⊸ cut) rule R.276

▶ Definition 14 (Parallel elimination of an innermost cut). Le Π be a PSLL proof. A (�,⊸ cut)277

rule R with cut-pairs is innermost in Π if there is no other (�,⊸ cut) rule with cut-pairs278

along any path from R to the axioms of Π.279

Let R be an innermost (�,⊸ cut) rule in Π, and F (R) be the pairing forest. The parallel280

elimination of R is then the following procedure:281

1. For any premise S = Λ ⊢ B of R root in F (R), with cut-pairs (S1 = Γ1 ⊢ A1, S), · · · , (St =282

Γt ⊢ At, S), perform the rule permutations of Lemma 7 such that S is conclusion of a283

proof tree with deep most rules the left rules with principal formulae A1, · · · , At, and284

2. perform the rule permutations of Lemma 7 such that, for i = 1, · · · , t, Si is conclusion of285

a proof tree ending with a right rule with principal formula Ai.286

3. perform in parallel the cut-elimination steps of Lemma 13 for all cut-pairs (Si, S) for all287

roots S in F (R).288

4. if R has at least one cut-pair left, go to step 1.289

▶ Definition 15 (Innermost parallel cut-elimination). Let Π be a PSLL proof. The Innermost290

parallel cut-elimination procedure consists in applying in parallel, for all its innermost cuts,291

their parallel elimination, until no (�,⊸ cut) rule with cut-pairs remains.292

The innermost parallel cut-elimination procedure ensures that the blow-up of the (�,⊸293

cut) rules remains under control:294

▶ Lemma 16. Let Π be a PSLL proof with conclusion S, degree d, and rank n. Let M be295

the maximal size of its cut-formulae and w the maximal indegree of its pairing forests. Then,296

the maximal indegree of the pairing forests of any proof Π′ derived from Π by an innermost297

parallel partial evaluation is bounded by O(w.nd + M).298

▶ Lemma 17. Let Π be a PSLL proof with conclusion S, degree d, and rank n. Let M be299

the maximal size of its cut-formulae, and h the maximal height of its pairing forests. The300

parallel elimination of an innermost cut takes at most O(M.h) parallel steps.301

Proof. For each of the elimination steps of Proposition 8, for each path in the pairing302

forest containing the cut-pair eliminated by this step, the sum of the sizes of the cut-formulae303

along the path strictly decreases, hence the result.304
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We now have a parallel, polynomial time cut-elimination procedure:305

▶ Theorem 18. Let Π be a PSLL proof, of rank n and degree d, with conclusion sequent306

S. Let M be the maximal size of its cut-formulae, and h the maximal height of its pairing307

forests. Then, an innermost parallel cut-elimination strategy takes O(|S|.M.h.n2d) steps.308

Proof. By Lemma 12, the depth of the proof-tree is at most O(M.|S|.n2d): this bounds309

applies therefore for the overall parallel time needed to parse the proof-tree and reach all310

innermost (�,⊸ cut)-rules. These innermost (�,⊸ cut) rules belong to different branches311

of the proof tree: they can therefore be eliminated safely in parallel. Each of these parallel312

elimination steps takes at most O(M.h) steps.313

By Lemma 11, the number of (�,⊸ cut)-rules with cut-pairs on any path in the proof314

tree is bounded by O(|S|.nd): this bounds the number of times one needs to fully eliminate315

the innermost (�,⊸ cut)-rules, hence the overall bound.316

Note that, in Theorem 18, we have only counted the number of parallel cut-elimination317

steps. Lemma 16 ensures moreover that, for each of these cut-elimination steps, the number318

of rule permutations needed to compute it is also polynomially bounded.319

▶ Example 19. Let us consider the following derivation proof, corresponding to the application320

of a function to two arguments, of types A and B respectively, in a curryfied fashion, with321

atomic resulting type C. Since the strategy is innermost, the four premises in the tree are322

conclusions of (cut)-free derivation trees.323

�∆1, Γ, A, B ⊢ C
(⊸ R)

�∆1, Γ, A ⊢ B ⊸ C
(⊸ R)

�∆1, Γ ⊢ A ⊸ B ⊸ C

�∆3, Φ ⊢ A

�∆5, Λ ⊢ B �∆6, Θ, C ⊢ C
(� ⊸ L)

�∆4, Λ, Θ, B ⊸ C ⊢ C
(� ⊸ L)

�∆2, Φ, Λ, Θ, A ⊸ B ⊸ C ⊢ C
(�cut)

�∆, Γ, Φ, Λ, Θ ⊢ C

324

One parallel (�cut) elimination step exhibits the application of the first argument, of type A,325

�∆1, Γ, A, B ⊢ C
(⊸ R)

�∆1, Γ, A ⊢ B ⊸ C �∆3, Φ ⊢ A

�∆5, Λ ⊢ B �∆6, Θ, C ⊢ C
(� ⊸ L)

�∆4, Λ, Θ, B ⊸ C ⊢ C
(�cut)

�∆, Γ, Φ, Λ, Θ ⊢ C

326

And a second one exhibits the application of the second argument, of type B.327

�∆1, Γ, A, B ⊢ C �∆3, Φ ⊢ A �∆5, Λ ⊢ B � ∆6, Θ, C ⊢ C
(�cut)

�∆, Γ, Φ, Λ, Θ ⊢ C
328

The premise �∆6, Θ, C ⊢ C is the root of the pairing forest, and the atomic type C is elimin-329

ated first.330

�∆1, Γ, A, B ⊢ C �∆3, Φ ⊢ A �∆5, Λ ⊢ B
(�cut)

�∆, Γ, Φ, Λ, Θ ⊢ C
331

Finally, the two arguments types A and B are then eliminated in parallel, with elimination332

steps corresponding to the substitution of the corresponding values in the function term in333

the Curry-Howard isomorphism, as detailed in the next section.334

3 A Parallel Polynomial Time Type Assignment for λ-calculus335

3.1 Parallel Soft Types336

We take insipiration from the STA type assignment of Gaboardi and Ronchi [7]. We add the337

parallel modalities in a restricted way, as follows.338
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▶ Definition 20 (Parallel Soft types (PSTA)). In the following, α, β, etc stand for base type339

variables, A, B, C, etc stand for types with linear output, and σ, τ , etc stand for PSTA340

types. PSTA types are given by the following grammar:341

A, B, C := α | σ ⊸ A | ∀αA | A&B342

σ, τ, ρ, µ, ν := A | !σ | � σ343

A PSTA Typing context is a set of type assignments x : σ, where x is a variable and σ a344

PSTA type. A PSTA Typing judgment is Γ ⊢ M : σ, where Γ is a PSTA Typing context, M345

is a λ-term, and σ is a PSTA type.346

3.2 Typing Rules347

Our PSTA typing rules are the following.348

(�Id)
�∆, x : A ⊢ x : A

�∆, Γ ⊢ M : σ
(�Sp)

�∆, !Γ ⊢ M : !σ
Γ ⊢ M : A (∀R)Γ ⊢ M : ∀αA

349

Γ, x0 : τ, · · · , xn : τ ⊢ M : σ (m)
Γ, x : !τ ⊢ M [x/x0, · · · , x/xn] : σ

Γ ⊢ M : σ1 Γ ⊢ M : σ2 (NR)Γ ⊢ M : σ1Nσ2
350

Γ, x : A[B/α] ⊢ M : σ
(∀L)Γ, x : ∀αA ⊢ M : σ

Γ, x1 : τ ⊢ M : σ (�D)
Γ, x : �τ ⊢ M [x/x1] : σ

351

Γ, x1 : τ1 ⊢ M : σ (NL1)
Γ, x : τ1Nτ2 ⊢ M [x/x1] : σ

Γ, x2 : τ2 ⊢ M : σ (NL2)
Γ, x : τ1Nτ2 ⊢ M [x/x2] : σ

352

Γ, x : σ ⊢ M : A (⊸ R)Γ ⊢ λx.M : σ ⊸ A

�∆1, Γ ⊢ M : τ �∆2, Λ, x : τ ⊢ N : σ
(�cut)

�∆, Γ, Λ, ⊢ N [M/x] : σ
353

Γ ⊢ M : σ (�W )
Γ, x : �τ ⊢ M : σ

�∆1, Γ ⊢ M : τ �∆2, Λ, x : A ⊢ N : σ
(� ⊸ L)

�∆, Γ, Λ, y : τ ⊸ A ⊢ N [yM/x] : σ
354

355

356

As exemplified in the subject reduction property, typing an application term (MN) is357

done with the (� ⊸ L) rule. In the typing rules above, we also add the following side358

conditions:359

Parallel types occur only with negative polarity in the typing judgments,360

In rules (�cut) and (� ⊸ L), the domain of contexts Γ and Λ are disjoint, and finally361

In rules (�cut) and (� ⊸ L), the side condition SP : �∆1 ⊊ �∆, �∆2 ⊊ �∆ holds.362

Moreover, we also define a generalized (�,⊸ cut) rule similar to that of PSLL, with the363

appropriate nesting of substitutions for all (cut) and ⊸ pairs of terms.364

These rules being literal translations of that of PSLL, the rule permutations, and (cut)-365

elimination steps of PSLL apply to PSTA.366

The grammar of our types, and the typing rules, together with the side conditions above,367

ensure that sharing does not occur in our typing system. More precisely, we have368

▶ Proposition 21. Let Π be a typing derivation with conclusion Γ ⊢ M : !σ. Then, the369

context Γ is �∆, !Λ.370

A corollary of Proposition 21 is371

▶ Corollary 22. Any typing derivation with conclusion �∆, !Γ ⊢ M : !σ ends with a (�Sp),372

(m), (�D), (�W ) or a (�cut). Moreover, in this context, the rules (m), (�D), and (�W )373

can be commuted to the top (since the premise needs to have a modal context as well), and374

the derivation can w.l.o.g. be considered to end with a (�Sp) or a (�cut)-rule.375
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From the absence of sharing, we derive376

▶ Proposition 23. PSTA enjoys the subject reduction property: if Γ ⊢ M : σ and M →β M ′,377

then Γ ⊢ M ′.378

Proof. By structural induction on the cut-type σ of the term λy.P in the redex (λy.P Q).379

The terms M and M ′ can be written as M = N [(x Q)/z][λy.P/x] and M ′ = N [P [Q/y]/z].380

Two cases arise:381

1. σ = τ → A. The derivation is382

�∆1, Γ1, y : τ ⊢ P : A

�∆1, Γ1 ⊢ λy.P : τ → A

�∆3, Γ2, ⊢ Q : τ �∆4, Γ3, z : A ⊢ N : σ
(� ⊸ L)

�∆2, Γ2, Γ3, x : τ → A ⊢ N [(x Q)/z] : σ
(�cut)

�∆, Γ1, Γ2, Γ3 ⊢ N [(x Q)/z][λy.P/x] : σ

383

Cut elimination yields then the following derivation tree384

�∆1, Γ1, y : τ ⊢ P : A �∆3, Γ2, ⊢ Q : τ �∆4, Γ3, z : A ⊢ N : σ
(�cut)

�∆, Γ1, Γ2, Γ3 ⊢ N [P [Q/y]/z] : σ
385

which proves the subject reduction property. If σ = ∀ατ or σ = τNτ ′, the cut-elimination386

steps eventually reduce to the case above.387

2. σ =!τ . By Proposition 21, and modulo rule permutations the derivation is388

�∆1, Γ1 ⊢ λy.P : τ
(�Sp)

�∆1, !Γ1 ⊢ λy.P : !τ
�∆2, Γ2, · · · xi : τ · · · ⊢ N [· · · (xi Q)/zi · · · ] : σ

(m)
�∆2, Γ2, x : !τ ⊢ N [(x Q)/z1, · · · , (x Q)/zn] : σ

(�cut)
�∆, !Γ1,; Γ2 ⊢ N [(x Q)/z1, · · · , (x Q)/zn][λy.P/x] : σ

389

Cut elimination yields then the following derivation tree390

n copies︷ ︸︸ ︷
· · · � ∆1, Γ′

i ⊢ λy.Pi : τ · · · �∆2, Γ2, · · · xi : τ · · · ⊢ N [· · · (xi Q)/zi · · · ] : σ
(�cut)

�∆, Γ′
1, · · · , Γ′

n, Γ2 ⊢ N [(x1Q)/z1, · · · , (xnQ)/zn][λy.P1/x1, · · · , λy.Pn/xn] : σ
(m)

�∆, !Γ1, Γ2 ⊢ N [(x1 Q)/z1, · · · , (xn Q)/zn][λy.P1/x1, · · · , λy.Pn/xn] : σ

391

and the induction hypothesis applies to the n cut-types τ .392

3.3 A Parallel, Polynomial Time Evaluation Strategy393

▶ Theorem 24. Let T be a λ-term, typable in PSTA.Then, T normalizes in polynomial394

parallel time.395

Proof.396

The proof follows from Theorem 18: cut-elimination in parallel polynomial time, and397

subject-reduction, induce a parallel polynomial number of β-reduction steps for the term.398

The overall complexity bound is however a bit more subtle: while PSTA type derivations399

have exponential size and polynomial depth, the corresponding right-hand side λ-terms may400

have syntactic trees of exponential depth as well. Performing the substitutions for each401

β-reduction step in parallel polynomial time requires then to use an appropriate, polynomial402

space representation of the terms: the explicit representation is clearly unsuitable.403

Let us first introduce some definitions and observations.404

Let T be a λ-term. Its Böhm-like tree B(T ) is defined as follows:405

1. If T is a variable x, B(T ) is a single vertex labelled with x.406

2. If T is an abstraction λx.U , B(T ) is obtained adding B(U) as a leftmost child of a root407

labelled with λx.408
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3. If T is an application UV , B(T ) is obtained by adding B(V ) as a new rightmost child of409

the root of B(U).410

Clearly, a Böhm-like tree B(T ) uniquely defines a term T . Therefore, in the sequel we identify411

the two notions, and focus on the computation of the Böhm-like tree of the normal-form of a412

given term.413

Let T be a λ-term, typable in PSTA with a typing derivation Π. We define the pseudo-414

derivation D(Π) associated to Π as the tree obtained from Π by removing all right-hand side415

λ-terms (while keeping the corresponding type).416

Then, the following observations hold.417

1. In each typing judgment in Π (and therefore in D(Π)), the typing context contains type418

assignments for variable terms only.419

2. Erasing the variable names in the contexts of D(Π) (while keeping the corresponding420

types) yields a PSLL proof L(Π), with types as formulae,421

3. All right-hand side λ-terms in Π are uniquely determined by D(Π), and finally,422

4. The variable type assignments in D(Π) are preserved by the subject-reduction property:423

If T1 is a λ-term with PSTA type derivation Π1 , T1 →β T2, and Π2 is the type derivation424

of T2 obtained by the subject reduction steps of Proposition 23, then the variable type425

assignments in D(Π1) and D(Π2) coincide.426

As a consequence, the following reduction strategy holds: from a λ-term T with PSTA427

typing derivation Π, perform the innermost parallel cut-elimination strategy on L(Π), while428

keeping the variable type assignments given by D(Π). The observations above ensure that429

the pseudo derivation D(Π′) thus obtained is that of the typing derivation Π′ of the normal430

form T ′ of T . The additional information stored in the contexts of D(Π′) (the variable431

names) takes polynomial space (polynomially many variable names among an exponential432

number of possible names), and the reduction can be performed in parallel polynomial time.433

It remains to show how to compute the normal form T ′ from its pseudo-derivation D(Π′), in434

parallel polynomial time. We do this by actually computing a succinct representation of its435

Böhm-like tree B(T ′).436

Let D(Π) be the pseudo-derivation of a PSTA derivation Π, with corresponding term437

T with Böhm-like tree B(T ). A first observation is the following: For any typing judgment438

Γ ⊢ t : σ in Π, if the explicit substitution [M/x] (respectively [yM/x]) occurs in t, then there439

exists a judgment Γ′ ⊢ M : σ′ above in Π. Since Π has polynomial depth, and polynomial440

indegree by Lemma 16, the substitution term M can then be described in polynomial space441

by the path from the conclusion of Π to this typing judgment Γ′ ⊢ M : σ′.442

For each typing judgment Γ ⊢ t : σ in Π, we associate to the right-hand term the following:443

1. the path p from the conclusion of Π to this judgment, and444

2. the list s(p) of explicit substitutions occurring along p, computed as follows:445

assume p chooses the rightmost premise N in a (�,⊸ cut) rule R (i.e. the premise p′
446

s.t. R has no (cut) or ⊸-pair p′ → p′′): this cut-rule introduces a polynomial number447

of substitutions [Mi/xi] (or [yiMi/xi]) in its conclusion term. Then, we add to s(p)448

the pairs (pi, xi) (or (yipi, xi)), where pi is the path to the corresponding premise with449

right hand term Mi.450

assume p passes through a (m) (�D) or (NLi). Then, we add to s(p) the pairs (x, xi).451

Clearly, for a path p, the list s(p) has polynomial size, and can be computed in polynomial452

time. Now, for a given path p, the computation of the corresponding vertex v(p) in B(T )453

proceeds co-recursively on D(Π) as follows:454

if p is conclusion of a (�ax) rule, v(p) is a leaf in B(T ), with label x.455
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if p is conclusion of a (�Sp), (∀R), (∀L), (�W ) or (NR) rule, with premise p′, then v(p)456

is v(p′).457

if p is conclusion of a (m), (�D) or (NLi) rule with premise p′, two cases arise:458

1. v(p′) is labelled xi: then, (x/xi) belongs to s(p). In that case v(p) is labelled x, and459

its successors are those of v(p′).460

2. otherwise, v(p) is v(p′).461

if p is conclusion of a (⊸ R) rule with premise p′, v(p) is an inner node labelled λx, with462

left successor node p′.463

if p is conclusion of a (�,⊸ cut)-rule R: let p′ be its rightmost premise. Then, three464

cases arise:465

1. v(p′) is labelled x, (p′′, x) belongs to s(p′): then, v(p) is obtained from v(p′′) by adding466

to its root the successor vertices of v(p′).467

2. v(p′) is labelled x, (yp′′, x) belongs to s(p′): then, v(p) is a vertex labelled y, with468

right successor v(p′′).469

3. otherwise, v(p) is v(p′).470

Performing the procedure above in parallel for all paths in D(Π) provides then a succinct471

description of B(T ) in parallel polynomial time.472

4 Completeness of PSTA473

We now prove that PSTA is complete for the class FPAR of functions computable in parallel,474

polynomial time. In order to do so, we first encode parallel, polynomial time recursive475

functions with substitutions, à la Leivant and Marion [16], and then use them to simulate476

the computation of a P-uniform family of boolean circuits of polynomial depth. Extending477

these encodings to the setting of algebraic complexity amounts then simply to replace the478

base type B by a base type for the underlying algebraic structure (e.g. real numbers), and479

to provide the type of the algebraic constants and operations in the typing context.480

First, PSTA captures (obviously) STA.481

▶ Lemma 25. Let Π be a SLL proof of degree d and rank n, with conclusion Γ ⊢ A of size s.482

Let WΠ be its weight, as defined in [13]. Then, any path in from the conclusion of Π to an483

axiom contains at most s + WΠ(1) (⊸ L) rules, and at most WΠ(1).nd (cut) rules.484

▶ Corollary 26. Let Π be a SLL proof of degree d and rank n, with conclusion Γ ⊢ A of size485

s. Then, there exists a PSLL proof Π′ with conclusion ∆, Γ ⊢ A, of degree d and rank n.486

Proof. Take ∆ =!d � A1, . . . , !d � Ak, with k = WΠ(1) + s, for any A1, · · · , Ak.487

An immediate consequence is that all λ-terms typable in STA are also typable in PSTA,488

with the same rank and degree. As a consequence, following [7], Theorem 19, we immediately489

have that PSTA is complete for FPTIME. This allows us to prove its FPAR completeness490

more easily. Denote by B the STA (hence PSTA) type for booleans, L the STA type for491

binary strings, and N the STA type for Church Integers.492

The following lemma allows us to encode some sort of polynomial recursion with substi-493

tutions a la Leivant and Marion [16] in PSTA.494

▶ Lemma 27. Assume we have the following sequential, polynomial time functions, with495

PSTA type derivations:496

op with derivation Πop with conclusion Γop ⊢ op : L ⊸ L ⊸ L ⊸ L.497

s1 and s2 with derivation Πi, for i ∈ {1, 2}, with conclusion Γi ⊢ si : L ⊸ L.498
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and, for any univariate polynomial P of degree d, a function P , encoding the church499

integer P (|L|) for a binary list L, with derivation ΠP with conclusion ΓP ⊢ P :!dL ⊸ N.500

We now consider the following recursive function with substitutions, on binary lists: f(v) =501

op(v, f(s1(v)), f(s2(v))). Moreover, we assume that on any input v, the recursive computation502

of f reaches a fixed point after P (|v|) steps. Then, f(v) is PSTA definable with degree d.503

Proof. Following a similar encoding in [6], each recursion step in the computation504

of f is encoded by the following function Step = λh.λv.op v (h (s1 v)) (h (s2 v)). Let505

L2 = (L ⊸ L) ⊸ L ⊸ L, and Γ = Γop, Γ1, Γ2, (X : �A)2, h : �(L ⊸ L), v : �L Then, Step506

admits a PSTA proof derivation ΠStep with conclusion Γ ⊢ Step : L2.507

Indeed, ΠStep is508

Aop A1 A2 As1 As2 AV1 AV2 Astep (�cut)
Γ, h : L ⊸ L, v : L ⊢ op v (h (s1 v)) (h (s2 v)) : L

(⊸ R)2
Γ ⊢ Step : L2

509

where Aop is Πop

Γop ⊢ op : L ⊸ L ⊸ L ⊸ L
, Ai is Πi

Γi ⊢ si : L ⊸ L
,510

511

Asi is
(�Id)

v : L ⊢ v : L (�Id)
x : L ⊢ x : L (� ⊸ L)

X : �A, ti : L ⊸ L, v : L ⊢ ti v : L
(�D)

X : �A, ti : L ⊸ L, v : �L ⊢ ti v : L
,512

513

AV1 is
(�Id)

v : L ⊢ v : L (�Id)
x : L ⊢ x : L (� ⊸ L)

X : �A, h : L ⊸ L, v : L ⊢ h v : L
(�D)2

X : �A, h : �L ⊸ L, v : �L ⊢ h v : L
,514

515

AV2 is
(�Id)

v : L ⊢ v : L (�Id)
x : L ⊢ x : L (� ⊸ L)

X : �A, h : L ⊸ L, v : L ⊢ h v : L
,516

517

and Astep is518

(�Id)
V1 : L ⊢ V1 : L (�Id) · · ·

x1 : L ⊢ x1 : L (�Id)
x3 : L ⊢ x3 : L (�,⊸ cut)

X : �A, V1 : L, V2 : L, V3 : L, op : L ⊸ L ⊸ L ⊸ L ⊢ op V1 V2 V3 : L
519

The value f(v) is reached after P (|v|) recursion steps. It is given by Value v, where520

Value = λv.((P v) Step λy.y) v). Let Γ′ = Γop, Γ1, Γ2, (X : �A)5, h : �(L ⊸ L), v :521

�L, ΓP , v :!dL. Then, Value admits a PSTA proof derivation ΠValue with conclusion Γ′ ⊢522

Value : L ⊸ L. Indeed, let L3 = (!L2 ⊸ L2). Recall that N = ∀α!(α ⊸ α) ⊸ α ⊸ α and523

consider the following proof derivations.524

ΠP v:525

ΠP

ΓP ⊢ P :!dL ⊸ N

(�Id)
v :!dL ⊢ v :!dL

(�Id)
x :!dL ⊢ x :!dL (� ⊸ L)

x : �A, P :!dL ⊸ N, v :!dL ⊢ P v : N
(�cut)

(x : �A)2, ΓP , v :!dL ⊢ P v : N

526

Πs:527

ΠP v !ΠStep

!Step :!L2 ⊢!Step :!L2 x :!L2 ⊢ x :!L2
(� ⊸ L)

X : �A, (P v) : L3, !Step :!L2 ⊢ P v Step : L2
(∀L)

X : �A, (P v) : N, !Step :!L2 ⊢ P v Step : L2
(�cut)

Γop, Γ1, Γ2, (X : �A)3, h : �(L ⊸ L), v : �L, ΓP , v :!dL ⊢ P v Step : L2

528
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Πsl:529

Πs

λy.y : L ⊸ L ⊢ λy.y : L ⊸ L f : L ⊸ L ⊢ f : L ⊸ L (� ⊸ L)
X : �A, P v Step : L2 ⊢ P v Step λy.y : L ⊸ L

(�cut)
Γop, Γ1, Γ2, (X : �A)4, h : �(L ⊸ L), v : �L, ΓP , v :!dL ⊢ P v Step λy.y : L ⊸ L

530

and finally ΠValue:531

532

Πsl

v : L ⊢ v : L z : L ⊢ z : L (� ⊸ L)
X : �A, P v Step λy.y : L ⊸ L, v : L ⊢ (P v Step λy.y)v : L

(�cut)
Γ′, v : L ⊢ (P v Step λy.y)v : L

(⊸ R)
Γ′ ⊢ Value : L ⊸ L

533

▶ Theorem 28. PSTA is complete for FPAR.534

Proof. Using the usual encodings for binary strings, booleans, integers and pairs, we535

use Lemma 27 to prove our completeness result. Let g be a function computed in FPAR.536

For the sake of simplicity let us assume that g outputs a single boolean. Then, there exists a537

P -uniform family C of succinctly described boolean circuits, of polynomial depth, computing538

g. More precisely, there exist a univariate polynomial p, and polynomial time functions and,539

or, node, input, s1 and s2 such that:540

On any input x = x1, · · · , xn of size n, g(x1, · · · , xn) is computed by a boolean circuit541

Cn of depth p(n), with output node t.542

For each node s in Cn, there exists a binary list ns, encoding a path from t to s in Cn, of543

length less than p(n). Each node will be identified by these paths (there may be several544

paths for a given node).545

and(x, y) (respectively or(x, y), resp. not(x, y)) is true if the path y encodes a and (resp.546

or, resp. not) node of C|x|, and false otherwise.547

input(x, y) is (xi, true) if y encodes the ith input node of C|x|, and (0, false) otherwise.548

s1(y) = 0.y encodes a path to the left parent of the node encoded by y, if it exists.549

s2(y) = 1.y encodes a path to the right parent of the node encoded by y, if it exists.550

Define now f(x, y) = op(x, y, f(x, s1(y)), f(x, s1(y))), where y denotes a path in C|x|, and551

op(x, y, v1, v2) computes, using the functions defined above, the boolean value of the node y552

in C|x|, provided v1 and v2 are the boolean values of its two parents nodes. Then, Lemma 27553

applies: f is definable in PSTA, and recursively computes the value of all nodes in C|x|. The554

output g(x) is then given by f(x, ϵ), where ϵ is the empty binary list.555

5 Concluding Remarks556

In this paper we have only investigated one of the many possible choices for the way the557

parallel (�,⊸ cut) rule allows contraction on � formulas, and allows its distribution among558

the premises of the cut, and we have applied this approach to one example (STA) of linear559

typing system. Among the questions now worth investigating are the following: Is it possible560

to tune differently the side condition of the (�,⊸ cut)-rule to capture other complexity561

classes? Such obvious candidates are the classes NCi, which we could hope to capture562

by taking a fully linear (�,⊸ cut)-rule (for ensuring sequential polynomial time), with an563

additional side condition ensuring parallel polylogarithmic time cut-elimination. Is it also564

possible to use this approach on type systems capturing other sequential complexity classes,565

for instance Logspace [17, 15], and to obtain other interesting results?566
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