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ON THE STRUCTURE OF SOME p-ADIC PERIOD DOMAINS

MIAOFEN CHEN, LAURENT FARGUES AND XU SHEN

Abstract. We study the geometry of the p-adic analogues of the complex
analytic period spaces first introduced by Griffiths. More precisely, we prove
the Fargues-Rapoport conjecture for p-adic period domains: for a reductive
group G over a p-adic field and a minuscule cocharacter µ of G, the weakly
admissible locus coincides with the admissible one if and only if the Kottwitz
set B(G,µ) is fully Hodge-Newton decomposable.

Contents

Introduction 1
Notations 4
1. G-bundles on the Fargues-Fontaine curve 5
2. The weakly admissible locus 10
3. The admissible locus 15
4. Hodge-Newton decomposability 17
5. Harder-Narasimhan stratification of the flag variety 22
6. Proof of the main theorem 26
7. Asymptotic geometry of the admissible locus 31
References 33

Introduction

Starting with the work of Griffiths ([14]), the study of the geometry of complex
analytic period mappings and their images, the so called period domains, has been
a recurrent theme in complex algebraic geometry ([48] and [13] for example for a
recent review). In this article we study the p-adic analogue of this problem starting
with the questions asked by Grothendieck ([17]) and the partial answers given by
Drinfeld ([18]), Serre-Tate and Katz ([39]), Gross-Hopkins ([16]), Rapoport-Zink
([53]) and Hartl ([36]).

Let F be a finite degree extension of Qp, G a connected reductive group over F ,
and {µ} the geometric conjugacy class of a minuscule cocharacter µ of G. Attached
to the datum (G, {µ}), we have the flag variety F(G,µ) defined over the reflex field
E = E(G, {µ}), the field of definition of {µ}, a finite degree extension of F . We will
consider the associated adic space F(G,µ) over Ĕ, the completion of the maximal
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unramified extension of E. After fixing an element b ∈ G(F̆ ), Rapoport and Zink
constructed in [53] (see also [50, 12]) an open subspace

F(G,µ, b)wa

inside F(G,µ), which is called a p-adic period domain, as a vast generalization
of Drinfeld upper half spaces ([18]). The name “p-adic period domain” comes as
follows. For any finite extension K|Ĕ, the points in F(G,µ, b)wa(K) correspond
to weakly admissible filtered isocrystals equipped with a G-structure, which are
then admissible (as K|Ĕ is finite) by a fundamental result in p-adic Hodge theory
([8]). We thus get crystalline representations with additional structures attached to
points in F(G,µ, b)wa(K). Here in order to get non empty F(G,µ, b)wa, we have
to assume that b satisfies a certain condition with respect to {µ}, cf. prop. 2.2 for
some background on this.

If K|Ĕ is an arbitrary complete extension, then it is not clear whether we still get
Galois representations attached to points in F(G,µ, b)wa(K). This led Rapoport
and Zink to conjecture that there exists an open subspace

F(G,µ, b)a

inside F(G,µ, b)wa, such that there exists a p-adic local system with additional
structures over F(G,µ, b)a which interpolates the crystalline representations at-
tached to all classical points, cf. [12] conj. 11.4.4 and [36] conj. 2.3. Contrary to
F(G,µ, b)wa, it is difficult to give a direct construction (and explicit description)
for the desired F(G,µ, b)a.

For certain triples (G,µ, b) (those so called of PEL type), Hartl ([36, 35]) and
Faltings ([20]) constructed the space F(G,µ, b)a by using the Robba ring B̃†rig and
the crystalline period ring Bcris respectively. If K|Ĕ is finite, we have

F(G,µ, b)a(K) = F(G,µ, b)wa(K)
as explained above. But it turns out that in general the inclusion

F(G,µ, b)a ⊂ F(G,µ, b)wa

is strict.

By the recent progress in p-adic Hodge theory, thanks to the works of Fargues-
Fontaine [29] and Fargues [25], we can now construct F(G,µ, b)a as in the Rapoport-
Zink conjecture for any triple (G, {µ}, b) (compatible with the constructions of Hartl
and Faltings above), by using G-bundles on the Fargues-Fontaine curve, cf. def.
3.1. In [36] sec. 9 and [51] A.20, Hartl and Rapoport asked when we do have

F(G,µ, b)a = F(G,µ, b)wa ?
For G = GLn, Hartl gave a complete solution to this question ([36] theo. 9.3).

Let b ∈ G(F̆ ) be an element such that its associated σ-conjugacy class
[b] ∈ B(G,µ)

is the unique basic element in the Kottwitz set B(G,µ) ([42] sec. 6). In this paper
we prove the following theorem that was conjectured by Fargues and Rapoport ([32]
conj. 0.1).

Theorem 0.1 (theo. 6.1). The equality F(G,µ, b)wa = F(G,µ, b)a holds if and
only if B(G,µ) is fully Hodge-Newton decomposable.

Recall that, roughly, the set B(G,µ) is fully Hodge-Newton decomposable if for
any non basic element of B(G,µ) its Newton polygon, seen as an element of a posi-
tive Weyl chamber, touches the Hodge polygon defined by µ outside its extremities.
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We refer to section 4 and more precisely 4.3 for the meaning of this notion. In [32]
theorem 2.5 there is a purely group theoretical classification of all the fully Hodge-
Newton decomposable pairs (G, {µ}), and in loc. cit. theo. 2.3 one can find further
equivalent conditions for (G, {µ}) being fully Hodge-Newton decomposable. In the
following, Hodge-Newton will be usually abbreviated to HN for simplicity.

To prove the theorem, we make intensive use of the theory of G-bundles on the
Fargues-Fontaine curve ([25]). More precisely, let C|Ĕ be a complete algebraically
closed extension and XC[ be the Fargues-Fontaine curve attached to C[ equipped
with a closed point ∞ with residue field C. Let us recall that the main theorem of
[25] says that

B(G) ∼−−→ H1
ét(X,G)

[b′] 7−→ [Eb′ ].

To each point x ∈ F(G,µ)(C), we can attach a modified G-bundle at ∞ of Eb

Eb,x

on XC[ . We assume that G is quasi-split to simplify. Then we can use the notion of
a semi-stable G-bundle and the theory of Harder-Narasimhan reduction on XC[ to
study the modification Eb,x and the geometry of F(G,µ). The subspace F(G,µ, b)a
is defined as the locus where Eb,x is a semi-stable G-bundle. The isomorphism class
of Eb,x defines a stratification of F(G,µ) indexed by another Kottwitz set B(Jb, µ−1)
(cf. sec. 5). We prove that this other Kottwitz set is fully HN decomposable if and
only if B(G,µ) is fully HN decomposable (coro. 4.16). To compare F(G,µ, b)a with
the weakly admissible locus F(G,µ, b)wa, we also need to describe F(G,µ, b)wa in
terms of G-bundles on XC[ . This is given in proposition 2.7: x is weakly admissible
if and only if for any parabolic reduction (Eb,x)P coming from a reduction of b to
the parabolic subgroup P , the usual numerical semi-stability condition is satisfied.
With these ingredients at hand, we can prove the Fargues-Rapoport conjecture by
comparing parabolic reductions of Eb,x with the parabolic reductions coming from
a reduction of b.

The reader who wants to have a feeling of how this type of proof works in a
particular case can read the case of SO(2, n−2) treated in [27] (see the appendix of
[59]). This case is instructive and served as a starting point for the general proof of
the implication that fully HN decomposability implies F(G,µ, b)a = F(G,µ, b)wa.
It gives in particular the computation of the p-adic period space of K3 surfaces with
supersingular reduction. We also deal with the case of GLn in remark 6.2.

We briefly describe the structure of this article. In section 1, we review the
basic facts about G-bundles on the Fargues-Fontaine curve which we will use. In
section 2, we review the definition of the weakly admissible locus F(G,µ, b)wa. In
the quasi-split case, we can give an equivalent definition for F(G,µ, b)wa by using
the theory of G-bundles on the Fargues-Fontaine curve. In section 3, we give the
definition of the admissible locus F(G,µ, b)a by using semi-stable G-bundles on the
Fargues-Fontaine curve. In section 4, we describe a generalized Kottwitz set for
general groups, and we also discuss the fully HN decomposability condition and
related properties that will be used in the sequel. In section 5, we first explain
the twin towers principle which is an important tool in the proof of the main the-
orem. Then we construct the Harder-Narasimhan stratification of the flag variety
F(G,µ) and describe each stratum. With all these preparations, we finally prove
the Fargues-Rapoport conjecture in section 6. Finally, in section 7, we discuss the
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asymptotic geometry of period spaces. We introduce in particular a new conjecture
(7.2) saying that F(G,µ, b)a = F(G,µ, b)wa if and only if there exists a quasicom-
pact fundamental domain for the action of Jb(F ) on F(G,µ, b)a. Moreover we give
a cohomological application of some results obtained during the proof of the main
theorem 6.1. In fact, when B(G,µ) is fully HN decomposable, the boundary of
F(G,µ, b)a is parabolically induced (prop. 7.1). One should then deduce that in
this case the “supercuspidal part” of the compactly supported cohomology and the
cohomology without support coincide (conj. 7.3). Conjecturally this is only true
when one restricts to supercuspidal L-packets (a cleanliness assumption about su-
percuspidal L-packets showing up in the geometrization conjecture formulated by
the second author) but in this case this is true for any supercuspidal representation.
This should have consequences on the realization of the local Langlands correspon-
dence for supercuspidal representations in the cohomology of those period spaces.

Acknowledgments. We would like to sincerely thank Sian Nie and Ulrich
Görtz for valuable help in group theory, and Eva Viehmann for some corrections.
We thank the referee for careful reading and helpful comments.

Notations

We use the following notations:
• F is a finite degree extension of Qp with residue field Fq.
• F is an algebraic closure of F and Γ = Gal(F |F ).
• F̆ = F̂un is the completion of the maximal unramified extension F un of F
with Frobenius σ.
• G is a connected reductive group over F .
• H is a quasi-split inner form of G equipped with an inner twisting GF

∼−→
HF .
• A ⊂ T ⊂ B are a maximal split torus, T = CH(A) a minimal Levi and B
a Borel subgroup in H. Note that T is a maximal torus of H over F (cf.
[62] page 271). We reserve the notation T for a maximal torus in G.
• (X∗(T ),Φ, X∗(T ),Φ∨) is the root datum given by the adjoint action of T
with positive roots Φ+ and simple roots ∆ with respect to the choice of B.
Denote by W the absolute Weyl group of T in H.
• (X∗(A),Φ0, X∗(A),Φ∨0 ) is the root datum given by the adjoint action of A
with positive roots Φ+

0 and simple (reduced) roots ∆0.
• IfM is a standard Levi subgroup in H with respect to the preceding choice
of Borel subgroup, we note by a subscript M , for example ΦM , the corre-
sponding roots or coroots showing up in LieM . For example M 7→ ∆0,M
induces a bijection between the standard Levi subgroups and subsets of ∆0.
• If D is the slope pro-torus with characters X∗(D) = Q, we set

N (G) =
[
Hom(DF , GF ) /G(F )-conjugacy

]Γ
,

the Newton chamber. Via the inner twisting between G and H, there is an
identification

N (G) = N (H) = X∗(A)+
Q .

This is equipped with the usual order ν1 ≤ ν2 if and only if ν2−ν1 ∈ Q≥0Φ+
0 .

• π1(H) = X∗(T )/〈Φ∨〉 is the algebraic fundamental group of H, and π1(H)Γ
is its Galois coinvariant. Via the inner twisting between G and H, there
are identifications

π1(G) = π1(H), π1(G)Γ = π1(H)Γ.
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• Gad is the adjoint group associated to G, Gder ⊂ G is the derived subgroup,
and Gsc → Gder is the simply connected cover of Gder.

1. G-bundles on the Fargues-Fontaine curve

In this section, we review some basic facts about the Fargues-Fontaine curve and
G-bundles on it, cf. [29, 25]. This theory will be the basic tool for our study of
p-adic period domains. We change slightly the notations from [29] and [25] to be
in accordance with [51].

1.1. The Fargues-Fontaine curve. The Fargues-Fontaine curve X over F is as-
sociated to the choice of a characteristic p perfectoid field K|Fq. We note πF for a
uniformising element of F . It has several incarnations.

1.1.1. The adic curve. The adic curveXad admits the following adic uniformization

Xad = Y/ϕZ,

where Y = Spa(WOF (OK)) \ V (πF [$K ]), with $K ∈ K satisfying 0 < |$K | < 1.
The action of the Frobenius ϕ on the ramified Witt vectors is given by

ϕ
(∑
n≥0

[xn]πnF
)

=
∑
n≥0

[xqn]πnF .

It induces a totally discontinuous action on Y without fixed point.

1.1.2. The algebraic curve. There is a natural line bundle O(1) onXad, correspond-
ing to the ϕ-equivariant line bundle on Y whose underlying line bundle is trivial
and for which the Frobenius is π−1

F ϕ. Set O(n) = O(1)⊗n, and

P =
⊕
n≥0

H0(Xad,O(n)).

We have
H0(Xad,O(n)) = O(Y )ϕ=πnF .

Let
X = Proj(P ).

By [29], this is a one dimensional noetherian regular scheme over F . There exists
a morphism of ringed spaces

Xad −→ X,

and Xad may be viewed as the analytification of X in some generalized sense. As
for rigid spaces, there is a natural subset |Xad|cl ⊂ |Xad| of “classical Tate points”
and the preceding induces a bijection

|Xad|cl ∼−−→ |X|,

where |X| denotes the closed points of X.
Let F be fixed. Suppose that instead of beginning with the characteristic p

datum K|Fq we start with K]|F a perfectoid field and set K = K],[. Then, the
curve X is equipped with a closed point ∞ with residue field k(∞) = K] and
ÔX,∞ = B+

dR(K]), cf. [29]. Presently K will be supposed to be algebraically
closed (we will test the semi-stability of some vector bundles by “specializing at a
geometric point”). This is equivalent to K] being algebraically closed.
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1.2. G-bundles. Let BunX and BunXad be the categories of vector bundles on X
and Xad respectively. The morphism Xad → X induces a GAGA functor

BunX −→ BunXad .

Theorem 1.1 ([24, 40]). The GAGA functor induces an equivalence of categories

BunX
∼−→ BunXad .

We assume from now on that K is algebraically closed. For example, K = C[

with C|F a complete algebraically closed field. Let

ϕ−modF̆
be the category of isocrystals relative to F̆ |F , that is to say couples (D,ϕ) where
D is a finite dimensional F̆ -vector space together with a σ-linear automorphism ϕ,
where σ is the Frobenius of F̆ that reduces to Frobq. For any (D,ϕ) ∈ ϕ−modF̆ ,
we can construct a vector bundle E(D,ϕ) on X associated to the graded P -module⊕

n≥0

(
D ⊗F̆ O(Y )

)ϕ⊗ϕ=πnF .

Via GAGA this corresponds to the vector bundle Y ×
ϕZ
D on Xad = Y/ϕZ.

Theorem 1.2 ([29]). The functor E(−) : ϕ−modF̆ −→ BunX is essentially sur-
jective.

We will need the following fact:

Theorem 1.3 ([29]). The degree map of a line bundle induces an isomorphism

deg : Pic(X) ∼−→ Z.

Note that the fact the degree of a line bundle is well defined is not evident. This
is a consequence of the fact that the curve is “complete”: the degree of a principal
divisor is zero. This is essential to develop a theory of Harder-Narasimhan reduc-
tion.

We have the following two equivalent definitions of a G-bundle on X:
(1) an exact tensor functor RepG → BunX , where RepG is the category of

rational algebraic representations of G,
(2) a G-torsor on X locally trivial for the étale topology.

Recall that an isocrystal with G-structure is an exact tensor functor

RepG −→ ϕ−modF̆ .

Let B(G) be the set of σ-conjugacy classes in G(F̆ ) ([41, 42, 52]). Any b ∈ G(F̆ )
defines an isocystal with G-structure

Fb : RepG −→ ϕ−modF̆
V 7−→ (VF̆ , bσ).

Its isomorphism class depends only on the σ-conjugacy class [b] ∈ B(G) of b. Con-
versely, any isocrystal with G-structure arises in this way. Thus B(G) is the set
of isomorphism classes of isocrystals with G-structure ([52] rem. 3.4 (i)). For
b ∈ G(F̆ ), let Eb be the composition of the above functor Fb and

E(−) : ϕ−modF̆ −→ BunX .

In this way, the set B(G) also classifies G-bundles on X. In fact, we have
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Theorem 1.4 ([25],[1]). There is a bijection of pointed sets

B(G) ∼−→ H1
ét(X,G)

[b] 7−→ [Eb].

1.3. The Harder-Narasimhan reduction in the quasi-split case. We assume
that G = H is quasi-split in this subsection. The theory of Harder-Narasimhan
reduction ([3] for example) applies for G-bundles over the Fargues-Fontaine curve
X ([25] sec. 5.1). If G′ ⊂ G is a closed subgroup, then a reduction of a G-bundle
E to G′ is a G′-bundle EG′ together with an isomorphism

EG′
G′

× G ∼−−→ E .
Recall the following definition of a semi-stable G-bundle, see for example [49] and
[3].

Definition 1.5. Let E be a G-bundle on X. It is called semi-stable if for any
standard parabolic subgroup P of G, any reduction EP of E to P , and any χ ∈
X∗(P/ZG)+, we have

degχ∗EP ≤ 0.

LetM ⊂ P be the associated standard Levi subgroup of G, which we will identify
with P/RuP with RuP the unipotent radical of P . Then as X∗(P ) = X∗(M), we
have

χ∗EP = χ∗(EP
P
×M).

One proves, as usual, that E is semistable if and only if the associated adjoint
bundle

Ad(E) := E
G,Ad
× LieG

is semi-stable. We will later use the following criterion.

Lemma 1.6. The following are equivalent:
(1) The G-bundle E on X is semi-stable.
(2) For any standard parabolic subgroup P and any reduction EP to P , one has

deg(EP
P,Ad
× LieG/LieP ) ≥ 0.

(3) The same holds for any maximal standard parabolic subgroup.

Proof. This is a consequence of the fact that for any standard parabolic subgroup
P , the adjoint representation of T on det(LieG/LieP )−1 lies in X∗(T )+, and more-
over as P runs through the set of maximal parabolic subgroups those are positive
multiples of the fundamental weights. More precisely, if M is the standard Levi
attached to P and ρM = 1

2
∑
α∈Φ(T )+

M
α, then for β ∈ ∆M , 〈β∨, ρM 〉 = 1 and for

β ∈ ∆\∆M , 〈β∨, ρM 〉 ≤ 0. One concludes using that we have det(LieG/LieP )−1 =
2ρ− 2ρM . �

One can rephrase this lemma in a more geometric way. In fact, if the reduction
EP corresponds to the section s of P\E → X, then

EP
P,Ad
× LieG/LieP = s∗T (P\E)

is the pullback of the tangent bundle.

For a general G-bundle we have the following theorem.

Theorem 1.7. Let E be a G-bundle on X. Then there exists a unique standard
parabolic subgroup P of G and a unique reduction EP to P , such that
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(1) the associated M -bundle EP
P
×M is semi-stable,

(2) for any χ ∈ X∗(P/ZG) \ {0} ∩ N.∆, we have degχ∗EP > 0.

Proof. See [25] 5.1, where one can apply the arguments of [3]. �

The reduction EP in the above theorem is called the Harder-Narasimhan reduc-
tion of E . Let E be a G-bundle on X with Harder-Narasimhan reduction EP . Then
we get an element

νE ∈ X∗(A)Q = X∗(T )Γ
Q

by the Galois invariant morphism
X∗(P ) −→ Z

χ 7−→ degχ∗EP
and the inclusion

HomZ(X∗(P ),Z) ⊂ X∗(T )Q.
In fact, we have νE ∈ X∗(A)+

Q , and moreover M is the centralizer of νE . As in
the classical theory of G-bundles on curves, the vector νE is called the Harder-
Narasimhan polygon of E as an element

νE ∈ N (G) = X∗(A)+
Q .

Later we will need the following. Recall that if E is a vector bundle on X with
Harder-Narasimhan filtration (0) = E0 ( E1 ( · · · ( Er = E then:

(1) for any subbundle F ⊂ E , the point (rkF ,degF) lies on or under the
Harder-Narasimhan polygon of E ,

(2) if (rkF ,degF) lies on this polygon, then there exists an index i such that
Ei ⊂ F ⊂ Ei+1.

Here is the generalization we will need.

Theorem 1.8 ([55] theo. 4.5.1). For E a G-bundle on X equipped with a reduction
EQ to the standard parabolic subgroup Q consider the vector

v : X∗(Q) −→ Z
χ 7−→ degχ∗EQ

seen as an element of X∗(A)Q. Then
(1) One has v ≤ νE .
(2) Moreover if this inequality is an equality, and EP is the canonical reduction

of E, then Q ⊂ P and EP ' EQ
Q
× P .

As a corollary the vector νE can be defined as being the supremum of all such
vectors v associated to all possible reductions EQ in the poset X∗(A)Q.

1.4. The Harder-Narasimhan polygon in general and the first Chern
class. Suppose now that G is not necessarily quasi-split. Recall that the inner
twisting GF

∼−→ HF induces an identification

N (G) ∼−−→ N (H) = X∗(A)+
Q .

There is a canonical D-torsor T on X ⊗F F un. More precisely, if Fh|F is the
degree h unramified extension, we have

XF ⊗F Fh = XFh ,

the curve attached to Fh. If πh : XFh → XF is the natural projection, one has a
canonical identification

π∗hOXF (1) = OXFh (1)⊗h.
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The compatible system of Gm-torsors attached to
(
O(XFh)(1)

)
h≥1 defines T . As

a consequence of the classification theorem of [25], any G-torsor on XF ⊗F Fun has
a reduction to a torus and we have

Theorem 1.9. The pushforward of the D-torsor T induces a bijection

Hom(DFun , GFun)/G(F un) ∼−−→ H1
ét(XF ⊗F Fun, G).

Together with the pullback from X to XF ⊗F F un, this defines a map

H1
ét(X,G) −→ N (G)

[E ] 7−→ νE .

One can moreover define the G-equivariant first Chern class of E as a map ([25])

cG1 : H1
ét(X,G) −→ π1(G)Γ.

This generalizes the degree of a vector bundle for G = GLn. The quickest way to
define it is through abelianized cohomology in the topos Xét ([6]) via the map

H1
ét(X,G) −→ H1

ét(X, [Gsc → G]),

the homotopy equivalence [Tsc → T ]→ [Gsc → G] for a maximal torus T in G, and
the canonical isomorphism

X∗(S)Γ
∼−→ H1

ét(X,S)

for a torus S ([25] theo. 2.8) (see the next subsection for more explanations in the
case of B(G) for this type of abelianization construction).

1.5. Newton map and Kottwitz map. We keep the same notations. The set
B(G) of σ-conjugacy classes in G(F̆ ) can be described by two invariants. One
invariant is the Newton map ([41] sec. 4). For each b ∈ G(F̆ ) on can attach a slope
morphism

νb : DF̆ −→ GF̆ .

Up to σ-conjugating b one can suppose that it is defined over F un (the Tannakian
category of isocrystals has a fiber functor over F un). Moreover, since νσb = b−1νbb,
its conjugacy class is defined over F . We thus obtain a map

ν : B(G) −→ N (G)
[b] 7−→ [νb].

The other invariant is the Kottwitz map ([52] 1.15, [42] 4.9 and 7.5)

κ : B(G) −→ π1(G)Γ

[b] 7−→ κ([b]).

In the following we will simply write κ([b]) as κ(b). The quickest way to define the
Kottwitz map is via the abelianization of Kottwitz set à la Borovoï. More precisely,
if we set

Bab(G) := H1(WF , [Gsc(F̆ )→ G(F̆ )])

(cohomology with coefficient in a crossed module where G(F̆ ) is in degree 0) there
is an abelianization map

B(G) −→ Bab(G)

induced by [1→ G(F̆ )]→ [Gsc(F̆ )→ G(F̆ )]. Moreover, if T is a maximal torus in
G then [Tsc → T ] → [Gsc → G] is an homotopy equivalence and this induces an
isomorphism

H1(WF , [Tsc(F̆ )→ T (F̆ )]) ∼−−→ Bab(G).
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Now the left member is identified with the cokernel of
B(Tsc) −→ B(T )

which, according to Kottwitz, is the same as the cokernel of
X∗(Tsc)Γ −→ X∗(T )Γ

that is to say π1(G)Γ. This is canonically defined independently of the choice of T
since the Weyl group of T acts trivially on the cokernel of X∗(Tsc)→ X∗(T ).

The induced map
(ν, κ) : B(G) −→ N (G)× π1(G)Γ

is injective ([42] 4.13). Let B(G)basic ⊂ B(G) be the subset of basic elements. Then
the restriction of κ to B(G)basic induces a bijection

κ : B(G)basic
∼−→ π1(G)Γ

([41] prop. 5.6, [52] theo. 1.15). In view of Theorem 1.4, the two maps ν and κ
have the following geometric interpretations in terms of G-bundles.
Theorem 1.10 ([25] prop. 6.6 and prop. 8.1). We have

(1) νEb = w0(−[νb]), where w0 is the element of longest length in the Weyl group
acting on X∗(A)Q, and [νb] is the representative of the conjugacy class of
νb that lies in X∗(A)+

Q ,
(2) cG1 (Eb) = −κ(b).

A particular case of the above (1) says that E is semi-stable if and only if [bE ] ∈
B(G) is basic.
Example 1.11. If Gderis simply connected one has

{G-bundles/X}/ ∼ {G/Gder-bundles/X}/ ∼ π1(G)Γ
push forward

cG1

−κ
∼

where, when G is quasi-split, the first map is a bijection when restricted to semi-
stable bundles.

2. The weakly admissible locus

2.1. Background. Let {µ} be a geometric conjugacy class of a cocharacter µ :
Gm → GF . Unless clearly stated otherwise µ is supposed to be minuscule. The
pair (G, {µ}) will be fixed in the rest of this paper. We will sometimes see {µ} as
an element of X∗(T )+ that we again denote µ by abuse of notation. We get the
following associated objects:

• the local reflex field E = E(G, {µ}), a finite extension of F inside F , which
is the field of definition of {µ},
• the flag variety F(G,µ) over Ĕ, a twisted form of G

Ĕ
/Pµ, that classifies

parabolic subgroups of type µ, where Ĕ is the completion of the maximal
unramified extension of E (in fact F(G,µ) is defined over E, but we will
not need this fact),
• and the Kottwitz set

B(G,µ) = {[b] ∈ B(G)|[νb] ≤ µ�, κ(b) = µ]},
which is a finite subset of B(G); as usual we have put

µ� = [Γ : Γµ]−1
∑

τ∈Γ/Γµ

µτ ∈ X∗(A)+
Q =

(
X∗(T )+

Q )Γ,
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and µ] ∈ π1(G)Γ is the image of µ via π1(G) = X∗(T )/X∗(T sc).
In the preceding definition of B(G,µ), the condition [νb] ≤ µ� implies that

κ(b) − µ] ∈ π1(G)Γ,tor = H1(F,G). The condition κ(b) = µ] requires that this
cohomology class is trivial.

In the following we will also denote by F(G,µ) the associated adic space over
Spa(Ĕ). Fix an element

[b] ∈ B(G).
We get the reductive group Jb over F , the σ-centralizer of b, which only depends
on [b] up to isomorphism. For any F -algebra R, we have

Jb(R) = {g ∈ G(F̆ ⊗F R)| gbσ(g)−1 = b}.

The group Jb(F ) acts naturally on the flag variety F(G,µ) over Ĕ via Jb(F ) ⊂
G(F̆ ). For the triple (G, {µ}, [b]) as above, let us recall the definition of the weakly
admissible locus ([53] chap. 1)

F(G,µ, b)wa ⊂ F(G,µ).

First we recall the definition of a weakly admissible filtered isocrystal. Let K|F̆
be a complete field extension. A filtered isocrystal V = (V, ϕ,Fil•VK) is called
weakly admissible if for any subobject V ′ = (V ′, ϕ,Fil•V ′K) of V, with V ′ a ϕ-stable
F̆ -subspace of V and Fil•V ′K = V ′K ∩ Fil•VK , we have

tH(V) = tN (V) and tH(V ′) ≤ tN (V ′),
where tN (V) = vπF (detϕ) is the πF -adic valuation of detϕ, and

tH(V) =
∑
i∈Z

i · dimK gr
i
Fil•(VK).

Here the notation tN , resp. tH , means the terminal point of the Newton polygon,
resp. the Hodge polygon. If we define the slope of V as

µ(V) = tH(V)− tN (V)
dimV

,

then V is weakly admissible if and only if it is semi-stable (for the slope function
µ) and µ(V) = 0.

If K|F̆ is a finite extension, then the category of weakly admissible filtered
isocrystals is equivalent to the category of crystalline representations of Gal(K|K)
with coefficients in F whose Sen operator is F -linear ([8]); that is, weakly admis-
sible is equivalent to admissible. We refer to chapter 10 of [29] for a proof of this
result using the curve (this proof was a huge inspiration to study modifications of
vector bundles on the curve).

Let us return to the general setting. Let µ′ ∈ {µ} be defined over K|F̆ . There
is a functor

Ib,µ′ : RepG −→ ϕ−FilModK/F̆
(V, ρ) 7−→ (VF̆ , ρ(b)σ,Fil•ρ◦µ′VK).

Let us recall that the category of weakly admissible filtered isocrystals is Tannakian.

Definition 2.1 ([53] def. 1.18). We call the pair (b, µ′) weakly admissible if one of
the following equivalent conditions is satisfied:

(1) for any (V, ρ) ∈ RepG, the filtered isocrystal Ib,µ′(V, ρ) is weakly admissi-
ble;

(2) there is a faithful representation (V, ρ) of G such that Ib,µ′(V, ρ) is weakly
admissible.



12 MIAOFEN CHEN, LAURENT FARGUES AND XU SHEN

It is also equivalent to the condition that its image in G/Gder is weakly admis-
sible (i.e. [b] ∈ A(G,µ), cf. prop. 2.2) and Ib,µ′(LieG) is weakly admissible for the
adjoint representation LieG of G, cf. [12] def. 9.2.14 and coro. 9.2.26. We will give
an equivalent geometric definition of weakly admissible in terms of G-bundles on
the Fargues-Fontaine curve later.

Now for any point x ∈ F(G,µ)(K) we have the associated filtration Filx of
RepG coming from a cocharacter µx ∈ {µ} defined over K. Then x is called
weakly admissible if the pair (b, µx) is weakly admissible in the above sense. By
proposition 1.36 of [53], this defines a partially proper open subspace

F(G,µ, b)wa ⊂ F(G,µ),

such that F(G,µ, b)wa(K) is the set of weakly admissible points in F(G,µ)(K). It
is of the form

F(G,µ) \
⋃
i∈I

Jb(F ).Zi

where (Zi)i∈I is a finite collection of Zariski closed Schubert varieties. The action
of Jb(F ) on F(G,µ) stabilizes the subspace F(G,µ, b)wa.

Recall the following basic fact.

Proposition 2.2 ([54] prop. 3.1). The open subset F(G,µ, b)wa is non empty if
and only if [b] ∈ A(G,µ) := {[b] ∈ B(G)| [νb] ≤ µ�}.

As B(G,µ) ⊂ A(G,µ) and we will be interested in the case [b] ∈ B(G,µ), our
F(G,µ, b)wa will be non empty.

2.2. Weak admissiblity and the curve. The preceding definition of a weakly
admissible point is Tannakian. We now give a geometric weak admissibility criterion
in terms of the curve whenG is quasi-split. Let C|F be algebraically closed complete
and consider the curve attached to C[ equipped with its point∞ ∈ |X| with residue
field C and

B+
dR := B+

dR(C) = ÔX,∞.
Consider the C-points of the BdR-affine Grassmannian attached to G ([57], [30], we
only need its C-points, not the geometric diamond structure on it for what we do)

GrBdR
G (C) := G(BdR)/G(B+

dR).

Since we only consider the C-points of GrBdR
G , the reader who believes in Zorn’s

lemma can fix an isomorphism CJtK ∼−→ B+
dR, that is to say a section of θ : B+

dR → C.
After such a choice this is reduced to the C-points of the “classical” affine Grass-
mannian. Hopefully we don’t need this. In fact there is a canonical section over F
and thus F ⊂ B+

dR canonically, in particular we can define µ(t) ∈ G(B+
dR).

Choose b ∈ G(F̆ ) that gives us the G-bundle Eb. Its pullback via Spec(B+
dR)→ X

is canonically trivialized. For each x ∈ GrBdR
G (C) one can construct a modification

Eb,x
of Eb à la Beauville-Laszlo ([9] 3.4.5, [24] 4.2, [26] 3.20). This is given by gluing
Eb|X\{∞} and the trivial G-bundle on Spec(B+

dR) via the gluing datum given by x.

For µ ∈ X∗(T )+ the corresponding affine Schubert cell is

GrBdR
G,µ (C) = G(B+

dR)µ(t)−1G(B+
dR)/G(B+

dR) ⊂ GrBdR
G (C).
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For x ∈ GrBdR
G,µ (C) one has (see [9] lemma 3.5.5)

cG1 (Eb,x) = µ] + cG1 (Eb)
= µ] − κ(b).

Remark 2.3. In terms of the stack BunG ([26], [30]) the preceding formula gives
the way the Hecke correspondence Heckeµ BunG permute the factors in the
decomposition BunG =

∐
α∈π1(G)Γ

BunαG where BunαG is the open/closed substack
where cG1 = α. It says that

Heckeµ(BunαG) = Bunα+µ]
G .

Recall that for any µ we have the Bialynicki-Birula map ([9] prop. 3.4.3 in
general, we don’t need its diamond version but just its evaluation on C-points)

πG,µ : GrBdR
G,µ (C) −→ F(G,µ)(C).

When µ is minuscule this is an isomorphism induced by applying θ via
G(B+

dR) ∩ µ(t)−1G(B+
dR)µ(t) = {g ∈ G(B+

dR) | θ(g) ∈ Pµ(C)},

a parahoric subgroup in G(B+
dR). Let us recall the following well-known lemma that

is deduced from the properness of G/P together with the fact that X is a Dedekind
scheme.

Lemma 2.4. Let E and E ′ be two G-bundles on X with a modification E|X\{∞}
∼→

E ′|X\{∞}. Then for any parabolic subgroup P of G, we have a bijection

{Reductions of E to P} −→ {Reductions of E ′ to P}.

We will need the following key definition.

Definition 2.5. Let b ∈ G(F̆ ) be an element. For a Levi subgroup M of G, a
reduction of b to M is an element bM ∈M(F̆ ) together with an element g ∈ G(F̆ ),
such that b = gbMσ(g)−1. Such a reduction (bM , g) is considered to be equivalent
to (hbMh−σ, gh−1) for any h ∈M(F̆ ). We use the same notation and terminology
for parabolic subgroups.

The reductions of b to M and the reductions of Eb to M are almost the same.
However, for the reductions to parabolic subgroups, the situation is different. Any
reduction bP of b to a parabolic subgroup P induces a reduction EbP of Eb to P .
But the converse is false and this is the main reason why in general the weakly
admissibility and the admissibility conditions differ. For example for GL2, there is
an exact sequence

0→ O(−1)→ O2 → O(1)→ 0,
although all sub-isocrystals of (F̆ 2, σ ⊕ σ) are isoclinic with slope 0. Let us notice
that if M is a Levi subgroup of the parabolic subgroup P (semi-simplicity of the
category of isocrystals)

B(M) ∼−−→ B(P ).
Thus, reductions of b to M or P are essentially the same.

Suppose now that µ is minuscule, bM is a reduction of b to M with associated
reduction bP to P . For x ∈ F(G,µ)(C) we deduce a reduction (Eb,x)P of Eb,x via
lemma 2.4. This is a modification of EbP . Now, we have the decomposition in
Schubert cells of F(G,µ)(C) = G(C)/Pµ(C) according to the P -orbits

F(G,µ)(C) =
∐

w∈WP \W/WPµ

F(G,µ)(C)w
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where, if .
w ∈ NG(T )(C) has image w,

F(G,µ)(C)w = P (C) .wPµ(C)/Pµ(C)
= P (C)/P (C) ∩ Pµw(C).

Projection to the Levi quotient induces an affine fibration
prw : F(G,µ)(C)w −→ F(M,µw)(C).

Lemma 2.6. Suppose µ is minuscule. For x ∈ F(G,µ)(C)w there is an isomor-
phism

(Eb,x)P
P
×M ' EbM ,prw(x).

Proof. We use the Iwasawa decomposition
G(BdR) = P (BdR)G(B+

dR).
This induces an identification
(1) P (BdR)/P (B+

dR) ∼−−→ G(BdR)/G(B+
dR).

Now if y 7→ x via this bijection then
(Eb,x)P = EbP ,y.

We use now that
G(B+

dR) =
∐

w∈WP \W/WPµ

P (B+
dR) .wPµ(B+

dR)

(this is deduced from the étaleness of the scheme PFµ\GFµ/Pµ (coarse quotient)
where Fµ is the field of definition of µ). Now, using the identification F(G,µ)(C) =
GrBdR

G,µ (C), write
x = gµ(t)−1G(B+

dR) ∈ GrBdR
G,µ (C)

with g ∈ G(B+
dR). Write g = a

.
wc with a ∈ P (B+

dR) and c ∈ Pµ(B+
dR). We have

gµ(t)−1 = aµw(t)−1︸ ︷︷ ︸
∈P (BdR)

.
wµ(t)cµ(t)−1︸ ︷︷ ︸
∈G(B+

dR)

.

Thus via the bijection (1), y 7→ x with y = aµw(t)−1. Thus, (Eb,x)P = EbP ,y and
the result is obtained by projection y from P (BdR) to M(BdR). �

We can now state the main result of this section.

Proposition 2.7. Assume that G is quasi-split and [b] ∈ A(G,µ) with µ minuscule.
Then x ∈ F(G,µ)(C) is weakly admissible if and only if for any standard parabolic
P with associated standard Levi M , any reduction bM of b to M , and any χ ∈
X∗(P/ZG)+, we have

degχ∗(Eb,x)P ≤ 0,

where (Eb,x)P is the reduction to P of Eb,x induced by the reduction EbM
M
× P of Eb

and lemma 2.4.

Proof. We use lemma 2.6. The character χ factorizes through the Levi quotient M
and thus

χ∗(Eb,x)P = χ∗EbM ,prw(x)

if x is in the Schubert cell associated to w. Now,
cM1 (EbM ,prw(x)) = (µw)] − κM (bM ) ∈ π1(M)Γ.

In particular, for any χ ∈ X∗(M),
degχ∗EbM ,prw(x) = deg(χ(bM ), χ ◦ µw)
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where the degree of the right member has to be taken in the sense of filtered ϕ-
modules of rank 1. The result is then a consequence of the corollary 9.2.30 of [12]
(together with lemma 1.6). �

3. The admissible locus

As before, we fix the triple (G, {µ}, [b]). We will assume that {µ} is minus-
cule until clearly stated otherwise, and also we assume [b] ∈ B(G,µ) (the triple
(G, {µ}, [b]) is called a local Shimura datum, cf. [54] sec. 5).

Let K|Ĕ be a finite extension and x ∈ F(G,µ, b)wa(K). We get the following
diagram of functors

RepG
Ib,x //

ωG
''

ϕ−FilModwa
K/F̆

Vcris // RepcrisGal(K/K)

ωcris
uu

VectF
where ϕ−FilModwa

K/F̆
is the category of weakly admissible filtered isocrystals,

Repcris(Gal(K/K)) is the category of crystalline representations of Gal(K/K) with
coefficients in F whose Sen operator is F -linear, and ωG and ωcris are the natural
fiber functors. This diagram is commutative since the class of the torsor

Isom⊗(ωG, ωcris ◦ Vcris ◦ Ib,x)
is given by κ(b)− µ] and is thus trivial ([54] prop. 2.7, see also 1.20 of [53] in case
Gder is simply connected, and [63] in the general case). Thus, the choice of an
isomorphism between ωG and ωcris ◦ Vcris ◦ Ib,x induces the homomorphism

ρx : Gal(K/K) −→ G(F ).
Rapoport and Zink conjectured the existence of an open subspace

F(G,µ, b)a ⊂ F(G,µ, b)wa

together with an étale G-local system E on F(G,µ, b)a such that for all finite
extension K|Ĕ we have

F(G,µ, b)a(K) = F(G,µ, b)wa(K),
and E interpolates the preceding Galois representation ρx : Gal(K/K) → G(F ),
cf. [12] conj. 11.4.4 and [36] conj. 2.3. The associated spaces of lattices will give
the desired tower of local Shimura varieties, ([50] hope 4.2, [54] conj. 5.1, [59] sec.
3.1).

Now we will use the theory of G-bundles on the Fargues-Fontaine curve to define
the admissible locus

F(G,µ, b)a ⊂ F(G,µ, b)wa.
Let C|Ĕ be any complete algebraically closed extension containing F . We consider
the curve X = XC[ over F with the canonical point ∞ ∈ X.

Definition 3.1 (See also [51] def. A.6).
(1) We set

F(G,µ, b)a(C) = {x ∈ F(G,µ)(C)|νEb,x is trivial}.
In other words, if G becomes quasi-split over F ′|F we ask that Eb,x⊗F F ′ is
semi-stable on the curve XF ′ and that, for all χ : G→ Gm, degχ∗Eb,x = 0.

(2) We define F(G,µ, b)a as the subset of F(G,µ) stable under generalization
whose C-points are given by the preceding for any C as before.



16 MIAOFEN CHEN, LAURENT FARGUES AND XU SHEN

Since
cG1 (Eb,x) = µ] − κ(b)

the isomorphism class of Eb,x does not depend on x ∈ F(G,µ, b)a(C). In particular,
if [b] ∈ B(G,µ) one has

F(G,µ, b)a(C) = {x ∈ F(G,µ)(C) | Eb,x is trivial}.

Let us recall some basic properties of F(G,µ, b)a.

Proposition 3.2. The admissible locus satisfies the following properties:
(1) F(G,µ, b)a is a partially proper open subset of F(G,µ).
(2) We have the inclusion

F(G,µ, b)a ⊂ F(G,µ, b)wa,

such that for any finite extension K|Ĕ

F(G,µ, b)a(K) = F(G,µ, b)wa(K).

In particular, F(G,µ, b)a 6= ∅ if and only if [b] ∈ A(G,µ), cf. prop. 2.2.
(3) When (G, {µ}, [b]) is a Hodge type local Shimura datum (see [59] 3.2), then

the subspace F(G,µ, b)a coincides with those introduced by Hartl [36] (via
the Robba ring B̃†rig(C)) and Faltings [20] (via the crystalline period ring
Bcris(C)).

Proof. (1) follows from the work of Kedlaya-Liu [40]. For (2) and (3) see [51]
Remarks A.5. �

For the more advanced reader here is how to prove point (1) in the preceding.
One can consider Scholze’s BdR affine Grassmannian GrBdR

G over Spa(Ĕ)�. This
is the étale sheaf associated to the presheaf (R,R+) 7→ G(BdR(R))/G(B+

dR(R))
on affinoid perfectoid Ĕ-algebras. There is a Bialynicki-Birula morphism that is
an isomorphism thanks to our minuscule hypothesis ([9]). Its inverse gives an
embedding

F(G,µ)� ↪→ GrBdR
G .

Now for any F̆ -perfectoid space S together with an element x ∈ GrBdR
G (S) one can

define
Eb,x,

a G-bundle on the relative adic Fargues-Fontaine curve XS[ . This is defined using
the “degree one Cartier divisor”

S ↪→ XS[

and a gluing “à la Beauville-Laszlo” by modifying Eb on XS . In fact, when S =
Spa(R,R+), “the formal completion along this Cartier divisor” is Spf(B+

dR(R)).
According to Kedlaya and Liu ([40] theo. 7.4.5),

Sss := {s ∈ S | Eb,x|X
k(s)[

is semi-stable}

is open in S. Now if x is given by a morphism S → F(G,µ) that is quasicompact
quasiseparated surjective, then |S| → |F(G,µ)| is a quotient map such that Sss is
the pullback of F(G,µ, b)a. Choosing S → F(G,µ) surjective, we conclude.

Let us now state the following result since this is not written anywhere explicitly.
It says that one can construct the local Shimura varieties as pro-étale covers of
F(G,µ, b)a as conjectured by Rapoport and Zink. We suppose µ minuscule as
before.
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Theorem 3.3 (Scholze [57] sec. 23.3). Suppose [b] ∈ B(G,µ). Then one can con-
struct a pro-étale G(F )-local system on F(G,µ, b)a such that for any compact open
subgroup K ⊂ G(F ), the moduli of its K-trivializationsMK(G,µ, b)→ F(G,µ, b)a
is represented by a rigid analytic space.

Proof. Let S → F(G,µ, b)a be as before. Kedlaya and Liu prove in [40] that rank
n vector bundles on XS[ that are geometrically fiberwise on S[ semi-stable of slope
zero are the same as rank n pro-étale F -local systems on S[. Using this one can
prove that the preceding G-bundle Eb,x on XS[ gives rise to a pro-étale G(F )-torsor
on S[

Isom(E1, Eb,x)
where G(F ) = Aut(E1) (we refer to [30]). This defines a pro-étale G(F )-torsor

M∞ → F(G,µ, b)a,�.

Now one uses [56] (pro-étale descent of separated étale morphisms) that says that
M∞/K is representated by a rigid analytic space separated and étale over F(G,µ, b)a.

�

4. Hodge-Newton decomposability

In [38] (Theorem 1.1 & Lemma 2.5) He and Nie give a description of Kottwitz
set B(G,µ) as a subset of the positive Weyl chamber via the Newton map. This
is applied in [32] to give a criterion for HN decomposability in terms of the Hodge
polygon µ�. He and Nie’s description relies on their description of B(G) via an
affine root system derived from Bruhat-Tits theory applied to GF̆ . In this section
we give a description of B(G,µ) that only relies on the usual relative and absolute
spherical root systems associated to G. He and Nie’s description of B(G) is well
adapted to problems concerning integral models of Rapoport-Zink spaces and their
mod p special fiber. The problem we are interested in concerns only the generic
fiber and there is no reason to use Bruhat-Tits theory and integral structure on
Dieudonné modules for this. We will take an approach developed by Chai in [10] to
make a link with He and Nie’s work. The two really original results of this section
are proposition 4.14 and corollary 4.16 that will be a key point in the proof of our
main theorem.

4.1. A description of a generalized Kottwitz set in the quasi-split case.
In this subsection G = H is a quasi-split group over F . Since CG(A) = T the
restriction of any root of T to A is a root and this induces a bijection ([62] 15.5.3)

Φ/Γ ∼−−→ Φ0.

One verifies moreover that
∆/Γ ∼−−→ ∆0.

Let us fix µ ∈ X∗(T )+ not necessarily minuscule. As before, we note µ� ∈ X∗(A)+
Q

the Galois average of µ and [νb] ∈ X∗(A)+
Q = N (G) for [b] ∈ B(G).

For α ∈ ∆0 and β ∈ Φ such that β|A = α, one has β ∈ ∆. We note

ωβ ∈ 〈Φ〉Q

the corresponding fundamental weight, that is to say for γ ∈ ∆,

〈γ∨, ωβ〉 = δγ,β .
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Now, for α ∈ ∆0, we set

ω̃α =
∑
β∈Φ
β|A=α

ωβ ∈ X∗(T )Γ
Q = X∗(A)Q.

This satisfies the following property: for γ ∈ ∆ we have

〈(γ∨)�, ω̃α〉 =
{

0, if γ|A 6= α

1, otherwise

where (γ∨)� ∈ 〈Φ∨0 〉Q is the Galois average of γ∨.

We will need the following generalized Kottwitz set later.

Definition 4.1. For ε ∈ π1(G)Γ and δ ∈ X∗(A)+
Q we set

B(G, ε, δ) = {[b] ∈ B(G) | κ(b) = ε and [νb] ≤ δ}.

Of course if this set is non empty then ε ≡ δ in π1(G)Γ ⊗Q. One has

B(G,µ) = B(G,µ], µ�).

Proposition 4.2. If ε = µ] then, as a subset of N (G), B(G, ε, δ) is the set of
v ∈ X∗(A)+

Q satisfying
• δ − v ∈ 〈Φ∨0 〉Q,
• ∀α ∈ ∆0 s.t. 〈v, α〉 6= 0, 〈δ − v, ω̃α〉 ≥ 0 and 〈µ� − v, ω̃α〉 ∈ Z.

Proof. One has
B(G) =

⋃
M

Im
(
B(M)basic → B(G)

)
where M goes through the standard Levi subgroups (G included). Moreover

κM : B(M)basic
∼−−→ π1(M)Γ.

Via this isomorphism the slope morphism associated to an element of B(M)basic is
given by

π1(M)Γ ⊗Q = X∗(ZM )Γ
Q.

For v ∈ B(G, ε, δ) ⊂ X∗(A)+
Q , by definition δ − v ∈ Q≥0(Φ∨0 )+. Now for α ∈ ∆0

and z ∈ Q≥0(Φ∨)+

〈z, ω̃α〉 ≥ 0
since

Q≥0(Φ∨0 )+ = Q≥0{(γ∨)� | γ ∈ Φ+}.
One deduces that 〈δ− v, ω̃α〉 ≥ 0. Now consider an element of B(M)basic given by
the class of some µ′ ∈ X∗(T ) in

[
X∗(T )/〈Φ∨M 〉

]
Γ. One has a decomposition

X∗(T )Q = 〈Φ∨M 〉Q ⊕ 〈ΦM 〉⊥Q
that gives rise to a projection morphism

prM : X∗(T )Q −→ 〈ΦM 〉⊥Q .

Then the slope morphism in X∗(A)Q associated to our element of B(M)basic is
given by

v = prM (µ′)�

the Galois average of prM (µ′). We can suppose thatM is the centralizer of v. Then
v defines a parabolic subgroup Pv with Levi subgroup M . One can find w ∈ WΓ

such that Pwv is a standard parabolic subgroup and Mw a standard Levi. Up to
replacing M by Mw and µ′ by µ′w we can thus suppose that v ∈ X∗(A)+

Q . Suppose
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now that the image of our element in B(M)basic in B(G) lies in B(G, ε, δ). Then µ
and µ′ have the same image in π1(G)Γ,

µ− µ′ ∈ 〈Φ∨〉+ IΓ.X∗(T )
where IΓ ⊂ Z[Γ] is the augmentation ideal. Let α ∈ ∆0 be such that 〈v, α〉 6= 0 and
thus α ∈ ∆0 \∆0,M . If

µ− µ′ =
∑
γ∈∆

λγγ
∨ + z, λγ ∈ Z, z ∈ IΓ.X∗(T )

we have
〈µ� − v, ω̃α〉 = 〈µ� − prM (µ′)�, ω̃α〉

= 〈µ− prM (µ′), ω̃α〉
= 〈µ− µ′, ω̃α〉 since α /∈ ∆0,M

=
∑
γ∈∆
γ|A=α

λγ ∈ Z.

This proves that B(G, ε, δ) is contained in the announced subset of X∗(A)+
Q .

Reciprocally, let v ∈ X∗(A)+
Q satisfying the conditions of the statement. Let M be

the centralizer of v. Define
µ′ = µ−

∑
α∈∆0\∆0,M

〈µ� − v, ω̃α〉γ∨α ∈ X∗(T ).

where γα is any element in Φ such that γα|A = α. One checks that the image of µ′
in π1(M)Γ defines an element of B(M)basic whose image in B(G) lies in B(G, ε, δ)
and whose associated slope is v. �

One deduces the following description for the usual Kottwitz set.

Corollary 4.3. As a subset of X∗(A)+
Q , B(G,µ) equals{

v ∈ X∗(A)+
Q
∣∣ µ� − v ∈ 〈Φ∨0 〉Q and ∀α ∈ ∆0 s.t. 〈v, α〉 6= 0, 〈µ� − v, ω̃α〉 ∈ N

}
.

Later we will need the following.

Corollary 4.4. Suppose [b] ∈ B(G,µ) is the basic element. Let
B(G, 0, νbµ−1) := B(G, 0, νb(w0µ

−1)�).
Then we have

B(G, 0, νbµ−1) =
{
v ∈ X∗(A)+

Q
∣∣ v ∈ 〈Φ∨0 〉Q and ∀α ∈ ∆0 s.t. 〈v, α〉 6= 0,
〈νb − w0µ

� − v, ω̃α〉 ≥ 0 and 〈v, ω̃α〉 ∈ Z
}
.

Remark 4.5. The preceding set B(G, 0, νbµ−1) is the one denoted B(G, νbµ−1) in
[51]. This notation may be confusing since if νb = 1, for example if G is adjoint,
then B(G, 0, νbµ−1) is not equal to B(G,µ−1) is general. This is why we introduced
this more precise notation.

4.2. The non-quasi-split case. Suppose now G is not necessarily quasi-split. We
have

H1(F,Had) = π1(Had)Γ =
[
〈Φ〉∨/〈Φ∨〉

]
Γ

We see 〈Φ〉∨ as a lattice in 〈Φ∨〉Q. The isomorphism class of the inner form G is
then given by the class of some element

ξ ∈ 〈Φ〉∨ ⊂ 〈Φ∨〉Q.
Projection to the adjoint group induces a bijection (see [42] 4.11)

B(G, ε, δ) ∼−−→ B(Gad, εad, δad).
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Moreover
H1(F,Had) = B(Had)basic

and the isomorphism class of G as an inner form of H is given by some [bG] ∈
B(Had)basic for which Gad = JbG . There is then a bijection

B(Gad)
∼−−→ B(Had)

that sends [1] to [bG]. We can thus see B(G, ε, δ) as a subset of B(Had). We have
moreover an identification π1(Gad) = π1(Had). Via this bijection the following
diagram commutes

B(Gad) B(Had)

π1(Had)Γ π1(Had)Γ

κGad

∼

κHad

•+ξ

We thus have
B(G, ε, δ) = B(Had, εad + ξ, δad).

From proposition 4.2 we deduce the following.

Proposition 4.6. If ε = µ], as a subset of X∗(A)+
Q , the set B(G, ε, δ) is given by

the vectors v such that
(1) δ − v ∈ 〈Φ∨0 〉Q,
(2) for all α ∈ ∆0 such that 〈v, α〉 6= 0 one has 〈δ − v, ω̃α〉 ≥ 0,
(3) for all α ∈ ∆0 such that 〈v, α〉 6= 0, 〈µ� + ξ� − v, ω̃α〉 ∈ Z.

This specializes to the two following statements.

Corollary 4.7. As a subset of X∗(A)+
Q , the set B(G,µ) is given by the vectors v

such that
(1) µ� − v ∈ 〈Φ∨0 〉Q,
(2) for all α ∈ ∆0 such that 〈v, α〉 6= 0 one has 〈µ� − v, ω̃α〉 ≥ 0,
(3) for all α ∈ ∆0 such that 〈v, α〉 6= 0, 〈µ� + ξ� − v, ω̃α〉 ∈ Z.

Corollary 4.8. Suppose [b] ∈ B(G,µ) is the basic element. Then

B(G, 0, νbµ−1) =
{
v ∈ X∗(A)+

Q
∣∣ v ∈ 〈Φ∨0 〉Q and ∀α ∈ ∆0 s.t. 〈v, α〉 6= 0,

〈νb − w0µ
� − v, ω̃α〉 ≥ 0 and 〈v − ξ�, ω̃α〉 ∈ Z

}
.

Remark 4.9. When G is unramified the root system we use is identical to the one
used by He and Nie, and the statement of the preceding proposition is identical to
theirs. This is not the case anymore in general, even if G is quasi-split. One can
compare He’s result with ours using theorem 6.1 of [33] to obtain that the (ω̃α)α∈∆0

are exactly the ωO of [38] when O goes through the set of σ0-orbits of simple roots
in the Bruhat-Tits échelonnage root system attached to GF̆ . An analysis of the
construction of this root systems shows that we can take ξ = σ(0) with the notations
of [38].

4.3. HN decomposability. Let us recall the following definition. Here G is not
necessarily quasi-split.

Definition 4.10. The set B(G,µ) is fully HN decomposable if for any non-basic
[b] ∈ B(G,µ) there exists a standard strict Levi subgroup M of the quasi-split inner
form H such that:

(1) the centralizer of [νb] is contained in M ,
(2) µ� − [νb] ∈ 〈Φ∨0,M 〉Q.
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In the quasi-split case we have the following equivalent definition. As before we
suppose µ ∈ X∗(T )+ which defines a cocharacter with values inM for any standard
Levi subgroupM (the conjugacy class {µ} does not define a unique conjugacy class
in such an M , it is important to fix this).

Lemma 4.11. For G quasi-split the following are equivalent:
(1) B(G,µ) is fully HN decomposable,
(2) for any non basic [b] ∈ B(G,µ) there exists a strict standard Levi subgroup

M containing Mb the centralizer of [νb] such that [bM ] ∈ B(M,µ),
(3) for any non basic [b] ∈ B(G,µ) there exists a strict standard Levi subgroup

M containing Mb the centralizer of [νb] such that κM (bM ) = µ] ∈ π1(M)Γ.
where bM is the reduction of b to M deduced from its canonical reduction to Mb

and the inclusion Mb ⊂M .

Proof. This is easily deduced from the fact that π1(M)Γ,tor ↪→ π1(G)Γ,tor since this
is identified with the injective map H1(F,M)→ H1(F,G) ([58] ex. 1 p. 136). �

Before going further, let us remark that for α ∈ ∆0, ω̃α ∈ Q≥0Φ+
0 since for

β ∈ ∆, ωβ ∈ Q≥0Φ+. In particular,

〈µ�, ω̃α〉 ≥ 0.

We remark too that if ξ ∈ 〈Φ〉∨ is as in the preceding section, then one can form
〈ξ�, ω̃α〉 ∈ Q. The reduction modulo Z of this quantity depends only on the class
of ξ in H1(F,Had) = π1(Had)Γ and this defines a character

〈(−)�, ω̃α〉 : H1(F,Had) −→ Q/Z.

We note {.} : Q/Z → [0, 1[ the fractional part lift. The proof of the following
proposition is then strictly identical to the one of the equivalence between (1) and
(2) in theorem 2.3 of [32] (cf. the proof of 4.14 for this type of proof with our
notations).

Proposition 4.12 (Minute criterion1). The set B(G,µ) is fully HN decomposable
if and only if for all α ∈ ∆0, 〈µ�, ω̃α〉+ {〈ξ�, ω̃α〉} ≤ 1.

In particular if G is quasi-split this is reduced to the condition

〈µ�, ω̃α〉 ≤ 1.

Of course, in this case, since 〈µ�, ω̃α〉 = 〈µ, ω̃α〉, this can be rephrased in the
following way:

∀O, a Γ-orbit in ∆,
∑
β∈O

〈µ, ωβ〉 ≤ 1.

We will need the following later. Let [b] ∈ B(G,µ) be the basic element. Let us
first remark the following.

Lemma 4.13. The set B(Jb, µ−1) is fully HN decomposable if and only if for any
[b′] ∈ B(G, 0, νbµ−1) non basic there exists a standard strict Levi subgroup M of
the quasisplit inner form H such that:

(1) the centralizer of [νb′ ] is contained in M
(2) [νb] + w0(−µ)− [νb′ ] ∈ 〈Φ∨0,M 〉Q

Proof. If [b′] ∈ B(G, 0, νbµ−1) corresponds to [b′′] ∈ B(Jb, µ−1) via the identifi-
cation B(G, 0, νbµ−1) = B(Jb, µ−1), then [νb′ ] = [νb′′ ] + [νb]. We can then apply
definition 4.10. �

1As we learned from Eva Viehmann, here minute is the adjective, to be pronounced maI’nju:t.
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Proposition 4.14. The set B(Jb, µ−1) is fully HN decomposable if and only if for
all α ∈ ∆0 one has 〈µ�, ω̃α〉+ {〈ξ�, ω̃α〉} ≤ 1.

Proof. We use corollary 4.8. We can suppose G is adjoint and thus νb = 1.

First, let us notice that the condition of the statement is equivalent to
∀α ∈ ∆0, 〈−w0µ

�, ω̃α〉+ {−〈ξ�, ω̃α〉} ≤ 1.
In fact, if ∗ is the involution of Dynkin diagram induced by −w0 then this last
condition is equivalent to 〈µ�, ω̃α∗〉 + {〈w0ξ

�, ω̃α∗〉} ≤ 1. But {〈w0ξ
�, ω̃α∗〉} =

{〈ξ�, ω̃α∗〉} since w0ξ − ξ ∈ 〈Φ∨〉.
Suppose thus that ∀α ∈ ∆0, 〈−w0µ

�, ω̃α〉+{−〈ξ�, ω̃α〉} ≤ 1 and let v ∈ B(G, 0, µ−1)
be non basic. If 〈v, α〉 6= 0 then

〈−w0µ
�, ω̃α〉+ {−〈ξ�, ω̃α〉}

= 〈−w0µ
� − v, ω̃α〉︸ ︷︷ ︸
≥0

+ 〈ξ�, ω̃α〉+ {−〈ξ�, ω̃α〉}︸ ︷︷ ︸
∈Z

+ 〈v − ξ�, ω̃α〉︸ ︷︷ ︸
∈Z︸ ︷︷ ︸

≥0 thus ∈N

≤ 1.

Thus, if 〈−w0µ
� − v, ω̃α〉 6= 0 then 〈v, ω̃α〉+ {−〈ξ�, ω̃α〉} = 0 and thus 〈v, ω̃α〉 = 0

which is impossible since v is dominant and 〈v, α〉 6= 0. We thus have
−w0µ

� − v ∈ 〈Φ∨0,M 〉Q
where ∆0,M = ∆0 \ {α} for any α such that 〈v, α〉 6= 0.

Reciprocally, suppose 〈−w0µ
�, ω̃α0〉 + {−〈ξ�, ω̃α0〉} > 1 for some α0 ∈ ∆0. Let

v be such that 〈v, α〉 = 0 if α 6= α0, α ∈ ∆0, and
〈v, ω̃α0〉 = 1− {−〈ξ�, ω̃α0〉}.

Since ω̃α0 ∈ Q≥0∆0, v is dominant. Moreover,
〈−w0µ

� − v, ω̃α0〉 > 0
and

〈v − ξ�, ω̃α0〉 = 1− 〈ξ�, ω̃α〉 − {−〈ξ�, ω̃α0〉} ∈ Z.
Thus, v ∈ B(G, 0, µ−1) and is not HN decomposable since its centralizer is the
maximal Levi subgroup M with ∆0,M = ∆0 \ {α0} and 〈−w0µ

� − v, ω̃α0〉 6= 0. �

Remark 4.15. An analysis of the proof of the preceding proposition shows that
if B(G, 0, νbµ−1) is fully HN decomposable, then for all non basic [b′] in this set
νb − w0µ

� − [νb′ ] ∈ 〈Φ∨0,M 〉Q, where M is the centralizer of [νb′ ]. The same holds
for B(G,µ).

Here is the corollary we will use. This is a key point in the proof of our main
theorem. We don’t know a direct proof of this in the sense that there is à priori no
direct relation between B(G,µ) and B(Jb, µ−1).

Corollary 4.16. The following are equivalent:
(1) the set B(G,µ) is fully HN decomposable,
(2) the set B(Jb, µ−1) is fully HN decomposable.

5. Harder-Narasimhan stratification of the flag variety

5.1. The twin towers principle ([21], [20], [22]). Let [b] ∈ B(G) be a basic
element. What we call the “twin towers principle” is the identification

BunJb ∼= BunG,
that is to say there is an equivalence of groupoids betweenG-bundles and Jb-bundles
on the curve. Here and in the following we give sometimes statements that are true
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at the level of perfectoid v-stacks of bundles like in [26] and [30] or objects like the
diamond F(G,µ)�. Nevertheless the reader not familiar with those notions should
not be frightened; at the end, for the proof of our main theorem, we only need the
evaluation on C-points of those objects and he can work in this context.

In fact, Jb ×X is the twisted pure inner form of G×X obtained by twisting by
the G-torsor Eb,

Jb ×X = Aut(Eb)
as a group over the curve. If E is a G-bundle on X one associates to it the Jb-bundle

Isom(Eb, E).
This is what Serre calls “torsion au moyen d’un cocyle” in sec. 5.3 of [58]. At
the level of points of the preceding perfectoid v-stacks this gives the well known
bijection

B(Jb)
∼−−→ B(G)

that sends [1] to [b].

Example 5.1. For λ ∈ Q the functor E 7→ Hom(O(λ), E) induces an equivalence
between semi-stable vector bundles of slope λ and vector bundles equipped with an
action of Dop

λ = End(O(λ))op, where Dλ is the division algebra with invariant λ.

The identification BunJb = BunG respects modifications of a given type µ that
is to say it identifies the corresponding Hecke stacks of modifications. Suppose
[b] ∈ B(G,µ) is the basic element. Let

[b′′] ∈ B(Jb, µ−1)

be the basic element, [b′′] 7→ [1] via B(Jb)
∼−→ B(G). One thus has

Jb′′ = G.

The preceding considerations give an isomorphism of moduli spaces over Spa(Ĕ)�:

modifications of type µ between EGb and EG1

modifications of type µ between EJb1 and EJbb′′

modifications of type µ−1 between EJbb′′ and E
Jb
1 .

∼

In the end this induces a Jb(F )×G(F )-isomorphism of local Shimura varieties with
infinite level

M(G,µ, b)∞
∼−−→M(Jb, µ−1, b′′)∞

as pro-étale sheaves on Spa(Ĕ) (that are representable by diamonds). This fits into
a twin towers diagram using the de Rham and Hodge-Tate period morphisms that
allow us to collapse each tower on its base

M(G,µ, b)∞ M(Jb, µ−1, b′′)∞

F(G,µ, b)a F(Jb, µ−1, b′′)a

πdR

∼

πHTG(F ) πdRπHT Jb(F )

where:
• M(G,µ, b)∞ classifies modifications of type µ between EGb and EG1 .
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• For such a modification its image by πdR is x if EG1 = EGb,x. Its image by
πHT is y if EGb = EG1,y.
• M(Jb, µ−1, b′′)∞ classifies modifications of type µ−1 between EJbb′′ and E

Jb
1 .

• For such a modification, its image by πdR is x if EJb1 = EJbb′′,x. Its image by
πHT is y if EJbb′′ = EJb1,y.

We will extend this type of diagram outside the admissible locus in section 5.3.

5.2. Computation of the modifications of Eb. Let [b] ∈ B(G) be any basic
element.

Proposition 5.2 ( [51] A.10). As a subset of B(G) there is an equality

{Eb,x|x ∈ F(G,µ)(C)}/ ∼ = B(G, κ(b)− µ], νbµ−1).

Proof. Let f : B(G) ∼−→ B(Jb). According to the twin towers principle

{Eb,x | x ∈ F(G,µ)(C)}/ ∼= f−1({E1,x | x ∈ F(Jb, µ)(C)}/ ∼
)
.

Now,

{E1,x | x ∈ F(Jb, µ)(C)}/ ∼ = {[b′] ∈ B(Jb) | ∃y ∈ F(Jb, µ−1)(C), Eb′,y ' E1}.

The condition on the right hand side means y ∈ F(Jb, µ−1, b′)a and κ(b′) = (µ−1)].
Now,

F(Jb, µ−1, b′)a 6= ∅ ⇔ [b′] ∈ A(Jb, µ−1)
(see 3.2). Thus,

{E1,x | x ∈ F(Jb, µ)(C)}/ ∼ = B(Jb, µ−1).

Moreover, via the identifications N (G) = N (Jb) and π1(G) = π1(Jb), we have

ν ◦ f−1 = νb + ν

κ ◦ f−1 = κ(b) + κ.

The result follows immediately. �

5.3. The Harder-Narasimhan stratification. Suppose now that [b] ∈ B(G,µ)
is the basic element. According to proposition 5.2 there is a stratification

F(G,µ) =
∐

[b′]∈B(G,0,νbµ−1)

F(G,µ, b)[b′],

where F(G,µ, b)[b′] is a locally closed generalizing subset of the adic space F(G,µ)
that defines a locally spatial sub diamond of F(G,µ)�. Here the fact that each stra-
tum is locally closed can be deduced from Kedlaya-Liu’s semi-continuity theorem
of the Harder-Narasimhan polygon ([40]). The open stratum is

F(G,µ, b)[1] = F(G,µ, b)a,

the admissible locus.

One can describe each stratum in the following way. Fix [b′] ∈ B(G, 0, νbµ−1)
and let [b′′] ∈ B(Jb, µ−1) be the corresponding element. We note

J̃b′ = Aut(Eb′)

the pro-étale sheaf of automorphisms of Eb′ on PerfFq ; that is, S 7→ Aut(Eb′|XS ).
One has

J̃b′ = J̃0
b′ o Jb′(F ),
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where J̃0
b′ is a connected unipotent diamond that is a successive extension of effective

Banach-Colmez spaces (see [26] and [30]). This is identified with the same object
for b′′:

J̃b′′ = J̃b′ .

Now let
T −→ F(G,µ, b)[b′],�

be the pro-étale sheaf of isomorphisms between Eb′ and Eb,x, x ∈ F(G,µ, b)[b′],�.
Using again a result of Kedlaya-Liu ([40]) one can check this is a J̃b′ -torsor. More
precisely, this is deduced from the fact that the Harder-Narasimhan stratum in the
perfectoid stack BunG attached to b′ is the v-stack classifying J̃b′ -torsors ([30]).
Now, using the twin towers principle, T is identified with

M(Jb, µ−1, b′′)∞

and the morphism to F(G,µ) with the Hodge-Tate period morphism πHT .

Proposition 5.3. If [b′′] ∈ B(Jb, µ−1) corresponds to [b′] ∈ B(G, 0, νbµ−1) then

F(G,µ, b)[b′] = Im
(
M(Jb, µ−1, b′′)∞

πHT−−−−→ F(Jb, µ) = F(G,µ)
)
.

The morphism πHT is a J̃b′′-torsor and thus

F(G,µ, b)[b′],� 'M(Jb, µ−1, b′′)∞ / J̃b′′ .

One has
dimF(G,µ, b)[b′] = dimF(G,µ)− 〈[νb′ ], 2ρ〉.

Here the dimension of a locally spatial diamond is the maximal length of a chain of
specializations in its underlying locally spectral space ([56] sec. 21).

Proof. The fact that πHT is a J̃b′′ -torsor is a consequence of the structure of the
HN stratum corresponding to b′′ in BunJb recalled before. For the assertion about
the dimension we use lemma 3.2.5 in [2]. Using it we deduce that

dimF(G,µ, b)[b′] = dimM(Jb, µ−1, b′′)∞ − dim J̃b′′ .

Since πdR :M(Jb, µ−1, b′′)∞ → F(Jb, µ−1) is pro-étale one has

dimM(Jb, µ−1, b′′)∞ = dimF(G,µ).

The formula
dim J̃b′′ = 〈[νb′ ], 2ρ〉

is obtained by writing J̃0
b′′ , the neutral connected component, as a successive ex-

tension of Banach-Colmez spaces, a use of lemme 3.2.5 in [2], and the fact that
J̃b′′ = J̃0

b′′ o Jb′′(Qp). �

We can thus again collapse the tower on two different bases

M(Jb, µ−1, b′′)∞

F(Jb, µ−1, b′′)a F(G,µ, b)[b′],�

πdR

Jb(F )
πHT

J̃b′′=J̃b′



26 MIAOFEN CHEN, LAURENT FARGUES AND XU SHEN

6. Proof of the main theorem

As before, we consider a triple (G, {µ}, [b]) with {µ} minuscule. In sections 2 and
3 we have introduced two open subspaces F(G,µ, b)a ⊂ F(G,µ, b)wa of F(G,µ).
In general, the inclusion F(G,µ, b)a ⊂ F(G,µ, b)wa is strict, see [35] Example 3.6,
[36] Example 6.7. In [36] section 9 and [51] A.20, Hartl and Rapoport asked when
do we have

F(G,µ, b)a = F(G,µ, b)wa ?
For G = GLn, Hartl gave a complete solution of this question in Theorem 9.3 of
[36]. We give a complete solution to this problem for any G when [b] is basic.

Here is the main theorem of this article.

Theorem 6.1. If µ minuscule and [b] ∈ B(G,µ) is basic, then the following are
equivalent:

(1) B(G,µ) is fully HN decomposable,
(2) F(G,µ, b)a = F(G,µ, b)wa.

Proof. We first treat the case when G is quasi-split.
(1)⇒(2) [quasi-split case]. Let x ∈ F(G,µ)(C) \ F(G,µ, b)a(C). We want to
prove that x /∈ F(G,µ, b)wa(C). Let [b′] ∈ B(G, 0, νbµ−1) be such that

Eb,x ' Eb′

(proposition 5.2). Let Mb′ be the centralizer of |νb′ ], a standard Levi subgroup. Up
to replacing b′ by a σ-conjugate element we can suppose b′ ∈ Mb′(Ĕ). Since x is
not admissible, b′ is non basic. According to corollary 4.16 and lemma 4.13, there
exists a strict standard Levi subgroup M of G containing Mb′ such that

(2) κM (b′M )⊗ 1 = [νb] + w0(−µ) ∈ π1(M)Γ ⊗Q

where b′M is the image in M of b′. Here we assume µ ∈ X∗(T )+ as usual and
w0.(−µ) is seen as a cocharacter of M . Let P be the standard parabolic subgroup
associated toM . We note b′P for the image of b′M in P . By lemma 2.4, the reduction
Eb′
P
of Eb′ induces a reduction

Eb,P
of Eb to P . Let [b̃] ∈ B(M) be such that

Eb̃ ' Eb,P
P
×M.

Let us note b̃G for the image of b̃ in G. We are going to prove that [b̃G] = [b] in B(G).

According to lemma 2.6 there exists µ1 ∈W.µ and y ∈ F(M,µ−1
1 ) such that

Eb̃ ' Eb′M ,y.

We can suppose µ1 is in the negative Weyl chamber associated to M . We have

κM (b̃) = κM (b′M ) + µ]1 ∈ π1(M)Γ.

Using equation (2) this implies

(3) κM (b̃)⊗ 1 = νb + [w0.(−µ)]] ⊗ 1 + µ]1 ⊗ 1 ∈ π1(M)Γ ⊗Q.

One can identify
Hom(P,Gm)⊗Q = (π1(M)Γ ⊗Q)∨.

Via this equality (3) gives that for any χ : P/ZG → Gm,

degχ∗Eb,P = 〈νb, χ〉︸ ︷︷ ︸
0 since χ|ZG=1

+ 〈w0.(−µ), χ〉+ 〈µ1, χ〉.
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Since Eb is semi-stable one obtains

∀χ ∈ X∗(P/ZG)+,Γ, 〈w0.(−µ), χ〉+ 〈µ1, χ〉 ≤ 0.

Lemma 6.3 then shows that
µ1 = −w0.(−µ).

Inserting this in equation (3) we obtain

κM (b̃)⊗ 1 = νb ∈ π1(M)Γ ⊗Q.

We can now conclude that [b̃G] = [b] using lemma 6.4 that follows.

Now, since Mb′ ⊂M , if we choose χ ∈ X∗(P/ZG)+,Γ ∩ N.∆0, then

degχ∗Eb′
M
> 0.

Hence by proposition 2.7 x is not weakly admissible.

(2)⇒(1) [quasi-split case]. We show that if B(G,µ) is not fully HN decompos-
able, then F(G,µ, b)a ( F(G,µ, b)wa. We may assume that G is simple and adjoint.
In fact, F(G,µ, b)wa = F(Gad, µad, bad)wa and F(G,µ, b)a = F(Gad, µad, bad)a.

According to corollary 4.16, B(Jb, µ−1) is not fully HN decomposable. We now
use the construction at the end of the proof of proposition 4.14. Let α ∈ ∆0 be
such that

〈−w0µ
�, ω̃α〉 > 1.

Let M and P be the associated standard maximal Levi and parabolic subgroups,
∆0,M = ∆0 \ {−w0α}. Let b′M ∈ B(M)basic be such that

κM (b′M ) = (−β∨)]

with β ∈ ∆ and β|A = −w0α. Let b′ be the image of b′M in G. Then [νb′
M

] ∈ N (M)
is G-antidominant and [νb′ ] = w0[νb′

M
]. Moreover, the image of [b′] ∈ B(G, 0, νbµ−1)

in B(Jb, µ−1) is HN-indecomposable.
Claim: We may assume that [b′] ∈ B(G, 0, νbµ−1)\{[1]} is minimal (i.e., there

doesn’t exist [b̂′] ∈ B(G, 0, νbµ−1)\{[1]} satisfying [νb̂′ ] ≤ [νb′ ] and [b̂′] 6= [b′]).
Suppose [b′] ∈ B(G, 0, νbµ−1)\{[1]} is not minimal. Then there exists [b̂′] ∈

B(G, 0, νbµ−1)\{[1]} which is minimal and [νb̂′ ] ≤ [νb′ ]. Let M̂ := Cent(w0νb̂′).
Then it’s a maximal Levi subgroup by the minimality of b̂′. Suppose ∆0,M̂ =
∆0\{−w0α̂} for some α̂ ∈ ∆0. Still by the minimality of [b̂′], we can show that [b̂′] is
the image of some [b̂′

M̂
] ∈ B(M̂)basic in B(G), where b̂′

M̂
satisfies κM̂ (b̂′

M̂
) = (−β̂∨)]

with β̂ ∈ ∆ and β̂|A = −w0α̂. Moreover,

〈−w0µ
�, ω̃α̂〉

= 〈−w0µ
� − [νb′ ], ω̃α̂〉︸ ︷︷ ︸
>0

+ 〈[νb′ ]− [νb̂′ ], ω̃α̂〉︸ ︷︷ ︸
≥0

+ 〈[νb̂′ ], ω̃α̂〉︸ ︷︷ ︸
=1

> 1

where the first part is positive since [b′] is HN-indecomposable in B(G, 0, νbµ−1)
and the fact that G is simple, thus the relative root system of G is irreducible.
Therefore, we may replace α, β, b′, M , b′M by α̂, β̂, b̂′, M̂ , b̂′

M̂
respectively and the

Claim follows.
Let us note

Z = {x ∈ F(G,µ)(C) | Eb,x ' Eb′}.
We want to show Z ∩ F(G,µ, b)wa 6= ∅.
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Let x ∈ Z be such that Eb,x is not weakly admissible. Then there exists a
standard maximal parabolic subgroup Q, a reduction bMQ

(x) (that depends on x)
of b to MQ and χ ∈ X∗(Q/ZG)+ such that
(4) degχ∗(Eb,x)Q > 0.
According to theorem 1.8 the vector

v : X∗(Q/ZG) −→ Z
χ 7−→ degχ∗(Eb,x)Q

seen as an element of X∗(A)Q satisfies v ≤ νEb,x . The existence of χ implies that
v ∈ N (G) and it’s non-trivial. Therefore

v ≤ νEb,x = −w0[νb′ ]
is the usual dominant order. It follows that −w0v ≤ [νb′ ]. By the description
of B(G, 0, νbµ−1) in terms of Newton map in corollary 4.4, we see that −w0v ∈
B(G, 0, νbµ−1). By the minimality of [b′] ∈ B(G, 0, νbµ−1) \ {[1]} in the Claim, we
deduce that Q = P and (Eb,x)Q is the Harder-Narasimhan canonical reduction of
Eb,x.

We now note bM (x) := bMQ
(x). Let µ1 ∈W.µ be such that

Eb′
M
' (Eb,x)P

P
×M ' EbM (x),y

with y ∈ F(M,µ1). One then has

κM (b′M ) = κM (bM (x))− µ]1 ∈ π1(M)Γ.

Pushing forward this equality in π1(M)Γ ⊗Q = X∗(ZM )Γ
Q one obtains

[νb′
M

] = [νb]− µ]1 ⊗ 1 ∈ X∗(ZM )Γ
Q.

Here we use that since b, and thus bM (x), is basic then [νbM (x)] = [νb]. We now use
the diagram at the end of section 5.3. Let [b′′] ∈ B(Jb) corresponding to [b′] ∈ B(G).
Let us look at

M(Jb, µ−1, b′′)∞(C)

F(Jb, µ−1, b′′)a(C) F(G,µ, b)[b′](C) = Z

πdR πHT

The twin towers principle extends to P and M -torsors. More precisely, the reduc-
tions bM (x) and bP (x) define a Levi and parabolic subgroup of Jb i.e. M and P
transfer to the inner form Jb. We still denote them M and P (we can fix them so
that they do not depend on the choice of x, in fact a Levi subgroup, resp. a par-
abolic subgroup, of G transfers to at most one conjugacy class of Levi subgroup,
resp. parabolic subgroup, of Jb). Moreover b′′ admits a reduction b′′M (x) to M .
Then

πdR
(
π−1
HT (x)

)
lies in the locus of points z ∈ F(Jb, µ−1, b′′)a(C) where

(Eb′′,z)P
P
×M ' Eb′′

M
(x),s ' E1

for some s ∈ F(M,µ−1
1 ). The open Schubert cell in F(Jb, µ−1) with respect to the

action of P is Pw0Pw0µ−1/Pw0µ−1 . The point z is thus in this Schubert cell if and
only if

−µ1 ⊗ 1 ≡ −µ⊗ 1 ∈ π1(M)⊗Q.
Projected to π1(M)Γ ⊗Q this is equivalent to

µ⊗ 1− β∨ ⊗ 1 ≡ νb.
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But this is impossible since

〈µ− β∨, ω̃−w0α〉 = 〈−w0µ, ω̃α〉 − 〈β∨, ω̃−w0α〉 > 0

and is thus non zero.

From this analysis we deduce that if Z ⊂ F(G,µ) \ F(G,µ, b)wa then

Im(πdR) = F(Jb, µ−1, b′′)a

is contained in a profinite (indexed by Jb(F )/P (F ), the set of reductions of b′′ to
P ) union of non-open Schubert cells in F(Jb, µ−1). This is in contradiction with
the openness of the admissible locus. Thus Z ∩ F(G,µ, b)wa 6= ∅ and therefore
F(G,µ, b)a ( F(G,µ, b)wa.

Let us now explain how to treat the case of a general G which is not necessar-
ily quasi-split. One still suppose G is adjoint. Since H is adjoint, H1(F,H) =
B(H)basic and G is an extended pure inner form of H, G = Jb∗ with [b∗] ∈ B(H)
basic. Via B(G) ∼−→ B(H) let [b] 7→ [bH ]. Then

F(G,µ, b)wa = F(H,µ, bH)wa,
F(G,µ, b)a = F(H,µ, bH)a.

Here [bH ] ∈ B(H,µ] + κ(b∗), µ�) is the basic element. Via B(G) ∼−→ B(H) the
set B(G, 0, w0µ

−1,�) is sent to B(H,κ(b∗), w0µ
−1,�). Then one checks that all the

preceding arguments are valid in this context, working with B(H,µ] + κ(b∗), µ�)
and B(H,κ(b∗), w0µ

−1,�) instead of B(H,µ) and B(H, 0, w0µ
−1,�). �

Remark 6.2. The case G = GLn was dealt by Hartl in [36]. In this case, the
proof of the main theorem can be illustrated and simplified as follows. Suppose
µ = (1r, 0n−r) with 0 < r < n and [b] ∈ B(G,µ) is the unique basic element.
Let d = gcd(r, n). Then Eb can be viewed as the vector bundle O(− r

n )d on the
Fargues-Fontaine curve X.

Suppose (G,µ) is fully HN decomposable. For any x ∈ F(G,µ)(C)\F(G,µ, b)a(C),
Let

Eb,x = Eb′

with [b′] ∈ B(G, 0, νbµ−1)\{[1]}. The Newton polygon of νb′ and the Newton polygon
of νbµ−1 has a touch point with integral coordinates by the fully HN decomposable
condition. This touch point corresponds to a direct summand (subbundle) F of Eb,x
with positive degree which comes from a subisocrystal of the isocrystal given by [b].
Therefore x is not weakly admissible.

If (G,µ) is not fully HN decomposable, then we can always find [b′] ∈ B(G, 0, νbµ−1)
with

Eb′ = O( 1
u

)⊕O(− 1
n− u

)

for some integer u ∈ [1, n− 1]\ndN. Choose any element x ∈ F(G,µ)(C) such that
Eb,x ' Eb′ . For any sub-vector bundle F of Eb,x which comes from a subisocrystal
of the isocrystal given by [b], we have rankF ∈ n

dN. In particular,

F 6' O( 1
u

).

It follows that degF ≤ 0. Therefore x is weakly admissible but not admissible.

In the following lemmas G is quasi-split.
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Lemma 6.3. Consider µ ∈ X∗(T )+, M a standard Levi subgroup of G with as-
sociated standard parabolic subgroup P and µ1 ∈ W.µ that is in the positive Weyl
chamber associated to M . If for all χ ∈ X∗(P/ZG)+,Γ one has 〈µ−µ1, χ〉 ≤ 0 then
µ1 = µ.

Proof. The condition 〈µ− µ1, χ〉 ≤ 0 for all χ ∈ X∗(P/ZG)+,Γ implies that µ− µ1
is a linear combination of positive simple coroots in M with positive coefficients.
The result follows since µ1 and µ are both M -dominant. �

Lemma 6.4. Let E be a semi-stable G-bundle on X equipped with a reduction EP
to the standard parabolic subgroup P with standard Levi subgroup MP such that
cMP
1 (EP

P
×MP ) ≡ νE in π1(MP )Γ ⊗Q, then EP

P
×MP is in fact a reduction of E to

MP .

Proof. Let us begin with some generalities about reductions to parabolic subgroups.
Let us forget momentarily the hypothesis of the statement. Let E be a G-torsor on
X. Let Q be a standard parabolic subgroup of G such that Q ⊂ P with associated
standard Levi subgroup MQ. Then Q ∩MP is a standard parabolic subgroup of
MP whose standard Levi subgroup is MQ and all of them are of this type. The
morphism

Q\E −→ P\E
is a locally trivial fibration with fiber Q\P = MP ∩Q\MP . If EP is a reduction of
E to P corresponding to the section s of P\E → X then the pullback by s of the
preceding fibration is

MP ∩Q\(EP
P
×MP ) −→ X.

As a consequence there is a bijection between
• reductions EQ of E to Q

• reductions EP of E to P together with a reduction (EP
P
× MP )MP∩Q of

EP
P
×MP to MP ∩Q.

Let us come back to our statement. We first prove that EP
P
×MP is semi-stable.

Thus, let Q ⊂ P be as before and (EP
P
×MP )MP∩Q be a reduction corresponding

to the reduction EQ. One has

X∗(Q) ∼−−→ X∗(MP ∩Q) ∼−−→ X∗(MQ).
For χ ∈ X∗(Q) one has

χ∗EQ = χ|MP∩Q∗(EP
P
×MP )MP∩Q.

Now, suppose χ|MP∩Q ∈ X∗(MP ∩ Q/ZMP
)+. Then one can write χ = χ1 + χ2

with
χ1 ∈ X∗(Q/ZG)+ and χ2 ∈ X∗(P/ZG).

Then,

degχ|MP∩Q∗(EP
P
×MP )MP∩Q = degχ1∗EQ︸ ︷︷ ︸

≤0 by s.s. of E

+ degχ2∗EP︸ ︷︷ ︸
〈νE ,χ〉=0

≤ 0.

Thus, EP
P
×MP is semi-stable with slope νE . Now, as

cG1
(
(EP

P
×MP )

MP

× G
)

= cG1 (E),

one concludes that (EP
P
×MP )

MP

× G ' E using the injectivity of
(cG1 , ν) : H1

ét(X,G) −→ π1(G)Γ ×N (G).
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�

Remark 6.5. For GLn the preceding lemma says that if E is a semi-stable vector
bundle equipped with a finite filtration (FiliE)i∈Z whose graded pieces satisfy for
all i, µ(GriE) = µ(E), then E '

⊕
i∈Z GriE. In fact, the category of slope µ(E)

semi-stable vector bundles is abelian. From this one deduces by induction on i that
the FiliE and the GriE, i ∈ Z, are semi-stable of slope µ(E). One concludes using
that if F1 and F2 are semi-stable with µ(F1) = µ(F2) then Ext1(F1,F2) = 0.

7. Asymptotic geometry of the admissible locus

In this section we sketch some ideas about fully HN decomposable period spaces.
We suppose µ minuscule, [b] ∈ B(G,µ) is the basic element and B(G,µ) is fully
HN decomposable. Let us set

∂F(G,µ, b)a = F(G,µ, b) \ F(G,µ, b)a.

One has the stratification

∂F(G,µ, b)a =
∐

[b′]∈B(G,0,νbµ−1)\{[1]}

F(G,µ, b)[b′].

Suppose G is quasi-split. Then there is a bijection

{parabolic subgroups of G which admit a reduction of b}/ ∼
∼−−→{parabolic subgroups of Jb}.

A parabolic subgroup of G transfer to the inner form Jb if and only if b has a reduc-
tion to this parabolic subgroup. Now for each x ∈ ∂F(G,µ, b)a(C) the canonical
reduction (Eb,x)P defines a reduction (Eb)P . According to the first part of the proof
of theorem 6.1 this corresponds to a reduction of bP , (Eb)P = EbP .

The same type of analysis can be carried out if G is non-quasi-split, writing
Gad = Jb∗ with [b∗] ∈ B(Had)basic as at the end of the proof of theorem 6.1. At
the end one obtains the following result.

Proposition 7.1. Let P be a set of representatives of the conjugacy classes of
proper parabolic subgroups of Jb. There is a Jb(F )-invariant stratification by locally
closed generalizing subsets

∂F(G,µ, b)a =
⋃
P∈P

∂PF(G,µ, b)a

together with a Jb(F )-equivariant continuous map ∂PF(G,µ, b)a → Jb(F )/P (F ).

Thus, F(G,µ, b)a shares a lot of similarities with hermitian symmetric spaces:
its boundary is parabolically induced. Another way to see this is via the generalized
Boyer’s trick also known as Hodge-Newton decomposition ([5] for the original trick,
[37] for its Shimura varieties variant, [46], [47], [60] for generalizations in the PEL
case, [32] for the special fiber in general, [34] and [31] for “modern” versions in the
context of local Shtuka moduli spaces). In fact for [b′] ∈ B(G, 0, νbµ−1) \ {[1]} we
have the J̃b′′-torsor (see sec. 5.3)

M(Jb, µ−1, b′′)∞
πHT−−−−→ F(G,µ, b)[b′].

Now [b′′] ∈ B(Jb, µ−1) is HN decomposable (cf. corollary 4.16) and this local Shtuka
moduli space is parabolically induced.

Let us now state the following conjecture about the existence of analogues of
Siegel domains in hermitian symmetric spaces.
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Conjecture 7.2. For [b] ∈ B(G,µ) basic with µ minuscule the following are equiv-
alent:

(1) F(G,µ, b)a = F(G,µ, b)wa.
(2) There exists a quasi-compact open subset U ⊂ F(G,µ, b)a such that

Jb(F ).U = F(G,µ, b)a.

Condition (2) is equivalent to the fact that there exists a quasi-compact open
subset V ⊂ M(G,µ, b)∞ such that Jb(F ) × G(F ).V = M(G,µ, b)∞. Reduction
theory and the construction of Siegel domains can be done via stability conditions
in the Arakelov setting ([15]). In our setting this can be done in some particu-
lar cases, in the PEL case, using integral semi-stability conditions for finite flat
group schemes ([23], see in particular corollary 11 where the link is made with the
Laffaille/Gross-Hopkins fundamental domain ([43], [16]). For example, the preced-
ing conjecture is solved in [61] for U(1, n − 1) using this technique and methods
developed in [28].

Finally let us point out that the fact that the boundary of those spaces is parabol-
ically induced should have some cohomological consequences.

Conjecture 7.3. If π is a smooth representation with Q` coefficients of G(F ), Gπ =
M(G,µ, b)∞×G(F ) π the corresponding pro-étale Jb(F )-equivariant local system on
F(G,µ, b)a the natural map

RΓc
(
F(G,µ, b)aCp ,Gπ

)
cusp

∼−−→ RΓ
(
F(G,µ, b)aCp ,Gπ)cusp

is an isomorphism in the derived category of smooth representations of Jb(F ) with
Q`-coefficients.

Let us give more details on the meaning of the preceding conjecture in the context
of [30]. The representation π defines a local system Fπ on the smooth perfectoid
v-stack [

Spa(Fq)/G(F )
]

= Bun0,ss
G ,

the semi-stable locus of the component {cG1 = 0} in the perfectoid v-stack BunG.
Let

j : Bunss,0G ↪→ BunG,
an open immersion. Then according to [30], j!Fπ is a reflexive sheaf. Consider the
Hecke correspondence

Heckeµ

BunG BunG ×Div1

→
h

←
h

where Div1 = Spa(Ĕ)�/ϕZ. Then, again according to [30], the Hecke transform

R
→
h∗
←
h
∗
j!Fπ

is again reflexive. Let

xb : [ Spa(Fq)/Jb(F )
]

= Bunc
G
1 =−κ(b),ss
G ↪→ BunG.

Then
x∗b
(
R
→
h∗
←
h
∗
j!Fπ

)
= RΓc

(
F(G,µ, b)aCp ,Gπ

)
as an admissible representation of Jb(F ). Moreover D(j!Fπ) = Rj∗Fπ (Verdier
dual) and

x∗b
(
R
→
h∗
←
h
∗
Rj∗Fπ

)
= RΓ

(
F(G,µ, b)aCp ,Gπ

)
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as an admissible representation. Now, if
ϕπ : WE −→ LG

is the L-parameter of π, by definition ϕπ is cuspidal if it is discrete (Sϕπ/Z(Ĝ)Γ

is finite) and the image of the inertia by ϕπ in Ĝ is finite (i.e. the monodromy
operator is trivial). When G, resp. Jb, is quasi-split, conjecturally, ϕπ is cuspidal if
and only if all elements of the L-packet of π, resp. the packet or representations of
Jb(F ) associated to π via generalized Jacquet-Langlands, are supercuspidal. Under
this hypothesis Fπ is clean, in the sense that

j!Fπ = Rj∗Fπ.
In this case conjecture 7.3 is thus immediate. Nevertheless it may happen that one
element of the L-packet is supercuspidal and not the other one in which case Fπ
may not be clean anymore. Conjecture 7.3 then says that, even if this cleanliness
hypothesis is not satisfied, the cohomological consequence for the associated basic
RZ spaces is satisfied, if B(G,µ) is fully HN decomposable.
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