
HAL Id: hal-03374614
https://hal.science/hal-03374614

Submitted on 14 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamic Data Race Detection for MPI-RMA Programs
Tassadit Célia Aitkaci, Marc Sergent, Emmanuelle Saillard, Denis Barthou,

Guillaume Papauré

To cite this version:
Tassadit Célia Aitkaci, Marc Sergent, Emmanuelle Saillard, Denis Barthou, Guillaume Papauré. Dy-
namic Data Race Detection for MPI-RMA Programs. EuroMPI 2021 - European MPI Users’s Group
Meeting, Sep 2021, Munich, Germany. �hal-03374614�

https://hal.science/hal-03374614
https://hal.archives-ouvertes.fr

Dynamic Data Race Detection for MPI-RMA Programs
Célia Tassadit Ait Kaci

Atos, Inria Bordeaux Sud-Ouest

Echirolles, France

tassadit.aitkaci@atos.net

Marc Sergent

Atos

Echirolles, France

marc.sergent@atos.net

Emmanuelle Saillard

Inria Bordeaux Sud-Ouest

Bordeaux, France

emmanuelle.saillard@inria.fr

Denis Barthou

Bordeaux Institute of Technology, U.

of Bordeaux, LaBRI

Bordeaux, France

denis.barthou@inria.fr

Guillaume Papauré

Atos

Echirolles, France

guillaume.papaure@atos.net

ABSTRACT
One-sided communications is a well known distributed program-

ming paradigm for high performance computers, as its properties

allows for a greater asynchronism and computation/communica-

tion overlap than classical message passing mechanisms. In this

paper, we focus on the Remote Memory Access interface of MPI

(MPI-RMA), in which each process explicitly exposes an area of

its local memory as accessible to other processes to provide asyn-

chronous one-sided reads, writes and updates. While MPI-RMA

is expected to greatly enhance the performance and permit effi-

cient implementations on multiple platforms, it also comes with

several challenges with respect to memory consistency. Developers

must handle complex memory consistency models and complex

programming semantics. This paper presents the RMA-Analyzer,

a new tool that detects memory consistency errors (also known

as data races) during MPI-RMA program executions. It collects

relevant MPI-RMA operations and load/store accesses during ex-

ecution and performs an on-the-fly analysis to stop the program

in case of a consistency violation. We validate our method on a

collection of codes containing errors and on two real applications.

Our experiments show that the RMA-Analyzer is scalable when

running on MPI one-sided applications with an overhead of 40% at

best.

1 INTRODUCTION
Recent advances on Exascale computing lead to deal with the in-

creasing computational power and stress the requirement of correct

and efficient concurrent programs that can be executed in parallel

on multiple cores. However, ensuring the correctness of a paral-

lel program is challenging. Concurrent programs could wage to

concurrency bugs that are difficult to localize and fix.

Parallel programs can be written by using different programming

paradigms. Among them, the Message Passing Interface (MPI), and

the Parallel Global Address Space (PGAS) model are largely used

in HPC systems. While MPI and PGAS are often referred as two

different programming paradigms, MPI allows a model for remote

, ,

memory access called MPI-RMA. First introduced in the MPI-2

specification, this programming model is quite similar to PGAS, as

it is also based on one-sided communications of data, and global

access of partitioned memory. Unlike MPI two-sided, where the

sender and the receiver explicitly call the send and receive func-

tions, one-sided communications decouple data movement from

synchronization and offer asynchronous reads, writes, and updates

without involving the target process. While MPI-RMA allows effi-

cient data movement between processes with less synchronizations,

its programming is error-prone as it is the user responsibility to

ensure memory consistency. It thus poses programming challenges

to use as few synchronizations as possible, while preventing data

race and unsafe accesses without tampering with the performance.

To the best of our knowledge, very few works exist to detect

concurrency bugs in MPI-RMA and they all rely on post-mortem

analyses. In this paper we present RMA-Analyzer, a framework

that identifies memory consistency errors in MPI-RMA programs

written in C and Fortran. Our framework uses a dynamic on-the-

fly analysis and focus on MPI-3 features. The advantages of our

approach are twofold. First, contrary to state-of-the-art solutions,

this analysis can detect all consistency errors that can happen

during the execution of an MPI-RMA program, for a given set of

input data. Second, when an error occurs, the analysis can directly

stop the program and warn the user about detailed information

on conflicting accesses. Indeed, since a silent race condition can

provoke errors later in the program, it is mandatory to detect the

first race condition and immediately warn the user that an error has

happened, instead of waiting until the end of the program to do so.

We argue that these two properties are of tantamount importance

for helping users porting large-scale code bases on MPI-RMA.

The paper is organized as follows: Section 2 presents the MPI-

RMA programming model and its associated programming chal-

lenges. Section 3 explains the core concepts of the RMA-Analyzer.

Section 4 presents an evaluation of the RMA-Analyzer in terms of

error coverage and overhead and Section 5 puts into perspective

our contribution against the state of the art. Finally, Section 6 gives

conclusive remarks and discusses future works.

2 BACKGROUND
This section first presents the concepts of the PGAS and MPI-RMA

models. Then it discusses the programming challenges associated

, , Aitkaci, et al.

to the use of MPI-RMA, and in particular the consistency errors

that motivate the contribution of this paper.

2.1 PGAS model and MPI-RMA
In PGAS programs, each process exposes a part of its local memory

to other processes, as shown in Figure 1.

Local

Partitioned Global Address Space

P0 P1 Pn...

Figure 1: Overview of the Partitioned Global Address Space
(PGAS) model

This way, the memory of other processes can be directly ad-

dressed from a sender, thus allowing to perform one-sided commu-

nications (e.g. Put, Get). This communication model is known to

significantly improve the asynchronism and the overlap of commu-

nications with computations, which is why it is expected to gain

focus in the next years for the Exascale era and beyond [?].
MPI-RMA is not as popular as PGAS models due to its program-

ming complexity. The main difference between PGAS implementa-

tions, such as language-based Co-Array Fortran [?] or UPC [?] or
runtime-based GasNet [?] or ARMCI [?], and MPI-RMA is the syn-

chronization model. Indeed, one-sided communications on an MPI

memory region exposed to other processes (called a window) can
only be performed inside a so-called MPI epoch. An epoch enforces

a type of synchronization between communications.

MPI-RMA offers two kind of synchronization modes for its

epochs: Active Target synchronization and Passive Target synchro-
nization. The main difference between them resides in whether

the targets of one-sided communications are involved in the syn-

chronization or not. In the Active Target mode, all processes that

are involved in the epoch must synchronize. This synchronization

can be either done with Fence or PSCW (Post-Start-Complete-Wait).

An example of both synchronizations is presented in Figure 2. All

processes can call one-sided communications between two fence

synchronizations.With PSCW synchronization, two processes must

explicitly synchronize. In the Passive Target mode, the target pro-

cess does not participate in the synchronization. MPI offers two

models of Passive Target synchronization: the Lock-Unlock model

on a specific target and the global Lock_all-Unlock_all model as

presented in Figure 3. This feature may lead to reduced safety

(i.e. conflicting accesses could occur) since each process can ac-

cess to all other windows at any time without any MPI call to

the target process to ensure synchronization. To tackle this issue,

the standard proposes a set of routines called MPI_Win_flush* to
synchronize communications inside a Passive Target epoch. The

P0 P1 P2

Fence

Fence

Fence

P0 P1

Post(1)

Start(0)

Complete

Wait

Put
Get

Get

PutGet

Put

t t t t t

Figure 2: Examples of active target modes where synchro-
nizations are made through fence functions (on the left) or
with Post-Start-Complete-Wait (on the right).

P0 P1

Lock(1)

Unlock(1)

P0 P1 P2

Lock_all

Unlock_all

Put

Get
Put

Get
Get

Put

flush

Putflush_all

t t t t t

Figure 3: Examples of passive target modes where synchro-
nizations are made through Lock-Unlock functions target-
ing a specific process (on the left) or Lock_all-Unlock_all (on
the right).

MPI_Win_flush_local/_all routines ensure that outgoing com-

munications of the calling process are completed at origin side only,

while MPI_Win_flush/_all ones ensures that outgoing commu-

nications are completed at both origin and target side. However,

only the calling process knows that the communications has com-

pleted at target side, not the target itself. Such semantics require

application developers to implement their own synchronizations

on top of MPI-RMA for the target side, which can greatly hinder

the performance of the application.

In this paper, we choose to focus on the Lock_all-Unlock_all

model of the Passive Target synchronization mode. Indeed, if a

Passive Target epoch is started at the beginning of the program (i.e.

just after the MPI window declaration) and stopped at the end of

the program (i.e. just before freeing the MPI window), as shown in

the right part of Figure 3, such MPI-RMA program behaves closely

to a PGAS program, which is our target in this paper. However,

the introduction of the Passive Target mode in MPI-3 brings new

programming challenges, especially in the context of memory con-

sistency, that we discuss in the next section.

2.2 MPI-RMA Programming Challenges
The MPI-RMA one-sided communication model exhibits several

properties that are mandatory to achieve efficient overlap of com-

munications with computations.

Dynamic Data Race Detection for MPI-RMA Programs , ,

The first property is completion. To allow overlap of communi-

cations with computations, one-sided communications are asyn-

chronous by nature, i.e. there is no need of progress for these com-

munications to complete. This also means that, when initiated, the

programmer has no way to know when the communication has

been completed, before the end of the current epoch. The second

property is ordering. Inside a passive target epoch, the communica-

tion ordering is not known. This can lead to erroneous programs,

and is often fixed by over-synchronizing the program, causing a

severe performance loss due to lack of overlapping possibilities.

Finally, the third property is atomicity. Except for Accumulate rou-

tines ensuring the atomicity of accesses, regular MPI-RMA one-

sided communications (e.g. MPI_Put, MPI_Get) are not atomic. This

means that concurrent accesses to the same memory location result

in an undefined behavior. The MPI standard does not categorize this

case as an error, but specifies that this is implementation dependent.

In this paper, we report such scenarios as errors.

While these three properties – completion, ordering and atomic-

ity – are the root of the performance of MPI-RMA, the associated

nondeterminism makes it difficult to implement such programs

without errors. These errors can, however, be classified following

a memory consistency error model. As explained by Hoefler et

al. in [?], a correct MPI-RMA program is a program where each

conflicting access is synchronized with a process synchronization,

called happens-before synchronization, and a memory synchroniza-

tion, which is called consistency order. Memory consistency errors

were introduced by Chen et al. in [?]. A memory consistency error

exists in a program if two conditions are satisfied. First, two concur-

rent operations (e.g. MPI one-sided communications or load/store

operations) access to the same memory location. Second, at least

one of the operations is a write access, i.e. change the content of the

memory location. The outcome thus depends of the execution order.

To generalize, two events A and B are said to be access-concurrent,
or not cohb, when they are not ordered by a happens-before con-

sistency order. In this case, a data race error can occur at runtime.

Happens-before relation between two events A and B can be the

program order within one process, and the synchronization or-

der between different processes. Consistency order between two

events A and B thus defines a partial order of the memory actions,

and guarantees that the memory effect of A is visible before B.

This order is necessary because some synchronizations like the

Flush order memory accesses without synchronizing processes.

The asynchronous nature of operations in MPI-RMA leads to access

overlapping buffers if the consistency order is not respected.

Two kinds of memory consistency errors can happen in an MPI-

RMA program. The first kind can occur inside a single process,

while the other kind happens between processes. Fig. 4a describes

a typical example of the first kind of error. Here the MPI_Put in

process P0 has no consistency order relation with the local Store
operation. Both operations can thus potentially access the variable

buf at the same time. This means that memory consistency errors

exist between MPI-RMA operations and local memory operations

in a single process.

Figures 4b and 4c illustrate errors occurring between different

processes. In Figure 4b, an MPI_Put on process 0 and an MPI_Get

P0 (Origin) P1 (Target)
Window location X

Win_lock_all Win_lock_all
Put(buf, 1, X)
buf = ..
Win_unlock_all Win_unlock_all

(a) Consistency error in a process

P0 (Origin) P1 (Target)
Window location X

Win_fence Win_fence
Put(_, 1, X) Get(X, 0, _)
Win_fence Win_fence

(b) Consistency error between two processes

P0 (Origin) P1 (Target) P2 (Origin)
Window location X

Win_lock_all Win_lock_all Win_lock_all
Put(_, 1, X) Put(_, 1, X)
Win_unlock_all Win_unlock_all Win_unlock_all

(c) Consistency error between three processes

Figure 4: Examples ofmemory concurrency errors using pas-
sive and active targetmodes. Bold statements are conflicting
memory accesses.

on process 1 both access the same window buffer X, located on

process 1. The two operations do not have happens-before consis-

tency order relation between them, since they could happen in any

order. This means that memory consistency errors also exist when

interleaving MPI-RMA operations between processes. Finally, in

Fig. 4c, processes 0 and 2 both perform an MPI_Put at the same

window location on process 1. For the same reason as before, a

consistency issue also exists in this case, where different processes

access a same memory location concurrently on the same peer.

3 DYNAMIC DATA RACE DETECTION IN
MPI-RMA PROGRAMS

This section presents our method to detect all erroneous situations

described in the previous section.

3.1 RMA Operations Compatibility
Since MPI-3, all RMA operations are allowed inside an epoch but

some situations can lead to an undefined behavior. RMA operations

compatibility is presented in Table 1. In this table, all operations

are supposed to read or write on the same memory location. The

cross means that consistency order between the two operations is

not guaranteed. This table is different from the one in [?] as we
separate operations from/to the origin and target processes. Indeed,

RMA operations can be considered as READ or WRITE operations

depending on which process performs them. As an example, a Put
operation is a READ for the origin process and a WRITE for the

target process.

As the completion of RMAs can occur any time during an epoch,

and is not dependent on the time the RMA call is issued, if two

accesses are performed to the same address during the same epoch,

and one of them is a write, then there is a coherency issue. Several

scenarios involving different processes can account for this situa-

tion: Figure 5 presents conflicting accesses at the (a) origin and (b)

, , Aitkaci, et al.

ORIGIN TARGET

LOAD STORE
GET PUT GET PUT

O

GET x x x x x x

PUT x ✓ ✓ x ✓ x

T

GET x ✓ ✓ x ✓ x

PUT x x x x x x

LOAD x ✓ ✓ x - -

STORE x x x x - -

Table 1: Compatibility of RMA operations and local load-
/store accesses on the same address space. O=ORIGIN,
T=TARGET, ✓= overlapping is permitted, x=undefined be-
havior, overlapping is not permitted.

target of RMA operations. Conflicts can also arise if one memory

location is used as origin (i.e., as local buffer in Get/Put) and as

target window. In Figure 5a, one process can issue a distant GET
to write a local variable in its private address space and use this

variable with a load. As both accesses are unordered, this is an issue.

The same situation arises when the access address is in a window:

a local store for instance and a PUT to a distance variable, reading

this same variable is also a coherency issue. Figure 5b illustrates

different cases involving three processes. For instance, a distant PUT
by one process and a distant GET by another process, to the same

address in the same window leads to non coherent result (red edges

in the figure). In all these cases, the process owning the address

causing the coherency issue should raise an error and interrupt the

program execution.

3.2 Data Race Detection Algorithm
To detect errors in Table 1, the runtime has to maintain a precise

state of the distributed memory. We propose an RMA-Analyzer

that keeps track, for each process, of all the accesses performed to

memory addresses it owns and shares with other processes through

RMA. Accesses can be either local loads and stores, or MPI-RMA

operations, from the process itself or from remote processes.

In order to reduce the cost in term of time and space of such

bookkeeping, memory regions modified are stored as union of

disjoint intervals in a binary search tree (BST). Each node of the BST

contains a memory address interval (itv), the access type (access)
and possibly empty left (Left) and right (Right) subtrees containing
intervals lower and higher resp. to the parent interval. All BST

modifications are protected by a lock.

For each window created, each process creates a BST associated

to the addresses it owns in this window. In order to be notified

by distant processes of accesses to the addresses it owns in a win-

dow, a new thread is created and keeps calling MPI_Recv from

any source to receive access notifications from other processes. A

BST is also created for variables that are not in any window, at

MPI_Init. For each beginning of epoch, associated to the window

is emptied. When a GET is executed, the BST of the origin process

is updated with the local variable written, either the BST of a win-

dow or the BST of local variables. The distant variable has to be

added to the BST of the target process as a read. The GET function

is instrumented to send a notification (with an MPI_Send) of the

address read to the target process, and the process increases the

number of notification sent to the target. Likewise, a PUT sends a
notification for a write to the target process and adds a read to the

local BST. In both cases the target process receives the notifications

and all updates to the BST are performed according to Algorithm 1.

It checks if the new memory access will lead to a concurrency error

or not. If the memory access is safe, the memory interval is inserted

in the BST (line 5 in the algorithm). If the memory access overlaps

a memory interval stored in the BST and one of them is a write, the

program is stopped and an error message is returned to the devel-

oper (line 3 in the algorithm). The same applies for PUT accesses.

When an epoch terminates, each process counts the number of

notification the other process have sent to it (with an MPI_Reduce)
and terminates the receiver thread when all messages have been

received. This behavior is made possible by the fact that, as ex-

plained in Section 2.1, we focus on MPI-RMA programs that use the

epoch synchronization calls on all the processes of the window, i.e.

as a collective call. Generalizing this approach by exchanging this

number of notifications through Send/Recv calls instead would

be feasible, but is out of the scope of this paper. Finally, all loads

and stores are also instrumented during an epoch and accesses are

registered in the BST for local variables or the BST associated to a

window, depending of the range of addresses.

The intervals of the BST do not approximate regions: all ad-

dresses in the interval have been accessed with the access type

registered. There is no over-approximation of the accessed regions

and therefore no false positive.

Algorithm 1 Data Race Detection

Require: Binary search tree T , Memory interval I , Access type A
▷ A is READ, WRITE, local READ or local WRITE

Ensure: Updated T. An error message is issued in case of a data

race

1: procedure BSTupdate(T, I, A)
2: if I ∩T .itv , ∅ then
3: if ACCESS(A,T .access) == ERROR then
4: Raise an error and stop the program

5: else
6: T ← splitInterval(T , I ∩T .itv,A)

7: I ← I −T .itv
8: if isLeaf(T) then
9: T ← newNode(I,A)

10: if I ∪T .itv is an interval and A == T.access then
11: T .itv ← I ∪T .itv
12: mergeNeighboringIntervals(T)
13: else
14: if I < T .itv then
15: BSTupdate(T.Left, I, A)

16: else
17: BSTupdate(T.Right, I, A)

Table 2 defines the types of access to the memory (ACCESS func-

tion on line 2 in the algorithm). Local access types correspond

to coherent accesses within the process. No coherency issues can

arise with only local accesses. A local store access to an address

previously locally read modifies its access type without error. To

Dynamic Data Race Detection for MPI-RMA Programs , ,

Pi

window

address space

STORE

Get

Put

LOAD

Get

Ge
t

Register

Get

LOAD

T

O

O

T

O

T

T

T

O

(a) Concurrency errors inside a process.

P0

STORE

Put
Put

LOAD

P1 P2

Put Put

Get O

O

T

O

OT T

O T

(b) Concurrency errors across processes.

Figure 5: Example of memory consistency errors. Dashed edges represent WRITE operations while plain edges represent
READ operations on the colored boxes. O and T respectively indicate the origin and target processes.

compare two statements for memory accesses, the first access is to

be read by column, and the second one by row. For example, in the

Figure 4a, the first access at origin side is a PUT, thus a read in col-

umn. The second access is a STORE in row. This combinaison leads

to an error. If the two statements were inverted, a STORE would

have been associated to a local write in column and the PUT at
origin in row, which would have resulted in a legal read access.

Line 6 splits the interval if the access A is different from the

interval access. If accesses are the same, the splitInterval does
nothing. Lines 11-12 correspond to the case where the new interval

is disjoint and next to the interval T . Both intervals are then fused,

and possibly with the rightmost interval of the left subtree or the

leftmost interval of the right subtree of the modified node. This is

what the function mergeNeighboringIntervals does.

ACCESS local read local write read write

O

GET write write ERROR ERROR

PUT read read read ERROR

T

GET read ERROR read ERROR

PUT ERROR ERROR ERROR ERROR

LOAD local read local write read ERROR

STORE local write local write ERROR ERROR

Table 2: Transition table for access types. Given an address
with an access type (first row) and a new operation to this
address (first column), the table defines the new access type
after the operation. We assume there is no data race within
a (multithreaded) process.

Correction of the algorithm. We now prove that Algorithm

1 detects all memory consistency errors, and only memory consis-

tency errors when there is no aliasing between co-existing windows.

All memory consistency errors are detected by the RMA-Analyzer:
An error happens when two accesses are performed to the same

address of the same process, one of them is a write and they are

unordered. Let us assume first that this address is inside a window,

and only belongs to one window (aliasing between windows is not

considered). It is owned by one process and this process has created

a BST at window creation. One of the accesses is either a PUT or GET,
distant or local, and the other access is either a PUT, GET, load or

store. Loads and stores are assumed to be coherent accesses, even if

multithreaded accesses are performed. The RMA calls a MPI_Send
to the process owning the address and since all notifications are

counted before closing an epoch, this notification reaches the target

process and updates the BST of this window (unique). A load or

store access updates the same BST of the window accordingly and

since the BST is protected with a lock, modifications are serialized

and the Algorithm 1 will raise an error at the second modification.

Since the BST is emptied only at the beginning of an epoch (epoch

creation is a collective) the BST will find that two accesses are

performed to the same address with one of them a write. If the

address is not in a window, the BST in charge of local addresses is

used. The local address of the GET or PUT is accessed and as these

functions insert their accesses to the local BST, the coherency issue

is detected.

The only errors detected by the RMA-Analyzer are memory consis-
tency errors: In order to detect the error, the two accesses have to

appear in the same epoch (BST are reset between epochs), and in

the same window (there is only one BST per window) or in the same

private memory (local variables of a process). According to Table 2,

the error can only be raised when two accesses are performed to

the same address with one of them distant and one of them a write.

3.3 The RMA-Analyzer Framework
This section presents how we implemented the concepts previously

explained in our RMA-Analyzer. An overview of the whole RMA-

Analyzer framework is given in Figure 6.

3.3.1 Collecting Memory Accesses. The first step of our analysis

collects all memory accesses of a program. To do so, we use two

methods, depending on which memory accesses are recorded.

To collect MPI-RMA routines information needed by our data

race analysis, we use the PMPI (Profiling for MPI) interface. From

the MPI_Win_create call, we get the size and the base pointer of the
memory region exposed to other processes, and we start tracking

it. From the MPI_Put and MPI_Get calls, we get the size and the

offset of the remote access, the pointer of the local access, and their

respective access types (read or write). We also instrument the

, , Aitkaci, et al.

MPI
program

Bug
report

LLVM

Compilation

Memory accesses
tracking

PMPI
RMA-Analyzer

library

RMA info

Binary

RMA-Analyzer Framework

LOAD/STORE
Instrumentation

GCC
Linker

MPI library

Local memory accesses info

Debug info

Figure 6: Overview of the RMA-Analyzer Framework.

beginning and the end of MPI epochs (i.e. MPI_Win_lock_all and

MPI_Win_unlock_all in our case) to trigger and stop the recording
of memory events respectively, and purge them at each end of

epochs. Finally, we instrument the MPI_Win_free call to assess

when to stop tracking the memory accesses on the associated MPI

window. These pieces of information are then registered by the

core of the RMA-Analyzer. While this solution is quite simple to

implement and use in practice – it only needs to be preloaded at

runtime through the LD_PRELOAD environment variable – it does

not consider local memory accesses (i.e., not from a MPI routine)

and cannot detect all the errors listed in Table 1.

In addition to MPI-RMA routines information, we have devel-

oped an LLVM [?] pass to instrument relevant load and store
instructions. This enables us to detect all the errors listed in Table 1.

Moreover, we implemented in this solution a compatibility with

C and Fortran programs, which makes it desirable for analyzing

production-quality codes that are often written in Fortran. How-

ever, it requires the user to rebuild its code to execute the LLVM

pass, which can hinder its applicability for large-scale code bases.

A developer may use the GCC compiler instead of LLVM but will

be limited to the detection of memory consistency errors between

RMA operations. Our LLVM pass needs to be adapted to instrument

load / store instructions in GCC.

3.3.2 RMA-Analyzer Core. The core of our RMA-Analyzer takes

as input the memory accesses gathered by the instrumentations

presented previously, and implements the data race detection al-

gorithm presented in Section 3.2. To do so, we implemented the

memory interval itv as a structure containing the lower and upper

bounds of the memory region, and its access type. Then, we imple-

mented a BST of memory intervals, where we aggregate both local

accesses (i.e. load, store and local data accesses due to MPI_Put
and MPI_Get) and remote accesses due to remote MPI-RMA calls

for each MPI window. This allows the tool to compare local accesses

with remote accesses, enabling it to properly cover all error cases

shown in Table 1.

Local access registration is quite simple. For load and store
accesses, the routine that implements the data race detection is

simply called for each MPI window that is tracked by the RMA-

Analyzer at the time of the access. For MPI-RMA communications,

the data race detection is simply called on the local access made

by the communication. Remote access registration, however, is

more complex. For each MPI window, we implement a routine

handled by a dedicated POSIX thread that is spawned at window

creation. It is tasked to poll for all incoming communications on a

specific tag range dedicated to this window by the RMA-Analyzer,

and within this tag range on a specific tag identifying the MPI

epoch that is currently active. This tag-based implementation is

made possible by the semantics of the MPI-RMA window creation

and synchronization routines, that must be performed by all the

involved MPI processes for the program to be correct. This weak

synchronicity allows us to implement a tag-based communication

recognition system to identify all the control messages pertaining to

a specificMPI epoch. Then, each time anMPI-RMA call is performed

by the application program, the RMA-Analyzer adds a two-sided

control message beside it (e.g. MPI_Send, MPI_Irecv) to send to the
target the memory interval structure related to this memory access,

with the appropriate MPI tag. Finally, when a control message is

received, the thread thatmatches it calls the routine that implements

the data race detection algorithm on its associated MPI window.

3.3.3 Implementation Concerns. While this implementation suc-

cessfully detects all memory consistency errors, we need to pay

attention to the overhead of such analysis on the execution time of

the application. The first issue we tackle here is about instrument-

ing all load and store calls, that can become very costly at scale.

We implement a twofold solution in the RMA-Analyzer to filter the

registering of these calls. The tool only registers memory accesses

performed when an MPI epoch is opened on the tracked MPI win-

dow, i.e. only when MPI-RMA calls are legal on this window. The

second issue is about the active polling of communications, made

by the threads dedicated to receive incoming control messages from

the RMA-Analyzer. While it greatly improves the reactivity of our

Dynamic Data Race Detection for MPI-RMA Programs , ,

tool, it can also severely hinders the performance of the applica-

tion. In our implementation, we yield the thread every 100 calls

to MPI_Test on the request associated to the MPI_Irecv call to

release the thread as soon as possible and reduce the pressure on

computational resources. It is also possible to reserve additional

CPU resources so that the RMA-Analyzer threads can work on it

without disturbing the application threads. Finally, it is notewor-

thy that while the Passive Target mode with MPI_Lock/Unlock_all

is our focus in this paper, the RMA-Analyzer also supports the

Fence model of the Active Target synchronization mode to ease the

development of other MPI-RMA programs.

4 EXPERIMENTAL RESULTS
In this section, we first present an experimental validation of our

RMA-Analyzer tool that shows that it correctly finds all the errors

depicted in Table 1, and raises an error as soon as possible. Then

we present an overhead study of our tool on two applications. We

argue that our tool has a reasonable overhead on computations

when spare cores can be used by the threads of the RMA-Analyzer.

4.1 Evaluation Methodology
Our experiments were performed on the Pise cluster that belongs to

the Atos R&D department, located at Echirolles, France. Each node

is composed of two AMD EPYC 7402 @2.8GHz 24-core processors

with 128 GB of RAM. The nodes we used are linked with InfiniBand

Mellanox 200 GB/sec (4X HDR) network cards. For the software

configuration, we use a RHEL8.1 environment. Our software stack

is built with LLVM 9.0.0. We use the OpenMPI implementation of

MPI [?], built in its 4.0.5 version. The OpenMPI components are

setup as follows:

• OMPI_MCA_pml=ucx
• OMPI_MCA_osc=ucx
• OMPI_MCA_btl=^vader,openib,uct

4.2 Validation
To highlight the functionality of the RMA-Analyzer, we created

a micro-benchmark suite containing programs with correct and

incorrect uses of MPI one-sided operations. This suite covers all

error cases depicted in Table 1.

$ mpirun -np 3 ./ rr_put_put
[RMA -ANALYZER Process 1] Error when inserting memory
access of type RMA_WRITE from file
remote_remote/rr_put_put.c at line 35 with already
inserted access of type RMA_WRITE from file
remote_remote/rr_put_put.c at line 35.
The program will be exiting now with MPI_Abort.

Figure 7: Error output returned by the RMA-Analyzer tool
when runned on the code of Figure 4c.

An example of error output returned by the RMA-Analyzer when

run on the code of Figure 4c is shown on Figure 7. To help the user

identifying the cause of the issue in its code, the file name and file

lines of the accesses causing the error, the type of these accesses,

and the MPI process on which the conflict has been detected are

displayed to the user before aborting the program.

4.3 Performance Evaluation
To evaluate the overhead of the RMA-Analyzer, we used two ap-

plications. The first one, CFD-Proxy [?], is a proxy-application

for computational fluid dynamics. It implements and evaluates the

overlap efficiency for halo exchanges in unstructured meshes that

requires indirect read/write access via the edges of the mesh to the

actual mesh data. The actual CFD kernel implements and evaluates

the overlap efficiency of the two one-sided Active Target models

and the two-sided model of MPI, and a GASPI version of the ker-

nel. For our overhead evaluation, as we focus on this paper on the

Passive Target mode of MPI-RMA, we retrieved the Passive Target

flavors implemented by Sergent et al. in [?] to test with the RMA-

Analyzer. This application is of interest for overhead evaluation for

MPI-RMA, as it is implemented in a full MPI_THREAD_MULTIPLE +
OpenMP model, with all OpenMP threads performing communi-

cations in parallel. This means that any overhead introduced will

strongly impact the performance, which makes it a perfect candi-

date to evaluate our RMA-Analyzer tool in the context of strongly

optimized MPI-RMA applications.

Number of Processes

Ex
ec

ut
io

n
Ti

m
e

(m
s)

0

10

20

30

40

 np 12
8 cores/MPI

process

np 24
4 cores/MPI

process

np 48
2 cores/MPI

process

CF

CF + A

PT

PT + A

NPT

NPT + A

Figure 8: Runtime overhead of the RMA-Analyzer on CFD-
Proxy passive target with tree approaches. CF = Comm Free,
PT = Passive Target, NPT = Notified Passive Target. "+ A"
means execution time with the RMA-Analyzer

To do so, we present in Figure 8 a comparison of CFD-Proxy runs

with and without the RMA-Analyzer, on 2 nodes of our Pise cluster.

For this first application, we only use the PMPI instrumentation

of our RMA-Analyzer, i.e. we only instrument MPI-RMA calls. We

compare three distributions between MPI processes and OpenMP

threads on this configuration, from 12MPI processes and 8 OpenMP

threads to 48 MPI processes and 2 OpenMP threads. We compare

three flavors of CFD-Proxy in these experiments. The Comm Free

(CF) flavor corresponds to a run of CFD-Proxy application where

all the communications are assumed to be instantaneous and with

negligible overhead. When comparing the different communica-

tion schemes, the CF accords to the practical maximum attainable

performance. This provides the best execution time to compare

with both implementations, as it takes into account the increasing

number of MPI processes, which increase the computations due

, , Aitkaci, et al.

Benchmark / Application Language BST memory size User window memory size # nodes in BST Max depth of BST

Validation test (Figure 4c) C 0.08 0.39 2 2

CFD-Proxy C 60 479 1500 61

NEMO Fortran 5700 6490 142183 64893

Table 3: RMA-Analyzer statistics on BST for each application. Memory sizes are in KB.

the halo exchanges. The two other flavors stands for Passive Target

(PT) and Notified Passive Target (NPT). The PT flavor uses the

MPI_Win_flush call to synchronize the communications. The NPT

one adds a flag at the end of each sent data buffer, so that each

process can check this flag to ensure the completeness of the oper-

ation. It emulates a notification system for communications, thus

its name. We observe two specific behaviors in this graph. For 12

and 24 MPI processes, the overhead incurred by the RMA-Analyzer

stabilizes around 40%. On these distributions, the threads of the

RMA-Analyzer – here 4 as CFD-Proxy uses 4 MPI windows in par-

allel – can use the hyperthreads of the cores used by the OpenMP

threads to poll the communications, thus minimizing the impact on

application threads. However, for 48 MPI processes, we see a severe

degradation of the performance, with an execution time multiplied

by 40 in the worst case. This is due to a lack of spare cores to use

for the RMA-Analyzer threads (only 2 for 4 RMA-Analyzer threads),

that will then compete with the application threads for the CPU

resources. This also means that, if application developers can use

spare cores during the design phase of their application, the cost of

using the RMA-Analyzer remains reasonable. It is also noteworthy

to recall that the overhead is not an issue for detecting errors, as

the analysis is not dependent of the execution order: it detects all

errors pertaining to a specific entry data set. We also tested the

Active Target flavors of CFD-Proxy with our RMA-Analyzer, with

similar results, thus not shown in this paper.

0,00E+00

1,00E+05

2,00E+05

3,00E+05

4,00E+05

np 32
5 cores/MPI process

np 32
4 cores/MPI process

NEMO NEMO + A

Figure 9: Runtime overhead of the RMA-Analyzer on NEMO
tra_adv kernel. "+ A" means execution time with the RMA-
Analyzer

To evaluate the overhead of the full instrumentation of the RMA-

Analyzer, i.e. the PMPI instrumentation plus the LLVM pass which

instruments the load and store calls, we performed similar ex-

periments on a second application, which is a kernel extracted

from the NEMO [?] application. NEMO – Nucleolus for European

Modeling of the Ocean – is a state of the art modeling framework

for oceanographic research, operational oceanography seasonal

forecast and climate studies. We choose this application as we think

it is a representative candidate to tackle the applicability of our

contribution for production-oriented applications. The specific ker-

nel we target in this work is the tra_adv kernel (Tracer Advection).

We retrieved a flavor of this kernel developed internally by Atos

that uses MPI-RMA communications instead of two-sided ones for

performance study purposes, and run our RMA-Analyzer with it.

We present an overhead comparison of this kernel with the

RMA-Analyzer in Figure 9, on 4 nodes of our Pise cluster with two

distributions. In the right one, we allocate 5 cores per MPI process,

so that the 4 threads allocated by the RMA-Analyzer – this kernel

also uses 4 MPI windows for its computations – can use spare cores

to not disturb the main application’s thread. We observe that, con-

trary to the CFD-Proxy experiments, the overhead is already quite

high, with a ∼350% overhead. This is mainly due to the registering

of the load and the store calls, which are performed by the main

application’s thread and heavily slows down the execution. For this

code, the LLVM pass detects around 5.300 load and 2.300 store
calls. In the second (left) distribution, where we remove one core per

MPI process, we observe that the overhead grows to ∼600% of the

original execution time. Similarly with the CFD-Proxy application,

this is explained by the RMA-Analyzer’s threads that competes for

CPU resources with the main application’s thread, thus disturbing

it heavily.

While we discussed the overhead in terms of execution time until

now, we also need to take a look at the overhead in terms of memory

and complexity. The Table 3 shows different statistics of our RMA-

Analyzer tool for the three applications we presented in this section,

from the validation test to the NEMO kernel. The third and fourth

columns shows the memory fooprint of the RMA-Analyzer’s BST

and the user’s MPI window respectively. This allows to compare

the size in memory of the BST compared to the user memory region

it tracks. We observe that, while the BST size seems reasonable

for the CFD-Proxy application, it becomes of the same order of

magnitude than the user memory region for the NEMO kernel. This

is explained by the additional tracking of the load and store calls,

which adds a lot of information to register in the tree. We can also

observe this inflation in the fifth and sixth colums, which display

the number of nodes in the BST, and its balance (i.e. the maximum

depth of the longest branch of the tree). While the number of nodes

was around 1500 in CFD-Proxy, it goes up to 142183 nodes with

NEMO. Moreover, the balance of the BST is worse with NEMO

again, with the longest branch containing almost half of the nodes

of the tree. This means that the BST may need to be rotated to

Dynamic Data Race Detection for MPI-RMA Programs , ,

ensure a good balance and reduce the complexity of inserting new

nodes in it, and thus the overhead.

4.4 Discussion
The RMA-Analyzer tool could be extended in three directions. The

first direction is to improve the overhead of the tool. We showed in

the previous section that the overhead of the load and store calls

can limit the scaling of the RMA-Analyzer. To deal with that issue,

we think of filling the BST with these calls before the execution,

by combining our dynamic analysis with a static analysis. This

would considerably reduce the overhead of the tool due to the

dynamic registering of these calls. An other solution would be to

delegate the registering of these calls to the RMA-Analyzer threads.

Currently, the LLVM pass instrumentation of load and store calls

is performed by the main thread of the application. Delegating this

work to the RMA-Analyzer threads (or an other dedicated thread)

through a queue of requests to register memory access would be

beneficial to reduce the overhead introduced on the main thread of

the application.

The second one is the handling of in-epochs synchronization

(e.g. MPI_Win_flush) and atomic operations (MPI_Accumulate and
the put/get variations). Introducing the synchronizations is key to

ensure the memory consistency of calls inside an MPI epoch with-

out multiplying the epochs – thus the global synchronizations –

inside the program. However, implementing the support of such

synchronizations is not trivial. The semantic of the MPI_Win_flush
and MPI_Win_flush_local implies that only the origin knows

that communications have been completed (at origin side only

or both at origin and target side). This means that we need to

introduce specific control messages to warn the target that com-

munications from a specific origin has been completed (in the case

of an MPI_Win_flush call). Moreover, with this handling, we may

also give advice to users about where to introduce those synchro-

nizations inside a bogus program to ensure memory consistency.

For atomic operations, while we believe that their access rights can

be described with the taxonomy explained in this paper, the inter-

actions between atomic and classical RMA operations can prove to

be tedious to study and describe, and are thus left for future work.

The third one is the applicability of our contribution to other

PGAS runtimes and implementations. Indeed, while the one-sided

communication model and PGAS-based memory model of MPI-

RMA is compatible with other PGAS runtimes and implementa-

tions, the main difference resides in the synchronization handling,

which is based on the concept of epochs for MPI-RMA. We plan

to study the necessary steps to adapt our contribution to other

PGAS synchronization semantics, with a particular focus on PGAS

languages to bring our contribution to end users.

5 RELATEDWORK
Several approaches exist to detect errors in MPI applications in-

cluding static analysis ([? ?]), symbolic execution ([? ?]), concolic
testing ([?]), model checking ([? ?], Aislin [?]), dynamic verifica-

tion techniques ([? ?]), MPI special libraries ([? ?]) and trace-based
approaches ([?]).

Among all the proposed tools, very few can help programmers

write correct MPI-RMA programs. Marmot [?] and its successor

MUST [?] use a dynamic analysis to detect several type of errors

that can arise in MPI. Regarding one-sided functions, they only

check if the functions parameters are valid. They don’t address

memory consistency errors detection. To the best of our knowl-

edge, only three tools are able to detect memory consistency errors

in MPI-RMA programs. MC-CChecker [?] and MC-Checker [?]
both use a trace-based approach to detect memory consistency

when using MPI RMA. MC-Checker analyses trace files to build

a DAG based on the happens-before relation. This analysis does

not scale well and only covers the MPI-2 standard. MC-CChecker

improves MC-Checker analysis by taking full advantage of the en-

coded vector clock to replace the DAG. Unlike MC-Checker and

MC-CChecker, our RMA-Analyzer performs an on-the-fly dynamic

analysis to detect memory consistency errors between local and

remote accesses and covers new functionalities introduced in MPI-

3. Nasty-MPI [?] also relies on program profiling. It dynamically

intercepts RMA calls and reschedules them into pessimistic exe-

cutions. This approach forces synchronization errors rather than

detecting them which is far different from our method.

On top of that, several studies have been conducted to detect

data race errors in shared-memory programs. Some approaches [?
], [?], [?] perform a static analysis, while others [?], [?], [?], [?]
perform a dynamic analysis that use lock-set algorithms to detect

data race errors in shared-memory programs. Some differences

can be distinguished between detecting memory consistency in

MPI-RMA programs and shared-memory data race detection. In

MPI-RMA programs a memory consistency error can only occur in

buffers that are involved in the the MPI-RMA calls. By contrast, any

memory location in shared-memory programs can be a data race er-

ror location. In addition, direct load and store accesses in MPI-RMA

programs are only performed by the owning process and the RMA

accesses are performed among the processes in the communicator.

Consequently the bug detection algorithms are different.

6 CONCLUSION AND FUTUREWORK
In this paper, we propose a novel dynamic analysis of memory

consistency for PGAS-like models. We implemented it in a tool

called RMA-Analyzer for MPI-RMA programs. This tool allows to

detect all memory consistency errors that can happen in an MPI-

RMA program and raises an error as soon as it is detected, avoiding

the issue of not knowing where the first memory consistency error

happened. Moreover, we show that while the overhead of our RMA-

Analyzer tool is noticeable, it is possible to greatly reduce it by

spreading the threads of the RMA-Analyzer on spare cores.

For future work, we envision to improve our dynamic analysis

by mixing it with a static analysis. Doing so would allow us to

improve the load and store filtering at compile time and detect some

local errors without executing a program. We plan to integrate this

mixed static-dynamic analysis in the PARCOACH framework [?]
to benefit from the inter-procedural analysis provided by this tool

to further improve our analysis. We are also looking in the direction

of the MPI-RMA notified communications model, which is a novel

lightweight synchronization method proposed to the MPI Forum [?
] for MPI-RMA communications. This topic will be addressed in

the context of the DEEP-SEA European project [?].

	Abstract
	1 Introduction
	2 Background
	2.1 PGAS model and MPI-RMA
	2.2 MPI-RMA Programming Challenges

	3 Dynamic Data Race Detection in MPI-RMA Programs
	3.1 RMA Operations Compatibility
	3.2 Data Race Detection Algorithm
	3.3 The RMA-Analyzer Framework

	4 Experimental Results
	4.1 Evaluation Methodology
	4.2 Validation
	4.3 Performance Evaluation
	4.4 Discussion

	5 Related Work
	6 Conclusion and Future Work

