Julien Lacombe
email: jlacombe@protonmail.com

Julie Digne

Nicolas Courty

Nicolas Bonneel

LEARNING TO GENERATE WASSERSTEIN BARYCENTERS

Keywords: Wasserstein barycenter, Optimal Transport, Convolutional Neural Network, Color Transfer

Optimal transport is a notoriously difficult problem to solve numerically, with current approaches often remaining intractable for very large scale applications such as those encountered in machine learning. Wasserstein barycenters -the problem of finding measures in-between given input measures in the optimal transport sense -is even more computationally demanding as it requires to solve an optimization problem involving optimal transport distances. By training a deep convolutional neural network, we improve by a factor of 60 the computational speed of Wasserstein barycenters over the fastest state-of-the-art approach on the GPU, resulting in milliseconds computational times on 512 × 512 regular grids. We show that our network, trained on Wasserstein barycenters of pairs of measures, generalizes well to the problem of finding Wasserstein barycenters of more than two measures. We demonstrate the efficiency of our approach for computing barycenters of sketches and transferring colors between multiple images.

Introduction

Optimal transport is becoming widespread in machine learning, but also in computer graphics, vision and many other disciplines. Its framework allows for comparing probability distributions, shapes or images, as well as producing interpolations of these data. As a result, it has been used in the context of machine learning as a loss for training neural networks (Arjovsky et al., 2017), as a manifold for dictionary learning [START_REF] Schmitz | Wasserstein dictionary learning: Optimal transport-based unsupervised non-linear dictionary learning[END_REF], clustering [START_REF] Mi | Variational Wasserstein clustering[END_REF] and metric learning applications [START_REF] Heitz | Ground Metric Learning on Graphs[END_REF], as a way to sample an embedding [START_REF] Liutkus | Sliced-wasserstein flows: Nonparametric generative modeling via optimal transport and diffusions[END_REF] and transfer learning [START_REF] Courty | Domain adaptation with regularized optimal transport[END_REF], and many other applications (see Sec. 2.3). However, despite recent progress in computational optimal transport, in many cases these applications have remained limited to small datasets due to the substantial computational cost of optimal transport, in terms of speed, but also memory.

We tackle the problem of efficiently computing Wasserstein barycenters of measures discretized on regular grids, a setting common to several of these machine learning applications. Wasserstein barycenters are interpolations of two or more probability distributions under optimal transport distances. As such, a common way to obtain them is to perform a minimization of a functional involving optimal transport distances or transport plans, which is thus a very costly process. Instead, we directly predict Wasserstein barycenters by training a Deep Convolutional Neural Network (DCNN) specific to this task.

An important challenge behind our work is to build an architecture that can handle a variable number of input measures with associated weights without needing to retrain a specific network. To achieve that, we specify and adapt an architecture designed for and trained with two input measures, and show that we can use this modified network without retraining to compute barycenters of more than two measures. Directly predicting Wasserstein barycenters avoids the need to compute a Wasserstein embedding [START_REF] Courty | Learning wasserstein embeddings[END_REF], and our experiments suggest that this results in better Wasserstein barycenters approximations. Our implementation is publicly available 1 .

Wasserstein barycenters

The Wasserstein barycenter of a set of probability measures corresponds to the Fréchet mean of these measures under the Wasserstein distance (i.e., a weighted mean under the Wasserstein metric). Wasserstein barycenters allow to interpolate between two or more probability measures by warping these measures (contrarily to Euclidean barycenters that blends them). Similarly to Wasserstein distances, Wasserstein barycenters are very expensive to compute. An entropy-regularized approach based on Sinkhorn-like iterations also allows to efficiently compute blurred Wasserstein barycenters. Reducing blur via Sinkhorn divergences is also doable, but does not benefit from a very fast Sinkhornlike algorithm: a weighted sum of Sinkhorn divergences needs to be iteratively minimized, which adds significant computational cost. In our approach, we rely on Sinkhorn divergence-based barycenters to feed training data to a Deep Convolutional Neural Network, and thus aim at speeding up the generation of approximate wasserstein barycenters. Other fast transport-based barycenters include that of sliced and Radon Wasserstein barycenters, obtained via Wasserstein barycenters on 1-d projections (Rabin et al. (2011b), [START_REF] Bonneel | Sliced and radon wasserstein barycenters of measures[END_REF]), which we compare to.

A recent trend seeks linearizations or Euclidean embeddings of optimal transport problems. Notably, [START_REF] Nader | Instant transport maps on 2d grids[END_REF] approximate Wasserstein barycenters by first solving an optimal transport map between a uniform measure towards n input measures, and then linearly combining Monge maps. This allows for efficient computationstypically of the order of half a second for 512x512 images. A similar approach is taken within the documentation of the GeomLoss library [START_REF] Feydy | Geometric loss functions between sampled measures, images and volumes[END_REF] 2 , where a single step of a gradient descent initialized with a uniform distribution is used, which effectively corresponds to such linearization. We use this technique in our work to train our network. [START_REF] Wang | A linear optimal transportation framework for quantifying and visualizing variations in sets of images[END_REF], [START_REF] Moosmüller | Linear optimal transport embedding: Provable fast wasserstein distance computation and classification for nonlinear problems[END_REF] and [START_REF] Mérigot | Quantitative stability of optimal transport maps and linearization of the 2-wasserstein space[END_REF] use a similar linearization, possibly using a non-uniform reference measure, with theoretical guarantees on the distorsion introduced by the embedding. Instead of explicitly building an embedding via Monge maps, such an embedding can be learned. [START_REF] Courty | Learning wasserstein embeddings[END_REF] propose a siamese neural network architecture to learn an embedding in which the Euclidean distance approximates the Wasserstein distance. Wasserstein barycenters can then be approximated by interpolating within the Euclidean embedding, without requiring explicit computations of transport plans. They show accurate barycenters on a number of datasets of low resolution (28 × 28). However, in general, it is unclear whether Wasserstein metrics embed into Euclidean spaces. Negative results were shown for 3d optimal transport onto a Euclidean space [START_REF] Andoni | Impossibility of sketching of the 3d transportation metric with quadratic cost[END_REF]. Interestingly, in the reversed direction, Wasserstein spaces have been used to embed other metrics [START_REF] Frogner | Learning embeddings into entropic wasserstein spaces[END_REF].

Wasserstein barycenters can also be seen as a particular instance of inverse problem. There is an important literature on the resolution of inverse problems with deep learning models on instances such as (non-exhaustive list) image denoising [START_REF] Ulyanov | Deep image prior[END_REF] [START_REF] Burger | Image denoising: Can plain neural networks compete with bm3d?[END_REF] [START_REF] Lefkimmiatis | Non-local color image denoising with convolutional neural networks[END_REF], super-resolution [START_REF] Ledig | Photo-realistic single image super-resolution using a generative adversarial network[END_REF], [START_REF] Tai | Image super-resolution via deep recursive residual network[END_REF], [START_REF] Lai | Deep laplacian pyramid networks for fast and accurate super-resolution[END_REF], inpainting [START_REF] Yeh | Semantic image inpainting with deep generative models[END_REF] [START_REF] Xie | Image denoising and inpainting with deep neural networks[END_REF], [START_REF] Liu | Image inpainting for irregular holes using partial convolutions[END_REF].

Parallel to our work, [START_REF] Fan | Scalable computations of wasserstein barycenter via input convex neural networks[END_REF] propose a model based on input convex neural networks (ICNN) developed by [START_REF] Amos | Input convex neural networks[END_REF]. Their method allows a fast approximation of Wasserstein barycenters of continuous input measures. This last work is also closely related to the semi-discrete approach of [START_REF] Claici | Stochastic wasserstein barycenters[END_REF].

Applications to machine learning

For its ability to compare probability measures, optimal transport has met an important success in machine learning. This is particularly the case of Wasserstein GANs (Arjovsky et al., 2017) that compute a very efficient approximation of Wasserstein distances as a loss for generative adversarial models. The optimal transport loss has also been used in the context of dictionary learning [START_REF] Rolet | Fast dictionary learning with a smoothed wasserstein loss[END_REF]. Other fast approximations have allowed to perform domain adaptation for transfer learning of a classifier, by advecting samples via a computed transport plan [START_REF] Courty | Domain adaptation with regularized optimal transport[END_REF]. Among these approximations, Sliced optimal transport has been used to sample an embedding learned by an auto-encoder, by computing a flow between uniformly random samples and the image of encoded inputs [START_REF] Liutkus | Sliced-wasserstein flows: Nonparametric generative modeling via optimal transport and diffusions[END_REF].

Regarding the Wasserstein barycenters we are interested in, they have been used for the task of learning a dictionary out of a set of probability measures [START_REF] Schmitz | Wasserstein dictionary learning: Optimal transport-based unsupervised non-linear dictionary learning[END_REF], for computing Wasserstein barycentric coordinates of probability measures [START_REF] Bonneel | Wasserstein Barycentric Coordinates: Histogram Regression Using Optimal Transport[END_REF] or for metric learning [START_REF] Heitz | Ground Metric Learning on Graphs[END_REF]. These have been performed by automatic-differentiation of Wasserstein barycenters obtained through Sinkhorn iterations and non-linear optimization, and have thus been limited to small datasets, both due to speed and memory limitations. An adaptation of k-means clustering for optimal transport was proposed by [START_REF] Mi | Variational Wasserstein clustering[END_REF] and [START_REF] Domazakis | Clustering measurevalued data with wasserstein barycenters[END_REF]. Backhoff-Veraguas et al. replaces maximum a posteriori (MAP) estimation or Bayesian model average, by computing Wasserstein barycenters of posterior distributions (Backhoff-Veraguas et al., 2018) using a stochastic gradient descent scheme. In the context of reinforcement learning, Wasserstein barycenters are used by [START_REF] Metelli | Propagating uncertainty in reinforcement learning via wasserstein barycenters[END_REF] as a way to regularize the update rule and offer robustness to uncertainty. PCA in the Wasserstein space require the ability to compute Wasserstein barycenters ; they have been studied by [START_REF] Bigot | Geodesic pca in the wasserstein space by convex pca[END_REF] but could only be computed in 1-d where theory is simpler. In the work of [START_REF] Dognin | Wasserstein barycenter model ensembling[END_REF], Wasserstein barycenters are used for model ensembling, i.e., averaging the predictions of several models to build a more robust model.

In this work, we do not focus on a single application but instead provide the tools to efficiently approximate Wasserstein barycenters on 2-d regular grids.

Learning Wasserstein barycenters

This section describes our neural network and our proposed solution to train it in a scalable way.

Proposed Model

Our model aims at obtaining approximations of Wasserstein barycenters from n ≥ 2 probability measures {µ i } i=1..n discretized on 512×512 regular grids, and their corresponding barycentric weights {λ i } i=1..n . Based on the observation that the Sinkhorn algorithm is mainly made of successive convolutions, we propose to directly predict a Wasserstein barycenter through an end-to-end neural network approach, using a Deep Convolutional Neural Network (DCNN) architecture. This DCNN should be deep enough to allow accurate approximations but shallow enough to reduce its computational requirements.

We propose a network consisting of n contractive paths {ϕ i } i=1..n and one expansive path ψ (see Fig. 1). Importantly enough, n is not fixed and can vary at test time. In fact, the contractive paths are n duplicates of the same path with the same architecture and sharing the same weights. The n contractive paths are made of successive blocks, each block consisting of two convolutional layers followed by a ReLU activation. We further add average pooling layers between each block in order to decrease the dimensionality. The expansive path is symetrically constructed, each block also being made of 2 convolutional layers with ReLU activations. To better invert average poolings, we use upsampling layers with nearest-neighbor interpolation. Finally, to recover an output probability distribution, we use a softmax activation at

∑λ i F ij ... φ 1 φ 2 φ n Ψ ∑λ i F ij (1) (1) (2) (3) (5) (6) (4) (1)
(1)

(1)

∑λ i F ij Conv+InstanceNorm+ReLU (2) (2) (2) (6) (6)
(5)

(2) (6) (2015), because of the nature of the contractive and expansive paths. However the similarities end here, since our architecture uses a variable number of contractive paths to handle multiple inputs. The connections we use from the contractive paths to the expansive path also highly differ: first, we take all the feature maps from each contractive path and not only a part of it as it is done in U-Net, and, second, we compute a weighted sum of all these activations using barycentric weights which results in a weighted feature map which is then symmetrically concatenate to the corresponding activations in the expansive path. Our network is deeper than U-Net and we do not use the same succession of layers nor the same downsampling and upsampling methods which are respectively max-pooling and up-convolutions in the case of U-Net. We also use Instance Normalization [START_REF] Ulyanov | Instance normalization: The missing ingredient for fast stylization[END_REF] which has empirically shown better results than Batch Normalization for our model. These normalization layers are placed before each ReLU activation.

∑λ i F ij Copy+Weighted Sum Concatenation
The connections going from the contractive paths to the expansive path are defined as follows: after each block in a contractive path ϕ i at depth level j, we take the resulting activations {F ij } i=1..n , compute their linear combination F j = i∈n λ i F ij , and concatenate it symmetrically to the corresponding activations in the expansive path (see figure 1).

Training

Our solution allows to generalize a network trained for computing the barycenter of two measures to an arbitrary number of input measures while remaining fast to train.

Variable number of inputs. We expect our network to produce accurate results without constructing an explicit embedding whose existence remains uncertain [START_REF] Andoni | Earth mover distance over high-dimensional spaces[END_REF]. However, a Euclidean embedding trivially generalizes to an arbitrary number of input measures. A key insight to our work is that, since contractive paths weights are shared, our network can be trained using only two contractive paths for the task of predicting Wasserstein barycenters of two probability measures. Once trained, contractive paths can be duplicated to the desired number of input measures. In practice, we found this procedure to yield accurate barycenters (see Sec. 4).

Loss function.

Training the network requires comparing the predicted Wasserstein barycenter to a groundtruth Wasserstein barycenter. Ideally, such comparison should be performed via an optimal transport cost -those are ideal to compare probability distributions. However, computing optimal transport costs on large training datasets would be intractable. Instead, we resort to a Kullback-Leibler divergence between the output distribution and the desired barycenter.

Optimizer. To optimize the model parameters, we use a stochastic gradient descent with warm restarts (SGDR) [START_REF] Loshchilov | Sgdr: Stochastic gradient descent with warm restarts[END_REF]. The exact learning rate schedule we used for our models is shown in appendix A, Fig. 11.

Training data. We strive to train our network with datasets that would cover a wide range of input sketches. To achieve this, we built a dataset made of 100k pairs of 512 × 512 random shape contours with random barycentric weights and their corresponding 2D Wasserstein barycenter. Thereafter we call this dataset ContoursDS. The 2D shapes are generated in a Constructive Solid Geometry fashion: we randomly assemble primitives shapes using logical operators and detect contours in post-processing. A primitive corresponds to a filled ellipse, triangle, rectangle or a line. We assemble these primitives together by using the classical boolean operators OR, AND, XOR, NOT. To generate a shape, we initialize it with a random primitive. Then we combine it with another random primitive using a randomly chosen operator, and repeat this operation d times (0 ≤ d ≤ 50) where d follows the probability distribution d ∼ 1 3 (U(0, 50) + N (0, 2.5) + N (50, 2.5)) which promotes simple (d close to 0) and complex (d close to 50) shapes. Finally, we apply a Sobel filter to create contours. We thus create 10k random 2D shapes from which we build 100k Wasserstein barycenters.

We then use the GeomLoss library [START_REF] Feydy | Geometric loss functions between sampled measures, images and volumes[END_REF] to build good approximations of Wasserstein barycenters in a reasonable time, with random pairs of inputs sampled from the set of generated shape contours. Given two 2D input distributions µ 1 and µ 2 with their corresponding barycentric weights λ 1 and λ 2 = 1 -λ 1 , their barycenter b * can be found by minimizing: b * = arg min b λ 1 S (b, µ 1) + λ 2 S (b, µ 2) where S corresponds to the Sinkhorn divergence with quadratic ground metric, and the regularization parameter (we use = 1e-4). We use a Lagrangian gradient descent scheme that first samples the distributions as b = N j=1 b j δ xj and then performs a gradient descent using x

(k+1) j = x (k) j + λ 1 v µ1 j + λ 2 v µ2 j
where v µi j is the displacement vector. This vector is computed as the gradient of the Sinkhorn divergence: v µi j = -1 bj ∇ xj S ,p (b, µ i). These successive updates can be computationally expensive when inputs are large. To speed up computations, we use a linearized approach that performs a single descent step, starting from a uniform distribution. In practice, this allows to precompute one optimal transport map between a uniform distribution and each of the input measures in the database, and obtain approximate Wasserstein barycenters by using a weighted average of these transport maps.

While it is quite obvious that our model trained with an application-specific dataset will produce the best results for this application, our model trained exclusively on ContoursDS achieves results that are close enough and which can be in practice sufficient for the applications we consider. Figure 9 demonstrates this in the context of color transfer. Interpolated color histograms are clearly best predicted by our model trained with the application-specific dataset; however the final color transfer results are very similar to the ones obtained using the histograms predicted by our model trained on ContourDS.

Experimental Results

While our model is exclusively trained on our synthetic ContoursDS dataset, at test time we also consider three additional datasets : the Quick, Draw! dataset from Google (2020), the Coil20 dataset [START_REF] Nane | Columbia object image library: Coil-20[END_REF] and HistoDS, a dataset of chrominance histograms. The Quick, Draw! dataset contains 50 million grayscale drawings divided in multiple classes and has been created by asking users to draw with a mouse a given object in a limited time. The Coil20 is made of images of 20 objects rotating on a black background and contains 72 images per object for a total of 1440 images. We rasterized these two datasets to 512 × 512 images. Finally, HistoDS contains 100k 512 × 512 chrominance histograms extracted from 10350 Flickr3 images of various content and sizes obtained using the Flickr API.

Two-way interpolation results

In Fig. 2, we show a visual comparison between barycenters obtained with Geomloss and our method. Wassertein barycenters are taken from the test dataset and the corresponding predictions are shown. We also compare these results to classical approaches (linear program, regularized barycenters) and to another approximation method known as Radon barycenters [START_REF] Bonneel | Sliced and radon wasserstein barycenters of measures[END_REF]. 2019)) with a regularization parameter of 1e-3 and Radon barycenters [START_REF] Bonneel | Sliced and radon wasserstein barycenters of measures[END_REF] To further visually assess that the barycenters we are approximating are close to the exact ones, we also present a comparison with the method of [START_REF] Claici | Stochastic wasserstein barycenters[END_REF] in Fig. 3. Input distributions are taken from the Quick, Draw! dataset.

We compare our method with the Deep Wasserstein Embedding (DWE) model developed by [START_REF] Courty | Learning wasserstein embeddings[END_REF] on Quick, Draw! images. We propose two versions of DWE. The first version relies on the exact original architecture which can only process 28 × 28 images, retrained on a downsampled version of our shape contours dataset -see Fig. 5 for this comparison. In the second version, we adapt their network to process 512 × 512 inputs. The encoder and decoder of this second version have the same architecture as the contractive and expansive paths that we use in our model without our skip connections, but is used to compute the embedding rather than directly predicting barycenterssee Fig. 6. Finally, we study the limitations of the generalization of our network on the Coil20 dataset [START_REF] Nane | Columbia object image library: Coil-20[END_REF], which consists of images of objects on a black background. In figure 7, we show the interpolation of 2 cars ; additional results are available in appendix B, figure 12. Even if our model has been trained using only barycenters computed from pairs of inputs, we can apply it to predict barycenters of more than two measures. This section illustrates N-way barycenters on 2-d sketch images and color distributions.

Sketch interpolation. We display interpolations between respectively three and five input measures in Fig. 8, which surprisingly tends to show that our model can generalize what it learned on pairs of inputs, at least partially. Additional results on Quick, Draw! are also shown in appendix B, Fig. 13. A 100-way barycenter comparison can be found in appendix Sec. B, Fig. 14.

Numerically when the number of inputs is greater than 2, our model also achieve to find better approximations than the ones obtained with DWE, as shown in Fig. 4.

Interpolating color distributions. We also propose color transfer between images as another application of our method in the n-way case, as performed in the literature [START_REF] Solomon | Convolutional wasserstein distances: Efficient optimal transportation on geometric domains[END_REF][START_REF] Bonneel | Sliced and radon wasserstein barycenters of measures[END_REF]. More particularly here we focus on a color grading application: given n images, we are interested in the weighted interpolation of their color histograms. Then we alter the color histogram of a target image so that it matches the interpolated histogram in order to transfer colors. Based on recommendations by [START_REF] Reinhard | Colour spaces for colour transfer[END_REF], we consider images in the CIE-Lab space and we perform the transfer by modifying the luminance and the chrominance channels independently. While the transfer of luminance only requires 1D optimal transport plan, chrominance has 2 dimensions. In order to transfer it, we follow the procedure detailed in [START_REF] Solomon | Convolutional wasserstein distances: Efficient optimal transportation on geometric domains[END_REF]: we first compute the n 2D chrominance histograms {µ i } i=1..n and also ν, that of the target image. We then interpolate the {µ i } i=1..n using our model in order to obtain their barycenter μ for given weights. Color transfer requires an explicit knowledge of the transport plan π between ν and μ. In our method, π is computed using the OT solver GeomLoss to retrieve the dual potentials f and g which are combined yielding π = exp 1 (f + g -C) • ν ⊗ μ where C corresponds to the cost matrix and with = 5.10 -2 . Note that for this part we do not use Sinkhorn divergences and we instead consider the regularized OT problem in order to retrieve f and g. This transport plan π is used to retrieve the chrominance T associated with the target image:

T (i) = 1
ν j∈M π ij j where i, j ∈ M the set of all the possible discretized chrominance values.

After this color transfer step, similarly to [START_REF] Bonneel | Sliced and radon wasserstein barycenters of measures[END_REF], we apply a post-processing technique from (Rabin et al., 2011a) using iterative guided filtering in order to reduce visual artefacts caused by the color transfer. We repeat this color transfer for each image shown in each of the pentagons of figure 9 (last column). This figure presents a comparison of barycenter and color transfer results obtained with GeomLoss, our model trained on synthetic shape contours (ContoursDS) and our model directly trained with chrominance histograms extracted from images from the Flickr dataset (HistoDS). Even if predicted chrominance histograms are clearly better with HistoDS, the predictions made with ContoursDS are good enough to obtain a consistent and visually pleasing color transfer which is close to the one obtained using GeomLoss. Additional results are provided in appendix B, figure 15.

Speed

In order to assess computational times, we obtain average running time over 1000 barycenter computations -on average, our model predicts barycenters of two images in 0.0092 seconds. We compare the average speed of our model with GeomLoss in two different settings. The first one considers the full 512 × 512 images -GeomLoss computes such barycenters in 1.41 seconds. The second setting takes advantage of the sparsity of our images and only uses the 2D coordinates of the points with non-zero mass -in this case, GeomLoss computes barycenters in 0.589 seconds. Our method provides nearly 64x speedup compared with this last approach. In comparison, an exact barycenter computation of two (sparse) measures using a network simplex [START_REF] Bonneel | Displacement Interpolation Using Lagrangian Mass Transport[END_REF] ranges from 4-80 seconds for typical shape contours images that contains few thousands of pixels carrying mass. The time required to compute barycenters using the method of [START_REF] Claici | Stochastic wasserstein barycenters[END_REF] depends on the number of iterations, in our setting 100 iterations with the inputs shown in figure 3 require 37 hours while 50 iterations are achieved in 14 hours. A 512 × 512 Radon barycenter [START_REF] Bonneel | Sliced and radon wasserstein barycenters of measures[END_REF] requires 0.2 seconds for 720 projection directions, but remains far from the expected barycenter.

Discussion and conclusion

While our method produces good approximation of Wasserstein barycenters of n inputs, some shapes are surprisingly difficult to handle. The barycenter of simple translated and scaled shapes such as lines or ellipses should theoretically also be lines or ellipses, but are failure cases for our model (Fig. 10), while more complex shapes are well handled (Fig. 8). In addition, we rely on a linearized barycenter to train our network [START_REF] Nader | Instant transport maps on 2d grids[END_REF][START_REF] Wang | A linear optimal transportation framework for quantifying and visualizing variations in sets of images[END_REF][START_REF] Moosmüller | Linear optimal transport embedding: Provable fast wasserstein distance computation and classification for nonlinear problems[END_REF][START_REF] Mérigot | Quantitative stability of optimal transport maps and linearization of the 2-wasserstein space[END_REF], which incurs some error. This can be seen in appendix Sec. C, Fig. 16. While using more iterations of gradient descent yields more accurate results and removes this linearity, it also prevents easy combination and makes the dataset generation intractable. Nevertheless, in many cases our DCNN Our prediction for two-way barycenters (here, with equal weights) of such shapes remains correct (left). However, the predicted barycenter is highly distorted for 5-way barycenters of simple shapes (right) although it remains plausible for more complex shapes (see Fig. 8) is able to synthesize a barycenter from an arbitrary number of inputs. The main strength of our approach lies in its capacity to be trained from only 2-inputs barycenters examples and to generalize to any number of inputs. We showed that the results exceeded the ones obtained by explicit Wasserstein Embedding computation while having a very low computation time. We hope our fast approach will accelerate the adoption of optimal transport in machine learning applications. C Linearized barycenters Fig. 16 shows the error introduced by using a linearized version of Wasserstein barycenters [START_REF] Nader | Instant transport maps on 2d grids[END_REF][START_REF] Wang | A linear optimal transportation framework for quantifying and visualizing variations in sets of images[END_REF][START_REF] Moosmüller | Linear optimal transport embedding: Provable fast wasserstein distance computation and classification for nonlinear problems[END_REF][START_REF] Mérigot | Quantitative stability of optimal transport maps and linearization of the 2-wasserstein space[END_REF]. Our predicted barycenters reflect this error.

Figure 1 :

 1 Figure 1: Our model is divided into n contractive paths ϕ i , sharing the same architecture and weights, and one expansive path ψ. Blue rectangles represent feature maps and arrows denote the different operations we use (see legend). At training time n = 2, but by duplicating the contractive paths, we can adapt to the n measures barycenter problem at test time, without needing to retrain the network

Figure 2 :

 2 Figure 2: We illustrate typical results and comparisons to GeomLoss (Feydy, 2019), a linear program via a network simplex (Bonneel et al., 2011), regularized barycenters computed in log-domain (see for instance Peyré et al. (2019)) with a regularization parameter of 1e-3 and Radon barycenters[START_REF] Bonneel | Sliced and radon wasserstein barycenters of measures[END_REF]

Figure 3 :Figure 5 :

 35 Figure 3: We superimpose the centroids (λ 1 = λ 2 = 0.5) found by the method of Claici et al. (2018) (in red) using 100 Dirac masses over the ones computed by GeomLoss and by our model, on images from the Quick, Draw! dataset. The solution of Claici et al. (2018) was found within 37 hours of computation

Figure 6 :Figure 7 :

 67 Figure 6: Interpolations between two 512 × 512 images from the Quick, Draw! dataset using Geomloss, our model and the Deep Wasserstein Embedding (DWE) method from (Courty et al., 2017) adapted to handle 512 × 512 images

Figure 8 :

 8 Figure 8: Wasserstein barycenters of three inputs (top rows) and five inputs (bottom rows) from Quick, Draw!, respectively computed with Geomloss and with our model trained with only pairs from our synthetic training dataset. Barycentric weights are randomly chosen

Figure 9 :Figure 10 :

 910 Figure 9: Color grading obtained by transferring the colors of n = 5 images onto a target image. Results are shown in pentagons (Left: interpolated chrominance histograms; Right: corresponding transfer results). The images corresponding to the target chrominance histogram ν and to the histograms µ i -which are interpolated to obtain a barycenter -are shown in top row. Each µ i corresponds to a vertex of the pentagon in a clockwise order beginning with i = 1 at the uppermost vertex. Each row presents the results for a different method, from top to bottom: GeomLoss, our model trained on synthetic shape contours (ContoursDS) and our model trained on chrominance histograms from Flickr images (HistoDS)

Figure 11 :Figure 12 :

 1112 Figure11: Learning rate schedule used to train our models, following the SGDR method described by[START_REF] Loshchilov | Sgdr: Stochastic gradient descent with warm restarts[END_REF]. Our training runs for a total of 31 epochs. Compared to a constant learning rate or to stepwise schedules, SGDR has empirically shown a better convergence in our context

Figure 13 :Figure 15 :Figure 16 :

 131516 Figure 13: Interpolations between 5 inputs from Quick, Draw!, shown as pentagons. Left pentagon corresponds to GeomLoss barycenters while the right one shows predictions of our model trained on our synthetic dataset

See https://www.kernel-operations.io/geomloss/_auto_examples/optimal_transport/plot_wasserstein_barycenters_2D.html

https://www.flickr.com/

Acknowledgements This work was granted access to the HPC resources of IDRIS under the allocations 2020-AD011011538 and 2020-AD011012218 made by GENCI. We also thank the authors of all the images used in our color transfer figures.

Funding Partial financial support was received from the ANR ROOT (RegressiOn with Optimal Transport): ANR-16-CE23-0009.

//github.

Code availability Our implementation is publicly available at https://github.com/jlacombe/ learning-to-generate-wasserstein-barycenters

Conflicts of interest / Competing interests. The authors have no conflicts of interest to declare that are relevant to the content of this article.

A Learning Strategy

Instead of using a fixed learning rate or a decreasing learning rate, we choose a learning rate schedule with warm restart as proposed by [START_REF] Loshchilov | Sgdr: Stochastic gradient descent with warm restarts[END_REF]. The learning schedule is shown in Figure 11: the learning rate decreased and is periodically restarted to its initial value, the period increasing as the number of epochs grows. This schedule was chosen after comparing with stepwise schedules or constant learning rates and yielded better convergence in practice.

B Additional results

To better show the limitations of the generalization of our network when the number of inputs is 2, we show additional interpolations between 2 objects from the Coil20 in figure 12. There are two reasons for these bad results: first, our model is trained in synthetic shape contours and do not look at all like these images. Furthermore, the cup image seem to be even more challenging than the car image for our network, and our best explanation for this failure is that the cup covers almost the whole image. We provide additional experiments showing barycenters of 5 sketches on Figure 13. The weights evolve linearly inside the pentagon. As a stress test, we also show a barycenter of 100 cats with equal weights in Fig. 14 and compare it with a barycenter computed with GeomLoss. While both results recover more or less

GeomLoss

Our DCNN