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Abstract

Structure from motion (SfM) enables us to recon-
struct a scene via casual capture from cameras at differ-
ent viewpoints, and novel view synthesis (NVS) allows
us to render a captured scene from a new viewpoint.
Both are hard with casual capture and dynamic scenes:
SfM produces noisy and spatio-temporally sparse re-
constructed point clouds, resulting in NVS with spatio-
temporally inconsistent effects. We consider SfM and
NVS parts together to ease the challenge. First, for
SfM, we recover stable camera poses, then we de-
fer the requirement for temporally-consistent points
across the scene and reconstruct only a sparse point
cloud per timestep that is noisy in space-time. Sec-
ond, for NVS, we present a variational diffusion for-
mulation on depths and colors that lets us robustly
cope with the noise by enforcing spatio-temporal con-
sistency via per-pixel reprojection weights derived from
the input views. Together, this deferred approach gen-
erates novel views for dynamic scenes without requiring
challenging spatio-temporally consistent reconstruc-
tions nor training complex models on large datasets.
We demonstrate our algorithm on real-world dynamic
scenes against classic and more recent learning-based
baseline approaches.

1 Introduction

Novel-view synthesis (NVS) creates a new view of
a scene by combining existing images captured from
different viewpoints. Much progress in NVS has been
made over the past two decades to tackle its two core
problems: 1) how to build a proxy scene geometry to
aid in rendering, such as constructing simplified sparse
depth points or a piecewise planar mesh via structure
from motion (SfM), and 2) how to interpolate or ex-
trapolate an image via the reprojected proxy given the

existing captured imagery. NVS increases in difficulty
across many axes: as the cameras become farther apart
(wide baseline), as their number decreases (few cam-
era), as they become handheld (casual capture), as the
scene itself contains motion (dynamic scene), as the
scene phenomena become more visually complex (ge-
ometry, materials, and motion), and as the time given
to generate the result decreases (compute cost).

We consider dynamic scenes captured by a small
number of cameras (5–12) over baselines of around 60◦,
as might occur with a crowd of people capturing an
event (Figure 1). Within this scenario, we include se-
quences with casual handheld cameras. This is a rel-
atively rare and challenging setting because both the
cameras and the scene objects move simultaneously,
and because sequences with only a small number of ca-
sual cameras makes robustness hard to obtain. This
complicates camera pose estimation and depth estima-
tion in SfM and, if the proxy geometry is not perfect,
causes ghosting, bleeding, and flickering artifacts across
views and time during NVS in both moving objects and
the background. Thus, one key component of any algo-
rithm is a way to enforce spatio-temporal consistency
in both the SfM and the NVS to reduce these artifacts.

We propose to address these challenges by defer-
ring the difficult problem of reconstructing dynamic
objects in time via SfM, and instead using a NVS ap-
proach to enforce temporal consistency. To ease the
task of reconstructing dynamic scenes via SfM, many
approaches first segment out moving objects or feature
points and process the static background and the dy-
namic foreground separately [1, 2, 3]. Instead, we first
recover camera poses for all views without any explicit
dynamic object segmentation. Then, we recover scene
points on both static and dynamic objects without tem-
poral consistency and performing per-frame SfM across
views only. This is easier to solve, but leads to signifi-
cantly noisy reconstructions temporally.

Next, we turn our sparse (and noisy) reconstructed
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Figure 1: Given a small set of video sequences of a performance, our method computes camera poses and sparse
points, then optimizes those points into a novel video sequence following a user-defined camera path. Our space-
time SfM intentionally does not compute temporal consistency for points on dynamic objects and instead defers
spatio-temporal consistency in both depth and RGB reconstructions to the novel view synthesis stage via our
variational formulation.

point clouds into novel views. This is commonly com-
pleted by densifying points into a depth map [4] for
each view in a consistent way, and using the depths to
reproject and merge input RGB views into a virtual
view. We present a formulation which only densifies a
depth map in the virtual camera’s view, rather than for
all input views, which leads to a more efficient solve.
For this, we take a coarse-to-fine variational approach
and solve a diffusion-based formulation. Importantly,
this formulation lets us enforce robust temporal consis-
tency in the output depth to overcome the initial noisy
reconstructions from the SfM. To determine our final
RGB values, we also solve for the output color within
the coarse-to-fine variational formulation.

We perform comparisons to recently-proposed ap-
proaches in point densification and view interpola-
tion, using both optimization and learning-based ap-
proaches. Further, we show results on a synthetic
dataset in an ablation study. In a nutshell, we show
that considering SfM and NVS together allows us to
ease the difficult temporally-consistent reconstruction
problem and instead cope with it at the rendering
stage. Overall, our work takes another step forward in
improving digital content creation for scenes captured
by multiple video cameras.

2 Related Work

Rendering a novel viewpoint of a real-world scene
captured with photographs is a problem that has re-
ceived much attention over the past 30 years [5].

Static scene IBR Image-based rendering (IBR) has
initially attempted to render static scenes either from

set of images or videos. This can be achieved either
via warping input views using optical flow [6], using
coarse geometric proxies [7] or via deep learning ap-
proaches [8]. In complex environments, IBR techniques
often need some 3D proxy reconstruction. For example,
the Lumigraph [7, 9] uses planar or coarse geometric
proxies; Shade et al. [10] used multiple planar sprites;
and Debevec et al. [11] employed photogrammetric
reconstructions of buildings. Others have used 3D
meshes from multi-view stereo reconstructions [12, 13].
For instance, Chaurasia et al. [14] proposed a depth-
based synthesis using planar superpixel patches [15].
Matzen et al. [16] used two spherical cameras to syn-
thesize an omni-directional stereo panorama. Recently,
Riegler and Koltun [17] synthesized new views via neu-
ral textures atop a Delaunay reconstruction of sparse
points obtained from video of static scenes. Beyond
surface geometry, NeRF [18] performs an expensive op-
timization to create a volumetric function that is then
rendered to synthesize new views.

Solving problems in the gradient domain can help
too; for instance, to achieve smoother interpola-
tions [19] or to densify sparse scene points. Holyn-
ski and Kopf spatio-temporally propagate sparse depth
samples in a single view by solving a Poisson prob-
lem [4]. This method relies on camera motion to detect
depth edges, which limits it to static scenes. Inspired
by gradient domain approaches, we formulate a varia-
tional approach that jointly enforces depth smoothness
and consistency, color smoothness and consistency, as
well as temporal consistency. Our approach addition-
ally works with multiple potentially-dynamic cameras,
and introduces a view-consistency term to ensure geo-
metric consistency between views.

Deep learning can also be employed for static scene
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IBR. This includes plane sweep volumes [20] and
multi-plane images to interpolate between two static
narrow-baseline views [21] or between multiple views at
once [22, 8], appearance flows to generate novel views
from a single image of isolated objects [23], and light-
field view interpolation [24]. Hedman et al. [25] use
a geometric proxy and learn blending weights between
view reprojections using a CNN. To improve the qual-
ity around depth discontinuities, Choi et al. [26] use a
3D uncertainty volume as a proxy and neural network-
based patch refinement. Srinivasa et al. [27] train a
CNN to predict a light field from a single image for
small-baseline view synthesis. Similarly, Song et al. [28]
synthesize new views from a single image of a static
scene using deep learning.

While these techniques were not designed for videos
and so neither explicitly maintain temporal consistency
nor are constrained by speed, we nevertheless com-
pare our approach to relevant methods for static scenes
taken frame by frame.

Dynamic scene VBR For dynamic scenes, please
see dos Anjos et al. [29] for an exhaustive survey on
video-based rendering (VBR) techniques. The need for
controlled capture setting is shared by many methods.
Zitnick et al [30] use a specific system of 8 cameras
combined with segmentation based stereo to extract
the geometry. Similarly Wilburn et al. [31] use an ar-
ray of 100 tightly-packed cameras. Broxton et al. [32]
describe a custom camera array of 46 synchronized
cameras mounted on a dome used to capture 6DoF
wide-baseline light field videos. Guo et al. [33] relight
video with a set up of 331 light sources and 90 cameras,
while Collet et al. [34] require 106 cameras. In a less
constrained way, Pozo et al. [35] create a 16-camera
rig to reconstruct 360 panoramic videos and synthesize
new views. Penner and Zhang [36] use a soft volumet-
ric representation for narrow baseline IBR to enforce
smooth reconstructions. This method can handle mo-
tion, but has trouble handling unstructured data and
works best from camera arrays. Our method also works
with handheld cameras.

Casually-captured videos have also been considered.
Ballan et al. [37] allow for quick transitions between
handheld video sequences. Their method segments a
single dynamic foreground subject approximated by a
planar proxy, and creates a 3D reconstructed static
background. To cope with dynamic background ob-
jects reprojecting incorrectly, the method blurs back-
ground transitions between captured viewpoints. Our
method assumes no segmentation nor planarity as-
sumptions for dynamic objects. Lipski et al. [38] use
dense correspondence fields to interpolate views be-

tween videos. They disambiguate matches in difficult
cases by manually drawing correspondence lines on im-
age pairs to use as priors in their matching algorithm.
Mustafa et al. [2, 3] reconstruct isolated moving ob-
jects after segmenting them out from the initial video.
These methods focus on specific object meshes, and so
do not provide re-rendering of an entire scene from a
novel viewpoint.

Recently, Luo et al. [39] introduced a consistency
term by fine tuning a neural network to improve the
estimated depth per point. This works for a single
camera with no or limited dynamic motion. Bansal
et al. [40] use foreground and background extraction
together with a self-supervised CNN based composi-
tion operator, and Yoon et al. [41] use deep learning to
extrapolate new views from a single monocular video
camera; we compare our approach to this method.

Outside of NVS, other video reconstruction tasks
raise consistency questions. Vo et al. [1] used a spatio-
temporal bundle adjustment technique and human mo-
tion priors to reconstruct actor performances by tem-
porally aligning videos at sub-frame precision. Bao et
al. [42] using deep learning for consistent video super
resolution. Finally, Davis et al. [43] recovered depth in
dynamic scenes by unifying structured light and laser
scanning into a space-time stereo framework.

3 Method

Our algorithm takes as input a set of casually-
captured synchronized videos. We also provide the
focal lengths for a pair of cameras (required by Open-
MVG [44]), while the remaining focal lengths are es-
timated automatically by our algorithm. Our method
proceeds in two steps (Figure 1):

1. Camera pose estimation and 3D scene
points. We perform a three-step structure from
motion reconstruction to provide both the set of
camera poses and a set of sparse 3D points for each
time step (Section 3.1).

2. Novel depth and novel view rendering. We
densify the sparse points into a depth map and
render a new virtual camera frame by optimizing
a coarse-to-fine variational formulation while en-
forcing spatio-temporal consistency (Section 3.2).

3.1 Camera pose estimation and 3D scene points.

Let us consider a set of S synchronized video views
of a dynamic scene, each composed of T frames. We
call I = {Is,t|s = 1, ..., S; t = 1, ..., T} the set of all
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frames indexed by s (camera index) and t (time step).
At each frame, via SfM, we recover the camera parame-
ters Cs,t consisting of the intrinsic matrix and extrinsic
rotation and translation matrices, and a set of sparse
3D points for each time step. First, we efficiently re-
cover a set of camera poses for all frames. In contrast
to other methods [37, 2, 3], we estimate poses without
an explicit dynamic object segmentation step. Second,
we recover 3D points by solving a per-timestep SfM
problem without a complex temporal reconstruction.
We solve each SfM problem with an a contrario algo-
rithm [45]. This automatically adapts thresholds to the
input data instead of using global thresholds, which is
more flexible to different inputs.

Efficient camera pose estimation A straightfor-
ward approach for accurate SfM is to solve a problem
across all frames simultaneously, but this can be ex-
pensive and memory prohibitive. A second approach
might consider solving only between consecutive time
steps, but this is known to produce camera position
drift [46]. Instead, we take a coarse-to-fine approach.

We begin by computing SfM across keyframes at ev-
ery κ time steps of each video. We detect and match
SIFT keypoints within this subset and then simultane-
ously solve for all camera poses and 3D points. Then,
we refine our estimate with a second SfM that only
matches keypoints between successive frames of the
same camera view, with previously-estimated camera
poses held fixed. This considers every frame of ev-
ery video, but we only match Is,t to Is,t+1, and not
to Is+1,t or Is+1,t+1. To recover smooth camera paths
per view, we add two additional penalty terms to the
bundle adjustment:

w(t− t′) ‖Cs,t − Cs,t′‖2, t− 3 ≤ t′ ≤ t+ 3 (1)

and

w(t− t′) ‖As,t −As,t′‖2, t− 3 ≤ t′ ≤ t+ 3, (2)

where w(t−t′) is a Gaussian weight function, Cs,t is the
center of each camera pose, and As,t is the angle-axis
representation of the rotation matrix Rs,t. This second
SfM reduces computation time over all-pairs matching
while still reducing drift by constraining the frame-to-
frame pose estimates by the keyframe pose estimates.
For hyperparameters, smaller κ will increase processing
time, while larger κmay make it more difficult to match
fast camera motion. We found κ = 20 to be a good
compromise in our test sequences.

3D scene points To recover 3D points across the
scene, we solve a keypoint reconstruction problem that

is independent per time step. Taking as fixed the recov-
ered camera poses for each video frame, we match 2D
keypoints between frames with the same timestamp,
then reconstruct a set of sparse 3D points per time
step. This is our key to handling dynamic scenes: as 2D
keypoints are not matched in time, moving objects are
correctly recovered in space even if their motion makes
matching over time difficult. However, this knowingly
produces temporal inconsistencies; we will recover from
these errors in novel view synthesis where it is easier
to enforce consistency (Sec. 3.2).

Post processing Finally, we increase the density of
our point matches using PatchMatch [47], as proposed
in the OpenMVS1 and COLMAP2 [48] frameworks.
This process splats points to each view and assigns col-
ors to the 3-D point cloud.

3.2 Novel depth and novel view rendering

Our SfM recovers a set of camera poses and an RGB
3D point cloud per time step. However, at this stage of
our algorithm, projecting these points to a novel view
still leaves large regions of empty space. To synthesize
more realistic views, we diffuse these points in depth
and RGB in the new view in image space while enforc-
ing spatio-temporal constraints.

Notation We will often warp the content of a frame
I∗ into the domain of the novel view It: this reprojec-
tion is computed using the extrinsic and intrinsic pa-
rameters of both reprojected frames and virtual cam-
era, as well as the depth map D with values d as-
sociated to each pixel. We will denote it Iproj∗ (x) =
I∗(C∗C

−1
t (xt, dt)), where C−1(x, d) is the image plane

to world coordinate system transformation of the pixel
location x given its depth value d. We also denote by ·̂
a sparse map. The sparse depth map obtained by pro-
jecting the sparse point cloud into frame t of the new
virtual camera path is then D̂t and its corresponding
sparse color image Ît.

Algorithm progression We wish to warp a frame
Is,t to the novel view It to be blended into a final novel
view. For this, we need both the estimated camera
poses and the dense depth maps Dt, which are yet to
be computed. But, to properly constrain the diffusion
of the sparse depth values D̂t, recovered in Sec. 3.1,
we need RGB information from the virtual camera’s
point of view. Thus, we jointly solve for the depth

1https://github.com/cdcseacave/openMVS
2https://colmap.github.io/
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Figure 2: Top row: Sparse reconstructed 3D points
(left) and their weights wD̂ (right) projected into the
virtual view. Red indicates areas of empty space; depth
map is bright green in far depth regions. Bottom row:
Points diffused into a full depth map D (left) accord-
ing to the weight map wD (right). Note how the how
the color edges are correctly identified via Eq. 5, and
how the occluded points from behind the head of the
character on the left are given no weight by Eq. 6 (top
right) and so do not corrupt the depth.

maps Dt and color images It by minimizing the energy
functional:

E = ED + EI . (3)

The functional relates terms constraining the depth
map (ED) to terms constraining the color image (EI)
by weights that guide the diffusion process. We solve E
iteratively: we first solve for the depth map Dt while
fixing the color values It, and then conversely we fix
the depth values and solve for color. This avoids hav-
ing to solve a nonlinear system of equations, and lets
us use slightly-improved depth values to warp the in-
put frames at each step. This betters the estimate of
the rendered RGB image, which in turn constrains the
diffusion of the depth.

Depth diffusion We project the sparse point cloud
into the novel view, creating the sparse depth map D̂t

as an initialization. Then, we densify it by minimizing
the following energy:

ED =

∫
x∈Ω

wD(x, t)‖∇Dt(x)‖2dx

+λPC

∫
x∈Ω

wD̂(x, t) ‖Dt(x)− D̂t(x)‖2dx.

(4)

The first integral is a smoothness term controlled
by weight wD. We wish diffusion to decrease around
color edges to produce sharp results. We also wish
diffusion of depth values to increase when the colors

from reprojected input views are similar. As such, we
define wD as:

wD(x, t) =
1

‖∇It‖2
∑n
s=1 σ

s
vis(x, t)

n∑
s=1

wsP (x, t), (5)

where 1/‖∇It‖2 modulates depth diffusion around color
edges, and 1/

∑n
s=1 σ

s
vis(x,t) is a normalization factor that

accounts for each pixel’s visibility in the novel view. As
both the visibility term σvis and the projection weight
wsP pertain more to the color diffusion process, we will
defined them later on in Eq. 8.

The second integral reduces the weight of sparse 3D
points that are occluded from the point of view of the
virtual camera or are erroneously reconstructed. For
this, we relax the constraint of Dt where it exactly
matches the projected sparse point cloud:

wD̂(x, t) = exp

(
−‖Ît(x)− It(x)‖2

2σ2

)
. (6)

In Figure 2, we show example weight maps wD̂ and
wD that govern the depth diffusion process, as defined
in Eqs. 5 and 6.

There are three parameters in this diffusion pro-
cess: σ controls the soft occlusion tolerance, and we set
σ = 0.075 in all our experiments; the sparse point cloud
attachment weight λPC , which we set in the range
λPC = 0.25–2; and the temporal consistency term set
in the range λT = 0.01–0.1.

Color diffusion Given depth map Dt, we initialize
the RGB image to a projection of the color in the input
point cloud. Then, we densify it by minimizing the
following diffusion energy:

EI =

∫
x∈Ω

‖∇It‖2

+

n∑
s=1

∫
x∈Ω

λPw
s
P (x, t)‖It(x)− Iprojs,t (x)‖2dx

+

n∑
s=1

∫
x∈Ω

λGw
s
P (x, t)‖∇It(x)−∇Iprojs,t (x)‖2dx

(7)

The first integral encourages smooth gradients over
the intensity of the novel view, which aids blending of
the projected input images especially along their bor-
ders. The second integral constrains the RGB intensi-
ties and It to be close to the intensities of Iprojs,t , and the
third integral constrains the RGB gradients similarly.
They are both modulated by the weight

wsP (x, t) = σsvis(x, t) exp

(
−
‖Iprojs,t (x)− It(x)‖2

2σ2

)
,

(8)
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Figure 3: Four closest input images Is,t projected onto the virtual camera’s view point alongside their corresponding
weight maps wP (Eq. 8).

Figure 4: Top row: Color image It−1 and depth map
Dt−1 of a previous time step. Bottom left: It−1 repro-
jected to the camera view by Dt−1 of the current time
step. Bottom right: Weight map wT (Eq. 11) modu-
lates consistency, notably around the moving mouth of
the character on the left.

which measures the agreement of each warped input
frame with the novel view. Figure 3 shows a set of
warped input frames along with their weight maps wsP .

wP incorporates visi-
bility term σsvis(x, t) that
is 1 for a given pixel x
of the novel view It only
if, out of every pixel that
is projected to the same
pixel location in an in-
put image Is,t, x has the
smallest depth value d in

the input image’s coordinate frame.

The color diffusion relies on two new parameters:
λP and λG balance the weight over the data and the
gradient equality constraints. We set them both in the
range 5–20. σ and λT serve the same function and
values as in the depth map diffusion.

3.3 Temporal consistency

We enforce temporal consistency within novel views
by additional terms in ED and EI . With slight abuse
of notation:

ED = · · ·+ λT

∫
x∈Ω

wT (x, t) ‖Dt(x)−Dproj
t−1 (x)‖2dx,

(9)

EI = · · ·+ λT

∫
x∈Ω

wT (x, t) ‖It(x)− Iprojt−1 (x)‖2dx.

(10)

These terms constrain depth Dt to remain similar
to the warped previous depth dt−1, and for color It
similarly. This constraint is relaxed by a weight

wT (x, t) =
1

n

n∑
s=1

exp

(
−
‖Iprojt−1 (x)− Iprojs,t (x)‖2

2σ2

)
(11)

for pixels for which an agreement in color was not
reached. This is expected in regions containing motion
because the depth values of frame t−1 may be invalid,
as is the case around the mouth of the character on the
left in Figure 4. wT allows the computation of depth
and color values of these pixels to rely more freely on
the other terms of the functional, like the data term of
the depth or the color of the warped input images.

3.4 Implementation details

To avoid using input frames that are far away from
the novel camera’s view, we rank each input camera
based on its distance from the novel camera according
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to the following formula:

rF (s)=
1

‖Ct − Cs,t‖2
exp

(
−

arccos ((tr(RtR
T
s,t)− 1)/2)

2πσ2

)
(12)

This penalizes frames that are either far in center or in
viewing direction from the novel view. Then, we use
the first n = 4 ranked input frames to minimize the
functional Eq. 3.

For efficiency, we also proceed in a multiscale fash-
ion: we solve for depth and color at a coarse resolution,
and then use these to initialize a finer resolution—our
lowest level is 1/64 of the original frame size. Finally,
we also proceed in a streaming manner: we reproject
the previous frame’s depth and color (denoted as Dproj

t−1

and Iprojt−1 ) into the current virtual camera pose for use
within the temporal consistency constraint.

4 Experiments and Results

4.1 Dataset Sequences

Real-world existing dataset We exploit existing
datasets used in the context of novel view synthesis,
all of them captured using camera arrays:

• Jumping [41]: A group of four people jump (12
cameras).

• Skating [41]: A person rides a skateboard (12 cam-
eras).

• Playground [41]: A person flies a dinosaur balloon
(12 cameras).

• Umbrella [41]: A person opens and rotates an um-
brella (12 cameras).

• DynamicFace [41]: A person of making faces (12
cameras).

• Breakdancers [30]: A person break dancing in
front of 4 people (8 cameras).

Custom dataset We test our algorithm on three
100-frame real world sequences that we acquired each
with five cameras at 1920×1080 resolution. The cam-
eras were hand held or set on tripods (Canon Rebel
EOS T7i). We additionally generate a synthetic se-
quence using 11 input cameras to compare to ground
truth RGB and depth estimation from a 12th camera.
Our sequences are:

• Cat and dog: Two pet animatronics,

• Minions (synthetic): a rendering of two characters
laughing behind a table,

• Elephant wiggle: A puppet hanging by a wire, and

• Drone: A drone hanging by a wire.

Figure 5 shows rendered frames from novel views
and corresponding depth maps for the Cat and dog,
and the Elephant wiggle sequences. While some arti-
facts remain in the depth video, the generation of the
final novel view RGB rendered sequence is robust to
these and has fewer artifacts. Note that the borders of
the view partially appear blurry when there is insuffi-
cient field of view overlap between input videos.

4.2 Ablation study

We ablate our SfM method using the synthetic
dataset with moving objects, where points are known
to be either static or dynamic (Table 1). We compared
the recovered pose over 30 timestamps and 11 cameras.
First, we compare against a naive SfM approach that
solves for all frames simultaneously without considera-
tion of dynamic objects. Next, some methods rely on
segmenting out moving objects to cope with dynamic
scenes [2, 3]. To compare to this idea, we created a
segmentation-based SfM baseline from the naive SfM
by performing reconstruction only from points that are
known to be static using perfect ground truth masks.
While the segmentation slightly aids the recovery of
camera positions, its positive effect is not clear on the
3D reconstruction, even though the dynamic object
segmentation is a pixel accurate ground truth. Against
both baselines, our method can make better use of dy-
namic points to more accurately recover scene points.
Finally, we compare against the non-smoothed camera
path version of our approach. While the rotation error
decreases, the positional error slightly increases. Over-
all, we found smoothing to provide better final results.

4.3 Novel depth and view comparisons

We compare our method to four recent methods, in-
cluding deep-learning-based methods requiring exter-
nal training databases: Deep Blending [25], Local Light
Field Fusion [22], Extreme View Synthesis [26], and
MonoCam [41]. Furthermore, we use the Breakdancers
scene to compare to the results provided by two older
methods [30, 38] that best match our intended setup.
Each of these methods work with different numbers of
input views and require different amounts of process-
ing time. Some of these methods are only intended for
static scenes, and so we would expect them to produce
temporally inconsistent results. Table 2 summarizes
these properties. In this paper, we extract frames to il-
lustrate the comparisons; please see the accompanying
video to better evaluate the differences.

7



Figure 5: Color and depth results for Cat&dog and Elephant-wiggle scenes.

Method Pos. error (mm) Orient. error (◦) Median Mean reproj. error (pix)

Naive SfM 0.045 2.181 0.080 0.148
Naive SfM from static objects only 0.044 2.149 0.079 0.141
Our SfM without path smoothing 0.045 2.187 0.074 0.144
Our SfM 0.045 2.180 0.074 0.144
SfM with Ground Truth Poses 0 0 0.079 0.149

Table 1: Ablation Study. We compare estimated camera pose accuracy for naive SfM, naive SfM using a ground
truth mask for the static parts of the scene, and an ablated version of our space time SfM without camera
smoothing. While adding smoothing slightly has little effect on the positional error, it reduces orientation error.
Our approach also minimizes the median reprojection error of the feature points. SfM minimizes reprojection errors
by construction which explains why using ground truth camera poses increases reprojection errors, but results in
perfect camera poses by construction.
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Figure 6: Rendering Ablation Study. We show our rendered result without temporal consistency (1st column),
without weights on the projected sparse 3D points (2nd column), without depth weights and inverse image gradients
(3rd column), only without inverse image gradients (4th column), without weights on the projected input images
(5th column), together with the full result (6th column) and the groundtruth (7th column), for both the depth
(first row) and the color view (2nd row).

Ours DB [25]

Figure 7: Comparison with Deep Blending [25] on the
Cat-Dog and Elephant-wiggle sequences.

Static—Deep Blending [25]. We compare our
rendering method with Deep Blending(DB) [25] which
learns optimized weights for blending 4 layers of mosaic
images where the first layer is composed of the best fit-
ting pixels, the second the second best etc. based on
a heuristic. For the comparison, we first reconstructed
each scene separately for each time step as described in
their method. Afterwards, to be able to use the same
camera path as for our results, we registered each time

step to our full space-time reconstruction based on the
camera positions. Finally, we used the pre-trained net-
work provided by the authors to render each frame.
Figure 7 shows DB not always being able to reconstruct
marginal parts of the scenes, moreover our results ap-
pear sharper.

Static—Extreme View Synthesis [26]. Figure
8 shows a comparisons with Extreme View Synthesis
(EVS) [26]. As input, EVS receives our SfM results.
As expected, it exhibits flickering since this method is
designed for static scenes and does not enforce tempo-
ral consistency. In addition, EVS cannot handle high
resolution input because of its intense memory usage;
we had to lower the resolution of the input video from
1920×1080 to 1280×720. For the same reason we also
could not increase the depth resolution of its scene re-
construction step, which leads inaccurate depth maps
and thus severe ghosting in the effected areas.

Static—Local Light Field Fusion [22]. Fig-
ure 9 shows a comparison with Local Light Field Fu-
sion (LLFF) [22]. As input, LLFF receives our SfM
results. Since our 3D reconstruction is left noisy by
design, which is not expected by this method, we fixed
the minimum and maximum depths to known correct
values LLFF can use for its Multi-Plane Image com-
putations. This reduces the flickering in their video,
but it does not eliminate it completely. Our result also
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Method Scenes Min. Views Training Time Preprocess time per
frame

Render time Figure #

Deep Blending [25] Static 4 37 h training 8 h real time 7
LLFF [22] Static 6 ? 10 min real time 9
EVS [26] Static 2 ? 10 min 98 sec 8
MonoCam [41] Dynamic 1 Authors’ results, no timing info 10
VI [30] Dynamic 8 no timing info real time 11
VVC [38] Dynamic 5 partially manual real time 11
Ours Dynamic 4 2 min 6.8 sec 7–11

Table 2: Comparisons regarding scene type, minimum number of input views, and speed. LLFF and EVS use
pre-trained networks, so we did not re-train them.

Ours EVS [26] Ours EVS [26] Ours EVS [26]

Figure 8: Comparison with Extreme View Synthesis [26] on the Cat-Dog, Jumping and Elephant-wiggle sequences.
Our method produces fewer artifacts than EVS.

appears sharper and with less ghosting artifacts. Since
LLFF requires at least 6 cameras to work, we could
only compare on the 12-camera dataset sequences.

Dynamic—Monocam [41]. Figure 10 shows a
comparison with Monocam [41]. Here we use the re-
sults given by the authors directly for the comparison.
It is important to note that the sequences provided by
the authors differ slightly from the ones used in the
corresponding paper [41] and for which we have the re-
sults. For instance in the skating sequence, the skater
is doing hand gestures in the provided input sequence
contrary to the published processed result. This nev-
ertheless allows qualitative comparisons. This figure
shows that dynamic background objects like the plants
in the umbrella sequence appear static if the virtual
camera is static and are not consistent if the virtual
camera is dynamic. Monocam results also exhibit tem-
poral coherence artifacts. For instance, the reflections
in the jumping and skating sequences jump back and
forth based on which view was used to render them.
Please see these in the accompanying video.

Dynamic—View Interpolation, Virtual Video
Camera [30, 38]. Figure 11 shows a comparison
with View Interpolation (VI) [30] and Virtual Video
Camera (VVC) [38] methods. We approximately re-
produced the camera path of the video provided by

the authors for the Breakdancers scene for this compar-
ison. While VI requires a fixed and calibrated camera
grid, our method can handle hand-held devices. VVC
eliminates these restrictions, but relies on user input to
correct correspondence matches.

4.4 Challenging Sequence—Drone

This sequence shows a quadrocopter drone (Figure
12). The drone has many thin features: the chassis,
the fan blades, and exposed wires between battery and
motors. Here, if our stereo reconstruction fails to find
feature points on or nearby thin features at the correct
depth, then our consistent propagation cannot provide
the correct depth. As such, we see ghosting effects.

4.5 Computational Resources

We implemented our system in C++ on a In-
tel(R) Xeon(R) CPU ES-2630 v3 @2.4GHz computer.
We used the OpenMVG library to compute Struc-
ture from Motion and sparse depth maps; and both
OpenMVS and COLMAP to compute the PatchMatch-
based sparse depth map post processing (Section 3.1).
We parallelize the code using OpenMP and run on 32
cores; the rendering algorithm loads up to 2GBs of data
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Ours LLFF[22]

Figure 9: Our method (left) in comparison with Local
Light Field Fusion [22] (right) on the Jumping, Play-
ground, Umbrella and Skating sequences.

per frame. As an example of wall-clock time, it took
2.2 hours to process the elephant-wiggle sequence (5
cameras, 100 frames per camera). The computation
time breaks down to camera and sparse depth estima-
tion (2 hours), and the rendering itself (6.8s per frame,
11.3 minutes for the whole video).

5 Limitations

Our method has several limitations. First, our
choice of the OpenMVG library [44] for computing
the SfM has the drawback that we must provide fo-
cal lengths for a pair of cameras to initiate the recon-
struction process. Second, our method requires that
the video sequences should have enough texture on the
objects and in the background such that enough SIFT
keypoints can be detected and matched. Another lim-
itation lies in the amount of motion in the frame: con-
ceptually, if SIFT keypoints are only detected on mov-
ing objects, then camera pose estimation will fail. In
practice, we did not find this to be a problem. Further-
more, if the baseline is too wide, then not enough points
will be obtained on moving objects and the depth prop-

agation will fail. Finally, our optimization has param-
eters that can be tuned for each sequences; we provide
reasonable initial values (Sec. 3.2), but tweaking can
improve quality.

Finally, our current implementation is unoptimized
C++ running on a CPU. Even if we optimize the im-
plementation, one bottleneck is that keypoints from
several images must be matched, and this is time con-
suming. If we consider SfM as an offline task to be
performed once per scene, then the view rendering
part currently takes 7 seconds per frame. Given the
fixed grid, GPU-based diffusion optimizers are possible,
which would produce a much more application-friendly
render time.

6 Conclusion

We introduce a novel view synthesis method which
can handle dynamic scenes. It is based around the
key insight that reconstructing temporally-consistent
3D points on dynamic objects is hard, yet a structure-
from-motion reconstruction method need not be tem-
porally consistent if temporal consistency can be en-
forced in the rendering algorithm. We show that this
can be accomplished by deferring consistency to a vari-
ational screen-space formulation, which makes it easy
to robustly enforce spatio-temporal consistency via re-
projection constraints weighted by confidences. While
our setting has some restrictions, we show competitive
results against existing baselines for video-based ren-
dering without using any learning-based approaches.
In the future, we hope to reduce constraints in camera
motions and temporally with asynchronous videos.
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