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ABSTRACT
The Internet of Things (IoT) is constituted of devices that are expo-
nentially growing in number and in complexity. They use numerous
customized firmware and hardware, without taking into considera-
tion security issues, which make them a target for cybercriminals,
especially malware authors.

We will present a novel approach of using side channel informa-
tion to identify the kinds of threats that are targeting the device.
Using our approach, a malware analyst is able to obtain precise
knowledge about malware type and identity, even in the presence
of obfuscation techniques which may prevent static or symbolic
binary analysis. We recorded 100,000 measurement traces from an
IoT device infected by various in-the-wild malware samples and
realistic benign activity. Our method does not require any modifi-
cation on the target device. Thus, it can be deployed independently
from the resources available without any overhead. Moreover, our
approach has the advantage that it can hardly be detected and
evaded by the malware authors. In our experiments, we were able
to predict three generic malware types (and one benign class) with
an accuracy of 99.82%. Even more, our results show that we are able
to classify altered malware samples with unseen obfuscation tech-
niques during the training phase, and to determine what kind of
obfuscations were applied to the binary, which makes our approach
particularly useful for malware analysts.

CCS CONCEPTS
• Security and privacy→Malware and its mitigation.
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1 INTRODUCTION
IoT world is growing at a breathtaking pace, from 2 billion objects
in 2006 to a projected 200 billion by the end of 20201, which is
approximately 26 smart objects for every human being on Earth.
Naturally, they are increasingly targeted by cyber criminals due
to their occurrences, availability, and the ability to use infected
devices for further attacks on their architecture.

IoT devices are given higher processing power, and some of
them are running fully functional operating systems (OS) with
multi-core processors. This increases the attack surface by making
them vulnerable to similar threats as general purpose computers,
in particular, malware exploitation.

Analysis systems relying on static and dynamic features still
have various drawbacks for malware analysts. In particular, static
features can be easily manipulated by packing or obfuscating tech-
niques [26], whereas dynamic software-based monitoring may be
detectable (e.g. by sandbox fingerprinting [37]) to terminate the
malware execution, and thus hinder the possibility of behavioral
analysis [1]. Moreover, unlike computer systems and servers, em-
bedded cyber physical system may not have enough resources or
accessibility to allocate to malware analysis solutions. All these
factors make it difficult for malware analysts to automatically gain
proper information about collected malware samples (i.e. nature,
evolution, etc.) to be able to mitigate the security risks.

In this paper, we concentrate on the ElectroMagnetic (EM) field of
an embedded device as a source for malware analysis, which offers
several advantages. In fact, EM emanation that is measured from
the device is practically undetectable by the malware. Therefore,
malware evasion techniques cannot be straightforwardly applied
unlike for dynamic software monitoring. Also, since a malware
does not have control on outside hardware-level events (e.g. on EM

1https://www.intel.com/content/www/us/en/internet-of-things/infographics/guide-
to-iot.html
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emanation, heat dissipation), a protection system relying on hard-
ware features cannot be taken down, even if the malware owns the
maximum privilege on the machine. Therefore, with EM emanation
it becomes possible to detect stealthy malware (e.g. kernel-level
rootkits), which are able to prevent software-based analysis meth-
ods. Another advantage is that monitoring EM emanation does not
require the alternation of the device in order to analyze it. In other
words, it does not rely on device architecture and OS or without
any computational overhead.

Previous works using EM emanation and power consumption
investigated the detection of malware [2, 20, 31], abnormal be-
haviour [36], or distinct control flow tracking [38]). These works
are in very constrained and static systems (in the case of anomaly
detection) and mostly analyzed only laboratory-grown malware
samples without any variations. This naturally raises the question
of realistic evaluation:

What happens if the executable from embedded devices is perform-
ing malicious behaviors under obfuscation?

While malware detection concerns with the process of detecting
the presence of malware whether a specific program is malicious or
benign [18], malware classification refers to the process of distin-
guishing the unique types of malware from each other based on the
identified malicious patterns. In this work, we derive a framework
that is capable to classify real-world malware samples including
protection mechanisms against static and dynamic malware anal-
ysis using only EM emanation from the device. Furthermore, we
aim at classifying into malware types, family, possible protection
mechanism, previously unseen variants, or even distinct executable
classification, which makes our framework particularly suited for
malware analysts.

Our analysis consists of three main phases:

(1) Malware execution and measuring EM emanation: Within
our secured and randomized setup, we execute the malware
sample while measuring EM emanation from the outside of
the device without manipulating any internal behavior.

(2) Data analysis and preprocessing: The raw captured measure-
ment traces include a large amount of noise. Thus, we anal-
yse our data by the time-frequency domain, and select most
suitable frequency bands.

(3) Malware classification: Given the 2D data, we derive deep
neural models and compare them to more simplistic machine
learning algorithms.

Our malware selection encompasses three types, which are ac-
curately representing malware targeted on IoT devices in the wild:
DDoS, ransomware, and kernel rootkits. To be compliant with real-
world scenarios and to investigate the robustness of our approach,
we extend our dataset by applying various software analysis pro-
tection mechanisms to the malware binaries. Including obfuscation
techniques gives us new outcomes that have never been studied in
the state-of-the-art. First, we determine if code obfuscation tech-
niques (e.g. code rewriting, camouflage instructions, ...) can actually
hinder our approach. Second, we derive the robustness of our ap-
proach against unseen malware samples, by creating a scenario
where our system tries to predict samples with unknown obfus-
cation. This evaluation is of great importance due to the rapid

evolution of malware variations and obfuscation created by attack-
ers. Finally, we investigate if we are able to predict if an obfuscation
has been applied, and to which technique it belongs.

In summary, this paper makes the primary contributions:
(1) Obfuscated ARM malware. We put in place a represen-

tative set of malicious ARM binaries, on which we applied
various obfuscation techniques. By integrating obfuscation
techniques against software-basedmalware analysis systems,
we are able to determine if these techniques also hinder anal-
ysis based on EM emanation, and if we can distinguish the
applied obfuscation procedures independent on the executed
binary. To the best of our knowledge this has never been
studied before, provides the largest distinct malware sample
dataset, and is crucial for practical malware analysis.

(2) Generic side-channel analysis environment.Our approach
does not make any alteration to the target device. In particu-
lar, we do not require softwaremonitoring, precise triggering,
or any additional overhead on the device. In our experiments,
we use a multiprocessor hardware environment running a
fully-functioning Linux OS to be applicable to realistic IoT
systems in the wild, use a random initialized analysis envi-
ronment, and “complex” benign activities.

(3) Robust and resistant analysis techniques.We derived a
methodology on how to effectively extract suitable informa-
tion about the binary, taking as input the raw EM traces. Our
approach consists of preprocessing by selecting the most
relevant frequency bands over time and then classifying in
various scenarios with neural network models and simplistic
machine learning models. Results show that our methodol-
ogy is resistant against virtualization, packing, and static
code rewriting.

(4) Experimental scenarios compliant tomalware analysts.
We compile various scenarios, each of them representing a
real world malware analysis use case: type and family mal-
ware classification, exact malware executable profiling, virtu-
alization and packer identification, obfuscation classification,
and the classification of unseen obfuscated variants. These
scenarios go way beyond detection scenarios considered in
the state-of-the-art. Also, using our analysis on obfuscation
we are the first to discuss the difficulties of malware evasion
against our methodology.

(5) Open-source. The resources related to this work are pub-
licly available at https://github.com/ahma-hub/analysis/wiki,
where we provide our source code, datasets, malware classi-
fication models and raw results of our experiments.

2 STATE-OF-THE-ART
One of the first works onmalware detection [7], even though limited
due to its constrained scenario, showed that the collection of power
consumption on medical embedded devices is suitable to detect mal-
ware. [20] presents a malware detection solution by exploiting EM
side-channel signals from embedded devices through Multi-Layer
Perceptron (MLP) to detect handcrafted implementations mimick-
ing malware. A common idea to take advantage of side channel
information to detect anomalies is to observe how the system be-
haves in its normal state, and to raise an alert when a new behavior

https://github.com/ahma-hub/analysis/wiki
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Article SCM
detection

Anomaly
detection

SCM
classification

Real-world
SCM

Real-world
analysis en-
vironment

Samples
size

Varia-
tions

Benign
dataset

Window
size

Open
source Device under test

WattsUpDoc [7] ✓ - - ✓ - 15 - - 5s - Windows XP Embedded
664 MHz

IDEA [19] - ✓ - - - 3 - - <40`s - AT328p 16MHz, Cortex
A8

REMOTE [33] - ✓ - ✓ - 3 - - <10ms - Single-core ARM 1Ghz

Wang et al. [36] - ✓ - - - 1 - - 10s - Raspberry Pi, Arduino,
Siemens PLC

Khan et al. [20] ✓ - - - - 3 - - <150`s - Cyclone II FPGA & NIOS
II soft-processor

DeepPower [12] ✓ - ✓ ✓ - 5 - - 1s - MIPS/ARM
OpenWRT

Chawla et al. [6] ✓ - ✓ ✓ - 137 - ✓ 10s - Android Intrinsyc
Open-Q 820

Our paper (✓)* - ✓ ✓ ✓ 35 ✓ ✓ 2.5s ✓
Multi-core, 900 Mhz

ARM

Table 1: Comparison with related works on side-channel malware (SCM) analysis using EM or power consumption. (*): Our
paper aims at SCM classification, however we also achieve good results in SCM detection scenario (Section 7.2).

is recorded. In [19, 33], the authors propose to detect malware by
observing EM signals. During the monitoring, if the observed EM
emanations deviate from the previously observed patterns, this is
reported as an anomalous or malicious activity. [24] uses Short
Time Fourier Transform (STFT) and Kolmogorov–Smirnov test to
detect anomalies inside and between the loops through peaks in
the EM spectrum. In [31], the authors put a wide-bandwidth radio
frequency probe over the processor of the device and used a support
vector machine to infer on the values of the registers. They monitor
if the hamming distance of the registers deviates from the known
signature, and use this information to detect cyberattacks. In [36],
they use Autoencoders, Long Short-Term Memory (LSTM) units,
and MLP on power consumption data to detect anomalies in the
system. [12] shows an approach to detect malicious activities on
IoT devices via analyzing power side-channel signals using Con-
volution Neural Networks (CNN). The use of physical hardware
information, and particularly side-channel information, represents
a great advance for malware detection. A comparison of the works
using EM or power consumption to analyse malicious activities is
provided in Table 1.

While some of the above-mentioned related works are success-
fully detecting malicious activity, there is a lack of research in the
field on in-the-wild malware detection instead of proof-of-concept
samples that may reflect only particular parts of realistic malware
samples. Even more, none of the related works investigated the
scenario of benign datasets and variants such as packed or ob-
fuscated malware to test the robustness of their system. Except
[6] considered CPU benchmark applications for Android benign
dataset, however, it is very specific stress processes that are easy to
detect and classify rather than a wide-range dataset of cleanware,
long-running programs and device background services. Moreover,
most of these works are using anomaly detection with low sample
size, which has the advantage of detecting unknown threats, but is
generally prone to raise a large number of false positives. Indeed,
anytime a new feature is introduced to the system, it is detected as
malicious. They only exploit an isolated malware execution environ-
ment (e.g. disabled outside connections), or an undefined malware
execution environment, thus prone to evasion techniques and un-
clear if the malware actually executes malicious behaviors. Finally,

none of them, to the best of our knowledge, are able to perform
wide-ranging classification models in real-world malware analy-
sis, i.e., determining precisely the type, obfuscation or variant of
the malware infecting the system, due to their restricted malware
dataset or analysis methods.

3 BACKGROUND ON DATA ANALYSIS
3.1 Feature extraction and transformation
Extracting features within large measurement traces can be a chal-
lenging step. In the field of physical side-channel analysis of cryp-
tographic algorithms, several methods have been published re-
lying on statistical measures such as mean and variance, for ex-
ample, NICV [5], SOST/SOSD [14], the Pearson correlation coef-
ficient [15, 22], TVLA [32]. In our methodology we will rely on
NICV as it is straightforward to implement, time efficient, and
not model-agnostic (contrary to the TVLA). NICV is defined as
NICV(𝑋,𝑌 ) = Var[E[𝑋 |𝑌 ] ]

Var[𝑋 ] with 𝑋 being the recorded data, 𝑌 be-
ing the labels and Var (resp. E) the variance (resp. the expectation).

A popular supervised feature transformation algorithm is the
linear discriminant algorithm (LDA) that finds a linear combination
of features separating two or more classes [16]. LDA explicitly tries
to model the difference between the classes of data which makes it
a suitable preprocessing algorithm in case of large data. Note that
the features are transformed into another feature space such that
original dependencies (shapes, patterns) between feature may be
lost.

3.2 Machine and deep learning models
The Naive Bayes (NB) classifier is based on applying Bayes’ theo-
rem with a strong (naive) independence assumption between the
features. It is further based on a Gaussian distribution assumption,
which is most often not given in practise, but has still shown com-
parable performances in the physical side-channel domain when
revealing secret keys [28]. The strong benefit of NB is its low re-
source requirement, fast computation power, and no requirement
of tunable parameters.

Another popular machine learning classification algorithm is
Support Vector Machine (SVM) [16]. The principle behind the SVM
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is finding hyperplanes that maximize the features’ separation in
classes. Using a kernel trick and transforming features into a higher-
dimensional feature space (e.g. by using the Gaussian radial basis
function), SVM is able to perform nonlinear classification. SVM is
slightly more resource demanding than NB which comes typically
with an increase of classification accuracy [28].

A generic neural network architecture widely used for a variety
of purposes is a MLP. It tends to learn very specific features of the
training data and does not always generalize well on new data. On
the other hand, CNN has been developed specifically for image
processing. They learn high level features of the images instead
of focusing on low level data like MLPs, which makes them more
flexible and less prone to overfit to the training dataset. We will
concentrate in this work on these two architectures.

4 (OBFUSCATED) MALWARE & BENIGN
One of the most important blocks in building malware analysis
systems, is the construction of datasets. In this paper, we aim at
being realistic and to include common obfuscation techniques that
are used by today’s malware designers to avoid detection by hiding
known signature and behavior or by making it more difficult to
reverse engineer. While general purpose computers usually run
on common architectures such as x86, embedded IoT devices are
developed for a broad range of architectures, such as ARM, MIPS,
PowerPC, etc. Major problems related to the diversity of the possible
target IoT environments are described in [11]. This paper, at the
time of writing, currently supports ELF ARM 32-bit architecture
which can be executed properly on Raspberry Pi (see Section 6.1). In
the following, we discuss the creation of our malicious and benign
dataset.

4.1 Malware dataset
To understand the scope of ARM malware on IoT devices, we con-
duct a study on 4,790 32-bit ELF ARM malware samples collected
from Virusign. Thereafter, we extract AV labels for each sample
from VirusTotal reports to obtain malware variant name. To get
normalized labels that can be used for classification, we use AV-
Class. It selects the top ranked corresponding family name through
plurality vote. On collected dataset, AVClass was able to associate
the collected malicious ARM samples to 19 different families. Mirai
(43.5%) and Bashlite (35.8%) dominate the dataset. This result is con-
sistent with previous epidemiologic studies of IoT malware [11, 23].
To construct a representative malware dataset, we use 3 different
well-known malware variants: DDoS (mirai, bashlite), Ransomware
(gonnacry), and kernel rootkits (keysniffer, maK_It). In our study,
we reviewed their codebase to understand their malicious behaviors
described as follows:

Bashlite creates a TCP communication to C&C server, then ex-
changes IRC commands and messages. Control commands and
common behaviours of bashlite consist of scanner, password brute-
force, TCP and UDP Flooding.

Mirai adopted concepts from previously discussed bashlite, with
improved features such as anti-debugging, self-hidden, data obfus-
cation and botkiller which terminates bots from other families.

Gonnacry is an active ransomware variant that is open sourced
in Python and C for research purpose. It finds all files in user’s

home directory, then encrypt those with matching extensions. The
malware starts its encryption routine and creates a desktop file
that will be useful for the decryptor to access the path, key and
IV. We generate multiple malware variants from original gonnacry
by extending with other crypto schemes such as AES and DES, in
addition to the original Blowfish encryption algorithm.

Keysniffer is a Linux kernel module which has functionalities to
hook and record keys pressed in the keyboard events to debugfs.

MaK_It shares the same rootkit ability to keysniffer, with addi-
tion of kernel module self-hidden, packet sniffer and reverse-shell
backdoor.

4.2 Obfuscation
Malicious codes commonly use packers, obfuscators, and polymor-
phism to hinder static-analysis and evade detection by making
analyses difficult to reverse-engineer. Collberg et.al [10] defines

obfuscating transformation as follows: Let 𝑃
T−→ 𝑃 ′ be a transfor-

mation of a source program 𝑃 into a target program 𝑃 ′. 𝑃
T−→ 𝑃 ′ is

an obfuscating transformation if

(1) 𝑃 and 𝑃 ′ have the same observable behavior,
(2) 𝑃 ′ is harder to analyze than 𝑃 , and
(3) 𝑃 ′ is no more than polynomially slower than 𝑃 .

More precisely, in order for 𝑃
T−→ 𝑃 ′ to be a valid obfuscating

transformation, the following conditions must hold: if 𝑃 fails to
terminate or terminates with an error condition, then 𝑃 ′ may or
may not terminate. Otherwise, 𝑃 ′ must terminate and produce the
same output as 𝑃 .

Previous research classifies code obfuscation schemes into three
main categories: data obfuscation, static code rewriting, and dy-
namic code rewriting. We use combinations of obfuscation trans-
formations to enrich our datasets with static code rewriting that
consists of Opaque predicates, Bogus control flow, Instructions substi-
tution and Control-flow flattening, and dynamic code rewriting such
as Packer and code Virtualization. To evaluate the robustness of our
methodology and to explore possible protection techniques against
side-channel monitoring, we apply state-of-the-art packers and
obfuscators like UPX [25], Tigress [9], and Obfuscator-LLVM [17].

4.3 Benign dataset
The selection of a benign dataset is important to not only increase
the difficulty of detection but also ensure the quality of classifica-
tion. The benign samples must generate random activities such as
computations, background processes with malware-free, or usual
activities on embedded IoT devices. We generate benign datasets
by collecting ARM executables from a fresh installation of Linux
system. This similar approach of constructing benign dataset has
been conducted from other generic malware studies [3, 21] outside
from EM analysis. Furthermore, we complement benign executa-
bles under a layer of UPX packer to blend benign samples with
packer. Additionally, the usual benign activities for an embedded
IoT device such as Linux utilities, device sleep, photo capture, net-
work connections, as well as long duration of executable runtime
such as media player, camera capture, video encoder, data backup,
data (de)compression (Table 2). This collection varies from short
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Activities Executables

mknod vdir more find
zgrep ls cat findmnt
zmore as ed rm
touch dmesg sleep cd

Linux Utilities

less grep objdump
Network wget hostname ss ip

gunzip bunzip2 bzip2 tarCompression uncompress
Data backup dd
Scripting python
Photo & Video raspistill raspivid
Video Encoding MP4Box
Audio player mpg321

Table 2: Linux binaries and activities used in benign dataset

to long duration of executable runtime, and from low to high CPU
consuming processes.

Notably in previous studies using EM emanation, the construc-
tion of benign dataset is not considered, or benign activity is only
associated with either free-malware activities or benchmark soft-
ware [6, 19, 24, 33, 35]. It simplifies detection drastically and is not
realistic where malware, update services as well as IoT activities
may share the same behaviors by calling executables from system
and third parties.

5 REAL-WORLD MALWARE ANALYSIS
FRAMEWORK

We propose a malware classification framework that takes as an
input an executable and outputs its predicted label by solely relying
on EM side-channel information. Figure 1 illustrates our workflow,
which will be detailed within the next subsections. First, we define
our threat model and we collect EM emanation while the malware
is executed on the target device. We setup an infrastructure to be
able to execute malware with a realistic user environment while
preventing any infection of our host controller system. Thereafter,
as the collected data is very noisy, a preprocessing step is required
to isolate relevant informative signals. Finally, using this output,
we train neural network models and machine learning algorithms
in order to classify malware types, binaries, obfuscation methods,
and detect if an executable is packed or not.

5.1 Threat model
In general, malware analysts gather sets of malware from online
feeds of intrusion detection systems and community database. In
this threat model, malware analysts possessed real-world malware
sets and physical target devices. Real-world malware feeds presum-
ably contain unknown variants which exploit evasion techniques
and attack a wide range of Linux device (e.g. Mirai variants ac-
tively infect Linux IoT devices and obfuscate its encoded strings).
By leveraging the combination of bare-metal analysis and EM (Fig.
1), it avoids the necessity of software analysis tools update such as
sandbox, hooking and anti evasion techniques. Moreover, malware
analysts are fully able to control and customize their analysis en-
vironment in the most advantageous way by simulating network

Data acquisition

Dataset variations
Dataset

generation
Synthetic user
environment

Dynamic malware execution Data storageEM

Data preprocessing

SpectrogramFeatures selection Time domain

STFT

Malware classification

MLP CNN

SVM NB

Figure 1: Illustration of our complete malware classification
framework. (i) Data acquisition: from malicious binary exe-
cution to (noisy) EMmeasurements; (ii) Data preprocessing:
from (noisy) EMmeasurements to exploitable data; (iii)Mal-
ware classification: from exploitable data to malware labels.

and setting up user synthetic environment. Therefore simulating
side-channel noise, distant EM monitoring, random user activities,
multiple malware attack the same device simultaneously are not
their consideration. The proposed analysis framework supports a
generic OS, so that it is applicable to any kind of malware with
UNIX, from simple BusyBox utilities and Bash commands to ELF
malware and high-level scripting (e.g. Python). Unlike FPGA-based
systems malware detection approach that executes the samples on
restricted bare-metal environment.

5.2 Data acquisition by dynamic malware
execution

The first part of our framework relates to the data acquisition that
can be divided into dynamic malware execution and electromagnetic
monitoring.

5.2.1 Realistic malware execution environment. Traditional dynamic
malware analysis solutions were built upon virtualization machines
or emulation, which leave a large number of system artifacts for eva-
sive malware to exploit [30]. In particular, sophisticated malware
authors exploit fingerprints inside analysis system (e.g. number
of cores, network MAC address, etc.) to avoid malware analysis
or detection. Besides, in-guest monitoring components to observe
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malware behaviors (e.g. syscall/API hooking, registry monitor, etc.)
also leave artifacts for malware evasion. One way to prevent these
artifacts is to patch the exploitable components of the virtual system
such that these are indistinguishable from a real machine. How-
ever, this approach only guarantees to known evasion techniques.
Another way is to implement a transparent analysis system that
performs hardware virtualization extensions, to keep the CPU exe-
cution semantics of the host. It is fundamentally infeasible to make
it perfectly transparent, since this system can be detected by timing
attacks and CPU identification.

To overcome these difficulties, we propose an infrastructure
leveraging side-channel information from a bare-metal sandbox
rather than emulators or virtual machines. Additionally, an unre-
alistic configuration will not be able to trigger malware activities,
so that we propose spoofed C&C servers which receive network
connections and randomly returns control commands as well as
a synthetic user environment dedicated for embedded malware
which will be detailed in Section 6.1.2. We have confidence that
bare-metal malware analysis does not expose any instrumentation
indicators, and side-channel information will give us a snapshot
of behavioral analysis. To prevent analysis information leakage or
infection to the analyst’s host machine, a local switch router and
firewall under a controlled network are needed.

5.2.2 Electromagnetic monitoring. In the data acquisition proce-
dure, the controller machine sends binary samples to the target
device. The controller server is responsible for distributing sam-
ples to one or more embedded devices as well as collect recorded
EM traces. We use a malware initiator to send trigger signals from
the target device to oscilloscope through GPIO pin-outs and let
the oscilloscope start its recording session. Note that the intended
users are malware analysts who are unrestricted to set-up malware
initiators or choosing the appropriate device. The malware initiator
is only executed at the beginning of the analysis to trigger the
oscilloscope once while malware/benign samples as well as the
OS are kept untouched. This monitor scheme also means that our
approach does not require data synchronization which is common
in side channel analysis.

5.3 Data analysis and preprocessing
The second step in our complete framework preprocesses the col-
lected (noisy) EM measurements (see Figure 1). This step is manda-
tory as the CPU of an electronic device executes programmed in-
structions every clock cycle, that will provoke variations in its
internal circuitry. Moreover, modern target devices have multi-core
architectures, thus the recorded EM activity is a mixture of various
processes and it is impractical to identify correctly the process re-
sponsible for each observed variations from the electromagnetic
trace itself. The strong signals existing in the system, like processor
or memory clock, will act as a carrier, that will be amplitude or
frequency modulated by the executed instructions [29]. This modu-
lation will cause EM emanation, that leaks from any elements of
the device.

It has been shown [34] that it is possible to monitor the EM
spectrum to profile a program execution on the system. Each ex-
ecuted program has a specific loop pattern, that is revealed by
peaks in frequency. This is why we preprocess the raw EM data

to represent the fluctuations of the frequency content during the
measurement time of the traces. For this purpose, we computed the
spectrogram of the signal by taking the magnitude squared of the
STFT: 𝑠𝑝𝑒𝑐𝑡𝑟𝑜{𝑥 (𝑛)}(𝑚,𝜔) = |∑𝑁

𝑛=0 𝑥 (𝑛)𝑤 (𝑛−𝑚)𝑒−𝑗𝜔𝑛 |2 .A STFT
breaks the signal into small segments of equal length, and performs
a Fourier transform on each of the segments. Here, 𝑥 (𝑛) represents
the input signal at time 𝑛, 𝜔 the frequency,𝑚 the segment index,
𝑁 the number of recording points, and𝑤 the window function. In
our case, the window function splits the signal in chunks of length
𝑀 , with an overlap 𝑂 .

Even though the spectrogram is improving our data representa-
tion in terms of noise reduction, it also highly increases the amount
of data. Using the full spectrogram will drastically increase the
amount of time and space resources needed for classification, if
even possible. We therefore apply feature extraction on the spectro-
gram using NICV (see Section 3.1). In particular, we apply the NICV
on the spectrograms in order to identify the frequency bandwidths
that may real behavioral information about the binary.

Let us denote𝑋 as a spectrogram of dimension𝐷×𝐹 with𝐷 being
the number of time features and 𝐹 being the number of frequency
bandwidths. Let 𝑌 be the label, e.g. the type of the malware. The
computation of NICV(𝑋,𝑌 ) results in a matrix of dimension 𝐷 × 𝐹

(see Eq. (3.1)). Next, from the NICVmatrix, we select the 𝜖 frequency
bands corresponding to the highest mean over 𝐷 :

𝐹extract = {argmax𝜖 (
1
𝐷

∑𝐷−1
𝑑=0

[(NICV(𝑋,𝑌 ))𝐹
𝑑
]} (1)

with argmax𝜖 being a function that returns the 𝜖 indexes with the
highest values and (·)𝐹

𝑑
represents the 𝑑th column of the matrix

over all frequencies. Accordingly, 𝐹extract contains the list of the
𝜖 indexes of the conserved frequencies. Note that, we extract the
complete frequency band of the spectrogram instead of multiple
chunks, which is mainly motivated by possible time delays or de-
synchronizations of unseen data in feature extraction process due
to the absence of an exact triggering process.

5.4 Malware classification
Given the most informative spectrogram bands, our main objec-
tives are to analyse to which extend a malware analyst is able to:
(i) retrieve the type or family of the malicious binary, (ii) identify
precisely which binary was being executed, (iii) classify the obfus-
cation technique, and (iv) classify the malware family even with
an previously unknown obfuscation technique. Based on that, we
assume that the analyst has a dataset of labeled malware binaries
on which he can build supervised classification models.

Neural networks are particularly effective for computer vision
and pattern recognition, and that is the reason to investigate on
their efficiency to classify the spectrograms of monitored device’s
EM activity. We defined two distinct neural networks architectures
(see Table 4,5 in appendix), and compared their efficiency on our
classification tasks. The first architecture is a simple MLP, which
takes as input flattened spectrogram bandwidths. Our CNN archi-
tecture is a bit more complex, but still rather simple compared with
the state-of-the-art networks used for image recognition. It is con-
stituted of a stack of three atomic blocks where each block is made
with one or two convolution layer(s), followed by a Max Pooling
layer.
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We furthermore study the effectiveness of more simplistic and
less resource demanding machine learning tools like Naive Bayes
(NB) and Support Vector Machines (SVM). As NB and SVM (or in
general most machine learning algorithms) are prone to the curse
of dimensionality [4], meaning that they do not scale well with
the number of input features, we do not take as input the selected
bandwidths as for the neural network models, but perform feature
transformation on the spectrogram using LDA (see 3.1). LDA is a
commonly used tool together with machine learning algorithms
that allows to (drastically) reduce data dimension. Note that, on the
other hand in most cases, LDA (or any feature transformation) is
not suitable for neural network models, as features are transformed
into different feature spaces and dependencies between features (in
particular shapes and patterns) may be disconnected and harder to
learn.

6 EXPERIMENTS
6.1 Data aquisition components

Figure 2: Overview of the proposed infrastructure: Experi-
mental setup of malware testbed and data acquisition.

6.1.1 Target device. Evaluation of target device is critical for EM
side-channel analysis. We determine three main requirements: (i)
It must be a multi-purpose embedded device to support as many
collected malware as possible rather than a specific set of malware
or device; (ii) Its CPU must be a prominent architecture to avoid the
lack of support of emerging IoT malware; (iii) It must be vulnerable
to EM side-channel attacks.

We select Raspberry Pi 2B as a target device with 900 MHz quad-
core ARMCortex A7, 1 GBmemory. Since its ARM architecture, size,
power consumption and cost effective, make it a good candidate
for any kinds of embedded and IoT scenarios including prototypes
and developments. Our research focuses on a very general malware
classification challenge rather than a narrowed solution to any
specific device, in particular, as related works did not show diversity
in results or analysis techniques across multiple devices (e.g. [33]).

It has been shown in previous works [13, 36] that cryptographic
and anomaly activities are successfully distinguished by leveraging

EM signals from the Raspberry Pi 2B. By not limiting the capabili-
ties of the infrastructure with restricted bare-metal firmware, the
Raspberry Pi is deployed with a fully-functioning Raspbian Buster
OS of Linux 4.19.57-v7+ armv7l. A device under test with a fully
functioning OS and multiple cores is to answer if it is possible to
handle malware inmore complex scenarios where malware is mixed
with background processes, services and interrupts thus noisy EM
traces.

To prevent the detection of any artificial artifacts by evasion
techniques and keep a realistic environment, all background ser-
vices are kept to their default with more than 100 running processes
and services. Additionally, no adjustments, overclocking, or tuning
of the processor clock rate are applied to the processor.

6.1.2 Malware testbed environment. To generate a practical victim
environment that can trigger real malware, we applied different
tools and techniques. We created honeypot directories under root
folder, home folder, etc. Each malware execution will have a ran-
dom initialized environment consisting of different valid files and
extensions to assure that ransomware will be properly executed
while not biased towards the recorded traces.

Besides, most IoT botnets architectures consist of one command
and control server (C&C) which is continuously connected (except
peer-to-peer botnet). To support our malware dataset, consist ofMi-
rai and Bashlite, we implement a synthetic environment of central
spoofed C&C server model. C&C servers are adopted to randomly
deliver different commands to the botnet client in multiple attack
scenarios (Fig. 2). To trigger a broad range of malicious activities, in
each experiment the following commands are delivered: network
scanner, flood targeted victim network in TCP/UDP, hibernation,
or self-terminate etc. Furthermore, we installed multiple virtual
machines in the same local network for absorbing network attacks
coming from malware. The nature of malware samples, the execu-
tion coverage on software level in the device under testing are not
altered, so that we presume no anti-analysis evasion techniques
can survive during the bare-metal malware analysis.

6.1.3 Electromagnetic signal acquisition. Wemonitor the Raspberry
Pi under the execution of benign and malicious dataset using a low
to mid-range measurement setup. It consists of an oscilloscope
with 1GHz bandwidth (Picoscope 6407) connected to a H-Field
Probe (Langer RF-R 0.3-3), where the EM signal is amplified using a
Langer PA-303 +30dB (Figure 3). To capture long-time execution of
malware in the wild, the signals were sampled at 2MHz sampling
rate.

The activity of the Raspberry Pi, when executing malware or gen-
erating benign activity, was recorded with a sample rate of 2MHz
during 2.5 seconds. It has been chosen empirically based on (but
not limited to) the constraints of the data acquisition components:
imprecise trigger, and malware characteristics (e.g. sleep time with
no activity of Mirai). The duration of 2.5 seconds is enough to obtain
exploitable features for classification.

We collected 3 000 traces each for 30 malware binaries and 10 000
traces for benign activity. Thus, in total 100 000 traceswere recorded,
then we computed their short term Fourier transformation, as de-
scribed in part 5.3.

The feature selection process with NICV on the spectrogram
is illustrated in Figure 4. The left side shows the NICV where the
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Figure 3: Probe setup consists of a H-Field probe placed 45
degree above the system processor.

Figure 4: NICV (center) and in red the 20 selected frequencies
(𝜖 = 20) on the mean over the time (right) and the mean over
the frequencies (top)

right side highlights the selected frequencies that correspond to
the twenty frequencies with the highest NICV mean over time (𝐷).

6.2 Classification framework
6.2.1 Model input. In Section 5.3, we described how we generate
the spectrograms from the EM activity recorded by the oscilloscope.
We measure 500 000 points to get a 2.5s recording with a sampling
rate of 2MHz, which is about 8MB per trace. As explained above,
it was necessary to generate tens of thousands of spectrograms to
train our neural network models. We choose (𝑀,𝑂) = (8192, 4096)
as parameters for the STFT. To reduce the dimension of the analyzed
data and reduce the noise, we apply the feature extraction process
described in Subsection 3.1 to conserve only 𝜖 different bandwidths.
We tested 𝜖 ∈ {4 × 𝑖}0<𝑖<8 to determine for each experiment the
number of conserved bandwidth 𝜖opt that reach the best accuracy.

Our dataset is split into three parts: a test dataset which will
never be used during the training phase of the model, a validation
dataset to assess the efficiency of the model on unseen data, and a
training dataset. We kept by default 20% of the dataset for testing
and used the 80% remaining for training and validation.

6.2.2 Training procedure. The neural network models have been
trained over 50 epochs, where we stored the model according to
the highest validation accuracy. In our setup using one RTX 2080
Ti GPU, CNN took around 50s per epoch, which gives 50 × 50𝑠 =
2500𝑠 = 41 min of training time, MLP performed 1 epoch within
9s, that gives 50 × 9𝑠 = 2500𝑠 = 7min. Testing one sample takes
roughly 0.75s for MLP and 0.27s for CNN. NB and SVM are much
less resource demanding than neural network models, and can be
computed using standard CPU computation systems. On our system
with an Intel(R) Xeon(R) Silver 4214 @2.20GHz with 24 cores and
128GB RAM, NB took 0.14s to train, and SVM 18.90s. The testing
of one sample took for NB around 1`s, and for SVM between 1ms
and 6ms depending on the number of features considered.

Results were obtained using the Keras backend of tensorflow run-
ning on one RTX 2080 Ti GPU for MLP/CNN and scikit-learn [27]
library (version 0.23.2) for NB/SVM/LDA.

7 RESULTS AND DISCUSSION
7.1 Experimental results
A synthesis of the results we obtained can be found in Table 3.
The first column indicates the name of the scenario. In the second
column we state the number of outputs (i.e. classes) of the network.
Finally, the other columns show the accuracy with the optimal
number of bandwidths as well as precision and recall of the two
neural network models, and the two machine learning algorithms
on the test dataset. Details about the construction of the scenarios
can be found in Table 6 in the Appendix.

Type classification. We used traces measured during the activity
of 30 malware samples, plus traces of benign activities (random,
video, music, picture, camera activities), both in a random user
environment to avoid biases. As explained in Section 4, the malware
binaries are variations of five families: gonnacry, keysniffer, maK_It,
mirai and bashlite, including seven different obfuscation techniques.
In this scenario, we aim to retrieve the type of malware (if any)
infecting the device at the time of the recording. This gives us a 4-
class classification problem: ransomware, rootkit, DDoS, and benign.
All models are very efficient for this problem (> 98% accuracy), and
clearly obfuscation does not hinder type classification. We can
observe that CNN (99.82%) is slightly more accurate than MLP, NB,
and SVM. The confusion matrix is illustrated in Figure 5a, which
illustrates the predicted classes (predicted label) from the network
per executed binary (true label). The darker the color, the higher
the proportion of correctly predicted labels. We can observe no
confusion for the benign and rootkit class to any other class, and a
minor confusion between DDos and ransomware in both directions.

Family classification. In this scenario, we classify into the mal-
ware family plus benign class, which gives six classes: bashlite,
mirai, gonnacry, keysniffer, maK_it, and benign. CNN gives the
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MLP CNN LDA + NB LDA + SVM

Scenarios # AC [𝜖opt] RC PR AC [𝜖opt] RC PR AC [𝜖opt] RC PR AC [𝜖opt] RC PR
Type 4 99.75 [28] 99.83 99.85 99.82 [28] 99.89 99.88 98.01 [24] 98.84 98.35 98.08 [24] 98.71 98.76
Family 6 99.57 [28] 93.13 93.11 99.61 [28] 98.61 98.60 97.19 [28] 90.78 90.99 97.27 [28] 91.12 91.14
Virtualization 2 95.60 [20] 95.76 94.99 95.83 [24] 96.19 95.14 91.29 [6] 91.07 90.49 91.25 [6] 90.69 90.62
Packer 2 93.39 [28] 93.36 93.06 94.96 [20] 94.94 94.70 83.62 [16] 83.13 83.08 83.58 [16] 83.08 83.04
Obfuscation 7 73.79 [28] 72.77 72.79 82.70 [24] 82.08 82.08 64.29 [10] 63.08 63.01 64.47 [10] 63.22 63.00
Executable 35 73.56 [24] 74.66 76.75 82.28 [24] 83.08 83.11 70.92 [28] 72.29 71.94 71.84 [20] 72.47 72.32
Novelty (family) 5 88.41 [16] 92.35 91.01 98.85 [24] 98.59 98.59 98.25 [28] 98.69 98.53 98.61 [28] 98.90 98.82

Table 3: Accuracy (AC), recall (RC) and the precision (PR) obtained with MLP, CNN, LDA + NB and LDA + SVM applied to
several scenarios. 𝜖opt gives the value 𝜖 from Eq. (1) (the number of extracted bandwidth) obtaining the highest accuracy. Bold
numbers indicate the highest accuracy on the testing set per scenario. The column “#” gives the number of classes per scenario.

(a) CNN type classification (acc 99.82%).
ddos: mirai, obfuscated mirai, bashlite, obfus-
cated bashlite. Ransomware: gonnacry using
blowfish, gonnacry using aes, gonnacry us-
ing des. Packed and without packing. rootkit:
maK_it and kisni. benign: random, video, mu-
sic, picture, camera activities using random
user environments.

(b) CNN family classification (acc 99.61%).
bashlite: original & obfuscated.mirai: original
& obfuscated. Gonnacry: gonnacry using blow-
fish, gonnacry using aes, gonnacry using des.
Packed & without packing. maK_it: original
rootkit. kisni: original keysniffer rootkit. be-
nign: random, video, music, picture, camera
activities using random user env.

(c) CNN obfuscation classification (acc 82.70%).
addopaque: opaque predicates, virtualize: vir-
tualization, flatten: control flow flattening us-
ing Tigress, cfflatten: control flow flattening
using O-LLVM, sub: instruction substitution,
bcf : bogus control flow, upx: UPX packing.

Figure 5: Confusion matrices of several classification scenarii using the best performing algorithm.

highest accuracy with 99.61%, but also MLP and ML provide re-
sults > 97%. The confusion matrix is illustrated in Figure 5b, which
shows that all classes are mostly correctly classified with a small
confusion on both sides between keysniffer and maK_it. Again, we
see that obfuscation does not hinder the classification.

Novelty classification. The previous experiments showed that it
was possible to classify correctly known malware in its correspond-
ing types and families. While this is certainly a first step, in real
life malware analysis, it is very common to encounter unknown
variations of a threat. To emulate this scenario, we split the dataset
of malicious binaries according to the applied variations. Some of
the variations of each of the five malware families were not used
in the training dataset and reserved only for testing (detailed in
Table 6 in Appendix). In addition, we did not include in the test
dataset any of the variations we used for training. We reserved the
processed spectrograms representing the activity of 18 binaries for

training purposes, and the spectrograms representing the activity of
the remaining binaries for testing purposes. Also, maK_It was only
present in the training, and kisni only in the test dataset. As we can
observe, even though the models are predicting unseen (obfuscated)
variants, all model perform with an accuracy of > 92%, with CNN
99.38%. Accordingly, even unseen variations in the training phase
do not hinder our methodology.

Virtualization and packer identification. In next two scenarios,
we test if the binary is protected with virtualization or packing,
which results to two (two-class) detection problems. For each of
them, we used the traces of the original malware (mirai, bashlite
and gonnacry) as well as the traces of the corresponding protected
variation. We see that virtualization is slightly easier to detect than
packing, with CNN performing with the highest accuracy of 95.83%
and 94.96% respectively.
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Figure 6: Confusion matrix of a CNN classification into 35
binaries from left to right (with and without obfuscation).
(1) bashlite_cfflatten, bashlite_upx, bashlite_bcf, bashlite,
bashlite_addopaque, bashlite_sub, bashlite_flatten, bash-
lite_virtualize;
(2) mirai_sub, mirai_bcf, mirai_cfflatten, mirai, mirai_upx,
mirai_addopaque, mirai_flatten, mirai_virtualize;
(3) gonnacry_des, gonnacry_des_upx, gonnacry,
gonnacry_aes, gonnacry_aes_upx, gonnacry_upx,
gonnacry_flatten, gonnacry_virtualize,
gonnacry_addopaque, gonnacry_bcf, gonnacry_sub,
gonnacry_cfflatten;
(4) keysniffer, maK_It;
(5) benign: encode video, play audio, take picture, record
camera, random.

Obfuscation classification. Here we are interested in classifying
into the 7 obfuscation techniques: Opaque predicates, bogus control
flow, control-flow flattening using O-LLVM or Tigress, instruction
substitution, virtualization, or packing. Both of the network models
were able to learn to differentiate obfuscation techniques inde-
pendently of the five underlying malware families. CNN is more
efficient achieving 82.70% (vs a random guess of 14.29%). Again,
MLP was slightly worse and ML techniques show a gap of around
10%. The confusion matrix is illustrated in Figure 5c, which shows
that for each obfuscation technique CNN predicted the correct label
(the darkest color/highest number on the diagonal). Some confusion
can be observed between addopaque, virtualize, and flatten, which
are executed using Tigress, and indeed they share similar options2.

This result shows that our methodology is not only able to dis-
tinguish between malicious activities, but even focus solely on

2 http://tigress.cs.arizona.edu/transformPage/docs/flatten/index.html

behavioral features independent from the underlying binary execu-
tion.

Executable classification. This scenario is a straightforward exe-
cutable identification, where the model is trying to profile exactly
the binary that generated the spectrogram. This translates into a
classification problem of 35 classes (including distinct benign activ-
ities), identifying the family and variant with possible obfuscation
of the malware. For the number of classes and the closeness of
the underlying executions, all models get very good results, where
CNN is more effective with 82.28% vs a random guess of only 2.86%.

The confusion matrix of the CNN binary classification is given
in Figure 6. As we can see, if confusions between classes happen, it
happens between binaries that belong to the same family (squared
in red in the figure). In addition, we observe that in most of the
cases, the "darkest" color appears on the diagonal, which means
that the highest score (output of the CNN) occurs for the true class
label. So, in most cases, obfuscation does not hinder exact binary
profiling.

However, we still observe groups of binaries which are harder
to distinguish and one misclassification. More precisely, one can
observe that bashlite_cfflatten, bashlite_upx, bashlite_bcf, and bash-
lite have (nearly) no confusion to other binaries, which means that
the obfuscation does not mask the behavior of the binary and the
obfuscation technique itself is visible and distinguishable; bash-
lite_addopaque is misclassified as bashlite_flatten which is inline
with our previous explanation on similarities of the underlying
techniques, and there is a confusion between bashlite_flatten and
bashlite_virtualize.

For mirai and its variants we see a much smaller effect of the
obfuscation techniques on the classification outcome as for bashlite
and gonnacry. Meaning that the obfuscation technique is clearly
identifiable and does not mask the behavior of mirai itself.

For gonnacry we have several distinct groups:

(1) gonnacry-des-upx, gonnacry-des: only a veryminor confusion
can be visible between the packed and unpacked version
using des. Interestingly, there is no confusion using des with
the version of aes and blowfish and their packed variants.

(2) gonnacry, gonnacry-aes: gonnacry and gonnacry-aes are slightly
confused.

(3) gonnacry-des and gonnacry-des-upx are not confused with
any other binary;

(4) gonnacry and gonnacry-aes have a slight confusion, which
means that in some cases the encryption with blowfish and
aes are not clearly distinguishable;

(5) this effect is even more present when the binaries are packed,
i.e. for gonnacry-upx and gonnacry-aes-upx;

(6) again, like for bashlite, we see a slight confusion between
gonnacry_flatten and gonnacry_virtualize.

(7) gonnacry_addopaque, gonnacry_bcf, gonnacry_sub,
gonnacry_cfflatten: we observe only nearly no confusion
between these four obfuscation techniques.

We see nearly no confusion when predicting maK_it and keysnif-
fer. Finally, as before the benign binaries show no confusion with
any other malicious binaries, and there is no confusion between
each of the benign classes.

http://tigress.cs.arizona.edu/transformPage/docs/flatten/index.html
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7.2 Discussion
Novel malware. The results we obtained show that our approach
is successful to classify various malware samples into their types,
families, exact binaries, and identify/classify obfuscation. The close-
ness between accuracy, recall, and precision of each experiment
indicates robustness and no overfitting to any specific class. We
are able to classify malware variations unseen during the training
phase which is particularly relevant in practical scenarios when
considering the evolution of malware. Furthermore, we realized the
measurements in a stable lab environment, still no exact triggering,
nor any restriction on the (background) processes of the target
device have been done, which corresponds to a setup a malware
analyst could exploit.

Obfuscation resiliency. In this paper, we examined 7 obfusca-
tion techniques including packers and virtualization, which have
been used by real-world malware as a growing trend to exploit
cryptors and packers to hide the true intent of malware samples.
While previous solutions such as signature-based packer detection
can be evaded, our results show that we can distinguish between
obfuscation techniques solely based on EM traces, which gives the
opportunity to analyze the evolution of IoT malware since new
obfuscation techniques will be reformed to thwart detection.

ML algorithms. From our results, we can observe that the ac-
curacy of SVM and NB are close for more straightforward classifi-
cation problems like type and family, but the gap gets bigger when
consider more complex scenarios (i.e. executable, obfuscation).

Note that, all our results have been obtained by considering that
the malware analyst measures only one trace per binary to predict
the correct class. However, it could be possible that he has the re-
sources to measure multiple times the same binary execution and
to reduce noise, computes the mean over each of these execution
traces. Results using this approach are given in Figure 7 in the
Appendix for SVM and NB, which shows a drastic improvement
in many scenarios. For example, NB could reach > 80% for binary
classification and 100% in type and novelty classification. Interest-
ingly, we could not observe an improvement for MLP and CNN,
which is discussed in more detail in the Appendix.

Malware evasion. From our results, one can observe that mal-
ware evasion (i.e. prevention from our methodology) is not straight-
forward. Particularly, we derived that our system is robust against
various code transformation/obfuscation, including random junk
insertion, packing, and virtualization, even when the transforma-
tion is previously not known to the system. Another approach of
evasion, instead of obfuscating malicious behavior, could be to hide
exploitable information by lowering the signal-to-noise ratio. This
could, for example, be achieved by forcing highly parallel/multi-core
executions. However, as our methodology relies on EM emanation,
that can be observed on a local and global scale, and on frequency
transformation with filtering, it is unclear if hiding exploitable
information is (easily) achievable at all. Even more, unexpected
highly parallel/multi-core activities can be more easily detected
as abnormal behavior, which is not in the interest of malware de-
signers. We therefore see the topic of malware evasion against
physical side-channel information as a new open direction with
nonstraightforward solutions.

8 CONCLUSIONS AND PERSPECTIVES
We have demonstrated in this paper that by using simple neural net-
work models, it is possible to gain considerable information about
the state of a monitored device, by observing solely its EM emana-
tions. We were indeed able to not only detect, but also determine
the type of real-world malware infecting a Raspberry Pi running a
full Linux OS, with an accuracy of 99.89% on a test dataset including
20 000 traces from 30 different malware samples (and five differ-
ent benign activities). We demonstrated that software obfuscation
techniques do not hinder our classification approach, even if the
obfuscation technique was not known to the analyst before. Even
more, we showed that it is possible to detect a particular obfuscation
and classify between them (or groups of obfuscation techniques),
and classify the family with its exact variant/obfuscation labels.

Given our experimental results, malware analysts therefore profit
from our robust methodology to gain a better understanding about
the variant, type/family, forensic, and/or evolution of malware
groups and campaigns, particularly in the context when software
systems fail (due to malware evasion) or cannot be applied (due to
restricted resources or update processes on the embedded device).

Another interesting direction could be the investigation of other
architectures and devices, to assess in which measure the knowl-
edge learned by a model on one device can be transferred to another
one. Our work can be considered as a first step towards (detailed)
behavioral analysis through electromagnetic emanation opening a
new research direction for future work.
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9 APPENDIX
9.1 Neural network architectures

Layer Size Filter Activation
Flatten spectrogram_size _ leaky relu
Dense 500 _ leaky relu
Dense 200 _ leaky relu
Dense 100 _ leaky relu
Dense N _ softmax

Table 4: MLP architecture

Layer Size Filter Activation
Convolution 64 7 × 7 leaky relu
Max Pooling 64 2 × 2 _
Convolution 128 3 × 3 leaky relu
Convolution 128 3 × 3 leaky relu
Max Pooling 128 2 × 2 _
Convolution 256 3 × 3 leaky relu
Convolution 256 3 × 3 leaky relu
Max Pooling 256 2 × 2 _

Dense 128 _ leaky relu
Dense 64 _ leaky relu
Dense N _ softmax

Table 5: CNN architecture

9.2 Experimental results on the meaning of
test traces

Figure 7 shows accuracy of NB and SVMwhen calculating the mean
over 𝑡 execution measurements from the same binary in the test
dataset. We see an improvement in all scenarios. Therefore, when
the number of executions/ measurements per unknown binary is
not a restricting factor for the malware analyst, then computing the
mean over 𝑡 traces will result in a more accurate prediction. This
meaning process is usually in the side-channel domain, as in [8].
Interestingly, we could not observe a straightforward improvement

when applying this technique to MLP and CNN classifications. One
reason could be that the random user environment changes for
each execution, thus even though the binary stays unaltered, the
measurement trace changes. Now when calculating the mean, the
patterns of features that may help MLP and CNN to make correct
predictions may be mixed or changed. Contrary. NB and even SVM
may not be able to model these patterns due to their more simplistic
nature and computing the mean can be seen as noise reduction
instead.
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Figure 7: Accuracy when computing the mean over 𝑡 =

[1, 2, 3, . . . , 10] samples per binary in the test dataset. One can
observe a drastic performance improvement for SVM and
NB for the scenarios where the accuracy was lower to be-
gin with. For type and novelty classification the accuracy
reaches 100%.
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