
HAL Id: hal-03374373
https://hal.science/hal-03374373

Submitted on 12 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

TempAMLSI : Temporal Action Model Learning based
on Grammar Induction

Maxence Grand, Damien Pellier, Humbert Fiorino

To cite this version:
Maxence Grand, Damien Pellier, Humbert Fiorino. TempAMLSI : Temporal Action Model Learning
based on Grammar Induction. International workshop of Knowledge Engineering for Planning and
Scheduling (ICAPS), Aug 2021, Guangzhou, China. �hal-03374373�

https://hal.science/hal-03374373
https://hal.archives-ouvertes.fr

TempAMLSI : Temporal Action Model Learning based on Grammar Induction

Maxence Grand, Damien Pellier and Humbert Fiorino
Laboratoire d’Informatique de Grenoble - MARVIN

Université Grenoble Alpes, Saint Martin d’Hères, France
{Maxence.Grand, Damien.Pellier, Humbert.Fiorino}@univ-grenoble-alpes.fr

Abstract

Hand-encoding PDDL domains is generally accepted as dif-
ficult, tedious and error-prone. The difficulty is even greater
when temporal domains have to be encoded. Indeed, actions
have a duration and their effects are not instantaneous. In
this paper, we present TempAMLSI, an algorithm based on
the AMLSI approach able to learn temporal domains. Tem-
pAMLSI is based on the classical assumption done in tem-
poral planning that it is possible to convert a non-temporal
domain into a temporal domain. TempAMLSI is the first ap-
proach able to learn temporal domain with single hard enve-
lope and Cushing’s intervals. We show experimentally that
TempAMLSI is able to learn accurate temporal domains, i.e.,
temporal domain that can be used directly to solve new plan-
ning problem, with different forms of action concurrency.

1 Introduction
Thanks to description languages like PDDL (McDermott et
al. 1998), AI planning has become more and more important
in many application fields. One reason is the versatility of
PDDL to represent durative actions (Fox and Long 2003),
i.e. actions that have a duration, and whose preconditions
and effects must be satisfied and applied at different times.

Temporal PDDL domains have different levels of required
action concurrency (Cushing et al. 2007). Some of them
are sequential, which means that all the plan parts contain-
ing overlapping durative actions can be rescheduled into a
completely sequential succession of durative actions: each
durative action starts after the previous durative action is
terminated. One important property of sequential temporal
domains is that they can be rewritten as classical domains,
and therefore used by classical non-temporal planners. Some
temporal domains require different forms of action concur-
rence such as Single Hard Envelope (SHE) (Coles et al.
2009). SHE is a form of action concurrency where a durative
action can be executed only if another durative action called
the envelope, is executed simultaneously. This is due to the
fact that the enveloped durative action needs a resource, dur-
ing all its execution, added at the start of the execution of
the envelope and deleted at the end of the execution of the
envelope. One important property of SHE temporal domains
is that they cannot be sequentially rescheduled.

Copyright © 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Hand-encoding PDDL domains is generally considered
difficult, tedious and error-prone by experts, and this is even
more harder with action concurrency. It is therefore essential
to develop tools allowing to acquire temporal domains.

To facilitate PDDL domain acquisition, different ma-
chine learning algorithms have been proposed. First, for
classical domains as for instance, ARMS (Yang, Wu, and
Jiang 2007), SLAF (Shahaf and Amir 2006), Louga (Kucera
and Barták 2018), LSONIO (Mourão et al. 2012), LOCM
(Cresswell, McCluskey, and West 2009), IRale (Rodrigues,
Gérard, and Rouveirol 2010), PlanMilner (Segura-Muros,
Pérez, and Fernández-Olivares 2018). In these approaches,
training data are either (possibly noisy and partial) interme-
diate states and plans previously generated by a planner, or
randomly generated action sequences. These learning tech-
niques are promising, but they cannot be used to learn tem-
poral domains. (Garrido and Jiménez 2020) have proposed
an algorithm to learn temporal domains using CSP tech-
niques, however their approach is limited to sequential tem-
poral domains. To our best knowledge, there is no learning
approach for both SHE and sequential temporal domains.

Several temporal planners (Fox and Long 2002; Halsey,
Long, and Fox 2004; Celorrio, Jonsson, and Palacios 2015;
Furelos Blanco et al. 2018) attempt to exploit classical plan-
ning techniques for temporal planning. These planners con-
vert a temporal domain into a classical domain, i.e. a domain
containing non-durative action, generate a plan using this
classical domain, and use rescheduling techniques to make
the plan compatible with durative actions. Our contribution
is to propose an approach exploiting the conversion of tem-
poral domains into classical domains, initially proposed to
solve temporal planning problems, for the temporal domain
learning task. More precisely, in this work we assume that
is possible to reduce the temporal domain learning task into
the classical domain learning task.

In this paper, we present TempAMLSI, a learning al-
gorithm for temporal domains including different levels
of required action concurrency. TempAMLSI is built on
AMLSI (Grand, Fiorino, and Pellier 2020a), a PDDL do-
main learner based on grammar induction. Like AMLSI,
TempAMLSI takes as input feasible and infeasible action
sequences to frame what is allowed by the targeted do-
main. More precisely, TempAMLSI consists of three steps:
(1) TempAMLSI converts temporal sequences into non-

temporal sequences, (2) TempAMLSI learns a classical do-
main containing non-durative action using AMLSI, and (3)
converts it into a temporal domain containing durative ac-
tions.

The rest of the paper is organized as follows. In section 2
we present a problem statement. In section 3 we give some
backgrounds on AMLSI approach and, in section 4, we de-
tail TempAMLSI steps. Finally, section 5 evaluates the per-
formance of TempAMLSI on IPC temporal benchmarks.

2 Problem Statement
This section introduces a formalization of planning domain
learning which consisting in learning a transition function of
a grounded planning domain, and in expressing it as PDDL
operators.

In classical planning, world states s are modeled as sets
of logical propositions, and actions change the world states.
Formally, let S be the set of all the propositions modeling
properties of world, and A the set of all the possible actions
in this world. A state s is a subset of S and each action
a ∈ A is a triple of proposition sets (ρa, ε

+
a , ε
−
a), where

ρa, ε
+
a , ε
−
a ⊆ S, and ε+a ∩ ε−a = ∅. ρa are the preconditions

of action a, that is, the propositions that must be in the state
before the execution of action a. ε+a and ε−a are respectively
the positive (add list) and the negative (del list) effects of
action a, that is, the propositions that must be added or
deleted in s after the execution of the action a. Therefore,
learning a classical planning domain consists in learning
the deterministic state transition function γ : S × A → S
defined as: γ(s, a) = (s ∪ ε+a) \ ε−a where γ(s, a) exists if a
is applicable in s, i.e., if and only if ρa ⊆ s.

In temporal planning (Fox and Long 2003), states are de-
fined as in classical planning. However, the action set A is a
set of durative actions. A durative action a is composed of:
• da; the duration
• ρa(s), ρa(e), ρa(o): preconditions of a at start, over all,

and at end, respectively.
• ε+a (s), ε+a (e): positive effects of a at start and at end, re-

spectively.
• ε−a (s), ε−a (e): negative effects of a at start and at end, re-

spectively.
The semantics of durative actions is defined in terms of

two discrete events starta and enda, each of which is natu-
rally expressed as a classical action. Starting a durative ac-
tion a in state s is equivalent to applying the classical action
starta in s, first verifying that ρstarta holds in s. Ending a
in state s′ is equivalent to applying enda in s′, first by veri-
fying that ρenda holds in s′. starta and enda are defined as
follows:
starta : ρa(s) = ρstarta ε+a (s) = ε+starta ε−a (s) = ε−starta
enda : ρa(e) = ρenda ε+a (e) = ε+enda ε−a (e) = ε−enda
This process is restricted by the duration of a, denoted

da and the over all precondition. Event enda has to occur
exactly da time units after starta and the over all precondi-
tion has to hold in all states between starta and enda. Al-
though a has a duration, its effects apply instantaneously at

the start and end of a, respectively. The preconditions ρa(s)
and ρa(e) are also checked instantaneously, but ρa(o) has to
hold for the entire duration of a. The structure of a durative
action is summarized in the Figure 1.

A temporal action sequence is a set of action-time
pairs π = {(a1, t1), . . . , (an, tn)}. Each action-time pair
(a, t) ∈ π is composed of a durative action a ∈ A and
a scheduled start time t of a, and induces two events
starta and enda with associated timestamps t and t + da,
respectively. Events starta (resp. enda) is applied in
the state st (resp. st+da), st (resp. st+da) being a state
time-stamped with t (resp. t + da). Then, the tempo-
ral transition function γ to learn can be rewritten as:
γ(s, a, t) = (γ(st, starta), γ(st+da , enda)). The transition
function γ(s, a, t) is defined if and only if: ρa(s) ∈ st,
ρa(e) ∈ st+da and ∀t′ such that t ≤ t′ ≤ t+da ρa(o) ∈ st′ .

To learn the state transition function γ and to express it as
a PDDL temporal domain, we assume that:
• we are able to observe temporal sequences of state/action

defined recursively as follows:

Γ(s, π) =

[s] if π = ∅
[s] if γ(s, a0, t0) undef
[s] + Γ(γ(s, a0, t0), [(a1, t1), .., (an, tn)]) otherwise

where observed states s can be possibly partial. A partial
state is a state where some propositions are missing.

• for all action a = (ηa, da, ρa(s), ρa(e), ρa(o), ε+a (s),
ε+a (e), ε−a (s), ε−a (e)) in the sequences of state/action, ηa,
the name of a is known, da is a known constant, and
ρa(s), ρa(e), ρa(o), ε+a (s), ε+a (e), ε−a (s), and ε−a (e) are
unknown.

• learned temporal domains can required different forms of
action concurrency (see Figure - 2) such as Single Hard
Envelope (SHE) (Coles et al. 2009). SHE is a form of ac-
tion concurrency where the execution of a durative action
a is required for the execution of a second durative ac-
tion a′. Formally, a SHE is a durative action a′ that adds
a proposition p at start and deletes it at end while p is
an over all precondition of a durative action a. Contrary
to sequential temporal domains, for temporal domains
containing SHE there exists temporal action sequences
that cannot be sequentially rescheduled. For instance, the
Match domain and the the following actions:
– MEND(f m) such that (light m) ∈ ρMEND(f m)(o)

– LIGHT (m) such that (light m) ∈ ε+LIGHT (m)(s) and
(light m) ∈ ε−LIGHT (m)(e)

The durative action MEND(f m) cannot start be-
fore the start of the durative action LIGHT (m) and
MEND(f m) cannot end after the end of LIGHT (m),
so MEND(f m) have to start after the start of
LIGHT (m) and MEND(f m) have to end before the
end of LIGHT (m), it is therefore impossible to sequen-
tially reschedule any temporal action sequences contain-
ing these actions. Finally, note that there is other forms
of required action concurrency than SHE (Cushing et al.
2007).

ρa(s)

ε+a (s)
ε−a (s)

ρa(o) ρa(e)

ε+a (e)
ε−a (e)

da

Figure 1: Structure of a durative action a

Sequential
Domains

SHE
Domains

All Cushing’s form of
required action concurrency

Figure 2: Different form of required action concurrency

3 Background on AMLSI
AMLSI takes as inputs two training datasets, I+ and I−, and
outputs a PDDL domain. I+ (positive samples) contains the
observed feasible state/action sequences, and I− (negative
samples) contains infeasible state/action sequences com-
puted from I+. I+ is generated by using random walks.
When positive samples are built, each first infeasible action
induces a new negative sample (where only the last action is
infeasible) recorded in I−.

The AMLSI algorithm consists of 3 steps: (1) AMLSI
learns a Deterministic Finite Automaton (DFA) correspond-
ing to the regular grammar generating the action sequences
in I+ and forbidding those in I−; (2) AMLSI induces the
PDDL operators from the learned DFA; (3) finally, AMLSI
refines these operators to deal with noisy and partial state
observations.

The first step consisting in learning the DFA is carried out
by using a variant of the classic algorithm for learning reg-
ular grammar RPNI (Oncina and Garcı́a 1992). The RPNI
algorithm used by AMLSI deals with PDDL features and
encodes the links between preconditions and effects of ac-
tions to speedup the learning process (see (Grand, Fiorino,
and Pellier 2020b) for a complete description). Formally, the
learned DFA is a quintuple (A,N, n0, γ, F), where A is the
set of actions, N is the set of nodes, n0 ∈ N is the initial
node, γ is the node transition function, and F ⊆ N is the set
of final nodes.

The second step consists in generating the PDDL oper-
ators of the planning domain to learn. To carry out this
step, AMLSI must first know which node of the DFA cor-
responds to which observed state. Thus, AMLSI maps the
pairs ”node, action” in the DFA with the pairs ”state, action”
of all π ∈ I+ (see Figure 3) and labels the propositions of

n n′ ...a a′

µA(n, a) µP (n
′, a)

Figure 3: Mapping overview

the node that represents the preconditions and the effects of
the action transition in the DFA. Therefore, there are two
different labels for a node: the (A)nte label µA and (P)ost
label µP . µA(n, a) (resp. µP (n, a)) gives the intersection of
state set before (resp. after) the execution of the transition
a in node n: a is an outcoming (resp. incoming) edge of n
in the DFA. Once the labels are computed, AMLSI induces
the preconditions and effects of the planning operators. The
preconditions of an operator o are the set intersection of all
the labels µA(n, a) such that a is an instance of o and a is an
outgoing transitions of the node n. Formally, p ∈ ρo if and
only if for all a instance of o,

p ∈ µA(n, a)

Then, the negative effects ε−o of an operator o are computed
as the set intersection of the propositions present before the
execution of all the actions a instances of o, and never after.
Formally, p ∈ ε−o if and only if for all a instance of o:

p ∈ µA(n, a) ∧ p 6∈ µP (n, a)

Finally, the positive effects ε+o of an operator o are computed
similarly: p ∈ ε+o if and only if for all a instance of o:

p 6∈ µA(n, a) ∧ p ∈ µP (n, a)

The last step consists in refining the PDDL operators in-
duced at step 2 to deal with noisy and partial state obser-
vations. First of all, AMLSI starts by refining the operator
effects to ensure that the generated operators allow to regen-
erate the induced DFA. To that end, AMLSI adds all effects
allowing to ensure that each transition in the automaton are
feasible. Then, AMLSI refines the preconditions of the oper-
ators. AMLSI makes the following assumptions as in (Yang,
Wu, and Jiang 2007): The negative effects of an operator
must be used in its preconditions. Thus, for each negative
effect of an operator, AMLSI adds the corresponding propo-
sition in the preconditions. Since effect refinements depend
on preconditions and precondition refinements depend on ef-
fects, AMLSI repeats these two refinements steps until con-
vergence, i.e., no more precondition or effect is added. Fi-
nally, AMLSI performs a Tabu Search to improve the PDDL
operators independently of the induced DFA, on which op-
erator generation is based. The fitness score used to evaluate
a candidate set D of PDDL operators is:

J(D|I+, I−) = Jρ(D|I+) + Jε(D|I+)+
J+(D|I+) + J−(D|I−)

where :
• Jρ(D|I+) =

∑
π∈I+

∑
(s,a)∈Γ(s0,π)

Accept(ρa, s)−Reject(ρa, s)

computes the fitness score for the preconditions of the

actions a. Accept(ρa, s) counts the number of positive
and negative preconditions in the observed state s, and
Reject(ρa, s) counts the number of positive and negative
preconditions that are not in s.

• Jε(D|I+) =
∑
π∈I+

∑
(s,a,s′)∈Γ(s0,π)

Equal(s′, γ(s, a))−Different(s′, γ(s, a))

computes the fitness score for the effects of the action
a. s (resp. s′) is the observed states before (resp. after)
the execution of the action a. Equal(s′, γ(s, a)) counts
the number of similar propositions in s′ and γ(s, a), and
Different(s′, γ(s, a)) counts the differences.

• J+(D|I+) =
∑
π∈I+

|π| × 1Accept(D,π) where 1Accept(D,π) = 1 if

and only if D can generate the positive sample π. |π| is
the length of π. J+(D|I+) is weighted by the length of
π ∈ I+ because I+ is smaller than I−

• J−(D|I−) =
∑
π∈I−

1Reject(D,π) where 1Reject(D,π) = 1 if

and only if D cannot generate the negative samples π.

Once the Tabu Search reaches a local optimum, AMLSI
repeats all the three refinement steps until convergence.

4 Temporal AMLSI
The TempAMLSI approach is summarized by the Fig-

ure - 4. After having built the samples containing tempo-
ral sequences (including both feasible and infeasible se-
quences), TempAMLSI converts the temporal samples into
non-temporal sequences (see Section - 4.1). We use the
AMLSI algorithm to learn an intermediate classical PDDL
domain, and then convert it into a temporal PDDL domain
(see Section - 4.2). Finally TempAMLSI performs a tem-
poral refinement step (see Section - 4.3). This step allows
to take into account the temporal constraints which are not
present in the non-temporal sequences.

4.1 Sample conversion
Let us take a sample containing πT , πT being a positive tem-
poral sequence such that:

πT = {(0, LIGHT (m)), (0.5,MEND(f1,m)), (2.6,MEND(f2,m))}

We can convert each durative action in the following way:
Each durative action a is converted into two event actions
start(a) and end(a). After conversion, we have the follow-
ing sample:

π = {start(LIGHT (m)), start(MEND(f1,m)), end(MEND(f1,m)),
start(MEND(f2,m)), end(MEND(f2,m)), end(LIGHT (m))}

Negative temporal sequences are converted in the same way.

4.2 Domain conversion
After having learned the classical PDDL domain with
AMLSI, TempAMLSI converts it PDDL operators into a
temporal one in the following way:

ρa(s) = ρstart(a) \ ρend(a), ε
+
a (s) = ε+start(a), ε

−
a (s) = ε−start(a)

ρa(e) = ρend(a) \ ρstart(a), ε
+
e (s) = ε+end(a), ε

−
e (s) = ε−end(a)

ρa(o) = ρstart(a) ∩ ρend(a)

First of all, At start (resp. at end) effects are the effects
of start (resp. end) classical operators. Then, Overall pre-
conditions are the intersection of preconditions of start and
end classical operators. Finally, At start (resp. at end) pre-
conditions are preconditions of the start (resp. end) classical
operator excluding end (resp. start) preconditions. The Fig-
ure - 5 gives an example of action conversion for the MEND
operator of the Match domain.

4.3 temporal refinement
For domains that are not sequential (see Section - 2) it
is possible that some non-temporal actions sequences are
both feasible and infeasible, since the feasibility of an ac-
tion sequence depends on temporal constraints which are not
present in non-temporal sequences. For instance, the action
sequence:

π1 = {start(LIGHT (m)), start(MEND(f1,m)}
could be both a negative example and the prefix of a positive
example. Indeed, π1 is the non-temporal action sequence re-
turned after the conversion of the following negative tempo-
ral action sequence:

πT1 = {(0, LIGHT (m)), (4,MEND(f1,m))}
However, π1 is also the prefix of the action sequence
π2 = {start(LIGHT (m)), start(MEND(f1,m)

end(MEND(f1,m)), end(LIGHT (m))}
which is the sequence returned by the conversion of the fol-
lowing positive example:

πT1 = {(0, LIGHT (m)), (2,MEND(f1,m))}
For this type of domain, it is therefore impossible for the

Tabu search of the AMLSI algorithm to reach a global max-
imum (see Section - 3). Let us take the equation - 3 and sup-
pose that π2 ∈ I+ and π1 ∈ I−, if J+(D|I+) is maximized
then J+(D|I+) cannot be maximized and vice versa. In-
deed, a classical domain cannot both accept π2 and reject π1.
However, it is necessary that the temporal domain accepts
πT2 and rejects πT2 to ensure that (light m) ∈ ρ(o)MEND.
The objective of the temporal refinement step is to take into
account the temporal constraints which are not present in the
non-temporal sequences..

The temporal refinement step is a Tabu search. The fitness
score for this Tabu search is defined as follows:

JT (D|IT+ , IT−) =
JT+(D|IT+) + JT−(D|IT−)

2
where

JT+(D|IT+) =

∑
πT∈IT+

1Accept(D,πT)

|IT+ |

JT−(D|IT−) =

∑
πT∈IT−

1Reject(D,πT)

|IT− |
Then the neighborhood of a candidate domain D is the

set of domains where a precondition or an effect is added or
removed in an operator of D. And the search space of the
Tabu Search is the set of all possible domains compatible
with the following syntax constraints:

AMLSI
Sample

Conversion

Post
Processing

Domain
Conversion

Temporal training
data sets IT+ and IT−

Temporal
PDDL Domain

Classical
training data sets

I+ and I−
Intermediate

PDDL Domain
Temporal

PDDL Domain

Figure 4: Overview of the TempAMLSI approach

(: a c t i o n MEND−START
:parameters (? f − f u s e ?m − match)
: p r e c o n d i t i o n (and (h a n d f r e e) (l i g h t ?ma))
: e f f e c t (and (not (h a n d f r e e))))

(: a c t i o n MEND−END
:parameters (? f − f ?m − m)
: p r e c o n d i t i o n (and (l i g h t ?m))
: e f f e c t (and (mended ? f) (h a n d f r e e)))

(a) Classical declaration of the operator MEND
(: d u r a t i v e − a c t i o n MEND

:parameters (? f − f u s e ?m − match)
: d u r a t i o n (= ? d u r a t i o n 2)
: c o n d i t i o n (and (a t s t a r t (h a n d f r e e))

(ove r a l l (l i g h t ?m)))
: e f f e c t (and (a t s t a r t (not (h a n d f r e e)))

(a t end (mended ? f)) (a t end (h a n d f r e e))))

(b) Durative declaration of the operator MEND

Figure 5: Comparison between the durative declaration and
the classical declaration of the operator MEND of the Match
domain.

• ρa(o)∩{ε+a(s)∪ ε+a(e)} = ∅: At start and at end posi-
tive effect cannot add propositions present in the the over
all precondition.

• ρa(s) ∩ ε+a(s) = ∅: At start positive effect cannot add
propositions present in the at start precondition.

• ρa(e) ∩ ε+a(e) = ∅: At end positive effect cannot add
propositions present in the at end precondition.

• ε−a(s) ∩ ε+a(s) = ∅: An at start effect cannot be both
positive and negative.

• ε−a(e) ∩ ε+a(e) = ∅:An at end effect cannot be both
positive and negative.

• ε−a(s) ∩ {ρa(o) ∪ ρa(e)} = ∅: An at start effect can-
not delete a proposition present in the at end and over all
precondition.

• ε+a(s) ∩ ε+a(e) = ∅: An at start effect and an at end
effect cannot add the same proposition.

• ε−a(s) ∩ ε−a(e) = ∅: An at start effect and an at end
effect cannot delete the same proposition.

These syntactical constraints are base on the syntactical con-
straints proposed by (Yang, Wu, and Jiang 2007) and modi-
fied to take into account the time labels of the preconditions
and effects.

Domain # Operators # Predicates Class
Peg Solitaire 1 3 Sequential

Sokoban 2 3 Sequential
Parking 4 5 Sequential

Zenotravel 5 4 Sequential
Turn and Open 5 8 SHE

Match 2 4 SHE
Cushing 3 7 Cushing

Table 1: Benchmark domain characteristics

5 Experiments and evaluations
5.1 Experimental setup
Our experiments are based on 7 temporal domains (see Table
- 1). More precisely we test TempAMLSI with four Sequen-
tial domains (Peg Solitaire, Sokoban, Parking, Zenotravel),
two SHE domains (Match, Turn and Open), and one domain
with forms of required action concurrency defined in (Cush-
ing et al. 2007), this domain, called Cushing, has been pro-
posed by (Furelos Blanco et al. 2018).

We deliberately choose the size of the test sets larger than
the training sets to show TempAMLSI ability to learn accu-
rate domains with small datasets. The training and test sets
are generated as follows: at a given state s, we randomly
choose a durative action a in A. If a is feasible, the cur-
rent state is observed, and we add a to the current π. This
random walk is iterated until π reaches an arbitrary length
(randomly chosen between 5 and 15), and added to I+. If a
is infeasible in the current state, the concatenation of π and
a is added to I−. In the test sets E+ and E−, we generate
action sequences with a length randomly chosen between 1
and 30.

We test each domains with three different initial states
over five runs, and we use five seeds randomly generated
for each run. All tests were performed on an Ubuntu 14.04
server with a multi-core Intel Xeon CPU E5-2630 clocked
at 2.30 GHz with 16GB of memory.

5.2 Evaluation Metrics
We evaluate TempAMLSI with four different metrics. The
first metric, the syntactical error, is the most used metric in
the literature. The other metrics, the FScore, the accuracy
and the IPC score are more specific to our approach.

• Syntactical Error : The syntactical error error(a) for
an action a is defined as the number of extra or missing
predicates in the preconditions ρa(s, e, o), the positive
effects ε+a (s, e) and the negative effects ε−a (s, e) divided
by the total number of possible predicates (Zhuo et al.
2010). The syntactical error for a domain with a set of

actions A is: Eσ = 1
|A|

∑
a∈A error(a).

• FScore: This metric is initially used for pattern recogni-
tion and binary classification (Rijsbergen 1979). Never-
theless, it can be used to evaluate the quality of a learned
grammar. Indeed, a grammar is equivalent to a binary
classification system labeled with {1, 0}. For grammars
we can assume that the sequences belonging to the gram-
mar are data labeled with 1, and non-grammar sequences
are data labeled with 0. This metric is therefore able to
test to what extent the learned domain D can regener-
ate the grammar. A domain D can regenerate a gram-
mar if D accept, i.e. can generate, all positive test se-
quences e ∈ E+ and reject, i.e. cannot generate, test neg-
ative sequences e ∈ E−. Formally, the FScore is com-
puted as follows: FScore = 2.P.R

P+R where R is the recall,
i.e. the rate of sequences e accepted by the ground truth
domain that are successfully accepted by the learned do-
main, computed as follows: R = |{e∈E+ | accept(D,e)}|

|E|
and P is the precision, i.e. the rate of sequences e ac-
cepted by the learned domain that are sequences accepted
by the ground truth domain, computed as follow: P =

|{e∈E+ | accept(D,e)}|
|{e∈E+ | accept(D,e)}∪{e∈E− | accept(D,e)}| .

• Accuracy: It quantifies to what extent learned domains
are able to solve new planning problems (Zhuo, Nguyen,
and Kambhampati 2013). Most of the works addressing
the problem of learning planning domains uses the syn-
tactical error to quantify the performance of the learning
algorithm. However, domains are learned to be used for
planning, and it often happens that one missing precondi-
tion or effect, which amounts to a small syntactical error,
makes them unable to solve planning problems. Formally,
the accuracy Acc = N

N∗ is the ratio between N , the num-
ber of correctly solved problems with the learned domain,
and N∗, the total number of problems to solve. The accu-
racy is computed over 20 problems. We also report in our
results the ratio of (possibly incorrectly) solved problems.
In the experiments, we solve the test problems with dif-
ferent planners. Instances of Sequential domains and SHE
domains are solved with the TP-SHE (Celorrio, Jonsson,
and Palacios 2015) planner and instances of the Cush-
ing domain are solved with the Tempo planner (Celor-
rio, Jonsson, and Palacios 2015). We use different plan-
ners because some planners have good results with only
some forms of action concurrency. For instance, TP-SHE
is the domain with the best performances for instances
with Single Hard Envelope but has bad results for Cush-
ing. Plan validation is realized with the automatic valida-
tion tool used in the IPC competition VAL (Howey and
Long 2003).

• IPC quality score: This metric is initially used to com-
pared different planners. We can use to test a learned do-
main. The score of a solved problem is the ratio C∗/C
where C is the cost of the plan found by the learned do-
main and C∗ is the cost of the plan founded by the refer-
ence domain. The cost of a plan is the sum of all durations
of all actions of the plan. The score on an unsolved prob-

lem is 0. The score of a learned domain is the sum of its
scores for all problems.

5.3 Results
In this section we perform an ablation study and compare
two variants: (1) TempAMLSI: TempAMLSI only uses the
AMLSI algorithm to learn temporal domain and (2) Tem-
pAMLSI + TR: TempAMLSI uses both AMLSI algorithm
and temporal refinement to learn temporal domains.

Learning with complete observations Table - 2 shows
TempAMLSI’s performance when observations are com-
plete.

First of all, Table - 2a shows results for Sequential do-
mains. Firstly, we can note that for each domains Tem-
pAMLSI and TempAMLSI+TR variants have same perfor-
mances, whatever the metric. Then, we observe that learning
runtimes is generally higher for TempAMLSI+TR variants.
For the Peg Solitaire domain we can observe that learned
domains are accurate. More precisely we observe that both
classical and temporal FScore and accuracy are optimal,
also we observe that IPC = 20 that implies that plans gen-
erated with learned domains are identical to the plans gen-
erated with the ground truth domain. Also, the syntactical
distance is not optimal (Eσ = 2.8%), this is due to the fact
that some implicit preconditions which are not encoded in
the reference domain and encoded in the learned domain.
Then, for the Sokoban and Parking domain results are sim-
ilar. However, we can note that the IPC score is not opti-
mal (IPC = 19.9 for Sokoban and Parking), this is due to
the fact that some plans found by the learned domains has
a higher cost than the plan found by the reference domain.
Then, for the Zenotravel domain we can observe that Tem-
poral Fscore and accuracy are optimal. Also, we observe that
the classical FScore is not optimal, this is due to the fact that
some preconditions encoded as at start preconditions in the
reference domain are encoded as overall preconditions in the
learned domains.

Then, Table - 2b gives results for SHE domains. For the
Turn and Open domain we can observe that, whatever the
variant used, only the temporal FScore is optimal. This is
due to the fact that the Turn and Open domain contains SHE.
Also we can note that the learned domains are able to solve
the majority of new problems (Acc = 55%). For this do-
main, we observe that the temporal refinement has no im-
pact, this is due to the fact that the Turn and Open domain
contains both sequential operators (move, pick, drop) and
SHE operators (open− door, turn− doorknob). Then, for
the Match domain we can observe that the domain learned
with temporal refinement has better results for syntactical
distance and both classical and temporal FScore. A bet-
ter temporal Score means that the domains learned with
the TempAMLSI+TR variant better respect the forms of re-
quired action concurrency of the ground truth domain. How-
ever, TempAMLSI and TempAMLSI+TR variants have the
same accuracy (Acc = 93.3%). Finally, we observe that
learning runtimes are higher for the TempAMLSI+TR vari-
ant for all SHE domains.

Finally, for the Cushing domain (see Table - 2c) we

Domain Algorithm Eσ FScore (classical) FScore (temp) Solved Acc IPC Time (sec)

Peg TempAMLSI 2.8% 100% 100% 100% 100% 20 4.2
TempAMLSI+TR 2.8% 100% 100% 100% 100% 20 3.2

Sokoban TempAMLSI 0.1% 100% 100% 100% 100% 19.9 23.4
TempAMLSI+TR 0.1% 100% 100% 100% 100% 19.9 27

Parking TempAMLSI 5.6% 100% 100% 100% 100% 19.9 62.3
TempAMLSI+TR 5.6% 100% 100% 100% 100% 19.9 74.2

Zenotravel TempAMLSI 0.7% 72.1% 100% 100% 100% 20 20.1
TempAMLSI+TR 0.7% 72.1% 100% 100% 100% 20 20

(a) Domain learning results on sequential temporal domains.
Domain Algorithm Eσ FScore (classical) FScore (temp) Solved Acc IPC Time (sec)

Turn and Open TempAMLSI 3.2% 82.4% 100% 55% 55% 10.7 36.6
TempAMLSI+TR 3.2% 82.4% 100% 55% 55% 10.7 37.3

Match TempAMLSI 5.3% 86% 82.3% 93.3% 93.3% 18.7 1.8
TempAMLSI+TR 2.7% 87.4% 100% 93.3% 93.3% 18.7 4.3

(b) Domain learning results on SHE temporal domains.
Domain Algorithm Eσ FScore (classical) FScore (temp) Solved Acc IPC Time (sec)

Cushing TempAMLSI 7.9% 83.6% 47.4% 0% 0% 0 23.9
TempAMLSI+TR 8.2% 90.7% 90.6% 0% 0% 0 451.3

(c) Domain learning results on Cushing temporal domain.

Table 2: Domain learning results on 7 domains when observations are complete. TempAMLSI performance is measured in
terms of, syntactical error Eσ , FScore for temporal and classical samples, accuracy Acc, IPC Score and runtimes.

observe that the temporal refinement step only increases
the temporal FScore. This implies that the forms of con-
currency present in the domains learned with the Tem-
pAMLSI+TR variant are closer to the forms of concurrency
in the ground truth domain than the domains learned with the
TempAMLSI variant. Also, the TempAMLSI variant gives
better syntactical distance and classical FScore than the
TempAMLSI+TR variant. Also, we observe that the learned
domains cannot solve problem whatever the variant used.
Finally, we note that the temporal refinement strongly in-
creases the learning runtimes.

Learning with partial observations Figures - 6, 7 and
8 show how temporal FScore varies when the level of ob-
served proposition in intermediate states varies.

First, we can observe that for all sequential domains (see
Figure - 6) the temporal refinement step has no effect. Also,
Temporal FScore is always optimal whatever the level of ob-
servability. Then, Table - 7 shows that, for SHE domains,
the TempAMLSI+TR variant gives better results. We ob-
serve that FScore is optimal when at least 40% of propo-
sitions are observed for the Turn and Open and when at
least 60% of propositions are observed for the Match do-
main. Finally, Table - 8 shows that for the Cushing domain
the TempAMLSI+TR variant gives better. However, Tem-
pAMLSI+TR never gives the optimal FScore.

6 Conclusion
In this paper we presented TempAMLSI, a novel algorithm
to learn temporal PDDL domains. TempAMLSI is based
on the AMLSI approach. In this paper we reused the idea
to use classical PDDL domain proposed by several tem-

poral planners. More precisely, TempAMLSI converts the
temporal sample into a sample containing non-temporal se-
quences, then TempAMLSI uses the AMLSI algorithm to
learn a classical PDDL domain and convert it into a tempo-
ral PDDL domain, Also, TempAMLSI has a temporal refine-
ment step allowing to deal with different forms of required
action concurrency. Finally, we show experimentally that the
TempAMLSI approach was able to learn accurate domains
with sequential sequences and single hard envelopes. In fu-
ture works, TempAMLSI will be extended to learn temporal
PDDL domain with noisy observations and temporal PDDL
domain with other form of required action concurrency than
Single Hard Envelopes. Also, TempAMLSI will be extended
to be able to deal with different ways for the durative ac-
tion conversion, such as the LGP translation (Fox and Long
2002) for instance.

Acknowledgments
This research is supported by the French National Re-
search Agency under the ”Investissements d’avenir” pro-
gram (ANR-15-IDEX-02) on behalf of the Cross Disci-
plinary Program CIRCULAR.

References
Celorrio, S. J.; Jonsson, A.; and Palacios, H. 2015. Tem-
poral planning with required concurrency using classical
planning. In Proceedings of the Twenty-Fifth International
Conference on Automated Planning and Scheduling, ICAPS
2015, Jerusalem, Israel, June 7-11, 2015, 129–137.
Coles, A.; Fox, M.; Halsey, K.; Long, D.; and Smith, A.

20 30 40 50 60 70 80 90 100
Observability

96

98

100

102

104
Sc

or
e

(%
)

Fscore (temp)

TempAMLSI
ATempMLSI + TR

(a) Peg Solitaire

20 30 40 50 60 70 80 90 100
Observability

96

98

100

102

104

Sc
or

e
(%

)

Fscore (temp)

TempAMLSI
ATempMLSI + TR

(b) Sokoban

20 30 40 50 60 70 80 90 100
Observability

96

98

100

102

104

Sc
or

e
(%

)

Fscore (temp)

TempAMLSI
ATempMLSI + TR

(c) Zenotravel

20 30 40 50 60 70 80 90 100
Observability

96

98

100

102

104

Sc
or

e
(%

)
Fscore (temp)

TempAMLSI
ATempMLSI + TR

(d) Parking

Figure 6: Learned domains Syntactical distance with different levels of observability

20 30 40 50 60 70 80 90 100
Observability

86

88

90

92

94

96

98

100

Sc
or

e
(%

)

Fscore (temp)

TempAMLSI
ATempMLSI + TR

(a) Turn and Open

20 30 40 50 60 70 80 90 100
Observability

75

80

85

90

95

100

Sc
or

e
(%

)

Fscore (temp)

TempAMLSI
ATempMLSI + TR

(b) Match

Figure 7: Learned domains Syntactical distance with different levels of observability

2009. Managing concurrency in temporal planning using
planner-scheduler interaction. Artif. Intell. 173(1):1–44.

Cresswell, S.; McCluskey, T.; and West, M. 2009. Acquisi-
tion of object-centred domain models from planning exam-
ples. In Proc. of the International Conference on Automated
Planning and Scheduling, ICAPS.

Cushing, W.; Kambhampati, S.; Mausam; and Weld, D. S.
2007. When is temporal planning really temporal? In IJCAI
2007, Proceedings of the 20th International Joint Confer-
ence on Artificial Intelligence, Hyderabad, India, January
6-12, 2007, 1852–1859.

Fox, M., and Long, D. 2002. Fast temporal planning in a

20 30 40 50 60 70 80 90 100
Observability

50

60

70

80

90

Sc
or

e
(%

)

Fscore (temp)

TempAMLSI
ATempMLSI + TR

(a) Cushing

Figure 8: Learned domains Syntactical distance with different levels of observability

graphplan framework. In AIPS 2002 Workshop on Planning
for Temporal Domains, Toulous, France, April 24, 2002, 9–
17.

Fox, M., and Long, D. 2003. PDDL2.1: an extension to
PDDL for expressing temporal planning domains. J. Artif.
Intell. Res. 20:61–124.

Furelos Blanco, D.; Jonsson, A.; Palacios Verdes, H. L.; and
Jiménez, S. 2018. Forward-search temporal planning with
simultaneous events. In 13th Workshop on Constraint Satis-
faction Techniques for Planning and Scheduling, AAAI.

Garrido, A., and Jiménez, S. 2020. Learning temporal action
models via constraint programming. In ECAI 2020 - 24th
European Conference on Artificial Intelligence, 29 August-8
September 2020, Santiago de Compostela, Spain, August 29
- September 8, 2020 - Including 10th Conference on Pres-
tigious Applications of Artificial Intelligence (PAIS 2020),
2362–2369.

Grand, M.; Fiorino, H.; and Pellier, D. 2020a. Amlsi: A
novel and accurate action model learning algorithm. In Proc.
of the International Workshop on Knowledge Engineering
for Planning and Scheduling (KEPS).

Grand, M.; Fiorino, H.; and Pellier, D. 2020b. Retro-
engineering state machines into pddl domains. In Proc. of
the International Conference on Tools with Artificial Intelli-
gence (ICTAI), 1186–1193.

Halsey, K.; Long, D.; and Fox, M. 2004. Crikey-a temporal
planner looking at the integration of scheduling and plan-
ning. In Workshop on Integrating Planning into Scheduling,
ICAPS, 46–52. Citeseer.

Howey, R., and Long, D. 2003. Val’s progress: The auto-
matic validation tool for pddl2. 1 used in the international
planning competition. In Proc. of International Planning
Competition workshop (ICAPS), 28–37.

Kucera, J., and Barták, R. 2018. LOUGA: learning planning
operators using genetic algorithms. In Proc. of Pacific Rim
Knowledge Acquisition Workshop, PKAW, 124–138.

McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram,

A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL-the
planning domain definition language.
Mourão, K.; L.Zettlemoyer; Petrick, R.; and Steedman, M.
2012. Learning STRIPS operators from noisy and incom-
plete observations. In Proc. of the International Conference
on Uncertainty in Artificial Intelligence, 614–623.
Oncina, J., and Garcı́a, P. 1992. Inferring regular languages
in polynomial update time. In Pattern Recognition and Im-
age Analysis: Selected Papers from the IVth Spanish Sympo-
sium, volume 1. World Scientific. 49–61.
Rijsbergen, C. 1979. Information Retrieval. Butterworth-
Heinemann.
Rodrigues, C.; Gérard, P.; and Rouveirol, C. 2010. Incre-
mental learning of relational action models in noisy environ-
ments. In Proc. of the International Conference on Inductive
Logic Programming, ILP, 206–213.
Segura-Muros, J.; Pérez, R.; and Fernández-Olivares, J.
2018. Learning numerical action models from noisy and par-
tially observable states by means of inductive rule learning
techniques. In Proc. of International workshop on Schedul-
ing and Knowledge Engineering for Planning and Schedul-
ing KEPS, 46–53.
Shahaf, D., and Amir, E. 2006. Learning partially observ-
able action schemas. In In Proc. of the National Conference
on Artificial Intelligence, 913–919.
Yang, Q.; Wu, K.; and Jiang, Y. 2007. Learning action mod-
els from plan examples using weighted MAX-SAT. Artif.
Intell. 171(2-3):107–143.
Zhuo, H.; Yang, Q.; Hu, D.; and Li, L. 2010. Learning com-
plex action models with quantifiers and logical implications.
Artif. Intell. 174(18):1540–1569.
Zhuo, H.; Nguyen, T.; and Kambhampati, S. 2013. Refin-
ing incomplete planning domain models through plan traces.
In Proc. of the International Joint Conference on Artificial
Intelligence, IJCAI, 2451–2458.

