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Abstract

Nanofluidics has firmly established itself as a new field in fluid mechan-

ics, as novel properties have been shown to emerge in fluids at the nano-

metric scale. Thanks to recent developments in fabrication technology,

artificial nanofluidic systems are now being designed at the scale of bio-

logical nanopores. This ultimate step in scale reduction has pushed the

development of new experimental techniques and new theoretical tools,

bridging fluid mechanics, statistical mechanics and condensed matter

physics. This review is intended as a toolbox for fluids at the nanometre

scale. After presenting the basic equations that govern fluid behaviour

in the continuum limit, we will show how these equations break down

and new properties emerge in molecular scale confinement.
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1. INTRODUCTION

Fluid flows at the nanometre scale have been studied indirectly in various disciplines for

the last fifty years (Eijkel & van den Berg (2005)). However, it is only fifteen years ago that

nanofluidics has emerged as a field on its own, first as a natural extension of microfluidics

towards smaller scales. Back then, it was an issue in itself to establish that nanofluidics

deserves its own name, meaning that there are specific effects at the nano-scale that are not

present at the micro-scale.

Indeed, the ”ultimate scale” for observing specific effects is set by the molecular size

of the fluid ; more precisely, a critical confinement `c = 1 nm has been generally accepted

as the limit of validity for the Navier-Stokes equation (Bocquet & Charlaix (2010), Spar-

reboom et al. (2010)). Moreover, it is at the molecular scale that the fluidic functions of

biological systems emerge: from the giant permeability and perfect selectivity of the aqua-

porin (Murata et al. (2000)), to the ion specificity of KcsA channels (MacKinnon (2004)),

to the mechano-sensitivity of Piezo channels (Wu et al. (2017)), to name a few. However,

ten years ago, the exploration of this ultimate scale was hindered by technical challenges,

as molecular scale channels could not be fabricated artificially.

A decade later, nanofluidics has firmly established itself as a field (Bocquet (2020)).

Indeed, lengthscales associated with the electrostatics and the fluctuations of surfaces may

reach up to several tens of nanometres, and their effects may be probed specifically in

systems without molecular scale confinement (Schoch et al. (2008), Bocquet & Charlaix

(2010), Sparreboom et al. (2010)). These lengthscales govern the key nanofluidic phenomena

that have been demonstrated over the last ten years, such as, for instance, fast flows in

carbon nanotubes (Holt et al. (2006)), diffusio-osmotic energy conversion (Siria et al. (2013))

or diode-type effects (Vlassiouk & Siwy (2007)).

However, the progress in fabrication technology has now allowed to overcome the chal-

lenges that have hindered the development of nanofluidics at the ultimate scales, and ar-

tificial devices with confinement down to about one water molecule size (3
◦
A) have been

achieved, in 0D, 1D or 2D geometry (Feng et al. (2016a), Tunuguntla et al. (2017), Gopinad-

han et al. (2019)). It is therefore an exciting time for nanofluidics, since it now has the

potential to reverse-engineer biological functions: minimal artificial systems that mimic bi-

ological processes may be designed and studied. Furthermore, nanofluidics is known for its

short path from fundamental science to applications and innovation, and developments in

single channel fabrication are likely to have direct implications for filtration and membrane

science (Bocquet (2020)).

At this time of accelerated development of the field, one should realize that the

nanoscales under study require new tools for understanding the physics at play. The need

for ”new physics” is particularly emphasised in a recent review by Faucher et al. (2019),

which identifies ”critical knowledge gaps in mass transport through single-digit nanopores”

– nanopores that are less than 10 nm in size. Those knowledge gaps exist largely because

the tools applied for understanding the experiments are built on macroscopic fluid me-

chanics and continuum electrostatics. But consider now a typical nanochannel of radius 1

nm. At physiological salt concentration, it contains only a single ion per 50 nm channel

length. Similarly, the carbon nanotube porins studied by Tunuguntla et al. (2017) each

contain about 30 water molecules. These numbers strongly suggest that discrete particle

effects may be important, and call for a statistical mechanics description. Furthermore,

below 1 nm confinement, the length scales associated with the fluid dynamics become com-
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Figure 1

An overview of nanofluidic lengthscales. Main ingredients of the physics above the continuum
limit, and below.

parable to characteristic length scales of the electrons in the confining solids, such as the

Thomas-Fermi length (Mahan (1990)). This points to the necessity of describing the confin-

ing solids at the level of condensed-matter physics, and not simply as a space impenetrable

to the fluid molecules. Overall, understanding fluidic phenomena at the nanometer scales

requires bridging the gap between fluid mechanics, statistical mechanics and condensed

matter physics.

In the past years, the breakdown of continuum equations has often set a hard limit

for fluid mechanics: below the continuum limit was the realm of molecular simulations.

However, the need for understanding experiments has pushed for the development (or re-

discovery) of analytical tools that have allowed to identify some specific phenomena and

associated length scales. The description of these phenomena is a key part of this review,

as summarised in figure 1. The review is organised as follows. In section 2, we give a brief

overview of available nanofluidic systems and fabrication methods. In section 3, we focus on

continuum modelling of nanofluidic systems, with particular emphasis on the precautions

that should be taken when applying it to the smallest scales. Finally, in section 4, we go

below the continuum limit, and highlight the specific phenomena that emerge along with

the theoretical tools to describe them.

2. THE TOOLBOX OF EXPERIMENTAL SYSTEMS

Nanofluidics generally follows a bottom-up approach. Elementary phenomena are under-

stood at the well-controlled scale of the individual channel, before eventually being applied

to more complex systems. Hence, the design of these well-controlled systems is paramount

to the development of the field. We start this review by going through the systems that

have so far been achieved, in order of dimensionality.

2.1. Nanopores

Nanopores are channels whose length L and diameter d are both in the nanometre range

(figure 2a). Initial studies focused on solid-state nanopores drilled through membranes made
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a b c

Figure 2

State-of-the-art nanofluidic systems of various dimensions. a. TEM-drilled nanopore in single

layer MoS2 (Feng et al. (2016a)). b. Boron nitride nanotube inserted into a SiN membrane (Siria
et al. (2013)). c. Schematic and TEM image of the nanoslit device fabricated by Radha et al.

(2016).

out of ceramics such as SiN of SiC (Keyser et al. (2006), Dekker (2007)). More recently the

advent of 2D materials, such as graphene, hexagonal boron nitride (hBN) or MoS2, allowed

for the exploration of nanopores in atomically thin membranes (Garaj et al. (2010), Sahu

& Zwolak (2019)). Essentially three types of fabrication pathways have been reported for

well-controlled nanopores in 2D materials.

Drilling with an electron or a focused ion beam (FIB). A single 5 nm pore

drilled in monolayer graphene was first reported by Garaj et al. (2010). Celebi et al. (2014)

reported FIB drilling of arrays of nanopores in bilayer graphene, ranging from 7.6 nm to

1 µm in diameter.

Electrochemical etching. Feng et al. (2015) reported the opening of pores in mono-

layer MoS2 when placed in a salt solution in between two electrodes. Applying a potential

above the oxydation potential of MoS2 resulted in the gradual removal of single MoS2 units,

thus creating an opening of controlled size. Nanopores down to 0.6 nm in diameter have

been reported (Feng et al. (2016b)).

The use of intrinsic defects in 2D materials. Large area membranes made of

graphene or hBN are known to exhibit defects in the form of pores, ranging in size from a

few angstroms to 15 nm depending on conditions (Walker et al. (2017), O’Hern et al. (2012)),

or such defects may be generated on purpose in smaller membranes using ultraviolet-induced

oxidative etching (Koenig et al. (2012)). The chemical vapour deposition (CVD) graphene

membranes produced by Jain et al. (2015) exhibited pores in the sub-2 nm range spaced

by 70 to 100 nm. Placing the membrane on top of a 30-40 nm pore of a SiN membrane

allowed to statistically isolate and study a single pore.

2.2. Nanotubes

Nanotubes are cylindrical channels of diameter d in the nanometre range, and length L� d

(figure 2b). They are typically made out of carbon, or the isoelectronic boron nitride. The

nanotubes themselves, as a product of self-assembly, are readily available, but interfacing a

nanotube to a fluidic system and avoiding leakage is still an experimental challenge. Three

distinct strategies for addressing this challenge have been reported.

Building a microfluidic system on top of CVD-grown single-walled carbon

nanotubes. The systems may comprise one or several carbon nanotubes, typically of
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diameter 1 to 2 nm. The tubes generally have very high aspect ratio with lengths up to

0.5 mm (Lee et al. (2010), Choi et al. (2013), Yazda et al. (2017)), although similarly built

systems with 20 µm long nanotubes have also been reported (Pang et al. (2011)).

Insertion of a multiwalled nanotube into a solid state membrane. Siria et al.

(2013) reported the fabrication of nanofluidic devices comprising a single boron nitride

nanotube, inserted into a hole milled in a SiN membrane by direct nanomanipulation under

SEM. The hole could be sealed in situ by cracking of naphtalene induced by the electron

beam. The method was later extended to carbon nanotubes (Secchi et al. (2016a)), of 30

to 100 nm inner diameter and about 1 µm in length, and recently to smaller, 2 nm inner

diameter, multiwall carbon nanotubes.

Insertion of nanotubes into a lipid membrane. Liu et al. (2013) reported the

insertion of very short (5 to 10 nm) and very narrow (0.8 to 2 nm in diameter) nanotubes

into a supported lipid membrane. Nanotubes were brought in contact with the lipid bilayer

thanks to a microinjection probe. Recently, Tunuguntla et al. (2017) reported the self-

assembly of similar nanotubes, which they term carbon nanotube porins, into phospholipid

vesicles. A single patch of membrane could also be isolated in order to study a single porin.

2.3. Nanoslits down to angström confinements

Slit-like channels with one dimension below tens of nanometers were first made using micro-

and nano- fabrication techniques. But recently, Radha et al. (2016) reported the manufac-

turing of two-dimensional channels by van der Waals assembly of 2D materials (figure 2c).

A few layers of graphene were used as spacers between two crystals of graphite, hBN or

MoS2, allowing for atomically smooth channels of a few µm in length, 100 nm in width and

down to 7 Å in height, that is the thickness of two graphene layers. Very recently (Gopinad-

han et al. (2019)), water transport through one-graphene-layer thick (3.4 Å) channels was

reported.

This brief overview highlights that nanofluidics at the molecular scale is now a reality.

Not only molecular scale confinement is possible, but the geometry of the confinement and

the nature of the confining materials can also be tuned.

3. NANOFLUIDICS IN THE CONTINUUM LIMIT

3.1. Liquid transport

3.1.1. Basic equations. The two-centuries-old Navier-Stokes equation is remarkably robust

at describing fluid flow down to the smallest scale, typically `c = 1 nm for water in normal

pressure and temperature conditions (Bocquet & Charlaix (2010)). This length scale is

essentially a lower bound for defining a fluid viscosity η. Indeed, in macroscopic fluid

mechanics, the kinematic viscosity ν = η/ρ, where ρ is the mass density, plays the role of a

diffusion coefficient for the fluid momentum. For such a diffusion coefficient to be defined,

the time required for momentum to diffuse across the system, `2c/ν, must be larger than

the timescale of molecular motion, which is the microscopic origin of diffusion. A water

molecule at a thermal agitation speed of 300 m · s−1 moves by its own size in τc = 10−12 s,

which defines a molecular time scale. Therefore, viscosity may be defined down to a system

size

`c ∼
√
ντc ∼ 1 nm. 1.

www.annualreviews.org • Fluids at the Nanoscale 5



Below this length scale, water structuring due to surfaces, memory effects and other sub-

continuum phenomena come into play: these will be discussed in section 4. For water flow

at 10 nm length scales, the Reynolds number remains smaller than 0.1 up to fluid velocities

of 10 m · s−1. Hence, in nanofluidic systems, inertial effects may be safely neglected, and

the fluid flow is described by the Stokes equation:

η∆v + f = ∇p, 2.

where p is the pressure and f a body force, which may be due, for example, to the application

of an electric field (see section 3.3).

3.1.2. Boundary conditions. Stokes flow is often solved with no-slip boundary conditions:

the velocity of the liquid is assumed to vanish at a solid-liquid interface. This is, however,

a limiting case of the more general Navier partial slip boundary condition, which enforces

that the viscous stress at the interface should be balancing the solid liquid friction force.

Within linear response theory, the friction force is proportional to the liquid velocity. For

a fluid flowing in the direction x along a surface of normal z, the force balance per unit

area writes σxz = λvx, with [σ] the stress tensor and λ the friction coefficient per unit area

(expressed in N · s ·m−3). For a Newtonian fluid, σxz = η∂zvx, which allows to rewrite the

Navier boundary condition as

vx = b
∂vx
∂z

∣∣∣∣
wall

, 3.

introducing the slip length b = η/λ. The slip length can be geometrically interpreted as

the depth inside the solid where the linearly extrapolated fluid velocity profile vanishes.

Accordingly, the no-slip boundary condition corresponds to λ→∞ or b→ 0. The effect of

the partial slip condition is to simply shift the no-slip velocity profile by the slip velocity,

which is not negligible roughly within a slip length from the wall. Since slip lengths up

to tens of nanometers have been measured on atomically flat (and hydrophobic) surfaces,

slippage is expected to play a crucial role in nanofluidics, and some of its effects will be

discussed in the following sections. In the smallest channels, of size R � b, a perfect slip

boundary condition may even be appropriate: the flow is then controlled by entrance effects.

3.1.3. Geometry and entrance effects. Experimentally, the flow profile inside a nanofluidic

channel can hardly be resolved, and one typically measures the total flow rate Q. Under

a pressure drop ∆P and no-slip boundary conditions, the flow rate through a cylindrical

channel of radius R is given by the Hagen-Poiseuille formula:

Qc =
πR4

8ηL
∆P. 4.

This formula assumes a channel length L � R, and thereby neglects the effect of channel

mouths on the flow rate. But the transition from a macroscopic reservoir to a nanoscale

channel is a source of viscous dissipation, as the streamlines need to be bent in order for

the fluid to enter the channel. These entrance effects may be examined by considering the

flow through an infinitely thin nanopore, which is of interest in itself, given the geometry

of certain nanofluidic devices (see section 2.1). This problem was addressed by Samp-

son (1891). For a nanopore of radius R (and vanishing length) under pressure drop ∆P ,

Sampson obtained the expression of the flow rate as

Qp =
R3

3η
∆P. 5.

6 Kavokine, Netz and Bocquet
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Entrance effects in nanofluidics. a. Viscous dissipation rate, and streamlines, for the

pressure-driven flow of water across a nanopore, as obtained from a finite elements solution of the

Stokes equation (COMSOL). The colour scale, from blue to red, encodes the viscous dissipation.
b. Geometric model of the aquaporin as considered by Gravelle et al. (2013). c. Permeability of

the model aquaporin as a function of the cone angle α.

The scaling in Sampson’s formula naturally emerges from a Stokes equation where the only

lengthscale is R: η∆v = ∇p⇒ ηv/R2 ∼ ∆P/R, and the typical fluid velocity is v ∼ Q/R2.

In order to estimate the flow rate through a channel taking into account entrance effects,

one may simply add the hydrodynamic resistances of the pore (Rp) and the channel (Rc).
If one writes Qc = (∆P )c/Rc and Qp = (∆P )p/Rp, then the entrance-corrected flow rate

Qpc is obtained by imposing Qp = Qc = Qpc and ∆P = (∆P )c + (∆P )p, so that

Qpc =
∆P

Rh +Rp
=
πR4

8ηL

∆P

1 + 3π
8
R
L

. 6.

An exact computation (Dagan et al. (1982)) shows that the error made by this a priori

crude approximation is less than 1%. Equation 6 makes a continuous transition between

the nanopore and nanochannel regimes, and shows that entrance effects are apparently

negligible for channel lengths that exceed a few channel radii.

However, the above discussion has crucially not taken into account slippage, which, as

we have highlighted in the previous section, is a strong effect at the nanoscale. Introducing

a non-zero slip length b, the flow rate though a channel becomes

Qc =
πR4

8ηL

(
1 +

4b

R

)
∆P, 7.

while the flow rate through a pore is not significantly affected (Gravelle et al. (2013)), since

the source of dissipation in that case is mostly geometric. A full expression can be obtained

by gathering previous results, but in the limit where b � R, the entrance-corrected flow

rate becomes

Qpc =
R3

3η

∆P

1 + 2L
3πb

. 8.

Thus, the hydrodynamic resistance is actually dominated by entrance effects as long as the

channel is shorter than the slip length, rather than the channel radius (see figure 3a). In

the presence of significant slippage, one should check whether the low Reynolds number

www.annualreviews.org • Fluids at the Nanoscale 7
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Figure 4

a. Schematic of gas transport through a nanopore in the Knudsen regime `� R. A diffuse
reflection at the pore wall is represented. b. Schematic of osmotic transport of water mediated by

a nanobubble, reproduced from Lee et al. (2014b).

assumption still holds. The average velocity through a channel of radius R = 5 nm and

length L = 1 µm, with slip length b = 30 nm, under a pressure drop ∆P = 1 bar is

v = 8 mm · s−1, which is 25 times faster than the no-slip result, but still well below the

1 m · s−1 threshold established in 3.1.1.

Entrance-effect-dominated transport is particularly relevant for biological nanochannels,

due to their relatively small aspect ratio. A striking example is aquaporin, which was re-

cently studied from a hydrodynamic point of view by Gravelle et al. (2013). Aquaporins

are channel proteins that selectively transport water across the cell membrane. A simplified

geometrical model for the aquaporin consists of two conical vestibules connected by a sub-

nanometric channel where water flows in single file (figure 3b). The single-file transport is

expected to be nearly frictionless, and therefore the limit to the aquaporin’s permeability is

set by the entrance effects in the conical vestibules. Moreover, since the channel in question

is less than 1 nm wide and slip lengths of the order of 10 nm are expected, perfect slip

boundary conditions are relevant for the flow, and the viscous dissipation has a purely geo-

metric origin in the curvature of the stream lines. With the notations of figure 3b, Gravelle

et al. express the total hydrodynamic resistance of the aquaporin as

RAQP = R1 +R2 = C∞
η

a′3
+ C∞ sinα

η

a3
. 9.

Both terms are the analogue of Sampson’s formula (eq. 5). C∞ = 3.75 replaces the factor 3

in the case of perfect slip boundary conditions, and the factor sinα appears because at the

cone-cylinder transition, the stream lines turn by an angle α, as opposed to π/2 when the

transition is from an infinite reservoir to a pore. With that, the permeability K = R−1
AQP

turns out to be a non-monotonous function on α (figure 3c), with the maximal permeability

reached for cone angles in the range measured on aquaporin structures obtained by X-ray

crystallography. It appears, therefore, that the geometry of the aquaporin is an optimum

for hydrodynamic entrance effects, highlighting their particular relevance for nanoscale fluid

transport.

3.2. Gas transport

In a manner similar to liquid flow, gas flow can also be used to probe nanofluidic systems.

Gas flow may display two limiting regimes, depending on the value of the Knudsen number,

8 Kavokine, Netz and Bocquet



defined as

Kn =
`

R
, 10.

where ` is the mean free path and R is the typical system size. The mean-free path scales

as the inverse density according to ` ∼ (ρσ2)−1, with σ the molecular diameter. For

Kn� 1, the transport is dominated by intermolecular collisions and is therefore described

by hydrodynamics; for example, by the Poiseuille or Sampson formulae introduced above.

For Kn � 1, the transport is dominated by collisions with the walls and is described

by molecular diffusion: this is the so-called Knudsen regime (Lei et al. (2016)). Consider

a cylindrical channel of radius R and length L � R, connecting two gas reservoirs at

pressures P1 and P2 and same temperature T (see figure 4a). One may then define a

diffusion coefficient that relates the molecular flow rate QK to the density gradient ∆n/L

across the channel through a Fick-type law:

QK
πR2

= DK
∆n

L
=

DK
kBT

∆P

L
. 11.

The last equality uses that n = P/kBT through the ideal gas law, and ∆P = P1 −P2. The

only parameters involved in the diffusion are the channel radius R and the average thermal

velocity v∗ =
√

8kBT/πm, where m is the molecular mass of the gas. On dimensional

grounds, the Knudsen diffusion coefficient should scale as DK ∼ Rv∗. A kinetic theory

computation (Knudsen (1909), Steckelmacher (1966)) yields DK = (2π/3)Rv∗, and the

Knudsen formula:

QK =
8

3

πR3

√
2πmkBT

∆P

L
. 12.

Now the Knudsen formula relies on the crucial approximation of diffuse reflexion on the

channel walls: a molecule that hits a wall has a new velocity randomly picked out of a

Boltzmann distribution. It was proposed by Maxwell that only a fraction f of reflections

should be diffuse, and the rest should be specular, that is correspond to elastic collisions.

Smoluchowski then derived the corresponding correction to the Knudsen formula (Lei et al.

(2016), v. Smoluchowski (1910)):

QK =
2− f
f
· 8

3

πR3

√
2πmkBT

∆P

L
. 13.

There is a divergence of the flow rate in the limit f → 0, that is the channel opposes no

more resistance to the gas flow when all the wall reflections are specular. This is to be

expected, since in that case a molecule that enters the channel necessarily exits at the other

end. The flow resistance is then dominated by entrance effects; in other words, the flow

rate is given by the rate of molecules hitting the channel apertures. Gas molecules at a

density n hit an aperture of area πR2 at a rate (1/4)nv∗πR2. Hence the effusion flow rate

through an opening of radius R is

Qe = πR2∆n

√
kBT

2πm
=

πR2

√
2πmkBT

∆P, 14.

which also sets the flow rate in a long channel with specular reflection at the walls. One

notes there is a close analogy between the Poiseuille and Sampson formulae for liquids, on

the one hand, and the Knudsen and effusion formulae for gases, on the other hand. The

www.annualreviews.org • Fluids at the Nanoscale 9



fraction of specular reflections 1− f plays a role similar to the slip length: if it is large, the

transport in a long channel may still be dominated by entrance effects.

The free effusion prediction has been verified in systems of graphene nanopores (Celebi

et al. (2014)), with a transition to the hydrodynamic behaviour (Sampson formula) observed

upon reducing the Knudsen number. Specular reflections have also been evidenced in longer

channels. Gas flow exceeding the Knudsen prediction was measured in carbon nanotubes

(Holt et al. (2006), Majumder et al. (2008)), and, recently, nearly ballistic transport was

evidenced in angstrom-scale slits (Keerthi et al. (2018)). These results point out that the

tendency to anomalously fast transport in nanoscale confinement exists not only for liquids,

but also for gases.

A striking example of gas-mediated osmotic flow was demonstrated by the group of

Karnik. Lee et al. (2014b) fabricated a nanoporous (70 nm pore size) membrane with par-

tially hydrophobic pores, so that a nanobubble is trapped in each pore when the membrane

is immersed in water (see figure 4b). The nanobubbles are impermeable to salt, but perme-

able to water through its vapour phase transport. They show that the membrane reaches an

ion rejection of 99.9%, while competing with the permeability of state-of-the-art polyamide-

based membranes. Such high permeability might seem counterintuitive since vapour phase

transport is expected to scale with the density of water vapour, 1000 times lower than that

of liquid water. However, using gas phase transport as the ion rejection mechanism allows

for much larger pores (70 nm) then what would be required in the liquid phase (∼ 1 nm)

to ensure steric rejection of ions. The scaling of the water transport rate with the pore

size cubed (Bocquet (2014)) then explains the high transport efficiency in the gas phase.

As such, nanoscale gas transport shows promise for addressing the permeability-selectivity

tradeoff in membrane science.

3.3. Ion transport

The behaviour of ions in nanofluidic systems is of great practical interest with applications

ranging from biological ion channels (MacKinnon (2004)) to ionic liquids inside nanoporous

electrodes (Chmiola et al. (2006), Merlet et al. (2012)). Ion transport also provides an

indirect way of probing fluid transport, which is often useful, since electric currents are much

easier to measure than fluid flow. However, due to their long range Coulomb interactions

and diffusive dynamics, ions in nanochannels give rise to physics of great complexity. In

this section, we only sketch the main results with particular emphasis on how well-known

equations apply to the smallest channels, and we refer refer the reader to other reviews on

the subject (Bocquet & Charlaix (2010), Schoch et al. (2008), Sparreboom et al. (2010))

for more details.

3.3.1. Basic equations. Consider an aqueous solution of monovalent salt. Let ρ+, ρ− be

the densities of positive and negative ions, respectively; D the diffusion coefficient, here

assumed to be the same for ions of either sign, and φ the electrostatic potential. In a mean-

field treatment, the convective-diffusive dynamics of ions are described by a Smoluchowski

equation:

∂ρ±
∂t

= ∇ ·
(
D∇ρ± ∓

eD

kBT
(∇φ)ρ± + vρ±

)
, 15.

where e is the unit charge, φ the electrostatic potential and v is the fluid velocity field.

The mean-field assumption implies in particular that correlations between the ions can be

10 Kavokine, Netz and Bocquet



neglected: the potential importance of such correlations in nanofluidics will be discussed in

section 4. Until then, we proceed by specifying the electrostatic potential through Poisson’s

equation,

∆φ = −eρ+ − ρ−
ε

, 16.

where ε is the dielectric permittivity of water. For now we assume it to be isotropic, though

this assumption may break down for nano-confined water, as we discuss in section 4. Lastly,

we specify the flow velocity through the Stokes equation, which now includes an electrostatic

term:

η∆v − e(ρ+ − ρ−)∇φ = ∇p. 17.

We now apply these three coupled equations to a specific geometry, though the discus-

sion that follows could be generalised to channels of any shpae. For simplicity, we consider

a slit-like channel of height h, width w and length L, with w,L� h, connecting two reser-

voirs of salt solution at concentration ρs, extending along the direction x, between z = 0

and z = h. When considering ion transport, it is important to note that most surfaces are

charged in water, due either to the dissociation of surface groups or to the adsorption of

ions (Perram et al. (1973), Grosjean et al. (2019), Mouhat et al. (2020)). We hence assume

the channel wall carries a surface charge density −Σe (Σ is expressed in elementary charges

per unit area, and we assume here the surface charge to be negative).

3.3.2. Ionic conductance. We first neglect the coupling of ion transport to water transport,

and consider the electrophoretic (EP) contribution to the ionic current under an applied

electric field E: this means that we start by setting the fluid velocity v = 0. In the steady

state, the Smoluchowski equation (15) reduces to the so-called Nernst-Planck equations for

the constant ionic fluxes (along the x direction):

j± = D∇xρ± ∓
eD

kBT
(∇xφ)ρ±. 18.

Together with the Poisson equation (16), these constitute the widely used Poisson-Nernst-

Planck (PNP) framework. In our geometry, the condition L� h ensures that in the middle

of the channel ∇xρ± = 0; moreover to first order in E, ∇xφ = −E and the densities reduce

to their equilibrium values. Hence, the EP contribution to the ionic current writes

Iep = w

∫ h

0

dz(j+ − j−) = w
e2D

kBT

∫ h

0

dz(ρ+ + ρ−)E. 19.

In order to compute Iep, one needs to find the equilibrium solution of the coupled PNP

equations for ρ+ and ρ−. At equilibrium j± = 0 and the Nernst-Planck equations (18) can

be integrated, imposing that in the reservoirs φ = 0 and ρ± = ρs. This yields a Boltzmann

distribution for the ions in the electrostatic potential

ρ± = ρs exp

(
∓ eφ

kBT

)
≡ ρse∓ψ, 20.

introducing a dimensionless potential ψ. Combining this with the Poisson equation (16)

yields the Poisson-Boltzmann (PB) equation:

∆ψ − λ−2
D sinh(ψ) = 0, 21.
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which introduces the Debye length λD = (8πρs`B)−1/2, with `B = e2/(4πεkBT ) the Bjer-

rum length. In our geometry, the PB equation has an implicit solution in terms of an elliptic

integral (Levine et al. (1975), Andelman (1995)). We will not exploit it here, however, and

we will instead recover the relevant limiting behaviours from qualitative considerations.

It is well known that, roughly speaking, the Debye length sets the extension of the

diffuse layer of counterions next to a charged surface (Israelachvili (2011)). Hence, if the

channel height h � λD, its two opposing walls do not ’see’ each other. We expect the

conductance to be the sum of a bulk term, and a surface term originating in the two Debye

layers:

Iep = 2w
e2D

kBT
E(ρsh+ Σ). 22.

where ρsh and Σ account for the number of charge carriers in the bulk and at surfaces,

respectively. In the opposite limit where h � λD, there is no more distinction between

surface and bulk. All the quantities may be considered uniform across the channel: this

is called the Debye overlap regime. However, one may not assume that the channel con-

tains only counterions, and one should go back to the thermodynamic equilibrium with the

reservoirs, which in this case bears the name of Donnan equilibrium (Bocquet & Charlaix

(2010)). One has ρ± = ρse
∓ψ, which implies a chemical equilibrium ρ+ρ− = ρ2

s in the

channel. Going further, in the limit of long channel length, there should be local elec-

troneutrality: h(ρ+ − ρ−) = 2Σ. This yields

ρ± =
√
ρ2
s + (Σ/h)2 ± Σ/h, 23.

and the current-voltage relation in the Debye overlap is

Iep = 2w
e2D

kBT
E
√

(ρsh)2 + Σ2. 24.

Equation 24 displays the first peculiarity of small channels: one may not simply add the

surface and bulk contributions. Table 1 (see appendix) lists the values of Debye length

for different electrolyte concentrations, showing that the Debye overlap regime is indeed

relevant for experimentally accessible nanofluidic systems (see section 2). Qualitatively,

eqs. (22) and (24) both predict saturation of the conductance at low salt concentrations

at a value determined by the surface charge. The saturation occurs when ρs ∼ Σ/h, which

can be recast in the form h ∼ ρs/Σ ≡ `Du. `Du is called the Dukhin length and quantifies

the competition between bulk and surface contributions to the conductance. For a channel

narrower than `Du, surface contributions dominate, and vice versa. The Dukhin length is

going to be important in our upcoming discussion of entrance effects.

Bjerrum length:

`B = e2

4πε0kBT
.

Distance between
two unit charges at

which their
interaction energy is

kBT .

Debye length:
λD = (8πρs`B)−1/2.

Thickness of the

diffuse layer of
counterions next to

a charged surface.

Dukhin length:
`Du = Σ/ρs.

Channel width

below which surface
conductance

dominates over bulk

conductance.

Gouy-Chapman
length:
`GC = (2πΣ`B)−1.
Distance a unit

charge must travel

from a charged
surface so that its

electrostatic energy
is reduced by kBT .

At this point, a remark should be made concerning the range of validity of equations

(22) and (24). Indeed, they have been derived from qualitative considerations, without

reference to the exact solution of the PB equation. Now, from eqs. (19) and (20), one

obtains more generally

Iep = 2w
e2D

kBT

(
ρsh cosh(ψ(h/2)) +

E
2kBT

)
, 25.

where E = (ε/2)
∫ h

0
(∂zφ)2dz is the electrostatic energy per unit area. The electric double

layer can be pictured as a capacitor with charge Σ, hence one would expect its electrostatic

energy to scale as Σ2; moreover, this is the prediction of the linearised PB equation, i.e. eq.
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(21) with the approximation sinhψ ≈ ψ. This is in contrast to, eq. (22), which predicts a

linear scaling of the conductance with Σ: this scaling must therefore come from the non-

linearities of the PB equation. The PB equation may be linearised if the potential varies

by less than kBT across the Debye layer (or across the channel if there is Debye overlap).

This is the case in the high concentration/low surface charge limit and specifically when

the Debye length is smaller than the so-called Gouy-Chapman length: `GC = (2πΣ`B)−1.

On the other hand, Eq. (24), valid for the Debye overlap regime, is safe from a condition

on `GC , as it predicts both quadratic and linear scalings depending on the value of Σ, as

long as there is Debye overlap.

3.3.3. Entrance effects. Similarly to what we have discussed for liquid and gas transport,

we may now ask, for ion transport, what is the additional electrical resistance due to the

channel - reservoir interface. Equivalently, we may want to estimate the ionic conductance

of a nanopore of small aspect ratio, say of radius R and length L ∼ R. The problem has

first been considered in the context of biological channels by Hille (1968) and Hall (1975).

Hall solved the electrostatic problem with an electrode at infinity and an equipotential disk

accounting for the entrance of the pore. Translating the solution into scaling arguments,

the current through the pore entrance is I ∼ πR2κb∆Vout/R, where ∆Vout is the voltage

drop at the entrance of the pore, which is expected to occur over a distance R, and not over

the macroscopic distance between the electrodes. This defines an electrical access resistance

as the ratio ∆Vout/I. We now specialise to the thin Debye layer regime λD � R. If one

simply sums the access resistance and the channel resistance as given by eq. (22) (adapted

to cylindrical geometry), the current-voltage relation becomes

Iep = κb

(
L

πR2

1

1 + `Du/R
+

1

αR

)−1

∆V, 26.

with α a geometric factor which is 2 in Hall’s computation, and introducing the bulk

conductivity κb = 2e2Dρs/(kBT ). The above equation predicts vanishing conductance

as ρs → 0, since the access resistance becomes infinite in this limit; however, this is not

what is observed experimentally in short nanopores (Lee et al. (2012), Feng et al. (2016a)).

This inconsistency arises because, for a surface-charged pore, the access current has a

surface contribution, in addition to the bulk contribution. This surface contribution may

be evaluated starting from charge conservation at the surface, which imposes a relation

between the axial and radial components of the electric field, as pointed out by Khair &

Squires (2008):

κbEr = ∂x[κsθ(x)Ex], 27.

with κs the surface conductance and θ the Heaviside function, accounting for the disconti-

nuity of surface charge at the pore boundary, which leads to subtle consequences. Indeed,

it reveals that the Dukhin length, `Du = Σ/ρs ∼ κs/κb, is the relevant lengthscale for the

surface contribution to the electric field outside the pore, instead of the channel radius or

Debye length. The Dukhin length appears here as an electrostatic healing length: feeding

the surface conduction at the nanopore mouth disturbs the electric field lines in the bulk

over a length `Du. This interpretation is supported by the numerical results of Lee et al.

(2012) as shown in figure 5a. The bending of the electric field lines can be estimated by

a perturbative approach (Lee et al. (2012)) that leads to an analytical expression for the
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Figure 5

a. Colour plot of the electrostatic potential around a nanopore immersed in a salt solution and

subject to a voltage drop, in the charged and in the uncharged case. Around a charged pore, the
lengthscale for variation of the potential is set by the Dukhin length. Adapted from Lee et al.

(2012). b. and c. Schematic representation of coupled ion and fluid transport in a nanochannel

under electric field driving: in the thin Debye layer limit (b.) and in Debye overlap in the
presence of slippage (c.). The electro-osmotic contribution dominates in the latter case. d. Peclet

number (defined in the text), as a function of channel width and Gouy-Chapman length. The

region in parameter space where Pe > 1 is coloured in dark red in the no-slip case, and in light
red when slippage is present.

corrected current-voltage relation:

Iep = κb

(
L

πR2

1

1 + `Du/R
+

1

αR+ β`Du

)−1

∆V. 28.

The surface-charged pore therefore appears, from the perspective of entrance effects, as an

uncharged pore of effective size R + `Du, since the geometrical prefactor β ≈ 2. In the

limit of vanishing salt concentration, ρs → 0, the conductance indeed saturates, and, as

expected, the entrance correction disappears in the limit of large aspect ratio pores. Lee

et al. successfully compared the prediction of eq. (28) to experimental measurements in

SiN nanopores in the range 100 − 500 nm. More recently, it has been used to describe

conductance measurements in MoS2 nanopores down to 2 nm in diameter (Feng et al.

(2016a)).

3.3.4. Coupling with fluid flow. So far, we have neglected any coupling of ion transport to

fluid transport. However, in the presence of charged surfaces, an external electric field exerts

a net force on the charged Debye layer, which sets the fluid in motion. This interfacially-

driven flow is termed electro-osmotic (EO) flow. The EO flow in turn drags along the ions

in the Debye layer, which makes a supplementary contribution to the ionic current, that we

denote Ieo. This contribution has a convenient exact expression in the slit-like geometry

considered in section 3.3.2. In analogy to eq. (19),

Ieo = 2w

∫ h/2

0

e(ρ+ − ρ−)v(z)dz. 29.
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From the Poisson equation (16), we may replace e(ρ+ − ρ−) = −ε∂2
zφ. Then, integrating

by parts,

Ieo = 2wε

[∫ h/2

0

∂zφ∂zv dz + v(0)∂zφ|0

]
. 30.

Now, we may use the partial slip boundary condition v(0) = b∂zv|0, as well as the electro-

static boundary condition ∂zφ|0 = eΣ/ε. This stems from the Gauss theorem applied to

the surface, and the assumption that the medium outside the channel has much lower di-

electric permittivity than water (Andelman (1995)). Moreover, an integration of the Stokes

equation (17) allows the replacement ∂zv = −(εE/η)∂zφ. Altogether, we obtain

Ieo = w

[
2ε

η
E +

2be2Σ2

η

]
E, 31.

where E = (ε/2)
∫ h

0
(∂zφ)2dz is the electrostatic energy per unit surface introduced in 3.3.1.

It appears here that slippage has an additive contribution to the EO current, which strik-

ingly does not depend on any electrolyte properties.

We now consider the result in two limiting cases. First, in the thin Debye layer limit,

by comparing with eq. (25), one may identify

Ieo =
kBT

2π`BηD
Isurf
ep + 2w

be2Σ2

η
E, 32.

where Isurf
ep is the surface contribution to the electrophoretic current. To quantify the

importance of the EO contribution, one may compute the analogue of a Peclet number:

Pe =
Ieo

Isurf
ep

=
3

2

di
`B

(
1 +

b

`GC

)
. 33.

We have introduced here the ion diameter di by using the Einstein relation D =

kBT/(3πηdi) and we recall that `GC = (2πΣ`B)−1. In water at room temperature,

di ∼ `B ∼ 0.7 nm, therefore, in the absence of slippage, the EO contribution is of the same

order as the surface EP contribution, Pe ∼ 1. Table in the supplemental appendix lists, for

reference, values of the Gouy-Chapman length for typical surface charge values. As these

are generally in the nanometre range, even in the case of moderate slippage (b ∼ 10 nm),

there is a strong enhancement of the EO contribution. The threshold confinement below

which the resulting surface contribution dominates over the bulk contribution is given by a

rescaled Dukhin length: `∗Du = (b/`GC)`Du.

Second, in the Debye overlap regime, the EO current is readily determined from eq. (29),

since the ion densities may then be considered uniform across the channel and are given

by eq. (23). Uniform ionic densities also imply that the flow has no longer a surface, but

rather a volume driving. It is simply a Poiseuille flow, with the pressure gradient ∆P/L

replaced by the electric driving force e(ρ+ − ρ−)E. Altogether one obtains

Ieo '
wh

3η
e2Σ2

(
1 +

6b

h

)
E. 34.

Since in Debye overlap it makes no more sense to distinguish a surface and a bulk con-

tribution, we define the Peclet number as the ratio of the EO current to the total EP

current:

Pe =
Ieo

Iep
=
di
`B

h

4`GC

1 + 6b/h√
1 + (h/`Du)2

. 35.
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Figure 5d illustrates the dependence of this Peclet number on h and `GC , with ρs = 10−2 M

so that there is Debye overlap. In the absence of slippage, the EO contribution dominates

only for high surface charges. However, if a small slip length b = 5 nm is introduced, the

Peclet number exceeds 1 for all reasonable surface charges. Indeed, the Peclet number is

then essentially determined by the ratio b/`GC . This highlights that in the Debye overlap

regime, ionic conduction should be mostly driven by electro-osmosis.

If strong EO flows are expected, then the reciprocal effect, streaming current, is expected

to be large as well. The streaming current results from the application of a pressure gradient

∆P/L: in Debye overlap, the charge density 2Σ/h is simply dragged along by the Poiseuille

flow. The current reads

Istr ' hw
ehΣ

6η

(
1 +

6b

h

)
∆P

L
≡ hw−εζ

η

∆P

L
, 36.

where we have phenomenologically defined the zeta potential (ζ) via the streaming mobility.

Independent measurements of the surface charge through the voltage-driven current and

of the zeta potential from the pressure-driven current may allow in principle to estimate

the slip length b. Such an estimate does not replace a direct measurement, however, in

particular because the slip length may directly depend on surface charge (Xie et al. (2020));

and additional charge-surface coupling effects may also occur, as we discuss below.

3.3.5. Surface modifications to PNP theory. A remark is in order at this point concerning

the nature of surface charge, that we have so far assumed to be constant, whatever the

conditions. Usually, surface charge is considered to result from the acid base reactivity of

the surface when dipped into water, of the type [AH]s → [A−]s + H+, where the negative

group [A−]s remains fixed on the surface, while the proton diffuses in solution. In the case

of the air-water interface, surface charge may result from the adsorption of hydronium ions

(Mamatkulov et al. (2017)), or charged impurities. The adsorption of surfactant impurities

was also proposed as a charging mechanism for general hydrophobic surfaces (Uematsu

et al. (2019)). Graphite and hBN, which are of particular relevance in nanofluidics, have

a priori no obvious acid-base reactivity in water, but they may develop a surface charge,

through chemisorption or physisorption of hydroxyde ions, as inferred from experiments

(Secchi et al. (2016b), Siria et al. (2013)), and recently confirmed by ab initio simulations

(Grosjean et al. (2019)). Such a picture of surface charge implies that it may actually depend

on electrolyte concentration, which is an example of charge regulation. Qualitatively, the

salt concentration affects the surface potential, and therefore the concentration of H+ and

OH− ions at the surface, which in turn affects the chemical (or the adsorption) equilibrium

which governs the surface charge. Such charge regulation has been invoked to explain several

experiments on carbon nanotubes, where a scaling I ∝ ρ1/2
s or I ∝ ρ1/3

s was observed (Secchi

et al. (2016b), Liu et al. (2010), Pang et al. (2011)). Various models have been developed

(Secchi et al. (2016b), Biesheuvel & Bazant (2016), Manghi et al. (2018), Uematsu et al.

(2018)), predicting a rich panorama of different sublinear scalings of conductance with salt

concentration, depending on the conditions.

A further step that may be required to accurately describe the surface charge is to take

into account its mobility. Surfaces charges may be mobile when embedded in lipid bilayers,

or with more relevance to nanofluidics, when resulting from adsorbed ions. For instance,

the simulations of Grosjean et al. showed that physisorbed hydroxyde ions on graphene

surfaces retain a high lateral mobility (Grosjean et al. (2019)). The effect of a mobile
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surface charge on ion and fluid transport coefficients (in the thin Debye layer regime) was

the subject of several investigations (Maduar et al. (2015), Silkina et al. (2019), Mouterde &

Bocquet (2018)). Using the framework of Mouterde & Bocquet (2018), one may introduce

two new friction coefficients: λ− between the adsorbed (negative) ions and the wall, and ξ−
between the adsorbed ions and the fluid, in addition to the water-wall friction coefficient λ.

The force balance on the interfacial fluid layer results in a modified partial slip boundary

condition involving the tangential electric field at the surface:

beff∂zv|z=0 = v|z=0 − e
ξ−

ξ− + λ−

beff

η
Σ(−∂xφ)|z=0, 37.

where the effective slip length is

beff =
b

1 +
λ−ξ−

λ(λ−+ξ−)
Σ
. 38.

The slip length is therefore reduced by the surface charge mobility, and the boundary

condition involves an extra electric term. This has in general a moderating effect on the

transport coefficients. For example, in the case of streaming current, the fluid brings along

surfaces charges in addition to the counterions, so that the total current is reduced. Notable

exceptions are diffusio-osmotic mobility and conductance: the overall ionic conductance

increases when surface charges are able to move in response to the electric field.

We have just introduced ion-wall and ion-water friction for adsorbed ions in the inter-

facial layer. Now, for the smallest accessible channels, which are comparable to the ion size

(Radha et al. (2016), Lee et al. (2010)), such friction needs to be taken into account for

all the ions, and should appear at the level of the transport equations. This was proposed,

for instance, to rationalise the non-linear voltage-pressure couplings observed in angstrom-

scale slits by Mouterde et al. (2019). They observed that the streaming mobility µ, defined

by Istr = hwµ∆P/L, depends on the applied voltage in a qualitatively different way for

graphite and BN slits. In the proposed ’surface PNP’ model, the ion-wall (λ±) and ion-

water (ξ±) friction coefficients are introduced in the same way as above, except they no

longer apply to adsorbed ’surface charge’ ions, but to all the regular salt ions. The equiv-

alent of the Smoluchowski and Stokes equations need then to be rederived by considering

the force balance on a single ion and on an element of fluid, respectively, as shown in the

Appendix.

There is a rich phenomenology to be harnessed from the new couplings that appear

when all components of the nanofluidic system interact with the surfaces. Nevertheless,

such surface PNP theory is still in its infancy, and it requires input from more micro-

scopic modelling in order to estimate the various friction coefficients it introduces. It even

raises mathematical difficulties in the writing of a one-dimensional Poisson equation, whose

Green’s function has infinite range. Finally, the relevance of this phenomenological theory

should be assessed in light of the correlation and structuring effects – specific to the smallest

scales – that will be described in the next section.

4. BEYOND THE CONTINUUM DESCRIPTION

In this section, we focus on the specific nanoscale effects that are not described in the

framework of continuum hydro- and electro-dynamics. These effects mainly originate from

thermal fluctuations, interparticle correlations and structuring effects, and, as such, they
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require theoretical tools that bridge the gap between physics of continuous media and

statistical mechanics.

4.1. Fluctuations

4.1.1. Fluctuating hydrodynamics. The relative particle number fluctuations in an open

system of N particles scale as 1/
√
N . In a nanopore of radius 1 nm and length 10 nm, there

are on average about 1000 water molecules and these fluctuations are of a few percent and

already not negligible. Fundamentally, the description of such fluctuations requires a sta-

tistical mechanics framework, such as density functional theory (Barrat & Hansen (2003)).

However, these approaches remain quite formal and difficult to implement, particularly for

finite length pores which are non translationally-invariant systems.

A simpler coarse-grained approach to fluctuations – the so-called fluctuating hydrody-

namics (FH) – has been introduced by Landau & Lifshitz (1977). In fluctuating hydrody-

namics, a random stress tensor S is added to the Navier-Stokes equation:

ρ∂tv + ρ(v · ∇)v = −∇p+ η∆v +∇ · S, 39.

where S satisfies a fluctuation-dissipation theorem: 〈Sij(r, t)Skl(r′, t′)〉 = 2ηkBT (δijδkl +

δilδjk)δ(r−r′)δ(t−t′), similarly to the fluctuating force in a Langevin equation; ρ is the mass

density of the fluid. This description introduces thermal fluctuations in a setting where,

otherwise, a continuum hydrodynamic description holds. FH has been extensively discussed

in the literature (Hauge & Martin-Lof (1973), Fox & Uhlenbeck (1970), Mashiyama & Mori

(1978)) and we only consider here its basic implications for fluid transport in a nanopore.

In standard hydrodynamics, the fluid inside a nanopore is at rest when subject to no

external force. The effect of fluctuations is to induce a stochastic flow through the nanopore,

which can be pictured as a stochastic motion of the fluid centre of mass (CM). Detcheverry

& Bocquet (2012) solved the FH equations for the velocity correlation function, and found

that the CM motion was described by a non-Markovian Langevin equation of the type

m
dv

dt
= −

∫ t

−∞
dt′ξ(t− t′)v(t′) + F (t), 40.

where the random force F (t) and the memory kernel ξ are related by 〈F (t)F (0)〉 =

2kBTξ(t). The memory kernel is indeed non-trivial (i.e. not reduced to a δ function),

as confirmed by molecular dynamics (MD) simulations (Detcheverry & Bocquet (2013)).

Memory effects in the diffusion of fluid inside a nanopore are indeed expected from the

analysis of relevant timescales. A nanopore of radius R and length L contains a mass

m = ρπR2L of fluid, and its friction coefficient on the wall can be calculated from the

Navier-Stokes equation as ξs ≈ 8πηL. The velocity of the fluid CM then relaxes on a

timescale τ ∼ m/ξs ∼ R2/ν. But R2/ν is the time required for fluid momentum to diffuse

across the nanopore, that is the time for the wall friction force to establish itself. Therefore,

the friction force may not adapt instantaneously to the CM velocity, and memory effects

are to be expected.

Properties that are determined by short timescale dynamics may be affected by those

memory effects as it was shown to be the case for solute mobility in confinement (Dal-

drop et al. (2017)). More generally, memory effects play an important role in barrier-

crossing processes (Kappler et al. (2018)). But other properties only depend on the long

timescale dynamics. In particular, the fluid centre of mass diffusion coefficient, given by
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D = kBT/(2
∫∞

0
ξ(t)dt), reduces to the Einstein expression D = kBT/ξs, that would be

expected if the diffusion was Markovian. Similarly, the hydrodynamic slip length b is found

to satisfy a Green-Kubo relation whatever the form of the memory kernel ξ(t) (Bocquet &

Barrat (2013)).

From a practical perspective, one may evaluate the diffusion coefficient D. From the

Einstein relation, and the assumption of Poiseuille flow with slip length b, one obtains

D =
kBT

ξ
=

kBT
8πηL

1+4b/R
+ 3π2ηR

, 41.

where, in the most general case, the friction coefficient ξ has two contributions, one from the

channel interior and one from the entrance effects (Detcheverry & Bocquet (2012)). Overall,

the fluid CM diffusion D can be seen as a supplementary contribution to the diffusion

coefficient of a particle inside the nanopore. If the size of the particle is comparable to

that of the nanopore, its self-diffusion is strongly hindered (Renkin (1954)) and the fluid

contribution may actually dominate the particle diffusion (Detcheverry & Bocquet (2012)).

4.1.2. Noise. Thermal fluctuations are at the origin of the noise in ionic current measure-

ments through a nanopore. At zero applied voltage, the total noise amplitude satisfies the

Nyquist relation 〈I2〉 = 2kBTG, where G is the nanopore conductance. The electro-osmotic

term in the conductance makes a supplementary contribution to the noise, which can ac-

tually be traced back to the hydrodynamic fluctuations of the fluid CM described in the

previous paragraph (Detcheverry & Bocquet (2012)).

When resolved in frequency, numerous experiments on artificial nanochannels (Smeets

et al. (2008), Siwy & Fuliński (2002), Hoogerheide et al. (2009), Tasserit et al. (2010), Secchi

et al. (2016b)) and biological pores (Wohnsland & Benz (1997), Bezrukov & Winterhalter

(2000)), have shown that the current spectrum exhibits ’pink noise’, that is noise that scales

with frequency f as f−α, with α in the range 0.5 − 1.5. Such a spectrum is traditionally

described by the empirical Hooge’s law (Hooge (1969)):

〈δI2〉(f) = A
〈I2〉
fα

, 42.

with A a coefficient inversely proportional to the number of charge carriers. Notably, in

experiments, the f−α scaling is observed down to frequencies below 1 Hz, showing that

some correlations in the system under study exist even at such low frequencies. Correlations

between ions have been put forward as a possible origin for the pink noise (Zorkot et al.

(2016)). On the other hand, Gravelle et al. (2019) demonstrated in MD simulations that

pink noise persisted even with non-interacting ions, if reversible ion adsorption was allowed

on the channel wall. For simple diffusive dynamics, the longest correlation time that may

be expected for adsorption-desorption processes is R2/D, with R the pore radius and D the

ion diffusion coefficient. For a 10 nm pore, this would correspond to a frequency cutoff of

100 MHz, below which the noise spectrum should be flat. Such a high cutoff frequency is in

clear contradiction with experiment. However, Gravelle et al. showed that in the presence

of reservoirs, excursions of ions outside the pore coupled to adsorption-desorption processes

on the pore surface result in ionic correlations on much longer time scales, hence predicting

pink noise down to very low frequencies.

4.1.3. Wall fluctuations. So far, we have only considered thermal fluctuations of the fluid

itself. However, the confining walls might also be subject to fluctuations. Wall fluctuations
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are known to enhance fluid self-diffusion by inducing flows, through the Taylor-Aris mecha-

nism (Taylor (1953), Aris (1956)). On the other hand, static constrictions slow down diffu-

sion in a channel through Fick-Jacobs entropic trapping (Malgaretti et al. (2014), Reguera

& Rub́ı (2001)). Recently, MD simulations have shown diffusion enhancement due to the

propagation of phonons in carbon nanotubes (Ma et al. (2015), Cruz-Chú et al. (2017)).

On the theoretical side, a very general framework for evaluating the self-diffusion coef-

ficient for a fluid confined in a fluctuating channel was developed by Marbach et al. (2018).

In a slit like-channel of height h, the fluctuation-corrected diffusion coefficient D is formally

related to the spectrum of wall fluctuation S(k, ω) by

D = D0

(
1− 1

h2

∫
dkdω

(2π)2

(D0k
2)2 − 3ω2

(D0k2)2 + ω2
S(k, ω)

)
, 43.

where D0 is the bare diffusion coefficient. Equation (43) has two limiting regimes, that are

governed by a ’fluctuation-related’ Peclet number, which may be defined as Pe = `2/(D0τ),

where ` and τ are the characteristic length and time scales of the fluctuations. The diffusion

coefficient is enhanced for Pe > 1 (D = D0(1 + 3〈δh2〉/h2)), and reduced for Pe < 1

(D = D0(1− 〈δh2〉/h2)) and both tendencies are observed experimentally (Marbach et al.

(2018)). Equation (43) thus bridges the limiting Taylor-Aris and Fick-Jacobs results.

The permeability of a fluctuating channel is also expected to be impacted by wall fluc-

tuations. However, permeability is related to the diffusion of the fluid centre of mass (see

eq. (41)), which is different from the fluid self-diffusion; and extending the above framework

to centre of mass diffusion remains to be done.

4.2. Fluid structuring

4.2.1. Phenomenology. While a fluid appears disordered at hydrodynamic lengthscales, its

molecular nature manifests itself under confinement in the form of structuring effects. Even

at a non-confined solid-liquid interface, the attractive interactions between the solid and

the liquid result in molecular layering, as verified experimentally by x-ray spectroscopy

(Cheng et al. (2001)). In between two surfaces, a liquid adopts a layered structure even in

the absence of interactions, simply due to geometrical constraints (Israelachvili & Pashley

(1983)). The onset of structuring clearly represents the transition from continuum to sub-

continuum transport.

The threshold confinement at which this transition occurs has been studied for both

planar and cylindrical geometries using MD simulations. For water in carbon nanotubes,

Thomas & McGaughey (2009) have found that it retains a bulk-like disordered structure

down to a tube diameter of 1.39 nm ((10,10) tube). In a (9,9) tube (1.25 nm) water was

found to structure in stacked hexagons (see figure 7), and in a single file chain in a 0.83 nm

(6,6) tube. For water between two graphene sheets, four distinct layers could be observed

at a 1.35 nm distance between sheets (Neek-Amal et al. (2016)), and a single monolayer

of water was observed for confinement below 0.8 nm (Neek-Amal et al. (2018)). In should

further be noted that the observation of an exotic square ice phase for few-layer water

between two graphene sheets has been claimed (Algara-Siller et al. (2015)).

In the sub continuum-regime, transport properties show strong qualitative deviations

from bulk expectations. The MD simulations of Thomas & McGaughey (2009) showed

non-monotonous permeability for carbon nanotubes as a function of diameter, and similar

observations were made for the capillary filling velocity of carbon nanotubes, studied by

Gravelle et al. (2016). On the experimental side, this behaviour can be put in perspective
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Figure 6

MD simulation snapshots of water structure inside carbon nanotubes of different radii, adapted

from Thomas & McGaughey (2009).

with the recent results by Radha et al. (2016) for capillary-driven flow through slit-like

graphene channels where a peak in flow rate at around 1.3 nm confinement was observed.

4.2.2. Disjoining pressure. Thermodynamically, the effect of molecular fluid structuring

may be described by a supplementary contribution to the pressure, the so-called disjoining

pressure. For a fluid confined between two walls of area A separated by a distance h, in

equilibrium with a reservoir at pressure P0, it is defined in full generality as

Πd(h) = − 1

A

(
∂G

∂h

)
, 44.

where G is the Gibbs free energy of the whole system (Israelachvili (2011), Barrat & Hansen

(2003)).

In principle, G varies with h because of distance-dependent interactions between the

surfaces; the disjoining pressure can then be seen as the force the fluid needs to exert in

order to oppose those interactions. These are generally of two types. On the one hand,

there are van der Waals interactions that scale algebraically as h−2, yielding a contribution

ΠvdW = − AH
6πh3

to the disjoining pressure, with AH the Hamaker constant (although more

complex dependencies may occur in specific geometries). On the other hand, electrostatic

interactions lead to contributions that scale exponentially with the distance h due to ionic

screening. The combination of these two interaction terms is the basis for the DLVO

(Derjaguin-Landau-Verwey-Overbeek) theory.

Now, if there is fluid structuring that depends on confinement, it makes a supplementary

contribution to the variation of G. This contribution exists even for a hard sphere fluid

due to excluded volume effects, and is purely entropic in nature. It quantifies essentially

how much the structure of the fluid in confinement differs from the one in the bulk. For

hard spheres of diameter σ, the disjoining pressure is usually described by the expression

(Israelachvili (2011), Kralchevsky & Denkov (1995)):

Πd(h) = −ρ∞kBT cos(2πh/σ)e−h/σ, 45.

where ρ∞ is the bulk density. This is an oscillating function of h that decays to 0 at large h,

where there is no more fluid structuring. It is bounded by Πd(0) = ρ∞kBT , which evaluates

to about 1000 bar for water at room temperature. In practice, for fluid flow measurements
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where a pressure drop is imposed between two reservoirs, this (huge) contribution to the

pressure does not intervene directly. However, in a capillary flow geometry, which involves

liquid-vapour interfaces, the disjoining pressure may be much larger than the bare capillary

pressure and act as the main driving force. Indeed, the capillary pressure drop across a

meniscus of radius R = 1 nm is typically 2γ/R = 140 bar (for water with surface tension γ =

72 mN·m−1). Driving by disjoining pressure was observed in simulations of carbon nanotube

capillary filling (Gravelle et al. (2016)), where the subtle dependence of the water molecular

structure – and therefore of the disjoining pressure – on nanotube radius resulted in the

imbibition velocity displaying oscillatory behaviour versus the confinement. Experimentally,

a similar phenomenology was observed by Radha et al. (2016), who measured the capillary

flow of water across angstrom scale slits and found a non-monotonous dependence of the

evaporation rate on confinement. These measurements could be interpreted in terms of

disjoining pressure, which was indeed found to be of the order of 1000 bar in MD simulations

of the experimental system (Neek-Amal et al. (2018)).

4.2.3. Descriptions of fluid transport. A first understanding of sub-continuum transport

may be provided by extending the continuum description with effective, confinement-

dependent, values for density, viscosity and slip length. In a layered fluid, the density

in each layer is generally higher than in the bulk, and a general trend is that viscosity

increases (Schlaich et al. (2017)). More exotically, an oscillating viscosity as a function of

confinement was observed in simulations of water between two graphite slabs (Neek-Amal

et al. (2016)). Neek-Amal et al. (2018) could reproduce the experimental results of Radha

et al. (2016) by using simulated values of disjoining pressure, along with a Poiseuille for-

mula with effective density and viscosity; however, they assumed a viscosity-independent

slip length. Now, in general, care should be taken in defining a viscosity for a structured

fluid: as its density is non-uniform, a position-dependent viscosity should be introduced

in order to describe the details of the flow profile. For confinement below five molecular

diameters (in the case of a Lennard-Jones fluid) Travis et al. (1997) have shown that even a

position-dependent viscosity is not sufficient and a non-local viscosity kernel should be used

(Zhang et al. (2004)). Ultimately, for confinement below a few molecular layers (typically

1 nm for water), the notion of viscosity itself – which is intrinsically a continuum quantity

– looses its fundamental meaning.

Nevertheless, a simple picture of sub-continuum fluid transport is possible in the case

of large slippage, since surface friction then becomes the main mechanism resisting fluid

transport. This appears indeed when looking at the limit b � R in the Poiseuille formula

(7), which yields for the average flow velocity:

v =
Rb

2ηL
∆P =

R

2λL
∆P, 46.

where we have obtained the second equality by relating the slip length to the liquid-wall

friction coefficient λ: b = η/λ; note that, for simplicity, we forget here about entrance.

The viscosity does not enter the permeability, as expected for surface dominated friction.

The fluid moves indeed in the channel as a single block, and dissipation only intervenes at

the surface. The crucial parameter governing the transport is then the solid-liquid friction

coefficient λ. A model for evaluating λ, tested against MD simulations of water in carbon

nanotubes, was proposed by Falk et al. (2010). They obtain

λ ≈ τ

kBT
f2
q0S(q0), 47.
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where q0 is the wave-vector corresponding to the solid lattice spacing, fq0 is the Fourier

component of the fluid-solid interaction potential at that wave-vector, and S(q) is the liquid

structure factor; τ is the correlation time of the force between the solid and the liquid, which

is found to not depend on confinement. In this way, λ is found to be directly related to the

liquid structure and to the liquid wall interaction. Such a friction-dominated approach was

applied successfully, for example, to predict the permeability of ultra-confined alcanes in a

nanoporous matrix, showing a scaling dependence of the permeance on the alcane length

(Falk et al. (2015)). However, predicting the solid-liquid friction coefficient remains to large

extents an open problem. As we discuss in the following (see 4.2.6), its determination in

MD simulations still remains ambiguous quantitatively, and the role of underlying quantum

effects should be assessed.

4.2.4. Ultimate structuring: single file transport. The most extreme type of structuring

is single-file arrangement of fluid molecules. In the case of water transport, this is the

realm of biological channels (Horner & Pohl (2018b)), where water is conducted through

sub-nanometric openings in transmembrane proteins. Single file transport may also occur

in artificial channels: it was observed in MD simulations for carbon (Hummer et al. (2001))

and boron nitride (Won & Aluru (2007)) nanotubes of 0.8 nm in diameter, and experimental

observation in carbon nanotubes was recently claimed (Tunuguntla et al. (2017)). Single-file

transport is a field of its own and there are dedicated reviews on the subject (Horner &

Pohl (2018b), Köfinger et al. (2011)); here we will only sketch the main ideas.

The notion of single file transport and the underlying exclusion transport models are

not restricted to the study of confined fluids. Indeed, a general feature of particles in

one dimension that cannot cross each other is sub-diffusive behaviour: the mean squared

displacement of a particle scales with time as 〈∆x2〉 ∝ t1/2, as opposed to linear scaling for

normal diffusion (Levitt (1973)). Such anomalous diffusion is encountered in a variety of

fields (Fouad & Gawlinski (2017)), and may be understood in terms of the normal diffusion

of vacancies in the 1D chain; in the case of fluid transport, it was studied by Chou (Chou

(1999, 1998)). However, this effect is not expected to play a decisive role in single-file

transport through short channels, where vacancies are unlikely to occur (Kalra et al. (2003)).

In the case where no vacancies are expected, a simple model for single-file transport

was proposed decades ago by Finkelstein (1987) for describing water transport in biological

channels. It stems from a global force balance on the water chain, and is as such equivalent

to eq. (46), which we have derived as a strongly confined limit of the Poiseuille formula. In

Finkelstein’s model, the chain of N water molecules (of total length L) moving at velocity

v is subject to a friction force −Nξv, and to a pressure driving Nvw∆P/L, where vw is the

volume of one water molecule. The force balance then leads to

v =
vw
ξL

∆P, 48.

which is indeed eq. (46), granted the identification ξ = (2vw/R)λ. In the biophysics

literature, the preferred quantity for characterising a channel’s transport properties is the

unitary channel permeability pf : pf is the number of water molecules that crosses the

channel per unit time, per unit osmolyte concentration difference applied across the channel,

therefore expressed in m3 · s−1. For an osmolyte concentration difference ∆ρs, the osmotic

pressure difference is kBT∆ρs, and hence the unitary permeability is

pf =
N

L

v

∆ρs
=
vw
aL

kBT

ξ
, 49.
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where we have defined a = L/N the average spacing between water molecules. The diffusion

coefficient of the water chain centre of mass may be expressed through the Einstein relation

as D = kBT/(Nξ), and therefore pf = vwD/a
2, hence the diffusion coefficient and the

unitary permeability may be used interchangeably. A typical value for the permeability in

biological channels such, as Aquaporin or Gramicidin A, is in the range of 10−14−10−13 cm3·
s−1, which corresponds to 1-10 water molecules crossing the channel per nanosecond under

a 1 bar pressure drop.

In an alternative phenomenological description, transport through the channel is viewed

as an activated process with activation energy ∆G‡ (Horner & Pohl (2018b)). The

permeability is then expressed in the framework of transition state theory as pf =

vw ν0 exp[−∆G‡/kBT ], with ν0 ∼ 1013 s−1 a molecular attempt frequency. For biological

channels, this relation is well verified by independent measurements of pf and ∆G‡, with

∆G‡ of the order of 5 kcal ·mol−1. However, values of ∆G‡ remains debated for transport

measurements in carbon nanotubes (Horner & Pohl (2018a), Tunuguntla et al. (2018)).

Although it provides a general guiding line, Finkelstein’s formula is challenged both

in artificial and biological channels. In the case of protein channels, the assumption of

uniformly smooth walls breaks down, since there are discrete hydrogen bonding sites (Horner

& Pohl (2018b)). Hence pf is not found to be inversely proportional to channel length

(Saparov et al. (2006)): it rather has an exponential dependence on the number of hydrogen

bonding sites (Horner et al. (2015)). Such an exponential dependence suggests a collective

transport mechanism of the water chain, with bursts requiring the breaking of multiple

hydrogen bonds at once. There is, however, a notable disagreement between experiments

and simulations, as the simulations of water transport through polyalanine channels showed

no dependence of pf on the channel length (Portella et al. (2007)).

In simulations of carbon nanotube channels, all the single-file water molecules were

clearly shown to move in a correlated fashion (Hummer et al. (2001)): water transport

occurs when all the molecules simultaneously shift by one molecular diameter. These dy-

namics were successfully described by a continuous time random walk model (Berezhkovskii

& Hummer (2002)), or equivalently by diffusion of a collective coordinate of the water

molecules (Zhu et al. (2004)), which actually echoes our discussion of fluctuations in a more

general setting (eq. 40 and Detcheverry & Bocquet (2012)).

Overall, there is still much to understand about the collective motions and subtle surface

interactions involved in single-file transport, and it is an active field of research.

4.2.5. Structuring and electrostatics: dielectric anomalies. As confined water becomes

structured, its response properties to an external electric field are accordingly modified.

When an electric field E is applied in water, the individual molecules reorient and polarise,

creating an electric field themselves. The total electric field E is then the sum of the po-

larization field of the water molecules and of the externally applied field D/ε0, where D

is called the electric displacement and ε0 is the vacuum permittivity. In bulk water, the

dielectric response, that is the relation between D and E, may be expressed through a single

scalar quantity, the relative permittivity ε ≈ 80: D = εε0E. However, the most general

(static) linear response may be anisotropic, space-dependent and non-local:

Dα(r) = ε0
∑
β

∫
dr′εαβ(r, r′)Eβ(r′). 50.
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a b

Figure 7

Dielectric anomalies due to fluid structuring. a. Components of the dielectric permittivity tensor

of water in a carbon nanotube, as a function of nanotube radius, as determined from MD
simulations by Loche et al. (2019). b. Experimental results for the transverse dielectric constant

of water in planar confinement, as a function of confinement width, from Fumagalli et al. (2018).

The relative permittivity is then a tensor with components εαβ(r, r′). While MD simu-

lations show that the dielectric response in water may be considered local (εαβ(r, r′) =

εαβ(r)δ(r − r′)), it becomes anisotropic and space-dependent in the vicinity of interfaces,

as a consequence of the water layering (Bonthuis et al. (2012),Bonthuis et al. (2011)).

Qualitatively, the orientations of the water dipoles are anti-correlated in the direction per-

pendicular to the interface, resulting in a reduced permittivity in that direction, while the

permittivity is largely unaffected parallel to the interface. In planar confinement, this be-

haviour could be captured by an effective medium model, in which the water is described

by a space-independent, but anisotropic permittivity (ε‖, ε⊥) (the parallel direction is not

confined). While ε‖ essentially retains its bulk value, ε⊥ is reduced by up to an order of

magnitude for confinements below 1 nm (Schlaich et al. (2016), Zhang et al. (2013)). Such

a reduction of the perpendicular dielectric response was recently observed experimentally

for water confined between a graphite and a boron nitride crystal (Fumagalli et al. (2018)).

A deviation from the bulk value was measured up to nearly 100 nm confinement (figure 7).

The results were well described by assuming each interface carried a 7 Å thick layer of very

low permittivity (ε = 2.1) ”electrically dead water”.

An effective medium model based on MD simulations was developed by Loche et al.

(2019) for cylindrical confinement of water in carbon nanotubes. Similarly to the case

planar case, the radial permittivity is found to be reduced by up to an order of magnitude

for tube radii smaller than 3 nm (figure 7). However, for the smallest tubes (below 1 nm

radius), the longitudinal permittivity is found to increase with respect to its bulk value,

and it skyrockets 1 to 3 orders of magnitude in a 0.4 nm radius tube, where water is in a

single file arrangement.

Knowledge of these modified dielectric properties is important when considering ion

transport in strong confinement, as will be discussed in the following (see 4.3.1).

4.2.6. Limits of molecular dynamics. We will close this section on liquid structuring with

a word of warning. Many of the results we have presented so far have been obtained using

classical MD simulations, and like any type of simulation, these come with some underlying
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assumptions. In particular, as we are dealing with strongly confined fluids where all the

molecules interact with the confining surface, the modelling of that surface plays an increas-

ingly important role. Since the solid is represented by rigid balls interacting with classical

force fields, no electron dynamics may be described by the simulation. However, some

coupling between water and electron dynamics may be expected, based on a lengthscale

argument. The maximum of the dielectric response of a solid indeed occurs at a lengthscale

k−1
TF, where kTF is the Thomas-Fermi wave-vector (Mahan (1990)). Typically, k−1

TF ≈ 1 nm

in graphite, hence the electrons in graphite could expected to respond to the dynamics of

individual water molecules.

There is growing evidence that such electron-water couplings indeed occur. A first

consequence of taking into account electron dynamics is that a solid should appear polar-

isable: in simulations, the fluctuations of water next to a graphite surface were found to

be strongly affected by the polarisability of carbon atoms (Misra & Blankschtein (2017)).

On the experimental side, the induction of an electronic current by a water flow inside a

carbon nanotube, as well as the reverse phenomenon, were observed (Ghosh et al. (2003),

Rabinowitz et al. (2020)).

These results call for caution in the interpretation of MD simulations, which, as we have

pointed out, lack electron dynamics. They also call for the development of new simulation

methods that would take such dynamics into account, while not limited by the very small

system size of ab initio simulations.

4.3. Electrostatics in extreme confinement

In this section, we discuss a few aspects of the behaviour of ions below the continuum limit.

We will describe how the confinement modifies ionic interactions, and possible consequences

on ion transport.

4.3.1. Ionic interactions and self-energy. In bulk water, ions interact via a Coulomb po-

tential φ(r) = e/(4πε0εwr), where εw is the water dielectric permittivity. But inside a

nanochannel, ions are no longer surrounded by a homogeneous fluid, and their interaction

potential may be affected by the dielectric properties of the confining medium. In order

to assess the importance of this effect, we consider the simple situation where an infinitely

long cylindrical channel of radius R is filled with water having isotropic permittivity εw,

and the medium outside the channel is a homogeneous dielectric of permittivity εs, with

typically εs � εw. The electrostatic potential around an ion placed in the middle of the

channel can then be determined by solving Poisson’s equation in the presence of the dielec-

tric discontinuities, which has been done analytically by several authors (Parsegian (1969),

Levin (2006), Teber (2005), Kavokine et al. (2019)).

The complicated analytical result may be interpreted in the following way (see figure 8).

At short distances (much smaller than the channel radius), only the dielectric response of

the water is visible and the potential is φ(x) ∼ 1/(εwx). At long distances (much larger than

the channel radius), it is the dielectric response of the confining medium that matters and

φ(x) ∼ 1/(εsx). At intermediate distances, the electric field lines are essentially parallel to

the channel due to the dielectric contrast εw � εs, and the potential, which is well described

by an exponential function, resembles a 1D Coulomb potential:

φ(x) ≈ eα

2πε0εwR
e−x/(αR), 51.
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Figure 8

a. Schematic representation of the electric field lines around an ion confined in a narrow channel.
b. Potential generated along the axis by an ion confined in a channel of radius 2 nm. c. Born

self-energy of a monovalent ion as a function of channel radius, computed following Teber (2005).

with α a numerical coefficient that depends on the ratio εw/εs; α = 6.3 for εw/εs = 40

(Teber (2005)). It is notable that so far no assumption on the channel radius was made, so

that formally this 1D regime exists for a channel of any size. However, it is only relevant if

it leads to ion-ion interactions stronger than kBT , that is if eφ(R) > kBT , for a monovalent

ion. This defines a limiting channel radius, below which ionic interactions are affected

by the confining medium: Rc ∼ 7.5 nm. These modified Coulomb interactions therefore

may have some effect in any single-digit nanopore, and they have essentially two practical

consequences.

First, because ions produce a stronger Coulomb potential in confinement than in the

bulk, they have a larger Born self-energy. This phenomenon was pointed out decades

ago by Parsegian (1969) in the case of ions crossing lipid bilayers, and has since then

been commonly considered in the study of biological ion channels. For small channels

where the 1D contribution to the potential dominates, the additional self-energy due to

confinement is Es = eφ(0)/2, with φ(x) given by eq. (51). An expression valid for any R

was obtained by Teber, and it is plotted in figure 8. It shows that Es is larger than kBT

up to R ∼ 4 nm. Es represents a supplementary energy barrier for entering the channel.

To illustrate the consequence of this Born self-energy, let us consider a neutral channel in

the absence of correlation effects: a barrier Es = 4kBT reduces the ionic concentration by

a factor eEs/(kBT ) = 100.

Second, increased Coulomb interactions with respect to the bulk may actually result in

correlation effects. To assess the potential importance of correlations, one may introduce

a coupling parameter Γ = eφ((πR2ρ)−1)/(kBT ), where ρ is the ion concentration inside

the channel, so that (πR2ρ)−1 is the average distance between ions (Bocquet & Charlaix

(2010)). Let us take as an example a channel of radius 2 nm, where Es ∼ 2.5kBT from

eq. (51). An effective Coulomb potential of magnitude ∼ 5kBT then extends around an ion

over a distance αR ∼ 10 nm. Therefore, for concentrations above ρ = 10−2 M, Γ > 1 and

correlations are expected to become important.

Several remarks can be made here. A first point is that we have considered monovalent
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ions so far; for ions of valence z, the self-energy, for example, would be multiplied by a factor

z2. Then, we have gone through the discussion assuming for simplicity that water has an

isotropic permittivity εw. We have highlighted in the previous section that this assumption

breaks down in cylindrical channels of radius smaller than 5 nm, and, though it does not

affect the qualitative phenomenology, dielectric anisotropy, as predicted by Loche et al.

(2019), should then be taken into account. It mainly affects the behaviour of the potential

at short distances x ≤ R. We should also mention that when entering a channel smaller

than its hydrated radius, an ion pays an additional energy penalty due to the shedding

of its hydration shell (Richards et al. (2012), Epsztein et al. (2019)). For chloride, the

total hydration energy is as high as 155 kBT , but the hydrated radius is 0.4 nm, so that

only partial dehydration arises and only for the smallest pores. Finally, we have assumed

that the confining medium is a dielectric medium with uniform permittivity. This is a

good model for a lipid membrane, but artificial confining materials may have a variety of

electronic properties (see 4.2.6), and their influence on effective Coulomb interactions has

not been thoroughly investigated. In the case of confinement by a perfect metal, the ionic

interactions were found to be exponentially screened over a distance of order of the channel

radius (Kondrat & Kornyshev (2011), Loche et al. (2019)). Such effective interactions

were found to lead to like-charge attraction in ionic liquids confined in carbon nanopores

(Futamura et al. (2017)).

4.3.2. Ion transport beyond the mean-field. We have highlighted in the previous paragraph

that correlations may become important in ion transport through single digit nanopores.

If it is the case, then mean-field theories, such as the PNP framework, may not be di-

rectly applied, and the determination of equilibrium properties, such as ion concentrations

inside the nanopore, requires some form of exact statistical mechanics. In systems with

high aspect ratio (typically nanotubes), the problem can be reduced to a one-dimensional

model of the Ising or 1D Coulomb gas type, and the partition function may then be exactly

computed through a (functional) transfer matrix formalism (Zhang et al. (2006), Lee et al.

(2014a), Kavokine et al. (2019)). Outside of the 1D geometry, variational methods may

be used (Buyukdagli et al. (2010)), and methods for incorporating ion pairs into Poisson-

Boltzmann theory have been developed (Levin (2002)). A general feature of these calcula-

tions (Zhang et al. (2006), Buyukdagli et al. (2010)) is that they predict filling transitions:

namely, a non-analytic behaviour of ion concentrations in the nanopore as a function of

the salt concentration in the reservoir, which strongly deviates from the mean-field Donnan

equilibrium result, and may break local electroneutrality (Zhang et al. (2006)). One should

note, however, that breakdown of electroneutrality does not require ionic correlations and

it has recently been shown to arise in a mean-field setting (Levy et al. (2020)).

If linear response theory applies, then transport properties such as ionic conductance

may be determined directly from the concentrations of charge carriers at equilibrium. How-

ever, this is no longer the case when correlations are very strong, leading to the formation

of tightly bound Bjerrum pairs of oppositely charged ions. This was first realised by On-

sager, who showed that in a three-dimensional weak electrolyte – an electrolyte that forms

Bjerrum pairs – there is a quadratic current-voltage relation, a phenomenon known as

the second Wien effect (Onsager (1934), Kaiser et al. (2013)). Bjerrum pairing in one-

dimensional confinement was studied by Kavokine et al. (2019), and stable ion pairs were

shown to arise typically for confinement below 2 nm, similarly to what was observed in

MD simulations (Nicholson & Quirke (2003)). The pairing resulted in some very non-linear
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behaviour governed by discrete particle effects, echoing the phenomenology of Coulomb

blockade (Beenakker (1991), Kaufman et al. (2015)). As such, ion correlations produced

quantised transport behaviour in a purely classical system.

The coupling of ion transport to fluid transport in the non-mean-field, non linear regime

remains largely unexplored, though it promises a rich phenomenology. As an example,

a recent simulation (Li et al. (2017)) found that pressure driven water flow through a

nanochannel could be blocked by an ion tightly bound inside. Lastly, we should mention,

at the frontier of sub-continuum ion transport, the Grotthus-like translocation of protons,

which has been observed in a single file (Tunuguntla et al. (2017)) and a single plane

(Gopinadhan et al. (2019)) of water, but still remains poorly understood in strongly confined

systems.

5. CONCLUSION

This review has explored some defining aspects of fluid transport at the nanoscale. We

started from continuum theory and reduced the scale down to its limit of applicability;

we then explored phenomena that occur below the continuum limit and gave indications

of appropriate theoretical descriptions to tackle them. The main points summarised below

were made. Overall, fluids in molecular scale confinement are largely an uncharted territory

for theory, and recent experiments urge for the development of theoretical tools beyond those

described in this review.

SUMMARY POINTS

1. Experimental systems for studying fluid transport in molecular scale confinement

are today within reach.

2. Above 10 nm confinement, fluid transport is governed by continuum hydrodynamic

equations, with coupling to ion transport and surface effects.

3. Below 10 nm –the domain of so-called single-digit nanopores – thermal fluctuations

and electrostatic correlations are increasingly important, challenging continuum and

mean-field theory.

4. In few nanometre confinement, fluid structuring effects and correlations play an

overwhelming role.
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Pang P, He J, Park JH, Krstić PS, Lindsay S. 2011. Origin of giant ionic currents in carbon nanotube

channels. ACS Nano 5:7277–7283

Parsegian A. 1969. Energy of an Ion crossing a Low Dielectric Membrane: Solutions to Four Relevant

Electrostatic Problems. Nature 221:844–846

Perram JW, Hunter RJ, Wright HJ. 1973. Charge and potential at the oxide/solution interface.

Chem. Phys. Lett. 23:265–269

Portella G, Pohl P, De Groot BL. 2007. Invariance of single-file water mobility in gramicidin-like

peptidic pores as function of pore length. Biophys. J. 92:3930–3937

Rabinowitz J, Cohen C, Shepard KL. 2020. An Electrically Actuated, Carbon-Nanotube-Based

Biomimetic Ion Pump. Nano Lett.

Radha B, Esfandiar A, Wang FC, Rooney AP, Gopinadhan K, et al. 2016. Molecular transport

through capillaries made with atomic-scale precision. Nature 538:222–225

Reguera D, Rub́ı JM. 2001. Kinetic equations for diffusion in the presence of entropic barriers. Phys.

Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 64:8

Renkin EM. 1954. Filtration, diffusion, and molecular sieving through porous cellulose membranes.

J. Gen. Physiol. 38:225–243
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Appendix

ρs (M) λD (nm)

100 0.3

10−1 1.0

10−2 3.1

10−3 9.6

Material Σ max (e · nm−2) `GC (nm) `Du at 0.1 M (nm)

Graphene oxidea 0.06 4 9

Silicab 0.3 0.8 50

Carbon nanotubec 1 0.2 170

BN nanotubed 9 0.03 1500
aMouhat et al. (2020); bStein et al. (2004);cSecchi et al. (2016b); dSiria et al. (2013)

Table 1 Electrostatic lengthscales

Left: values of Debye length for different concentrations of monovalent salt. Right: maximal

measured surface charge, Gouy-Chapman length and Dukhin length at 1 M monovalent salt

concentration.

Surface PNP theory

Here we reproduce the main equations of the surface PNP-Stokes framework, that was

introduced by Mouterde et al. (2019) (see 3.3.5). The Nernst-Planck expression for the ion

fluxes is modified according to

j± =
e

ξ± + λ±

[
kBT

e
(−∂xρ± ± ρ±(−∂xφ)

]
+ α±ρ±v, 52.

with α± =
ξ±

ξ±+λ±
. The (integrated) Stokes equation becomes

v = K(ρ+, ρ−)[(−∂xp) + e(α+ρ+ − α−ρ−)(−∂xφ)], 53.

with K(ρ+, ρ−) a concentration-dependent permeability, and these are supplemented by a

1D Poisson equation:

∂x[εh(−∂xφ)] = he(ρ+ − ρ−). 54.
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