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A B S T R A C T

The objective of the present paper is to revisit two well-known wind gust injection methods in a consistent
manner and to assess their performance based on different application cases. These are the field velocity
method (FVM) and the split velocity method (SVM). For this purpose, both methods are consistently derived
pointing out the link to the Arbitrary Lagrangian Eulerian formulation and the geometric conservation law.
Furthermore, the differences between FVM and SVM are worked out and the advantages and disadvantages are
compared. Based on a well-known test case considering a vertical gust hitting a plate and a newly developed
case taking additionally a horizontal gust into account, the methods are evaluated and the deviations resulting
from the disregard of the feedback effect in FVM are assessed. The results show that the deviations between the
predictions by FVM and SVM are more pronounced for the horizontal gust justifying the introduction of this
new test case. The main reason is that the additional source term in SVM responsible for the feedback effect
of the surrounding flow on the gust itself nearly vanishes for the vertical gust, whereas it has a significant
impact on the flow field and the resulting drag and lift coefficients for the horizontal gust. Furthermore, the
correct formulation of the viscous stress tensor relying on the total velocity as done in case of SVM plays an
important role, but is found to be negligible for the chosen Reynolds number of the present test cases. The
study reveals that SVM is capable of delivering physical results in contradiction to FVM. It paves the way
for investigating further complex gust configurations (e.g., inclined gusts) and practical applications towards
coupled fluid–structure interaction simulations of engineering structures impacted by wind gusts.
1. Introduction

The study of extreme events constitutes an important aspect of many
engineering applications nowadays. Investigating extreme events was
found to enable the design of safe components that will withstand harsh
conditions and circumvent any sudden failure which may occur. In
the field of fluid mechanics, wind gusts represent a typical example
of such extreme phenomena which might lead to devastating conse-
quences on flexible as well as rigid structures. For instance, aircraft
design requires the study of different load cases and the evaluation of
their aerodynamic responses (Wu et al., 2019). This ensures that the
encounter of aircraft by wake vortices of a preceding plane (Sitaraman
and Baeder, 2006; Gordnier and Visbal, 2015), a streamwise wind
gust (Granlund et al., 2014) or an impulsive change in the angle of
attack (Parameswaran and Baeder, 1997; Singh and Baeder, 1997) is
controlled properly. In order to guarantee the safety of trains moving
over bridges and to evaluate the risk of derailment, Montenegro et al.
(2020) simulated the effect of discrete gusts and turbulent wind models
on aerodynamic forces. That allows to determine critical wind speeds,
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which is especially of interest for high-speed trains. Beside aeronautics
and rail transport, the wind energy sector is constantly dealing with the
design of structurally reliable wind turbine tower systems (Kwon et al.,
2012) and especially wind turbine blades (for example, see Onol and
Yesilyurt (2017)). A turbine blade is, like a helicopter blade, exposed to
trailing-edge vortices in the wake of other blades as well as to potential
gusts which may strip it away. For example, Hawbecker et al. (2017)
reported on extreme structural damages to turbines of the Buffalo Ridge
Wind Farm in Minesota in 2011. Blades from multiple turbines broke
away and a tower buckled in the intense winds. They attempted to
characterize meteorological conditions over the wind farm area during
this event and carried out weather research and forecasting model
simulations of the event that considered current and anticipated future
operational model setups.

More recently, lightweight thin structures such as membrane-
covered and tensile-membrane structures have become widely used
in civil engineering applications. Due to the unique flexible charac-
teristics of the fabric membranes such structures allow the engineers
167-6105/© 2021 The Authors. Published by Elsevier Ltd. This is an open access ar
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to create visually exciting and iconic structures while maintaining a
faster installation and an overall lower cost in comparison to traditional
constructions. However, these structures are vulnerable to wind events
and to determine to what extent the aerodynamic loads influence their
integrity is essential (for example, see Gross et al. (2013)). Although de-
sign standards are prescribed to provide guidelines in order to take such
events into account (for example, see Frost et al. (1978), IEC-Standard
(2002), Burton et al. (2001), Kasperski (2007)), these are based on
simplifying assumptions to facilitate the design process. Therefore, the
development of methods capable of providing a rapid and comprehen-
sive investigation of proposed designs would substantially contribute
to the design procedure. Highly resolved numerical simulations of the
flow field (and the resulting deformations) are considered to be a
reliable and powerful method for this objective. That was recently
shown in De Nayer et al. (2014), De Nayer and Breuer (2014), De Nayer
et al. (2018) and Apostolatos et al. (2019), so far not for gusts but at
least for turbulent flows around flexible membranous structures.

In the following, the description is restricted to wind gusts and
methodologies to take these short but often violent phenomenon into
account. One of the conventional approaches to inject wind gusts into
the computational domain is to superimpose them at the inlet bound-
ary and to allow the gusts to freely propagate through the domain.
This technique is known in the literature as the far-field boundary
condition (FBC) method. To avoid the violation of the global mass
balance especially for incompressible fluid flows, this method requires
the dynamic adaptation of the inlet velocity away from the gust to
ensure a constant total mass flow through the inlet (Norris et al., 2010;
De Nayer et al., 2019). Such a requirement is necessary for the con-
vergence of incompressible flow solvers. Owing to the fact that inflow
boundaries are often far away from the region of interest, a relatively
coarse grid resolution is used in the upstream region to reduce the
computational costs. Consequently, numerical dissipation is prevalent
in these regions and the induced disturbances are strongly damped
while being convected through the flow domain. To circumvent this
problem, one would have to use a highly resolved grid throughout the
entire computational domain, or a secondary fine moving mesh trans-
porting the gust within the computational domain (e.g., an overset-grid
technique such as the resolved gust approach of Heinrich (2014)).
Nevertheless, the aforementioned remedies are computationally highly
demanding leading to long simulation times.

Several approaches have been proposed to overcome the require-
ment of using fine grids throughout the computational domain. A
category of these methods is referred to as the pure source-term for-
mulation method. Recently, De Nayer and Breuer (2020) proposed an
original method for injecting wind gusts in the computational domain
based on a source-term formulation. The authors derived a source-
term formulation for the momentum conservation equations which
allows to place the injection region of the gust close to the region of
interest. The gust can then freely propagate through the domain and,
consequently, the full coupling (i.e., interaction) between the gust and
the surrounding flow is captured.

Contrary to the aforementioned methods which allow gusts to freely
travel after the injection phase, another family of methods which de-
fines the position of the imposed field at each instant in time is denoted
the prescribed velocity methods. There exist two prescribed velocity
methods, namely, the field velocity method (FVM) and the split veloc-
ity method (SVM). The field velocity or grid velocity approach (also
denoted the disturbance velocity approach by Heinrich and Reimer
(2013)) was initially proposed by Parameswaran and Baeder (1997)
and Singh and Baeder (1997). FVM works by incorporating gust veloci-
ties by suitably modifying the grid velocity and consequently modifying
the grid time metrics. However, this modification does not lead to a real
grid deformation. Hence, a pseudo grid motion is simulated without an
actual grid variation. FVM could be thought of as an extension of the
surface transpiration method (Sankar et al., 1986), where instead of
2

applying the velocity correction only to the surface, it is applied to the
entire flow field. Since FVM is similar to moving grid problems, grid
time metrics have to be consistently evaluated to satisfy the geometric
conservation law (GCL) (Sitaraman and Baeder, 2006).

The history of FVM started in the field of aeronautics, where its
main objective was to tackle the problem of evaluating indicial re-
sponses (i.e., aerodynamic loads) due to a step change in one of
the influencing parameters (e.g., angle of attack or pitch rate) in
the context of inviscid three-dimensional compressible flows while
having full insight into the flow features (velocity and pressure distri-
butions) (Parameswaran and Baeder, 1997; Singh and Baeder, 1997).
The method could successfully solve the challenge of decoupling the
step change in the angle of attack from the pitch rate, delivered
results that agree with the attainable analytical results, and avoided
numerical instabilities associated with this problem. Moreover, in the
context of inviscid Euler equations FVM was employed to simulate the
response of an airfoil penetrating through a sharp-edged vertical gust
(Parameswaran and Baeder, 1997; Sitaraman and Baeder, 2000), and
to model the interaction of an isolated vortex with a rotor blade (Singh
and Baeder, 1996). Furthermore, FVM was used to aid the prediction of
aerodynamic loads on a helicopter blade by incorporating the velocity
field caused by trailed tip vortices from all other blades (Sitaraman,
2003; Sitaraman and Baeder, 2006). Nevertheless, FVM is incapable of
accounting for the effect of the surrounding fluid flow on the induced
field.

In contrast, SVM (originally proposed by Wales et al. (2014)) fully
captures the interaction between the gust and the object of interest.
SVM is based on decomposing the velocity field to a prescribed gust
velocity and the remaining velocity (or background velocity as denoted
by Huntley et al. (2017)). The momentum equations are effectively
rearranged to be solved for the background velocity. As a result, addi-
tional source terms are derived to account for the feedback effect which
is missing in FVM. Initial applications of SVM concentrated on applying
1-cosine vertical gusts on several NACA airfoils with different gust
lengths and amplitudes (Wales et al., 2014). The simulations, however,
were performed in the context of two-dimensional Euler equations.
Later, Huntley et al. (2017) extended SVM to investigate the gust
response of a flexible aircraft to a series of 1-cosine gusts in the context
of three-dimensional viscous flows. Both research groups compared
their results with those obtained by FVM and found SVM to be more
accurate when short wavelength gusts are imposed. Recently, Biler
et al. (2019), Badrya and Baeder (2019) and Badrya et al. (2021)
investigated the flow physics resulting from a flat plate-gust encounter.
The analysis showed the ability of analytical models (Küssner’s solu-
tion (Küssner, 1936)) in predicting gust response for a 0◦ geometric
angle of attack while the need for CFD solutions remains in order to
formulate empirical formulas predicting responses for high angles of
attack.

The steps in this paper are as follows:

1. Provide a comprehensive description of the FVM and SVM meth-
ods along with the modifications needed to be made in the
governing equations.

2. Deliver best practice guidelines describing the implementation
of the methods in a finite-volume code thoroughly.

3. Apply the methods to simulate the encounter of a vertical as well
as a horizontal gust (which can be said to be relevant for many
engineering applications) on a horizontal flat plate.

4. Highlight the differences among the methods and their limita-
tions.

The main objective is to figure out the most appropriate method-
ology to simulate the effect of wind gusts impacting on mechanical
or civil engineering structures. For the latter especially flexible mem-
branous structures impacted by horizontal gusts are in the focus of
medium-term interest, whereby such kind of complex fluid–structure
interaction problems are to be simulated by high-fidelity eddy-resolving

schemes such as the large-eddy simulation (LES) technique.



Journal of Wind Engineering & Industrial Aerodynamics 218 (2021) 104790K. Boulbrachene et al.

L
i

2

f
d
t
p
n

i
S
L
g
f

l
t
l

∫

w
g

p
u
b
c

v
t
t
n

i
c
r
t
i
s
(
c
t
t
c

m

2. Prescribed gust methods

In the following, two well-established methods for injecting gusts
into a CFD simulation by prescribing the position in the computational
domain, the shape and the velocity of the gusts at each time step
are introduced. In the present work the gust velocity is denoted 𝑢𝑔,𝑖
(𝑖 ∈ {1, 2, 3}) in Cartesian coordinates. The flow field surrounding the
gust is denoted as the background velocity field �̃�𝑖. The Navier–Stokes
equations for an incompressible fluid are solved for this background
velocity. The prescribed velocity methods postulate that the divergence
of the background velocity is equal to zero (i.e.,

𝜕�̃�𝑖
𝜕𝑥𝑖

= 0). To present
the total flow field 𝑢𝑖 containing the resolved flow field and the pre-
scribed gust, the sum of both contributions (i.e., 𝑢𝑖 = �̃�𝑖 + 𝑢𝑔,𝑖) has to
be considered by superposition. Since the divergence of the prescribed

gust velocity on a fixed grid (i.e.,
𝜕𝑢𝑔,𝑖
𝜕𝑥𝑖

) is not necessarily equal to zero,
the divergence of the total velocity will not automatically be zero. In
order to introduce the prescribed gust velocity into the Navier–Stokes
equations while maintaining the postulate of

𝜕�̃�𝑖
𝜕𝑥𝑖

= 0, the Arbitrary
agrangian Eulerian (ALE) formulation of the Navier–Stokes equations
s required as described below.

.1. Field Velocity Method (FVM)

The original idea of this method is the incorporation of unsteady
low conditions via a pseudo-grid movement in the computational
omain according to the Arbitrary Lagrangian Eulerian (ALE) formula-
ion. In this way, disturbance velocities (e.g., gust velocities) could be
rescribed by changing the grid time metrics while the grid is actually
ot altered or distorted.

In the context of a temporally varying domain (as in fluid–structure
nteraction (FSI), see Breuer et al. (2012) for example) the Navier–
tokes equations (mass and momentum) are written in the Arbitrary
agrangian Eulerian (ALE) form. For an incompressible fluid, the inte-
ral form of these equations read (here in a Cartesian coordinate system
or the sake of simplicity):

𝑑
𝑑𝑡 ∫𝑉 (𝑡)

𝜌 𝑑𝑉 + ∫𝑆(𝑡)
𝜌 (�̃�𝑗 − 𝑢grid

𝑗 ) ⋅ 𝑛𝑗 𝑑𝑆 = 0 , (1)

𝑑
𝑑𝑡 ∫𝑉 (𝑡)

𝜌 �̃�𝑖 𝑑𝑉 + ∫𝑆(𝑡)
𝜌 �̃�𝑖(�̃�𝑗 − 𝑢grid

𝑗 ) ⋅ 𝑛𝑗 𝑑𝑆

= −∫𝑆(𝑡)
𝜏𝑖𝑗 ⋅ 𝑛𝑗 𝑑𝑆 − ∫𝑆(𝑡)

𝑝 ⋅ 𝑛𝑖 𝑑𝑆. (2)

Here, the control volumes (CV) have time-dependent volumes 𝑉 (𝑡)
and surfaces 𝑆(𝑡). Since in this case the grid is deformable, the grid
velocity with which the surface of a CV is moving, is taken into account
via 𝑢grid

𝑖 . �̃�𝑖 describes the velocity of the flow field. A grid deformation
in the inner domain will not affect �̃�𝑖. However, the flow velocity �̃�𝑖
changes due to movements or deformations of walls. 𝜏𝑖𝑗 is the stress
tensor based on the flow velocity �̃�𝑖.

In the context of a temporally varying domain the ALE formu-
lation has to additionally satisfy the so-called space conservation law
(SCL) (Demirdžić and Perić, 1988, 1990) or geometric conservation law
(GCL) (Lesoinne and Farhat, 1996):
𝑑
𝑑𝑡 ∫𝑉 (𝑡)

𝑑𝑉 − ∫𝑆(𝑡)
𝑢grid
𝑗 ⋅ 𝑛𝑗 𝑑𝑆 = 0 . (3)

This extra conservation law is necessary to assure that no space is
ost during the change of CVs. Employing the GCL, the contribution of
he grid movement to the mass fluxes will cancel the unsteady term
eading to the reduction of the mass conservation equation to:

𝑆(𝑡)
𝜌 �̃�𝑗 ⋅ 𝑛𝑗 𝑑𝑆 = 0 , (4)

hich is equivalent to the mass conservation equation on a fixed
rid. Consequently, the pressure-correction equation in the context of
3

rojection methods does not have to be modified. The discrete GCL is
sed to evaluate the additional grid fluxes in the momentum equation
y evaluating the change of the position or the shape of a CV to
ompute the unknown grid velocity 𝑢grid

𝑖 .
The field velocity approach is built per analogy based on the pre-

iously written ALE formulation. The grid is now undeformed and
hus fixed, i.e., the cell volumes 𝑉 and surfaces 𝑆 are no longer
ime-dependent. Furthermore, the grid velocity 𝑢grid

𝑖 is replaced by the
egative gust velocity −𝑢𝑔,𝑖. Thus, the equations read:

𝑑
𝑑𝑡 ∫𝑉

𝜌 𝑑𝑉 + ∫𝑆
𝜌 (�̃�𝑗 + 𝑢𝑔,𝑗 ) ⋅ 𝑛𝑗 𝑑𝑆 = 0 , (5)

𝑑
𝑑𝑡 ∫𝑉

𝜌 �̃�𝑖 𝑑𝑉 + ∫𝑆
𝜌 �̃�𝑖(�̃�𝑗 + 𝑢𝑔,𝑗 ) ⋅ 𝑛𝑗 𝑑𝑆

= −∫𝑆
𝜏𝑖𝑗 ⋅ 𝑛𝑗 𝑑𝑆 − ∫𝑆

𝑝 ⋅ 𝑛𝑖 𝑑𝑆. (6)

Even though the grid is fixed, it is still necessary to satisfy a GCL
n the context of FVM due to the fact that the prescribed gust velocity
omponent is not necessarily divergence-free. This will again enable the
eduction of the mass conservation equation (i.e., Eq. (5) to Eq. (4)) and
hus the pressure-correction equation still remains unaffected. Hence, it
s clear that a rigorous fulfillment of the GCL will suppress any spurious
ource terms that might be generated. Despite the undeformed grid
𝑉 grid is the real volume of the cell and taken as constant) a pseudo
hange in the cell volumes (denoted 𝛥𝑉 = 𝑉 ∗ − 𝑉 grid and referred
o as apparent grid movement in Sitaraman and Baeder (2006)) has
o be taken into account in order to ensure the pseudo geometric
onservation law:
𝑑
𝑑𝑡 ∫𝑉 grid→𝑉 ∗

𝑑𝑉 + ∫𝑆∗
𝑢𝑔,𝑗 ⋅ 𝑛𝑗 𝑑𝑆 = 0 . (7)

Since the pseudo updated surface 𝑆∗ of each CV is not available, the
pseudo geometric conservation law is rewritten applying the Gaussian
integral theorem:

𝑑
𝑑𝑡 ∫𝑉 grid→𝑉 ∗

𝑑𝑉 + ∫𝑉 ∗

𝜕𝑢𝑔,𝑗
𝜕𝑥𝑗

𝑑𝑉 = 0 .

In a first approximation, when a second-order approximation of the
volume integral such as the mid-point rule is employed in the context
of a finite-volume scheme, it follows:

𝑑
𝑑𝑡 ∫𝑉 grid→𝑉 ∗

𝑑𝑉 + 𝛾 ∫𝑉 grid

𝜕𝑢𝑔,𝑗
𝜕𝑥𝑗

𝑑𝑉 = 0 ,

where the scaling factor 𝛾 is defined as 𝛾 = 𝑉 ∗

𝑉 grid . A back transforma-
tion leads to:
𝑑
𝑑𝑡 ∫𝑉 grid→𝑉 ∗

𝑑𝑉 + 𝛾 ∫𝑆
𝑢𝑔,𝑗 ⋅ 𝑛𝑗 𝑑𝑆 = 0 . (8)

The derived pseudo geometric conservation law now only depends
on the pseudo updated volume 𝑉 ∗. 𝑆 is the current real surface of the
grid and thus denoted 𝑆grid in the following.

Coming back to the mass and momentum conservation equations,
the contributions due to the pseudo grid movement have to be eval-
uated on the updated volumes 𝑉 ∗ and surfaces 𝑆∗, whereas all other
terms related to the background velocity are computed on the real grid:
𝑑
𝑑𝑡 ∫𝑉 grid→𝑉 ∗

𝜌 𝑑𝑉 + ∫𝑆grid
𝜌 �̃�𝑗 ⋅ 𝑛𝑗 𝑑𝑆 + ∫𝑆∗

𝜌 𝑢𝑔,𝑗 ⋅ 𝑛𝑗 𝑑𝑆 = 0 , (9)

𝑑
𝑑𝑡 ∫𝑉 grid→𝑉 ∗

𝜌 �̃�𝑖 𝑑𝑉 + ∫𝑆grid
𝜌 �̃�𝑖 �̃�𝑗 ⋅ 𝑛𝑗 𝑑𝑆 + ∫𝑆∗

𝜌 �̃�𝑖 𝑢𝑔,𝑗 ⋅ 𝑛𝑗 𝑑𝑆

= −∫𝑆grid
𝜏𝑖𝑗 ⋅ 𝑛𝑗 𝑑𝑆 − ∫𝑆grid

𝑝 ⋅ 𝑛𝑖 𝑑𝑆. (10)

Applying the methodology mentioned above to the mass and mo-
entum conservation leads to:

𝑑
𝑑𝑡 ∫𝑉 grid→𝑉 ∗

𝜌 𝑑𝑉 + ∫𝑆grid
𝜌 �̃�𝑗 ⋅ 𝑛𝑗 𝑑𝑆 + 𝛾 ∫𝑆grid

𝜌 𝑢𝑔,𝑗 ⋅ 𝑛𝑗 𝑑𝑆 = 0 , (11)

𝑑 𝜌 �̃�𝑖 𝑑𝑉 + 𝜌 �̃�𝑖�̃�𝑗 ⋅ 𝑛𝑗 𝑑𝑆 + 𝛾 𝜌 �̃�𝑖 𝑢𝑔,𝑗 ⋅ 𝑛𝑗 𝑑𝑆

𝑑𝑡 ∫𝑉 grid→𝑉 ∗ ∫𝑆grid ∫𝑆grid
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= −∫𝑆grid
𝜏𝑖𝑗 ⋅ 𝑛𝑗 𝑑𝑆 − ∫𝑆grid

𝑝 ⋅ 𝑛𝑖 𝑑𝑆. (12)

Note that in analogy to the ALE approach, employing the GCL to the
ass conservation equation (11) allows to cancel out the contribution

f the pseudo-grid movement to the mass fluxes with the unsteady term
uch that the mass conservation equation again reduces to Eq. (4). Since
he gust velocity is a prescribed velocity, the additional mass fluxes in
he momentum equation can be directly evaluated.

For a flow solver already able to solve ALE problems, the integration
f the FVM is straightforward. Further advantages and disadvantages
re as follows. In FVM the gust is prescribed and the remaining field
s solved, hence no numerical dissipation of the gust is appearing.
oreover, the gust shape and position can be prescribed at any time in

he computational domain. It has the advantage that even when the am-
litude of the gust is significantly larger than the background velocity,
he simulation will converge. Despite the reasonable results delivered
y FVM, it is not supported by a clear description of simplifications used
n its derivation. Even though FVM accounts for the influence of the
ust on the surrounding flow field, its major drawback lies on its failure
o capture the effect of the surrounding on the gust itself (often denoted
s the feedback effect). In addition, FVM was found to be accurate
hen solving the Euler equations. The reason is that the gust velocity is

aken into account when the convective fluxes are calculated across cell
aces. However, when solving the Navier–Stokes equations with a non-
niform gust velocity distribution, viscous flux correction is required.
u et al. (2012) demonstrated this issue for accurately simulating
ractical flow phenomena (such as pitching and plunging motions of
n airfoil). Their contribution relies on the principle of relative motion
o show that the velocity which needs to be used for the calculation of
he viscous fluxes must be a summation of the background and the gust
elocity. They show that this correction is indispensable if the gradient
f the gust velocity is different from zero. Consequently, the magnitude
f the applied correction is depending on how steep the gust velocity
rofile is. The drawbacks of the original FVM are not existent when
sing the split velocity method (SVM) explained next.

.2. Split Velocity Method (SVM)

The split velocity method was proposed by Wales et al. (2014).
s before, the total velocity 𝑢𝑖 is decomposed into two components,
amely, a background �̃�𝑖 and a prescribed gust velocity 𝑢𝑔,𝑖. However,
ow the governing equations are written on a fixed grid based on
he total velocity 𝑢𝑖 and rearranged on that grid without the need for
ny simplifying assumptions. As explained below, in order to fulfill
he postulate of

𝜕�̃�𝑖
𝜕𝑥𝑖

= 0, the ALE formulation of the Navier–Stokes
equations is used once more including the necessary application of the
pseudo GCL. The SVM has been applied to 2-D Euler equations (Wales
et al., 2014) and to simulate 2-D as well as 3-D viscous flows (Huntley
et al., 2016).

The formulation starts by writing the integral form of the Navier–
Stokes equations on a fixed grid:

∫𝑉 grid

𝜕𝜌
𝜕𝑡

𝑑𝑉 + ∫𝑆grid
𝜌 𝑢𝑖 ⋅ 𝑛𝑖 𝑑𝑆 = 0 , (13)

∫𝑉 grid

𝜕
(

𝜌 𝑢𝑖
)

𝜕𝑡
𝑑𝑉 + ∫𝑆grid

𝜌 𝑢𝑖 𝑢𝑗 ⋅ 𝑛𝑗 𝑑𝑆

= −∫𝑆grid
𝜏𝑖𝑗 ⋅ 𝑛𝑗 𝑑𝑆 − ∫𝑆grid

𝑝 ⋅ 𝑛𝑖 𝑑𝑆. (14)

𝜏𝑖𝑗 is the stress tensor based on the total velocity 𝑢𝑖. Substituting the
ecomposed total velocity 𝑢𝑖, the conservation equations read:

𝑉 grid

𝜕𝜌
𝜕𝑡

𝑑𝑉 + ∫𝑆grid
𝜌 (�̃�𝑗 + 𝑢𝑔,𝑗 ) ⋅ 𝑛𝑗 𝑑𝑆 = 0 , (15)

𝜕
(

𝜌 (�̃�𝑖 + 𝑢𝑔,𝑖)
)

𝑑𝑉 + 𝜌 (�̃�𝑖 + 𝑢𝑔,𝑖) (�̃�𝑗 + 𝑢𝑔,𝑗 ) ⋅ 𝑛𝑗 𝑑𝑆
4

∫𝑉 grid 𝜕𝑡 ∫𝑆grid
= −∫𝑆grid
𝜏𝑖𝑗 ⋅ 𝑛𝑗 𝑑𝑆 − ∫𝑆grid

𝑝 ⋅ 𝑛𝑖 𝑑𝑆. (16)

The terms of the momentum equation are rewritten as follows:

1. Transient term (note that in the context of fixed grids, the
temporal derivative inside the volume integral can be directly
replaced by a temporal derivative outside the integral):

∫𝑉 grid

𝜕
(

𝜌 (�̃�𝑖 + 𝑢𝑔,𝑖)
)

𝜕𝑡
𝑑𝑉

= ∫𝑉 grid

𝜕
(

𝜌 �̃�𝑖
)

𝜕𝑡
𝑑𝑉 + ∫𝑉 grid

𝜕
(

𝜌 𝑢𝑔,𝑖
)

𝜕𝑡
𝑑𝑉

= 𝜕
𝜕𝑡 ∫𝑉 grid

𝜌 �̃�𝑖 𝑑𝑉 + ∫𝑉 grid
𝜌
𝜕𝑢𝑔,𝑖
𝜕𝑡

𝑑𝑉 + ∫𝑉 grid
𝑢𝑔,𝑖

𝜕𝜌
𝜕𝑡

𝑑𝑉
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

∙

. (17)

2. Convection term:

∫𝑆grid
𝜌 (�̃�𝑖 + 𝑢𝑔,𝑖) (�̃�𝑗 + 𝑢𝑔,𝑗 ) ⋅ 𝑛𝑗 𝑑𝑆

= ∫𝑉 grid

𝜕
𝜕𝑥𝑗

(

𝜌 (�̃�𝑖 + 𝑢𝑔,𝑖) (�̃�𝑗 + 𝑢𝑔,𝑗 )
)

𝑑𝑉

= ∫𝑉 grid

𝜕
𝜕𝑥𝑗

(

𝜌 �̃�𝑖 (�̃�𝑗 + 𝑢𝑔,𝑗 )
)

𝑑𝑉 + ∫𝑉 grid
𝑢𝑔,𝑖

𝜕
𝜕𝑥𝑗

(

𝜌 (�̃�𝑗 + 𝑢𝑔,𝑗 )
)

𝑑𝑉

+ ∫𝑉 grid
𝜌 (�̃�𝑗 + 𝑢𝑔,𝑗 )

𝜕𝑢𝑔,𝑖
𝜕𝑥𝑗

𝑑𝑉

= ∫𝑆grid
𝜌 �̃�𝑖 (�̃�𝑗 + 𝑢𝑔,𝑗 ) ⋅ 𝑛𝑗 𝑑𝑆 + ∫𝑉 grid

𝑢𝑔,𝑖
𝜕
𝜕𝑥𝑗

(

𝜌 (�̃�𝑗 + 𝑢𝑔,𝑗 )
)

𝑑𝑉

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
∙

+ ∫𝑉 grid
𝜌 (�̃�𝑗 + 𝑢𝑔,𝑗 )

𝜕𝑢𝑔,𝑖
𝜕𝑥𝑗

𝑑𝑉 . (18)

The summation of the terms marked by ∙ represents the product
of the gust velocity 𝑢𝑔,𝑖 with the mass conservation equation (13)
expressed by 𝑢𝑖 = �̃�𝑖 + 𝑢𝑔,𝑖:

∫𝑉 grid
𝑢𝑔,𝑖

𝜕𝜌
𝜕𝑡

𝑑𝑉 + ∫𝑉 grid
𝑢𝑔,𝑖

𝜕
𝜕𝑥𝑗

(

𝜌 𝑢𝑖
)

𝑑𝑉

= ∫𝑉 grid
𝑢𝑔,𝑖
��

����⌃
0

(
𝜕𝜌
𝜕𝑡

+
𝜕(𝜌𝑢𝑗 )
𝜕𝑥𝑗

) 𝑑𝑉 = 0 . (19)

Hence, the momentum equation can be rewritten in its simplified
form as:
𝜕
𝜕𝑡 ∫𝑉 grid

𝜌 �̃�𝑖 𝑑𝑉 + ∫𝑆grid
𝜌 �̃�𝑖 (�̃�𝑗 + 𝑢𝑔,𝑗 ) ⋅ 𝑛𝑗 𝑑𝑆

= −∫𝑉 grid
𝜌
𝜕𝑢𝑔,𝑖
𝜕𝑡

𝑑𝑉 − ∫𝑉 grid
𝜌 (�̃�𝑗 + 𝑢𝑔,𝑗 )

𝜕𝑢𝑔,𝑖
𝜕𝑥𝑗

𝑑𝑉

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
−𝑆momentum,𝑖

− ∫𝑆grid
𝜏𝑖𝑗 ⋅ 𝑛𝑗 𝑑𝑆 − ∫𝑆grid

𝑝 ⋅ 𝑛𝑖 𝑑𝑆 . (20)

In this formulation the convective fluxes are described by mass
luxes, which are predicted by the total velocity (i.e., the sum of the
ackground and the gust velocity). Furthermore, the decomposition of
he velocity leads to the formation of a source term. This term models
he convective effect of the object being hit by the gust on the gust
tself. The source term can be written in its general form as:

momentum,𝑖 = ∫𝑉
𝜌
{ 𝜕𝑢𝑔,𝑖

𝜕𝑡
+ (�̃�𝑗 + 𝑢𝑔,𝑗 )

𝜕𝑢𝑔,𝑖
𝜕𝑥𝑗

}

𝑑𝑉 . (21)

In the framework of fixed grids, the partial derivative in time inside
he volume integral can be replaced by a total derivative outside the
olume integral. Hence, the mass conservation equation (15) reads:

𝑑 𝜌 𝑑𝑉 + 𝜌 (�̃�𝑗 + 𝑢𝑔,𝑗 ) ⋅ 𝑛𝑗 𝑑𝑆 = 0. (22)

𝑑𝑡 ∫𝑉 grid ∫𝑆grid
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The transient term in Eq. (22) vanishes for an incompressible fluid
implying that the divergence of the total velocity field is equal to zero.
Since the prescribed velocity is not necessarily divergence-free, the
postulate

𝜕�̃�𝑖
𝜕𝑥𝑖

= 0 might not be fulfilled. In order to comply with this
ondition, the pseudo GCL (i.e., Eq. (7)) is employed on the transient
erm of Eq. (22):

𝑑
𝑑𝑡 ∫𝑉 grid→𝑉 ∗

𝜌 𝑑𝑉 = −∫𝑆∗
𝜌 𝑢𝑔,𝑗 ⋅ 𝑛𝑗 𝑑𝑆 . (23)

Substituting Eq. (23) into Eq. (22), Eq. (4) is retrieved. In a similar
anner, the partial temporal derivative in time in the momentum

quation (20) on a fixed grid is substituted by a total derivative and
he ALE formulation is employed consistently:

𝑑
𝑑𝑡 ∫𝑉 grid→𝑉 ∗

𝜌 �̃�𝑖 𝑑𝑉 + ∫𝑆grid
𝜌 �̃�𝑖 �̃�𝑗 ⋅ 𝑛𝑗 𝑑𝑆

+ ∫𝑆∗
𝜌 �̃�𝑖 𝑢𝑔,𝑗 ⋅ 𝑛𝑗 𝑑𝑆 = −𝑆momentum,𝑖

− ∫𝑆grid
𝜏𝑖𝑗 ⋅ 𝑛𝑗 𝑑𝑆 − ∫𝑆grid

𝑝 ⋅ 𝑛𝑖 𝑑𝑆 . (24)

Employing equation (8) deduced in the FVM section, the final
overning equations solved for SVM containing the scaling factor 𝛾 are:

𝑑
𝑑𝑡 ∫𝑉 grid→𝑉 ∗

𝜌 𝑑𝑉 + ∫𝑆grid
𝜌 �̃�𝑗 ⋅ 𝑛𝑗 𝑑𝑆 + 𝛾 ∫𝑆grid

𝜌 𝑢𝑔,𝑗 ⋅ 𝑛𝑗 𝑑𝑆 = 0, (25)

𝑑
𝑑𝑡 ∫𝑉 grid→𝑉 ∗

𝜌 �̃�𝑖 𝑑𝑉 + ∫𝑆grid
𝜌 �̃�𝑖�̃�𝑗 ⋅ 𝑛𝑗 𝑑𝑆

+ 𝛾 ∫𝑆grid
𝜌 �̃�𝑖 𝑢𝑔,𝑗 ⋅ 𝑛𝑗 𝑑𝑆 = −𝑆momentum,𝑖

− ∫𝑆grid
𝜏𝑖𝑗 ⋅ 𝑛𝑗 𝑑𝑆 − ∫𝑆grid

𝑝 ⋅ 𝑛𝑖 𝑑𝑆. (26)

Comparing the mass conservation equation (11) for FVM with the
orresponding equation (25) for SVM, both formulations are identical
nd both allow a reduction to the original mass conservation equation
4) by the GCL. Obviously, the differences between both approaches
rise from the momentum equations. In comparison to the field velocity
pproach, the evaluation of the additional source terms in Eq. (21)
onstitutes an important aspect of the split velocity method, as these
erms enable to capture the effect of the body on the wind gust.
urthermore, in contrast to FVM, SVM uses the total velocity field
or the computation of the viscous fluxes. Hence, it is suitable for the
imulation of viscous flow problems. So the major drawbacks of FVM
re not present in SVM. However, the implementation of SVM needs
ore changes in the code than FVM.

Note that even in case of LES predictions the viscous terms cannot
lways be neglected in comparison with the resolved stresses. For
low problems with separation for example at curved walls or with
ransition to turbulence, the viscous stresses are decisive for the correct
rediction of the location of these phenomena and thus the entire flow
evelopment.

.3. Boundary conditions

At the boundary patches of a computational domain, velocities have
o be assigned and convective and diffusive fluxes have to be computed
epending on the boundary condition type (e.g., inlet, outlet, symme-
ry, periodic and wall). The distinction made between the background
nd gust velocities in the prescribed velocity methods may act as a
otential source of misconception. Therefore, special care has to be
aken on the application of the boundary conditions in the context of
VM and SVM.

1. Velocities: In both methods, the variable for which the mo-
mentum equations are solved is the background velocity �̃�𝑖.
Therefore, velocities at the faces belonging to a boundary patch
5

are assigned based on this velocity. For example, for a stationary
Fig. 1. Local basis definition 1 = (𝐠1 , 𝐠2 , 𝐠3) of the gust.

wall, the total velocity is equal to zero fulfilling the no-slip and
impermeability conditions. Hence, the background flow velocity
at the wall is set to −𝑢𝑔.𝑖. Similarly, the velocities at the inlet,
outlet and symmetry faces are assigned based on the primary
variable �̃�𝑖.

2. Convective fluxes: In both methods, the convective fluxes
should eventually include the contribution of both velocities
(i.e., the background as well as the gust velocity). For example,
at a no-slip wall, mass fluxes are first computed based on the
assigned background velocity and then corrected using the gust
velocity. Hence, this yields a mass flux fulfilling the imperme-
ability condition of a no-slip wall. The same treatment is applied
to all boundary conditions.

3. Diffusive fluxes: The only difference between FVM and SVM in
the application of boundary conditions lies on the computation
of the diffusive fluxes. While the diffusive fluxes on boundary
faces (e.g., wall shear stress of a no-slip wall or the wall nor-
mal stress of a symmetry patch) are solely computed based on
the background velocity in FVM, these are evaluated using the
contribution of both velocities in SVM.

. Definition of the gust shape

The gust shape is defined in the local orthonormal basis 1 =
𝐠1, 𝐠2, 𝐠3) depicted in Fig. 1 assuming that the only non-zero gust ve-
ocity component is that of the first basis vector of the local coordinate
ystem (i.e., of 𝐠1).

Letting 𝑢𝑔,𝑗 and 𝜃𝑗 denote the components of the gust velocity vector
n the Cartesian basis 0 =

(

𝐞𝟏, 𝐞𝟐, 𝐞𝟑
)

and in the local basis 1 =
𝐠1, 𝐠2, 𝐠3

)

, respectively, the gust velocity reads:

𝑔 = 𝑢𝑔,1 𝐞1 + 𝑢𝑔,2 𝐞2 + 𝑢𝑔,3 𝐞3 = 𝜃1 𝐠1 +���
0

𝜃2 𝐠2 +��7
0

𝜃3 𝐠3 = 𝜃1 𝐠1. (27)

The first basis vector of the local coordinate system, i.e., 𝐠1 is
mposed by the user. 𝐠2 and 𝐠3 can be imposed or computed so that
𝐠1, 𝐠2, 𝐠3) forms an orthonormal basis. The transformation matrix
1→0

from the local basis 1 to the Cartesian basis 0 is required.

sing the abbreviation 𝛽𝑖𝑗 =
𝜕𝑢𝑔,𝑗
𝜕𝜃𝑖

, one could write the transformation
n a matrix notation as:

[

𝐠𝑖
]

=
[

𝛽𝑖𝑗
] [

𝐞𝑗
]

,

⎡

⎢

⎢

⎣

𝐠1
𝐠2
𝐠3

⎤

⎥

⎥

⎦

⏟⏟⏟
ld basis

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜕𝑢𝑔,1
𝜕𝜃1

𝜕𝑢𝑔,2
𝜕𝜃1

𝜕𝑢𝑔,3
𝜕𝜃1

𝜕𝑢𝑔,1
𝜕𝜃2

𝜕𝑢𝑔,2
𝜕𝜃2

𝜕𝑢𝑔,3
𝜕𝜃2

𝜕𝑢𝑔,1
𝜕𝜃3

𝜕𝑢𝑔,2
𝜕𝜃3

𝜕𝑢𝑔,3
𝜕𝜃3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐓1→0

⎡

⎢

⎢

⎣

𝐞1
𝐞2
𝐞3

⎤

⎥

⎥

⎦

⏟⏟⏟
new basis

=
⎡

⎢

⎢

⎣

𝛽11 𝛽12 𝛽13
𝛽21 𝛽22 𝛽23
𝛽31 𝛽32 𝛽33

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝐞1
𝐞2
𝐞3

⎤

⎥

⎥

⎦

. (28)
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Using the relation deduced in Eq. (28), the definition of the gust
velocity with respect to the physical Cartesian basis reads:

𝐮𝑔 = 𝜃1 𝐠1 = 𝜃1
(

𝛽11 𝐞1 + 𝛽12 𝐞2 + 𝛽13 𝐞3
)

. (29)

In the context of deterministic gust models, the gust velocity com-
ponent 𝜃1 describes the spatial and temporal distributions of the gust
using analytic functions:

𝜃1(𝑡, 𝜉, 𝜂, 𝜁 ) = 𝐴g 𝑓t(𝑡) 𝑓1(𝜉) 𝑓2(𝜂) 𝑓3(𝜁 ). (30)

𝐴𝑔 is the user-defined amplitude of the gust. 𝑓𝑡, 𝑓1, 𝑓2 and 𝑓3 are
user-defined analytic functions representing the shape of the gust in
time and space (in 𝐠1-, 𝐠2- and 𝐠3-direction), respectively. 𝜉, 𝜂, 𝜁 are the
spatial coordinates in the local orthonormal basis (𝐠1, 𝐠2, 𝐠3). The local
coordinates 𝜉, 𝜂 and 𝜁 can be expressed depending on the Cartesian
coordinates (see De Nayer and Breuer (2020) for more details).

Typically used deterministic functions required by Eq. (30) for the
spatial and temporal distributions related to a gust are the Extreme
Coherent Gust (ECG) and the Extreme Operating Gust (EOG) defined
in the IEC-Standard (2002). Other options are a Gaussian distribution
or the model recently proposed by Knigge and Raasch (2016). The
latter was derived from turbulent flow fields computed by LES and is
supposed to describe gusts more realistically. Here, solely the ECG is
applied which relies on the ‘‘1-cosine’’ shape. The original ‘‘1-cosine’’
shape found in the literature (IEC-Standard, 2002) is expressed as
follows:

𝑓𝑖(𝜙) =

⎧

⎪

⎨

⎪

⎩

1
2

(

1 − cos

(

𝜋𝜙

𝐿𝜙
g

))

for 𝜙 ∈
[

0, 𝐿𝜙
g

]

0 else .
(31)

In order to achieve more control, the original shape is adapted
introducing the central value 𝜙g (De Nayer et al., 2019):

𝑓𝑖(𝜙) =

⎧

⎪

⎨

⎪

⎩

1
2

(

1 + cos

(

2𝜋
(

𝜙 − 𝜙g
)

𝐿𝜙
g

))

for
(

𝜙 − 𝜙𝑔
)

∈
[

−
𝐿𝜙

g
2 ,

𝐿𝜙
g
2

]

0 else .

(32)

The subscript 𝑖 is equal to 1, 2, 3 or t. The variable 𝜙 corresponds
to the coordinate 𝜉, 𝜂, 𝜁 or to the time 𝑡 for 𝑖 = 1, 2, 3 or t, respectively.
The constant 𝜙g is the user-defined central value of the gust distribution
for the corresponding 𝜙 and 𝐿𝜙

g is its user-defined length or time scale.
Note that the present methodology allows to prescribe the wind gust as
a three-dimensional instantaneous phenomenon.

4. Implementation into a finite-volume NS solver

4.1. Flow solver

The prescribed gust injection techniques mentioned above are incor-
porated into an incompressible Navier–Stokes solver, i.e., an enhanced
and well validated (De Nayer et al., 2014; De Nayer and Breuer, 2014)
version of FASTEST-3D (Durst and Schäfer, 1996; Breuer et al., 2012).
The Navier–Stokes equations are discretized based on the finite-volume
technique on a curvilinear, block-structured body-fitted grid with a
collocated variable arrangement. The surface and volume integrals are
approximated by the midpoint rule. Most flow variables are linearly
interpolated to the cell faces leading to a second-order accurate central
scheme. The convective fluxes are approximated by the technique of
flux blending (Khosla and Rubin, 1974; Ferziger and Perić, 2002) to
stabilize the simulation. For the current case the flux blending includes
3% of a first-order accurate upwind scheme and 97% of a second-
order accurate central scheme. In order to avoid unwanted oscillations,
the momentum interpolation technique of Rhie and Chow (1983) for
non-staggered grids is applied to couple the pressure and the velocity
fields.
6

A semi-implicit predictor–corrector scheme (Breuer et al., 2012) of
second-order accuracy is used to solve the pressure–velocity coupling
problem. First, the momentum equations are time-marched by a low-
storage multi-stage Runge–Kutta method to obtain an intermediate
velocity. Then, the corrector step ensures that mass conservation is
achieved in form of a divergence-free velocity field. For this purpose,
a Poisson equation for the pressure correction is solved by an incom-
plete LU decomposition method (Stone, 1968). The whole procedure
provides second-order accuracy in space and time. The solver can
be applied for direct numerical simulations and large-eddy simula-
tions (Breuer et al., 2012; De Nayer et al., 2014; De Nayer and Breuer,
2014, 2020).

4.2. Additional implementations for FVM and SVM

In order to implement the field and the split velocity method into
a CFD code, the gust velocity 𝑢𝑔,𝑖 is prescribed in the domain at the
beginning of each time step. The pseudo updated volume 𝑉 ∗ is then
computed and applied to the time discretization during the solution of
the momentum equation. The momentum equation includes convective
fluxes relying on 𝑢𝑔,𝑖 and �̃�𝑖. For a three-dimensional finite-volume CFD
solver working on curvilinear grids (see Section 4.1) these steps are
detailed below:

• The gust shape is prescribed as described in Section 3.
• Based on the definition of the gust velocity, the volumetric flow

rate 𝑄 through the faces of a finite volume due to the gust velocity
reads:

𝑄 = 𝜃1
(

𝛽11 𝐴𝑥 + 𝛽12 𝐴𝑦 + 𝛽13 𝐴𝑧
)

. (33)

𝐴𝑥, 𝐴𝑦 and 𝐴𝑧 are the face area projected on 𝐞1, 𝐞2 and 𝐞3,
respectively.

• In the context of the prescribed gust methods, a volume change
due to a pseudo grid movement takes place if a gust velocity
component varies along its direction. The pseudo cell volume 𝑉 ∗

is computed based on the definition of the pseudo GCL according
to Eq. (8):

𝑑
𝑑𝑡 ∫𝑉 grid→𝑉 ∗

𝑑𝑉 = 𝛾
∑

𝑎 ∫𝑆𝑎

−𝑢𝑔,𝑗 ⋅ 𝑛𝑗 𝑑𝑆,

𝑉 ∗ − 𝑉 grid

𝛥𝑡
= − 𝑉 ∗

𝑉 grid
(

𝑄𝑒 +𝑄𝑤 +𝑄𝑛 +𝑄𝑠 +𝑄𝑡 +𝑄𝑏
)

,

which leads to:

𝑉 ∗ = 𝑉 grid

1 + 𝛥𝑡
𝑉 grid

(

𝑄𝑒 +𝑄𝑤 +𝑄𝑛 +𝑄𝑠 +𝑄𝑡 +𝑄𝑏
)

. (34)

{e,w,n,s,t,b} are the indices of the east, west, north, south, top
and bottom faces of a hexahedral control volume, respectively.

• The additional mass fluxes due to the prescribed gust methods can
now be evaluated based on the previously mentioned volumetric
flow rate and the pseudo updated volume. For example, for the
east face the additional mass flux �̇�𝑒 reads:

�̇�𝑒 = ∫𝑆∗
𝑒

𝜌 𝑢𝑔,𝑗 ⋅ 𝑛𝑗 𝑑𝑆 ≈ 𝜌 𝑉 ∗

𝑉 grid
⏟⏟⏟

𝛾

𝜃1
(

𝛽11 𝐴𝑥,𝑒 + 𝛽12 𝐴𝑦,𝑒 + 𝛽13 𝐴𝑧,𝑒
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑄𝑒 from Eq. (33)

= 𝜌 𝛾 𝑄𝑒. (35)

• Similar to moving grids, the pseudo change in volume has to be
also included in the integration scheme in time. In FASTEST-3D,
a three-substeps second-order explicit Runge–Kutta time integra-
tion scheme is employed to march the solution in time. For a
conserved quantity the momentum equation is integrated with
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respect to time as follows:

∫

𝑡𝑛+1

𝑡𝑛

𝑑
𝑑𝑡

(𝜌𝜙𝑉 ) 𝑑𝑡 = ∫

𝑡𝑛+1

𝑡𝑛
RHS 𝑑𝑡,

[𝜌𝜙𝑉 ]𝑛+1 − [𝜌𝜙𝑉 ]𝑛 = 𝛥𝑡 RHS(𝜙𝑛),

[𝜌𝜙]𝑛+1 𝑉 ∗ − [𝜌𝜙]𝑛 𝑉 grid = 𝛥𝑡 RHS(𝜙𝑛),

𝜙𝑛+1 =
(

𝑉 grid 𝜙𝑛 + 𝛥𝑡
𝜌

RHS(𝜙𝑛)
)

1
𝑉 ∗ .

(36)

Incorporating Runge–Kutta coefficients (𝛼𝑘, 𝑘 = 1, 2, 3), the con-
served quantity is advanced from the time step 𝑡𝑛 to 𝑡𝑛+1 in
substeps by:

𝜙𝑘 =
(

𝑉 grid 𝜙𝑛 + 𝛼𝑘
𝛥𝑡
𝜌

RHS(𝜙𝑘−1)
)

1
𝑉 ∗ .

Following the work of Münsch (2015), a linear variation of the
volume of the cell is assumed within the Runge–Kutta substeps:

𝜙𝑘 =
(

𝑉 grid 𝜙𝑛 + 𝛼𝑘
𝛥𝑡
𝜌

RHS(𝜙𝑘−1)
)

1
𝑉 grid + 𝛼𝑘

(

𝑉 ∗ − 𝑉 grid)
.

The momentum equation is solved for the background veloc-
ity �̃�𝑖. Replacing the quantity 𝜙 by �̃�𝑖 delivers the final time
discretization scheme:

�̃�𝑘𝑖 =
(

𝑉 grid �̃�𝑛𝑖 + 𝛼𝑘
𝛥𝑡
𝜌

RHS(�̃�𝑘−1𝑖 )
)

1
𝑉 grid + 𝛼𝑘

(

𝑉 ∗ − 𝑉 grid)
. (37)

• The prescribed gust methods can be coupled with a temporally
varying domain in case of FSI. In the case of moving grids,
the temporally discretized momentum equation is (Breuer et al.,
2012):

�̃�𝑘𝑖 =
(

𝑉 𝑛 �̃�𝑛𝑖 + 𝛼𝑘
𝛥𝑡
𝜌

RHS(�̃�𝑘−1𝑖 )
)

1
𝑉 𝑛 + 𝛼𝑘

(

𝑉 𝑛+1 − 𝑉 𝑛
) .

where 𝑉 𝑛 and 𝑉 𝑛+1 are the geometric cell volumes corresponding
to the deformed grid at 𝑡𝑛 and 𝑡𝑛+1, respectively. The insertion of
the prescribed gust methods relies on the addition of the pseudo
volume change to the geometric cell volumes of the current
deformed grid, i.e., 𝑉 𝑛+1. Hence, the solution is now marched
in time using the updated cell volume (i.e., (𝑉 𝑛+1)∗ evaluated by
Eq. (34)) as:

�̃�𝑘𝑖 =
(

𝑉 𝑛 �̃�𝑛𝑖 + 𝛼𝑘
𝛥𝑡
𝜌

RHS(�̃�𝑘−1𝑖 )
)

1
𝑉 𝑛 + 𝛼𝑘

(

(𝑉 𝑛+1)∗ − 𝑉 𝑛
) . (38)

The implementation of the additional source terms required for SVM
is straightforward and thus needs no further explanation.

5. Test case: Flat plate with rounded edges

The aim of the present test cases originally defined in Biler et al.
(2019), Badrya and Baeder (2019) and Badrya et al. (2021) is to com-
pare the impact of gusts prescribed by FVM or SVM on the aerodynamic
forces of a fixed rigid body. To allow a direct comparison with some
of the results of these previous studies, the geometry of the flat plate,
the Reynolds number and the properties of the vertical gusts are taken
over. However, since different numerical methods (structured overset
grid vs. curvilinear, block-structured body-fitted grid) are applied, the
computational domain and the numerical grid have to be adjusted
accordingly.

5.1. Setup and initial conditions

The geometry of the body is taken as simple as possible: A thin flat
plate (chord 𝑐) with a small thickness (ℎ = 3×10−2 𝑐 ≪ 𝑐) and rounded
front and rear edges (half-cylinder with a radius of ℎ∕2) is oriented
along the horizontal axis 𝐞𝟏 = 𝐞𝐱 as depicted in Fig. 2. Rounded edges
have the advantage that in comparison to a sharp edge the location of
separation is not fixed, which renders the test case more challenging
7

Fig. 2. Geometry of the test case and definition of the boundary conditions.

Table 1
Geometrical setup of the flat plate case.
Plate thickness ℎ∕𝑐 = 3 × 10−2

Plate width 𝐵∕𝑐 = 4

Domain length 𝐷∕𝑐 = 14
Domain height 𝐻∕𝑐 = 13.5
Domain width 𝑊 ∕𝑐 = 14

for the prediction of viscous flows. The separation point depends on
the Reynolds number chosen, which is not the case for the sharp
counterpart. The plate has a finite width of 𝐵 = 4 𝑐. The side edges of
the plate are sharp. The 𝑥-𝑦-cross-section of the computational domain
is ovally shaped with its center at the center of the plate. Its large
radius oriented in streamwise direction is equal to 𝑅 = 7 𝑐 and its small
radius oriented in wall-normal direction is equal to 𝑅 = 6.75 𝑐. Thus, the
boundaries of the domain are far away from the plate to avoid spurious
numerical effects in the far-field when gusts encounter the body. Note
that the distances are above the recommendations provided by classical
best practice guidelines (Franke and Baklanov, 2007; Franke et al.,
2011). In spanwise direction the domain has a width of 14 𝑐. The plate
is in the middle and two spanwise side domains with a width of 5 𝑐 are
present. Thus, the recommendations provided by classical best practice
guidelines are also satisfied in the lateral direction.

In the far-field the flow has a uniform inlet velocity
(

𝑢inlet
1 = 𝑢∞, 𝑢inlet

2
= 0, 𝑢inlet

3 = 0
)

. No-slip and impermeability boundary conditions are
applied on the surface of the plate. Symmetry boundary conditions are
assumed on the lateral sides of the domain in the spanwise direction. In
order to avoid reflections and disturbances at the outlet, a convective
boundary condition (Breuer, 2002) is defined on the outlet patch with
a convective velocity

(

𝑢conv
1 = 𝑢∞, 𝑢conv

2 = 0, 𝑢conv
3 = 0

)

.
The geometrical and physical characteristics of the test case are

summarized in Table 1. Based on the chord length 𝑐 of the plate, the
far-field velocity 𝑢∞, the density 𝜌 and the dynamic viscosity 𝜇 of the
fluid, the Reynolds number Re𝑐 = 𝜌 𝑐 𝑢∞ ∕𝜇 is set to 20,000.

One of the important aspects that has to be taken into account when
generating a grid for such a test case is to guarantee a reasonably
fine grid near the plate to capture the flow details near the boundary.
These viscous effects are significant and lead to the formation of thin
boundary layers at the wall. In order to quantify the maximum cell
size in the vicinity of the wall, the flat-plate boundary layer theory is
employed. For a Reynolds number of Re𝑐 = 20,000, the flow is assumed
to be laminar. Hence, the skin friction coefficient at the trailing edge
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Fig. 3. 𝑥-𝑦 plane of the computational O–type grid. Only every second grid line in
each direction is shown.

of the plate can be evaluated to 𝑐𝑓 = 0.664∕
√

Re𝑐 = 4.7 × 10−3. The
wall shear stress at this position is equal to 𝜏𝑤 = 𝑐𝑓 𝜌 𝑢2∞∕2 and the
friction velocity normalized by the free-stream velocity is given by
𝑢𝜏∕𝑢∞ =

√

𝜏𝑤∕(𝜌 𝑢2∞) =
√

𝑐𝑓∕2 = 4.85× 10−2. Hence to resolve the near-
wall region by a few grid points one could approximate the maximum
height of the first grid cell off the wall (𝛥𝑦) resulting in 𝑦+𝑐𝑐 = 0.2 at
the cell center by 𝛥𝑦∕𝑐 = 2 × 0.2 ∕(Re𝑐

√

𝑐𝑓∕2) ≈ 4 × 10−4. Therefore, a
dimensionless spacing of 4 × 10−4 is used in the wall-normal direction
and the grid is stretched according to a geometric series with a mild
stretching factor of 1.05. A zoom of the O-type grid in the 𝑥-𝑦 plane in
the vicinity of the flat plate is shown in Fig. 3. Note that at the leading
edge the skin friction theoretically rises to infinity. An estimation at
a distance of 5% chord length from the leading edge shows that even
in this region the current wall-normal resolution satisfies the condition
that the first cell center is below 𝑦+𝑐𝑐 = 1.

An equidistant grid spacing of 2 × 10−2𝑐 is assigned in the spanwise
direction to the cells of the middle block (4 𝑐) above and below the
plate to capture the three-dimensional flow structures during the gust
encounter. To guarantee a smooth grid transition on the side edges in
the spanwise direction of the other blocks, a first cell size of 2 × 10−2 𝑐
and a stretching factor of 1.05 are set. A summary of the fine grid on
which the simulations are performed is provided in Table 2. In addition
to this grid, two coarser grids are applied for a grid convergence study
(see Appendix B).

To ensure the stability of the explicit time integration scheme used
in the following simulations, a dimensionless time step size of 𝛥𝑡 𝑢∞∕𝑐 =
2×10−4 is applied. That leads to a CFL number of 0.35, where in case of
an incompressible fluid CFL is based on the characteristic fluid velocity
𝑢∞ instead of the speed of sound.

The initial flow conditions are taken from the quasi steady-state
flow solution in order to suppress the effects of the flow development
stage. The drag and lift coefficients are chosen as the parameters in-
dicating whether the simulation reaches its quasi steady-state solution.
The dimensionless force coefficients are defined as the force compo-
nents normalized by the product of the dynamic pressure (i.e., 1

2 𝜌 𝑢
2
∞)

and the area of the plate (i.e., 𝐴 = 𝑐 𝐵):

𝐶𝐷 =
𝐹𝐷

1
2 𝜌 𝑢

2
∞ 𝐴

, 𝐶𝐿 =
𝐹𝐿

1
2 𝜌 𝑢

2
∞ 𝐴

. (39)

The simulation was carried out for a total dimensionless time in-
terval of 𝑡∗ = 𝑡 𝑢∞ ∕ 𝑐 = 10 starting from initial conditions given by a
parallel flow with 𝑢 = 𝑢∞. The force coefficients recorded are shown in
Fig. 4.

While the drag coefficient has converged to a value of about 0.025,
the lift coefficient is fluctuating around a mean value of zero. This was
expected as a result of the flow separation and the resulting vortex
shedding taking place at the trailing edge of the plate depicted by the
flow fields shown in Fig. 5. Note that the amplitudes of the lift variation
are small compared to those expected by the vertical gusts.
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5.2. Vertical gusts

The first configuration is devoted to the modeling of gusts hav-
ing their direction perpendicular to the streamwise direction of the
main flow. Hence, the name vertical gust is used in the present work.
Note that wind gusts are in general three-dimensional structures. As
mentioned above, the methodology described in Section 3 allows to
prescribe the gust in this manner. However, for fundamental investiga-
tions canonical one-dimensional wind gusts are more suitable and are
thus considered here.

A generic vertical gust configuration allows the evaluation of the
rapid increase in lift forces when a structure is subjected to a vertical
wind gust. These gusts are widely used in the literature (Sitaraman,
2003; Zaide and Raveh, 2006; Heinrich and Reimer, 2013; Wales et al.,
2014; Ghoreyshi et al., 2018; Biler et al., 2019; Badrya et al., 2021)
to investigate the response of an airfoil penetrating through a gust
and consequently facilitating the design optimization process. In these
investigations, a variety of gust shapes is employed. However, the
current work is restricted to the application of gusts with an ECG shape
not varying in time (see Heinrich and Reimer (2013), Biler et al. (2019)
and Badrya et al. (2021)).

Based on the definition of the gust introduced in Section 3, the
basis vector 𝐠1 (defining the gust direction) has to be oriented towards
the basis vector 𝐞2. The gust velocity component 𝜃1 given by Eq. (30)
is defined as follows. The amplitude 𝐴𝑔 is set to 0.8 as in Badrya
and Baeder (2019) and Badrya et al. (2021). Since the gust shape is
independent of time, because it is purely convected downstream, the
temporal shape function 𝑓t(𝑡) is a uniform value (i.e., 𝑓t(𝑡) = 1). Along
the 𝐠1 and 𝐠3 directions (i.e., the vertical and spanwise directions,
respectively), the gust is uniform. Hence, a uniform value is assigned
to 𝑓1(𝜉) and 𝑓3(𝜁 ). Along the 𝐠2 direction (i.e., the streamwise direction
in the case of a vertical gust), the ECG shape is set (𝑓2(𝜂) = 𝐸𝐶𝐺). The
center 𝜂𝑔 of the ECG shape is convected downstream in time. In this
vertical configuration, the displacement of the gust in the streamwise
direction is prescribed by the convective velocity 𝑢conv = 𝑢∞ leading to
𝜂𝑔 = 𝜂0𝑔 +

(

𝑡 − 𝑡0
)

𝑢conv. At 𝑡 = 𝑡0, the gust is prescribed at the center 𝜂0𝑔 .
Different gust wavelengths 𝐿𝜂

𝑔 in 𝐠2-direction are evaluated. The value
of 𝜂0𝑔 is chosen so that the front of the widest gust, i.e., 𝐿𝜂

𝑔 = 4 𝑐, starts
just before the leading edge of the plate. Thus, if the origin of the frame
is taken at the leading edge, 𝜂0𝑔 = −2.1 𝑐. The gust characteristics of the
simulations performed are summarized in Table 3.

The length scale of the gust is chosen between 0.5 and 4 times the
chord length 𝑐 of the plate. As mentioned in the introduction, in the
intermediate run investigation of the effect of wind gusts on flexible
(mechanical and civil engineering) structures are intended. Thus, this
is the range of length scales which might be most important for the
structural integrity and safety of the design. If the scales of the wind
gusts are much smaller, the length scales can be considered as a part
of the spectrum of the turbulent flow. If the scales are much larger, the
corresponding flow fields are seen as long-term variations of the flow
which are less critical than short-term highly instantaneous loads. The
latter may lead to high tensile stresses, which might exceed the yield
stress of the material and thus are critical for the safety. That explains
the range of the investigated length scales.

5.3. Horizontal gusts

The second configuration is devoted to the modeling of gusts (also
with an ECG shape) having their direction parallel to the streamwise di-
rection of the main flow. Such a gust configuration is often experienced
in engineering applications. For example, civil engineers are concerned
with the effect of horizontal gusts on the integrity of flexible structures
as well as on the stability of bridges and high-rise buildings. Moreover,
energy harvesting wind turbines are also vulnerable to such gusts and
this has consequently drawn the attention of the wind energy sector. A
practical application in the field of aeronautics, where such a test case
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Table 2
Grid information for the fine grid.
Grid Total no. of CVs CVs along

streamwise
direction

CVs in
wall-normal
direction

CVs in
spanwise
direction

Middle block 27, 014, 400 1008 134 200
Side blocks 2 × 7, 934, 400 – – 50
Fig. 4. Time history of the drag and lift coefficients.
Fig. 5. Snapshot of the quasi-steady flow fields.
Table 3
Vertical gust characteristics.
𝐠1 𝐴𝑔 𝑓t(𝑡) = 1 𝑓1(𝜉) = 1 𝑓2(𝜂)=ECG 𝑓3(𝜁 ) = 1

𝜂0𝑔 𝐿𝜂
𝑔

𝐞2 0.8 – – −2.1 𝑐 0.5 𝑐 1 𝑐 1.5 𝑐 2 𝑐 4 𝑐 –
is critical, can be found in high-altitude and long-endurance aircraft
employing high aspect-ratio wings. Such wings are susceptible to flow-
induced vibrations (i.e., flutter) and associated instabilities. Subjecting
such a geometry to a horizontal gust may amplify the streamwise
velocity to levels exceeding the critical flutter speed.

Here, the vector 𝐠1 is oriented towards the streamwise direction
𝐞1. The horizontal gust was chosen to vary solely in the streamwise
direction and the computation of the gust velocity component 𝜃1 was
as follows. The same amplitude 𝐴𝑔 as for the previous configuration is
used (i.e., 𝐴𝑔 = 0.8). Again, no gust shape variation in time is allowed.
Therefore, the temporal shape function 𝑓t(𝑡) is set to a uniform value
(i.e., 𝑓t(𝑡) = 1). Along the 𝐠1 direction (i.e., the streamwise direction),
the gust varies with an ECG shape function (𝑓1(𝜉) = 𝐸𝐶𝐺). The center
coordinate 𝜉𝑔 of the ECG shape is convected downstream in time.
In this configuration, the displacement of the gust in the streamwise
direction is prescribed by the convective velocity 𝑢conv = 𝑢∞ following
𝜉𝑔 = 𝜉0𝑔 +

(

𝑡 − 𝑡0
)

𝑢conv. At 𝑡 = 𝑡0, the gust is introduced at the gust
center coordinate 𝜉0𝑔 . Different gust wavelengths 𝐿𝜉

𝑔 in 𝐠1 direction are
investigated (see Table 4). As for the vertical gust, 𝜉0𝑔 is set so that the
front of the widest gust, i.e., 𝐿𝜉

𝑔 = 4 𝑐, starts just before the leading
edge of the plate. Along the 𝐠2 and 𝐠3 directions (i.e., the vertical
and spanwise directions, respectively), uniform values 𝑓2(𝜂) = 1 and
𝑓3(𝜁 ) = 1 are used. As motivated in Section 5.2, the length scale of the
gust is again chosen between 0.5 and 4 times the chord length 𝑐 of the
plate.
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6. Results: FVM vs. SVM

In the following, the results of both methods are evaluated based
on the vertical as well as the horizontal gust configurations. In a first
step, the flow field of one specific setup with an intermediate gust
length of 2 𝑐 is visualized at different characteristic instants in time in
order to illustrate the flow development when the gust encounters the
plate. This also allows to work out deviations observed between the
predictions based on FVM and SVM and to illuminate the resulting time
histories of the lift and drag coefficients. In a second step, the full range
of gust lengths is exploited and the resulting time histories of the force
coefficients are evaluated.

6.1. Vertical gusts

6.1.1. Flow development at 𝐿𝜂
𝑔 = 2 𝑐

Fig. 7 depicts the flow field based on the vertical background veloc-
ity �̃�2∕𝑢∞, the total vertical velocity 𝑢2∕𝑢∞ and the pressure normalized
by 𝜌 𝑢2∞. Six instants in time are chosen to present the development of
the flow. At the first snapshot (see Fig. 6, time 1) the vertical gust is
still in front of the plate and the ECG shape just reaches the leading
edge of the plate. As expected in both predictions the velocity field is
the same as shown in Fig. 5 for the quasi-steady initial conditions. At
the second snapshot (see Fig. 6, time 2) the center of the gust is at the
leading edge of the plate as visible in the contours of the total vertical
velocity. The gust hits the plate from below leading to a flow separation
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Table 4
Horizontal gust characteristics.
𝐠1 𝐴𝑔 𝑓t(𝑡) = 1 𝑓1(𝜉)=ECG 𝑓2(𝜂)=1 𝑓3(𝜁 ) = 1

𝜉0𝑔 𝐿𝜉
𝑔

𝐞1 0.8 – −2.1 𝑐 0.5 𝑐 1 𝑐 1.5 𝑐 2 𝑐 4 𝑐 – –
t

t
S

6

6

2
s
𝑢
d

on the top and the development of a strong vortical clockwise rotating
structure as visible in the pressure minimum in the vicinity of the
leading edge. At this stage already some first small deviations between
the results achieved by FVM and SVM are obvious. The third instant in
time (see Fig. 7, time 3) is the one at which the plate experiences the
largest lift force. The center of the ECG shape is at a distance of about
0.2 𝑐 from the leading edge. A second pressure minimum indicating a
further strong clockwise rotating vortical structure can be seen close to
the leading edge. Again small deviations between the results of FVM
and SVM are apparent, but the differences have not grown visibly.
At the fourth snapshot (see Fig. 7, time 4) the center of the gust is
located at the center of the plate. The two leading-edge vortices (LEV)
are convected downstream in comparison to time 3. At this phase
the lift force is already decreasing again. At the fifth instant in time
(see Fig. 8, time 5) the center of the gust reaches the trailing edge
of the plate. Now the first LEV is located further downstream and
its strength has significantly decreased, whereas the second vortical
structure is hardly visible in the FVM prediction but still apparent in the
SVM results. At the last snapshot (see Fig. 8, time 6) the gust already
detaches from the plate completely. Now the deviations between the
FVM and SVM predictions are the largest. Nevertheless, the deviations
observed between FVM and SVM are rather small. This is especially
true for the pressure field. The reason for this behavior is the nearly
vanishing source term in the SVM prediction in case of the vertical
gust (see Appendix A.1). As will be shown below, the source term
is not disappearing in the horizontal gust case and thus significant
differences between FVM and SVM results occur. Furthermore, in case
of the vertical gust no unphysical flow phenomena are observed either
for FVM nor for SVM.

6.1.2. Force coefficients and effect of gust length
Beside the focus of this configuration to illustrate the effect of the

ust width on the forces of the flat plate, it was also used to validate
he implementation of SVM in FASTEST-3D based on the results in the
iterature (Badrya and Baeder, 2019; Badrya et al., 2021). Fig. 9 shows
he agreement achieved between the aerodynamic responses predicted
y SVM using FASTEST-3D and those from the literature. Here, the
erodynamic responses of the plate are plotted as a function of the
imensionless time 𝑡∗.1 Small deviations (see Table 5) are observed

among the responses and this could be related to the use of differ-
ent discretization schemes of the underlying equations. For instance,
Badrya and Baeder (2019) and Badrya et al. (2021) employed the
Monotonic Upstream-centered Scheme for Conservation Laws (MUSCL)
for the computation of the inviscid terms. The use of flux limiters
makes the solution total variation diminishing and, therefore, spurious
oscillation free. On the contrary, FASTEST-3D relies on a second-order
accurate central scheme with 3% flux blending of a first-order accurate
upwind scheme. Such a low-dissipative scheme is favored since it does
not damp out small-scale structures typically occurring in large-eddy
simulations which are the final objective of this study. Obviously, such
small-scale structures develop in the present simulations leading to
local maxima for example in the time history of the lift coefficient. De-
spite the small deviations between the present results and the literature
data (see Table 5), a good arrangement is achieved for the purpose of
SVM validation.

1 𝑡∗ = 𝑢∞𝑡∕𝑐 is the convective time defined in terms of the number of chords
traveled by the gust.
10
At 𝑡∗ = 0, the plate-gust interaction commence at the leading edge
of the plate yielding an increase in the lift and a drop in the drag
coefficients. While the rise in the lift coefficients is a consequence of an
increase in the effective angle of attack of the plate, the drop in the drag
coefficients is due to the formation of a clockwise rotating leading-edge
vortex (LEV). The elevation in the lift coefficients continues until a peak
value is reached. Then, these coefficients start decaying to eventually
recover the steady-state values when the gusts have completely left the
plate. On the other hand, drag coefficients keep on decreasing until the
leading edge vortex has reached its largest size. Finally, the steady-state
values of the drag coefficient are retrieved following the convection
of the leading-edge vortex downstream along the chord length of the
plate.

In Fig. 10 the aerodynamic responses of the plate due to the gust
encounter predicted by FVM are plotted against those delivered by
SVM. One could notice that only some minor deviations are present
between the results of the two methods (see Table 5). These deviations
can be detected in the lift coefficients of gusts with short wavelengths
(e.g., 0.5 𝑐, 1 𝑐 and 1.5 𝑐), where FVM predicts a second local peak when
he gusts have entirely left the plate.

Based on the results found, one could deduce three main effects of
he gust width on the aerodynamic responses appearing in FVM and
VM:

1. The rate at which the forces change: It could be observed that
the shorter the gust is, the higher is the rate at which the forces
increase. This could be related to the fact that a gust with a
shorter wavelength has larger gradients along its profile, and
therefore, leads to higher force rates.

2. The peak forces recorded: The instantaneous lift coefficient
steadily increases to reach a maximum value which is depending
on the gust width. In fact, the maximum lift coefficient non-
linearly increases with the gust width as found in (Biler et al.,
2019) and shown in Fig. 11(a), where the slope decreases for
larger gust lengths. This behavior is expected since for a wider
gust, the plate experiences a higher effective angle of attack
along the chord for a longer period of time. Fig. 11(a) also
shows that the current results of both SVM and FVM are in close
agreement with the predicted data by Badrya et al. (2021) (see
Table 5).

3. The instant in time at which the peaks are recorded: It was
found that the peak lift occurs when the center of the gust is
located between the leading edge and the mid-chord of the plate.
Since wider gusts require more time to reach this region, their
resulting maximum peak values occur at later times. It was also
found in Biler et al. (2019) that the convective time associated
with the maximum lift linearly increases with the gust width as
shown in Fig. 11(b). Again the present results are found to be
in good agreement with the predictions in Badrya et al. (2021)
(see Table 5).

.2. Horizontal gusts

.2.1. Flow development at 𝐿𝜉
𝑔 = 2 𝑐

The flow fields induced by a prescribed horizontal gust of 𝐿𝜉
𝑔 =

𝑐 are depicted in Figs. 12 and 13 at six instants in time using the
treamwise background velocity �̃�1∕𝑢∞, the streamwise total velocity
1∕𝑢∞ and the pressure normalized by 𝜌 𝑢2∞. Fig. 14 highlights the
ifferences in the results between both methods at the same time
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Fig. 6. Vertical gust passing around the rounded flat plate: Predictions based on FVM (left) and SVM (right) at time 1 and 2.
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Fig. 7. Vertical gust passing around the rounded flat plate: Predictions based on FVM (left) and SVM (right) at time 3 and 4.
12
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Fig. 8. Vertical gust passing around the rounded flat plate: Predictions based on FVM (left) and SVM (right) at time 5 and 6.
13
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Fig. 9. Vertical gust passing around the rounded flat plate: Instantaneous drag and lift coefficients. The gust shape is ECG with a gust amplitude of 𝐴𝑔 = 0.8: FASTEST-3D vs. Badrya
and Baeder (2019) SVM results.
Fig. 10. Vertical gust passing around the rounded flat plate: Instantaneous drag and lift coefficients. The gust shape is ECG with a gust amplitude of 𝐴𝑔 = 0.8: FVM vs. SVM.
Fig. 11. Vertical gust passing around the rounded flat plate: Lift coefficient analysis: (a) Maximum lift coefficient as a function of the gust wavelength and (b) Convective time
corresponding to the maximum lift coefficient as a function of the gust wavelength.2
nstants. Please note that the current six time instants are partially
ifferent from those used for the vertical gust configuration.

2 For FVM and a gust wavelength of 1.5 𝑐 the second local maximum is
used.
14
At the first snapshot (time 1) the horizontal gust has reached the

front of the plate and the first quarter of the gust has already penetrated

the leading edge of the plate. The predictions (FVM and SVM) show

that the streamwise background velocity field and the streamwise total
velocity field (see Fig. 12, time 1) are very similar to each other
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Table 5
Normalized root-mean-square error of the lift and drag coefficients found in Fig. 9 (present simulation
vs. Badrya and Baeder (2019)) and Fig. 10 (FVM vs. SVM). The relative errors are normalized by the
corresponding ranges (maximum–minimum).
Case Normalized RMSE [%] 0.5 𝑐 1.0 𝑐 1.5 𝑐 2.0 𝑐 4.0 𝑐

Present sim. vs. B&B 𝛥𝐶𝐷 5.0 4.9 6.3 4.9 4.7
𝛥𝐶𝐿 5.0 4.6 4.6 2.8 1.3

FVM vs. SVM 𝛥𝐶𝐷 3.5 4.6 4.4 4.3 2.4
𝛥𝐶𝐿 3.5 3.3 2.2 3.3 3.5
b
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p
t
o
c
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v
v
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and also very similar to the quasi-steady flow shown in Fig. 5. How-
ever, strong differences are visible in the pressure distribution (see
Fig. 14(a)). In case of SVM an area of negative pressure forms at the
prescribed gust location3. Obviously, the observed pressure distribution
is due to the contribution of the SVM source term (see Appendix A.2
for further details), since a similar observation cannot be made for the
FVM prediction, which does not use such a source term. A region with
a strong pressure drop at the location of the gust is reasonable, since an
increase of the total streamwise velocity occurs. Therefore, the pressure
sinks. At the second snapshot (Fig. 12, time 2) the center of the gust is
exactly at the leading edge of the plate. A minor augmentation of the
background velocity is observed at the leading edge. This acceleration
of the flow is more pronounced in the SVM results. The previously
mentioned area of the pressure drop follows the gust prescribed by
SVM. For FVM a locally occurring pressure reduction is observed near
the leading edge, where the flow is locally accelerated during the
deflection around the leading edge. That is also the case in the SVM
prediction. However, it is not visible due to the presence of the large
region of negative pressure. Contrary to the vertical gust configuration
the gust hits a much smaller area of the plate. Therefore, no strong
vortical structure is shed in the vicinity of the front of the plate. At
the third instant in time (Fig. 12, time 3) the center of the gust is
located at the center of the plate. The largest deviations are again
found in the pressure. Assuming that the wide area of negative pressure
following the gust observed in SVM is physical (velocity increases,
thus the pressure decreases), the pressure field connected with FVM is
more doubtful. The gust velocity prescribed by FVM does not directly
influence the pressure. Only two negative pressure areas are observed
at both plate ends, where the flow is accelerated due to the deflection
induced by the plate. In the middle of the structure, where the gust is
the strongest, only a mild decrease of the pressure is visible. Contrary
to time 1 and 2, the streamwise background velocity field predicted by
FVM and SVM starts to differ in the vicinity of the plate and in the
wake (see Fig. 14(c)). The additional source term and the evaluation of
the shear stress tensor based on the total velocity are the two decisive
differences characterizing SVM.

In order to track which of these two issues is responsible for the
difference observed in the background velocity, an altered SVM simula-
tion, where the shear stress tensor is evaluated based on the background
velocity (as for FVM) instead of the total velocity, is carried out. Since
the streamwise background velocity field predicted by SVM and the
altered SVM are in close agreement, it can be concluded that the SVM
source term is responsible for the change in the streamwise background
velocity field near the plate. The SVM source term generates the
previously mentioned pressure drop area, which implies an acceleration
of the flow in the tail of the gust and a deceleration in front of the gust
(particularly visible near the plate in Fig. 14(c)).

The gust reaches the trailing edge of the plate in the fourth snapshot
(Fig. 13, time 4). Looking at the pressure field, where the changes
are most obvious, it can be noticed that the vortex shedding at the
trailing edge becomes stronger in both simulations. This can be further

3 Note that the reference point of the pressure is located just after the inlet
atch at the height of the plate. Thus, a negative pressure has to be interpreted
s the difference to the pressure at the reference point.
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observed at the fifth instant in time (Fig. 13, time 5), when the plate is
exposed to the last quarter of the gust. In this snapshot the background
velocity predicted by FVM strongly differs from the SVM results (see
Fig. 14(e)). Several short local areas of increased streamwise velocity
connected with negative pressure areas are present in the vicinity of
the plate in case of FVM (see Fig. 13, time 5). These small vortices are
located near the plate in the tail of the gust. These strong unphysical
vortical structures are neither present in SVM nor in the altered SVM.
The physical explanation is that the acceleration of the flow field
generated by the SVM pressure drop area induced by the source term
in the tail of the gust avoids the formation of these vortices. At the last
snapshot (Fig. 13, time 6) the gust detaches from the plate completely.
In case of SVM the flow looks very similar to the quasi-steady case (see
Fig. 5). However, the unphysical vortices are further present in the FVM
simulation (see Fig. 13, time 6 and Fig. 14(f)).

In summary, the test case of the horizontal gust reveals two findings,
which are not so clearly visible in the vertical gust case. These are
directly related to the differences in the formulation of the FVM and
SVM methods. First, the additional source term in SVM is responsible
for a meaningful forecast of the pressure field and consequently of the
background velocity field near the structure (feedback effect). Second,
the difference in the formulation of the viscous shear stresses between
FVM and SVM does not have a major effect on the predictions, at
least for the present configuration. This could be related to the fact
that the diffusive contribution of the gust velocity (i.e., 𝜏𝑖𝑗 (𝑢𝑔,𝑖)) is
depending on two main parameters, namely, the gust profile and the
reciprocal of the Reynolds number. In the present case, the product
of the spatial derivative of the gust profile with the reciprocal of the
Reynolds number has an order of magnitude which is significantly
smaller than that of the SVM source term.

6.2.2. Force coefficients and effect of gust length
Similar to the vertical gust case Fig. 15 depicts the time histories

of the drag and lift coefficients for the case of the horizontal gust. To
ensure a better visibility of the results, separate subfigures are provided
for each gust length. At the dimensionless time instant 𝑡∗ = 0 the
ranch of the gust reaches the leading edge of the plate. As visible from
he drag coefficient depicted in Fig. 15(a), the duration of the gust-
late interaction lasts slightly longer than about 1 + 𝐿𝜉

𝑔∕𝑐 convective
ime units, which is the time the gusts needs to travel completely
ver the plate. Obviously, the deviations observed between the drag
oefficients predicted by FVM and SVM are significantly larger than
or the vertical gust case. Furthermore, the lift coefficient has obviously
ess importance. However, it is directly connected to the van Kármán
ortex shedding occurring at the trailing edge. The frequency of the
ortex shedding rises during the passage of the gust over the plate.
ssuming a constant Strouhal number of the shedding process the rise
f the frequency can be explained by the increase of the velocity due
o the horizontal gust.

In order to better understand the time history of the drag coefficient,
he pressure part of the drag coefficient 𝐶𝑝

𝐷 and the shear part of the
rag coefficient 𝐶𝜏

𝐷 are separately plotted in Fig. 16 for FVM and SVM
or the gust length of 𝐿𝜉

𝑔 = 2 𝑐. It is obvious that the temporal evolution
f the drag coefficient 𝐶𝐷 predicted by FVM mainly corresponds to the
emporal evolution of its shear contribution. On the contrary, the curve
f 𝐶 obtained by SVM is directly connected to the pressure part. This
𝐷
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Fig. 12. Horizontal gust passing around the rounded flat plate: Predictions based on FVM (left) and SVM (right) at time 1, 2 and 3.
16
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Fig. 13. Horizontal gust passing around the rounded flat plate: Predictions based on FVM (left) and SVM (right) at time 4, 5 and 6.
17
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Fig. 14. Horizontal gust passing around the rounded flat plate: Flow differences between FVM and SVM at six instants in time.
18
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Fig. 15. Horizontal gust passing around the rounded flat plate: Instantaneous drag and lift coefficients for different gust lengths.
fits to the observations made on the flow fields in the previous section.
The SVM source term significantly influences the pressure distribution
at the gust location and this has a strong impact on the temporal
evolution of the pressure part of the drag coefficient.

At 𝑡∗ = 1, the center of the gust reaches the leading edge. Conse-
quently, the maximum pressure drop is also located at the leading edge.
Therefore, a decrease in the drag coefficient is observed at this time
instant. At 𝑡∗ = 2, the center of the gust reaches the trailing edge and
the pressure drop is located at this end of the plate. Thus, a maximum
of the drag coefficient occurs at this instant in time. Of further interest
is also the temporal evolution of the shear stresses. In case of SVM the
shear stress part of the drag coefficient looks like the shape of the gust.
On the contrary, the time history of 𝐶𝜏

𝐷 obtained by FVM reveals that
the shear part of the drag coefficient temporarily drops below the quasi-
steady value. This observation is made for the second half of the period
of the gust-plate interaction and can hardly be explained by the physics
of the event. The additional source term and the evaluation of the shear
stress tensor based on the total velocity are the two main differences
between FVM and SVM.

As in the previous section, the altered SVM simulation, where the
shear stress tensor is evaluated based on the background velocity (as for
FVM) instead of the total velocity is applied to clarify the source of the
changes. The temporal evolution of the force coefficients predicted by
SVM and the altered SVM are quasi identical. This means that the SVM
source term is responsible for the change in the 𝐶𝜏

𝐷 shape. As explained
in the previous section, this outcome is expected as the SVM source
term contribution is more pronounced.

Please note that the evaluation of the shear stress tensor based on
the total velocity does not have a major impact in the present case
owing to the currently selected gust configuration. Indeed, the gust
shape only changes in 𝐠1-direction. If the gust would also vary in 𝐠2-
and/or 𝐠3-direction, a shear stress tensor based on the total velocity
would have a stronger effect on the results.

7. Conclusions

The field velocity method and the split velocity method are wind
gust injection methods which are often used in the literature. Never-
theless, a comprehensive and comprehensible derivation in the context
19

of a finite-volume scheme applying the Arbitrary Lagrangian Eulerian
formulation and the geometric conservation law was missing. Such a
consistent derivation is provided here. This works out the similarities
between the two approaches but also their differences. Their effects on
the results are assessed based on vertical and horizontal gusts hitting a
plate. The following results can be recorded:

• The derivation has highlighted that both methods are strongly
linked to the Arbitrary Lagrangian Eulerian formulation and the
geometric conservation law. The difference between both ap-
proaches are on the one hand the additional source terms in SVM
describing the feedback effect of the surrounding flow field on the
gust itself and the formulation of the viscous stress tensor by the
background and the total velocity, respectively.

• From the numerical point of view and the required computa-
tional effort both methods are more or less equivalent. There-
fore, using FVM does not really make sense anymore. This state-
ment is supported by the computational results achieved by both
methods.

• For the classical case of a vertical gust often used in the context
of aircraft, the deviations in the results (flow field and force co-
efficients) are rather small, i.e., the normalized root-mean-square
errors are in the range between 2.4% and 4.6%. An analytical
derivation revealed that the source term vanishes in the regions
where the dimensionless background velocity �̃�1 is equal to unity
(e.g., the far-field region), which explains its minor impact on the
predictions in the vertical gust case.

• For the newly introduced horizontal gust hitting a plate the
observed differences both in the flow field and in the resulting
force coefficients are significantly more pronounced. The non-
vanishing source term as well as the modified formulation of the
viscous shear stresses can be made responsible for this observa-
tion. However, an additional study clearly showed that for the
chosen Reynolds number the consideration of the feedback effect
due to the source term is the decisive difference between FVM
and SVM, which prevents unphysical flow structures from being
observed on the plate.

The significance of the outcome of this study lies on the assessment
of the capability of the prescribed velocity methods to introduce wind
gusts of different configurations. Especially the horizontal gust case re-

veals the shortcomings of the underlying assumptions used in FVM and
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Fig. 16. Horizontal gust passing around the rounded flat plate: Time history of the drag coefficient 𝐶𝐷 , of the pressure part of the drag coefficient 𝐶𝑝
𝐷 and of the shear part of the

rag coefficient 𝐶𝜏
𝐷 for FVM and SVM. The gust has the length of 𝐿𝜉

𝑔 = 2 𝑐.
𝑥

uggests the use of SVM for the injection of gusts having a streamwise
elocity component. That will allow to tackle practically relevant flow
roblems in the near future, e.g., to predict the impact of strong wind
usts on flexible membranous structures and to answer the question of
heir structural integrity.
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ppendix A. Evaluation and effect of the svm source term

.1. Vertical gusts

For a vertical gust, the gust velocity points only in the 𝑦-direction
nd is given by 𝐮𝑔 =

[

0, 𝑢𝑔,2(𝑥, 𝑡), 0
]

. Hence, the source terms of the
omentum equations simplify to 𝐒 =

[

0, 𝑆2(𝑢𝑔,2(𝑥, 𝑡)), 0
]

. Employing
Eq. (21), the simplified source term of the 𝑦-momentum equation reads:

𝑆2 = 𝜌
{ 𝜕𝑢𝑔,2

𝜕𝑡
+ �̃�1

𝜕𝑢𝑔,2
𝜕𝑥1

}

. (A.1)

The vertical gust component can be written in the Cartesian basis as:

𝑢𝑔,2(𝑥, 𝑡) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

𝑣𝑔,max
2

(

1 + cos

(

2𝜋
(

𝑥1 − 𝑥g,1(𝑡)
)

𝐿𝑥1
g

))

for
(

𝑥1 − 𝑥𝑔,1
)

∈

[

−
𝐿𝑥1

g

2
,
𝐿𝑥1

g

2

]

0 else,

(A.2)
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⎩

with the convected gust center defined as:

𝑥g(𝑡) = 𝑥0g + (𝑡 − 𝑡0) 𝑢∞. (A.3)

The derivatives in Eq. (A.2) are then:

𝜕𝑢𝑔,2
𝜕𝑡

= +
𝜋 𝑣𝑔,max 𝑢∞

𝐿𝑥1
g

sin

(

2𝜋
(

𝑥1 − 𝑥g,1(𝑡)
)

𝐿𝑥
g

)

,

𝜕𝑢𝑔,2
𝜕𝑥1

= −
𝜋 𝑣𝑔,max

𝐿𝑥1
g

sin

(

2𝜋
(

𝑥1 − 𝑥g,1(𝑡)
)

𝐿𝑥1
g

)

.

(A.4)

The derivatives are therefore nearly identical but of opposite signs.
Consequently, the source term (Eq. (A.1)) would vanish if the back-
ground velocity �̃�1 is equal to 𝑢∞. In fact, this is the case in the far-field
region (far away from the plate), where the background velocity �̃�1 is
equal to the free-stream velocity 𝑢∞. In that region, the source term
plays no role and has no effect on the pressure field in contrast to the
effects remarked in the horizontal gust configuration. As a result, no
major deviations between FVM and SVM are realized for the vertical
gust configuration (see Figs. 6 to 8).

A.2. Horizontal gusts

For a horizontal gust, the gust velocity points only in the 𝑥-direction
and is given by 𝐮𝑔 =

[

𝑢𝑔,1(𝑥, 𝑡), 0, 0
]

. Hence, the source terms of the
momentum equations simplify to 𝐒 =

[

𝑆1(𝑢𝑔,1(𝑥, 𝑡)), 0, 0
]

. Employing Eq. (21), the simplified source term
of the 𝑥-momentum equation reads:

𝑆1 = 𝜌
{ 𝜕𝑢𝑔,1

𝜕𝑡
+
(

�̃�1 + 𝑢𝑔,1
)
𝜕𝑢𝑔,1
𝜕𝑥1

}

. (A.5)

The horizontal gust component can be written in the Cartesian basis as:

𝑢𝑔,1(𝑥, 𝑡) =
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∈
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0 else ,

(A.6)

with the convected gust center defined as:

g(𝑡) = 𝑥0g + (𝑡 − 𝑡0) 𝑢∞. (A.7)

The derivatives in Eq. (A.2) are then:

𝜕𝑢𝑔,1
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Table B.6
Fine and coarsened grids information and the relative error of the maximum lift coefficient.
Gust wavelength Grid Total no. of CVs 𝐶𝐿,𝑚𝑎𝑥 Relative error %

2 𝑐
Fine 42, 883, 200 2.6115 –
𝑥𝑦−coarsened 10, 720, 800 2.4910 4.6
𝑥𝑦𝑧−coarsened 5, 360, 400 2.4962 4.4

4 𝑐
Fine 42, 883, 200 3.0178 –
𝑥𝑦−coarsened 10, 720, 800 3.1153 3.2
𝑥𝑦𝑧−coarsened 5, 360, 400 3.1029 2.8
1
i
t
u

c
c
i
l
d
t
c

R

A

B

B

B

B

B

B

D

D

D

D

D

D

D

D

F

Fig. A.17. Vertical gust passing around the rounded flat plate: Instantaneous lift coeffi-
cients recorded on different grids for a grid sensitivity analysis. The gust shape is ECG
with a gust amplitude of 𝐴𝑔 = 0.8.

The derivatives are again nearly identical and of opposite signs as
n Appendix A.1. However, this time the spatial derivative is multiplied
y the total velocity 𝑢1 = �̃�1 + 𝑢𝑔,1 which is different from 𝑢∞ even in
he far-field region. Consequently, one could clearly observe the role
hat the source term (Eq. (A.5)) plays in the early stages of the gust
njection by its strong effect on the pressure field (see Fig. 12). As a
esult, major deviations between FVM and SVM are clearly visible for
he horizontal gust configuration.

ppendix B. Grid sensitivity analysis

In order to examine the dependency of the results obtained on the
rid used for the simulations, a grid sensitivity study is carried out. Two
oarser grids are generated from the fine grid described in Section 5.1.
oarsening along a specific coordinate direction is performed by skip-
ing every second grid line. The first grid is created by coarsening
he blocks of the grid in the 𝑥− and 𝑦−directions only. This results
n a computational grid containing 10, 720, 800 CVs. The second grid
s generated by coarsening the blocks in all three coordinate directions
esulting in a grid of 5, 360, 400 CVs. SVM simulations for a vertical gust
onfiguration of different wavelengths (2 𝑐 and 4 𝑐) are performed on

the coarsened grids. The resulting lift coefficients obtained are plotted
against those corresponding to the fine grid as a function of the convec-
tive time 𝑡∗ shown in Fig. A.17. It could be observed that no significant
variations among the lift coefficients are visible and the curves are,
almost all times, coincident. The maximum lift coefficient recorded is
chosen as a parameter for quantifying the error between the coarsened
21

grids and the fine grid (see Table B.6). Although the difference between
the total number of control volumes of the grids is significantly large
(compared to the fine grid, the 𝑥𝑦−coarsened grid contains 25% of the
total number of control volumes and the 𝑥𝑦𝑧−coarsened grid has only
2.5%), the relative error of the lift coefficient does not exceed 5%. This
ndicates that the flow fields are overall well resolved in the vicinity of
he plate even upon the coarsening. Hence, one could conclude that the
se of the fine grid is appropriate for the purpose of this study.

Note that the oscillations observed in the time histories of the lift
oefficient can be physically explained. Looking at Figs. 6 to 8 the
ause of these fluctuations becomes obvious. When the vertical gust
mpacts the flat plate, vortical structures are shed especially from the
eading edge but also from the trailing edge. As visible in the pressure
istributions the center of these vortices have low pressures influencing
he local pressure distribution on the plate and finally the resulting lift
oefficients.
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