N

N

Codabench: Flexible, Easy-to-Use and Reproducible
Benchmarking Platform
Zhen Xu, Sergio Escalera, Isabelle Guyon, Adrien Pavao, Magali Richard,
Wei-Wei Tu, Quanming Yao, Huan Zhao

» To cite this version:

Zhen Xu, Sergio Escalera, Isabelle Guyon, Adrien Pavao, Magali Richard, et al.. Codabench: Flexible,
Easy-to-Use and Reproducible Benchmarking Platform. 2022. hal-03374222v3

HAL Id: hal-03374222
https://hal.science/hal-03374222v3

Preprint submitted on 25 Feb 2022 (v3), last revised 27 Jun 2022 (v4)

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-03374222v3
https://hal.archives-ouvertes.fr

CODABENCH: FLEXIBLE, EASY-TO-USE AND REPRODUCIBLE
BENCHMARKING PLATFORM

SUBMISSION TO PATTERNS

Zhen Xu * Sergio Escalera Isabelle Guyon
4Paradigm, China Universitat de Barcelona LISN/CNRS/INRIA, Univ. Paris-Saclay, France
xuzhen@4paradigm.com Computer Vision Center, Spain ChaLearn, USA
sergio@maia.ub.es guyon@chalearn.org
Adrien Pavao Magali Richard
LISN/CNRS/INRIA, Univ. Paris-Saclay, France Univ. Grenoble Alpes/CNRS, France
adrien.pavao@gmail.com magali.richard@univ-grenoble-alpes.fr
Wei-Wei Tu Quanming Yao Huan Zhao
4Paradigm, China Tsinghua University / 4Paradigm, China 4Paradigm, China
tuweiwei@4paradigm.com qyaocaa@tsinghua.edu.cn zhaohuan@4paradigm.com
Highlights

* We developed Codabench, an open-source and community-driven benchmark platform, which facilitates
benchmarking and guarantees reproducibility.

* The platform allows organizers to set up benchmarks with custom designs and welcome contributions of users
in the form of dataset and/or code submission.

* Organizers may host their own platform instance or use the public instance; in the latter case, they can supply
their own compute worker to execute submitted tasks.

* Codabench has currently more than 130 users and 2500 submissions. Four use cases in diverse domains are pre-
sented in this paper: Graph Machine Learning, Cancer Heterogeneity, Clinical Diagnosis, and Reinforcement
Learning are introduced to demonstrate key features of Codabench.

* Codabench is amenable, but not limited to, machine learning benchmarking, Artificial Intelligence (AI) for
science, and data-centric Al

Bigger Picture

In almost all communities working on Data Science, researchers face an increasingly severe issue of reproducibility
and fair comparison. Researchers work on their own version of hardware/software environment, code, data and
consequently the published results are hardly comparable. We introduce Codabench, which is capable of flexible and easy
benchmarking and supports reproducibility. Codabench is an important step towards benchmarking and reproducible
research. It has been used in various communities including Graph Machine Learning, Cancer Heterogeneity, Clinical
Diagnosis and Reinforcement Learning. Codabench is ready to help many trendy researches, e.g. Artificial Intelligence
(AI) for Science and Data-Centric Al.

*Zhen Xu is the first author. The other authors are ordered alphabetically.

Codabench SUBMISSION TO PATTERNS

In Brief

Fair and flexible benchmarking is a common issue in data science communities. We develop Codabench platform for
flexible, easy and reproducible benchmarking. It is open-source and community-driven. With Codabench, we are able to
compare fairly and easily algorithms as well as datasets under diverse protocols. The full reproducibility is guaranteed.

Codabench SUBMISSION TO PATTERNS

SUMMARY

Obtaining standardized crowdsourced benchmark of computational methods is a major issue in data
science communities. Dedicated frameworks enabling fair benchmarking in a unified environment are
yet to be developed. Here we introduce Codabench, an open-source, community-driven platform for
benchmarking algorithms or software agents versus datasets or tasks. A public instance of Codabench
https://www.codabench.org/ is open to everyone, free of charge, and allows benchmark orga-
nizers to compare fairly submissions, under the same setting (software, hardware, data, algorithms),
with custom protocols and data formats. Codabench has unique features facilitating the organization
of benchmarks flexibly, easily and reproducibly, such as the possibility of re-using templates of
benchmarks, and supplying compute resources on-demand. Codabench has been used internally
and externally on various applications, receiving more than 130 users and 2500 submissions. As
illustrative use cases, we introduce 4 diverse benchmarks covering Graph Machine Learning, Cancer
Heterogeneity, Clinical Diagnosis and Reinforcement Learning.

Keywords Machine Learning - Benchmark platform - Reproducibility

1 Introduction

The methodology of unbiased algorithm evaluation is crucial for machine learning, and has recently received renewed
attention in all data science scientific communities. Often, researchers have difficulties understanding which dataset to
choose for fair evaluation, with which metrics, under which software/hardware configurations, and on which platform.
The concept of benchmark itself is not well standardized and includes many different settings. For instance, the
following may be referred to as a benchmark: a set of datasets; a set of artificial tasks; a set of algorithms; one or several
dataset(s) coupled with reference baseline algorithms; a package for fast prototyping algorithms for a specific task; a
hub for compilation of related algorithm implementations. In addition, many algorithm benchmarks do not offer the
easiness to further integrate new methodological developments. A platform for benchmarking tasks in a flexible and
reproducible way is thus much needed for everyone to use.

Typical examples of existing frameworks addressing such need are inventoried in Table Firstly, they include
competition platforms, such as Kaggle [Google| |2010]] and Tianchi [[Alibaba) 2015]] organizing many data science
challenges attracting a large number of participants. They provide elaborate ways of hosting third party competitions
and offer services for a fee for commercial competitions. The platform providers retain some control: the organizers do
not have full flexibility and control over their competitions. Secondly, data repositories such as UCI repository [Dua
and Graff] 2017] also play an important role for benchmarks and research. But they do not host methods, or results.
In contrast, OpenML [Vanschoren et al.| 2013]] is an example of open-source and free hub of datasets also making
available machine learning results. However, reproducibility by running code in given containers (or similar ways) is
not guaranteed. Similarly, PapersWithCode [Meta, 2017]] collects many tasks and state of the art results from papers.
But the platform doesn’t guarantee the reproducibility of these performances. Besides the above mentioned platforms,
many domain specific benchmarks exist, e.g. DAWNBench [Cody A. et al.,2017], KITTI Benchmark Suite [Geiger
et al.,[2012]. These benchmarks usually focus on a couple of closely related tasks but are not designed to host general
benchmarks. In addition, they require repetitive efforts to develop and maintain, which is not always affordable by data
science teams.

Thus, to facilitate benchmarking, we need a platform to allow users to flexibly and easily create benchmarks with
custom evaluation protocols and custom data formats, and execution in a controlled reproducible environment,
which is totally free and open-source. To answer these unmet needs, we developed Codabench. A benchmark on
Codabench consists of one or more flexible tasks (to be explained below) with guaranteed reproducibility. Codabench is
the last born of a suite of tools from the open-source “ChaSuite” project, receiving over 130 users and 2500 submission
on 100 tasks including AutoML, Graph Machine Learning, Reinforcement Learning, detecting cancer heterogeneity
and training clinicians. Detailed history and multiple illustrative use cases are introduced in the Appendix. Codabench
is an important step towards reproducible research and should meet the interest of all areas of data science.

2 Method: Design of Codabench

Codabench is a flexible, easy-to-use and reproducible benchmark platform that is open-source and freely provided for
everyone. Different from all other platforms, a new concept of task is introduced in Codabench, which is the minimal
unit for composing a benchmark. A task is composed of an “ingestion module” (including ingestion program and input
data), a “scoring module” (including a scoring program and reference data, invisible to the participant’s submission), a

https://www.codabench.org/

Codabench SUBMISSION TO PATTERNS

Table 1: Comparison of various reproducible science platforms.

Platform Flexibility Easy-to-use Reproducibility
Bundle Result/Code Dataset Easy Open- API Compute
submit submit creation source/free access queue
Kaggle X v X v X 4 v v
Tianchi X v X v X X v
UcCI X X v X v X X v
OpenML X v v v v v X v
PapersWithCode X v X v v X X v
DAWNBench X v X X v X X v
Codabench v v v v v v v v

baseline solution with sample data, and meta-data information if needed. Tasks in Codabench may be programmed in
any programming language in any custom way, which are run in a docker specified by organizers. Figure [I] provides a
detailed description of Codabench internal interaction logistics.

Take supervised learning tasks as an example. A typical usage is that benchmark participants submit a class (e.g. a
Python object) “z”, with 2 methods: z.fit and z.predict, similarly to scikit-learn [Pedregosa et al.,2011]] objects.
The ingestion program reads data, calls z.fit with labeled training data and z.predict with unlabeled test data
(labeled training data and unlabeled test data being part of the so-called “input data’), then outputs predictions. The
scoring program reads the predictions and evaluates them based on custom scoring metric(s), using the test labels (called
“reference data”). Other application usages are possible, including: transposed benchmarks (datasets are submitted by
participants instead of algorithms; the organizers supply a set of algorithms), and reinforcement-learning benchmarks
(the ingestion program plays the role of an agent wrapping around the submission of the participant and interacting with
a world (scoring program) in a specific way.

The reader is referred to Codabench official repositoryﬂ where the code and complete documentation are found. In
Appendix, we also include instructions and references to get started. To use the public instance of Codabench please
visit the |Codabench website. To test and install locally, the instructions are given in the readme file of the official
repository. The Codabench code is released under an /Apache 2.0 License. Under the organization group, there is also
CodaLab Competitions, which is the aforementioned competition platform, and CodalLab Worksheets, which features
dynamical workflows, particularly useful for Natural Language Processing. This paper concerns only Codabench.

3 Results

3.1 Key features of Codabench

Codabench is task-oriented. Using tasks, the organizers have the flexibility of implementing any benchmark protocol,
with any dataset format and API, or even using data generating models, allowing them to organize reinforcement
learning challenges. In this section, we introduce the key features of Codabench contributing to the flexibility, easiness
and reproducibility. Codabench also supports custom leaderboards and has full |[documentation| of usage.

3.1.1 Flexibility

Benchmarks are organized by bundles containing all the information of a benchmark. Thanks to the aforementioned
task and bundle, Codabench supports flexible benchmark types including results submission, code submission and even
dataset submission.

Benchmark bundle. A benchmark bundle is a zip file containing all necessary constituents of a benchmark: tasks,
documentation, and configuration settings (such as leaderboard settings). A Codabench bundle may include single
or multiple tasks. Classical benchmark is usually single-task while AutoML, Transfer Learning, Meta Learning
benchmarks are multi-task.

Results or code submission. “Classic” Codabench benchmarks are either with result or code submission. On one
hand, result submissions are used when organizers wish that participants use they own computational resources. In
supervised learning competitions, participants would supply e.g. predictions of output values on some test datasets.
Other types of results may be supplied, for instance high resolution images in a hyper-resolution challenge for which

https://github.com/codalab/codabench/

https://www.codabench.org/
https://github.com/codalab/codabench/blob/develop/LICENSE
https://github.com/codalab/codabench/wiki
https://github.com/codalab/codabench/

Codabench SUBMISSION TO PATTERNS

HIDDEN TO PARTICIPANTS VISIBLE TO PARTICIPANTS

(1) Scoring module (World) Leaderboard:
Reward r, R (cumulated

&logs | reward) & log files

Scoring program calls:
Scoring function S(Yirue: Ypred)
Execution time <= budget T:

|npUt & Reference data = [X, ytrue] (3) Public Info: Scores and |Ogs
Task: Information :
. Information
Provided exchange ilabl Public Data
b TS x available to
y N between articipants
organizers f A Ypred: Yirue P P -
Ingestion/Scoring Sample submission
modules
(2) Ingestion module (Agent)
Ingestion program calls:
Submission (T, x): z Benchmark

z.fit()
— z.predict()
Return ypred

Submission | Participants

Figure 1: Operational Codabench workflow. Left side: Task module specified by the organizer, executed on the
platform. Right: Web interface with participants permitting to make submissions and retrieve results. Numerated blocks
are provided by organizers. They include (1) a scoring module in green; (2)a ingestion module in yellow; (3) and public
information in blue. Red block is intermediate information exchange of time budget, scoring, input data, ground truth
data and predictions. White bottom right block: participant prepares a submission "z" uploaded to the platform. The
submission is then executed by the ingestion program. The role of the scoring program is to produce scores that are

then displayed on the leaderboard.

inputs are low-resolution images. On the other hand, if the organizers wish to run all algorithms in a uniform manner on
the platform, Codabench allows the participants to make code submissions. The submitted software is run in a docker
supplied by the organizers, either on the default compute worker, or on compute workers supplied by the organizers.
This code submission design allows organizers to provide suitable computational resources (e.g. GPUs), and improve
reproducibility.

Dataset submission. To faciliate Data-Centric Al, the role of dataset and algorithm can be transposed with Codabench.
In a “classic” benchmark, organizers provide dataset(s) and participants submit algorithms. In a transposed benchmark,
participants submit datasets and organizers provide reference algorithms. A “classic” benchmark will have a leaderboard
with datasets in columns, growing by adding more lines are algorithm submissions are made. In a transposed dataset
submission benchmark, the leaderboard will have algorithms in columns and lines are added as more datasets are
submitted. Codabench does not support yet benchmarks in which both dimensions of the leaderboard are grown (i.e.
participants can supply either algorithms or datasets).

3.1.2 Easy-to-use

A benchmark can be created either with platform editor or by uploading a locally prepared benchmark bundle. Once
created, a benchmark can further be modified using the platform editor. An existing benchmark can be saved as another
bundle, which facilitates the sharing and portability. Similar benchmark bundles can be easily prepared with shared
template bundles. Codabench is open-source and free to use.

APIs to external clients. We provide |APIs| for interacting with the platform, including “robot” submissions via
command lines, without going through the regular Codabench web interface, and likewise a programmatic way of
recuperating results directly without going through the leaderboard.

Dedicated computing queues. The public instance of Codabench provides default compute workers. Organizers can
also create a dedicated job queue and connect 1t to their own CPU or GPU compute workers.

https://github.com/codalab/codabench/wiki/Robot-submissions
https://codabench.org/

Codabench SUBMISSION TO PATTERNS

3.1.3 Reproducibility

Codabench makes extensive use of Dockers. Benchmark organizers specify the Docker image by providing its Docker
Hub name and tag. It is with Docker that Codabench provides full reproducibility to everyone.

3.1.4 Other features

Custom leaderboard. To better facilitate benchmarks, the leaderboard is fully customizable and can handle multiple
datasets and multiple custom scoring functions. We provide multiple ways to display submissions (best per participant,
multiple submissions per participant, etc) and the leaderboard can flexibly ranking submissions by average score, per
task, per sub-metric of a certain task, etc.)

Documentation. The documentation is organized according to stakeholders categories organizers, administrators,
and contributors directly on the first page of the documentationﬂ As an organizer, you are accompanied with several
benchmark templates, from simple to elaborate, to ease the technical aspects of building a benchmark, and to let you
concentrate on scientific aspects of the benchmark. As an administrator of your own instance of Codabench, each piece
of the infrastructure is configurable and offered as a docker component. You can deploy your instance in a very flexible
way concerning the sizing of your project thanks to deployment guide hints. As an contributor, you can discuss with
the main developers via the GitHub issues and suggest pull requests to solve some of the issues you have encountered.

3.2 Use cases of Codabench

Codabench has been used not only internally at 4Paradigm and LISN Lab for tasks of AutoML, Graph Machine
Learning, Reinforcement Learning, Speech Recognition and Weakly Supervised Learning, but also externally by
University Grenoble Alphes for hosting scientific benchmark in cancer heterogeneity and training clinicians. Codabench
has received more than 130 users and 2500 submissions distributing on various applications. In this section, we
introduce 4 use cases of Codabench, aiming at demonstrating different Codabench features and capabilities. A visual
illustration is given in Figure 2]

3.2.1 Use case 1: AutoGraph benchmark

In this section, we introduce Automated Graph Representation Learning (AutoGraph) benchmark, which targets at
automated node classification methods on diverse dataset scenarios. With this use case, we show a set of fundamental
features of Codabench: (1) the code submission mode (2) reproducibility guaranteed by docker (3) flexible
benchmark bundle configuration with multiple tasks, and (4) customizable computational resources. More
technical details can be found in Appendix.

Background. The AutoGraph benchmark inherits from the Automated Graph Representation Learning (AutoGraph)
Challenge at KDD Cup 2020. Graph representation learning has been a very hot topic due to ubiquity of graph-
structured data, e.g. social network [Hamilton et al.,|2017]], knowledge graph [Bordes et al.,2013|], etc. The task of our
focus here is node classification under the transductive setting.

Implementation. The AutoGraph benchmark is a typical code submission use case. It focuses on AutoML methods
which requires more than one dataset to be evaluated together. Codabench bundle is by design flexible with multiple
tasks each of which contains seperate dataset. We also provide a docker hosted on DockerHub, which will be pulled
automatically by Codabench platform to run each algorithm submission and could also be used for researchers’ local
development. Every time a new method is uploaded, a new docker container instance will be called to independently run
for each dataset. This way we make sure every algorithm is fairly run under the same setting and the whole process can
be fully reproduced on other machines. Codabench is designed to adapt to any Docker-enabled computational resource
(local machine, cluster server, cloud machines, etc.). We currently host the AutoGraph benchmark on Codabench with
free computational resources thanks to Google’s sponsorship, encouraging everyone to contributeﬂ Besides, the
datasets are also available to the public for local usage and further benchmarking on |Github|and Kaggle. To bootstrap
the benchmark submissions, we uploaded the solutions of the winners of the challenge. Since the benchmark datasets
are released already, users can also run complementary experiments on their local computers and debug mode easily,
thus more rapidly making progress. The main incentives to submit to the platform are free hardware and the possibility
of showcase results in a common data table.

*https://github.com/codalab/codabench/wiki
*The public AutoGraph benchmark link will be provided later

https://github.com/codalab/codabench/wiki
https://www.automl.ai/competitions/3#results
https://github.com/NehzUx/AutoGraph-Benchmark
https://www.kaggle.com/nehzux/autograph-benchmark
https://github.com/codalab/codabench/wiki

Codabench SUBMISSION TO PATTERNS

Ingestion
Bundle A Bundle B

Input Data Code | Code
(2) O Submission Task A Task B

lngestion | Ingestion
Prediction code (Python, R, ...) Co code (Python, R, ...)

Pancreatic Cell Reol Immune Cell
Transcriptomic data]___epaj_ Transcriptomic data

Scormg Scoring Scoring
Reference Data Code code (Python, R, ...) Col code (Python, R, ...)
Pancreatic Cell Repi Immune Cell
= Transcriptomic data eplace Transcriptomic data
Classification
Accurac l config.yaml Copy config.yaml
]
(a) Use case 1: AutoGraph (b) Use case 2: DECONbench
— Enviroment / World
Data ¢
code B -
API for submission % 0 V4
! 1 = =
Customized A
Bundle A (normal) Bundle B (transposed) Dashboard Q 1] Update
Task A Task B Scheduling
‘ Ingestion ‘ ‘ Ingestion ‘ D D A% Stochastic
API for events
protocol
‘ Scoring ‘ ‘ Scoring ‘ -
Makespan Actions
‘ Meta Info ‘ ‘ Meta Info ‘ A _
Clinician Agent / Policy
l config_A.yaml| | l config_B.yaml | & @
I [__API for fetching
| 1 L
l Result | l Result I
(c) Use case 3: COMETH (d) Use case 4: AutoRL

Figure 2: Use case illustrations.

3.2.2 Use case 2: DECONbench benchmark

In this section, we introduce DECONbench[Decamps et al., 2020] for benchmarking deconvolution methods inferring
the tumor micro-environment composition. We show two features of Codabench: (1) flexibility of benchmark
bundle (in this use case, another task and programming language R supported) (2) reusability and portability of
benchmark bundles.

Background. Successful treatment of cancer is still a challenge and this is partly due to a wide heterogeneity of cancer
composition across patient population. Unfortunately, accounting for such heterogeneity is very difficult and often
requires the expertise of anatomical pathologists and radiologists. Therefore, it is pertinent to address this question
using computational methods that take advantage of the recent massive generation of high throughput molecular data
(called omic data, such as epigenomic or transcriptomic data). DECONbench is a series of benchmarks dedicated to
the quantification of intra-tumor heterogeneity on cancer omics data, focusing on estimating cell types and proportion
in biological samples using epigenomic and transcriptomic datasets (unimodal and/or multimodal). Participants have
to identify an estimation of the cell-types proportion matrix underlying the tumor micro-environment composition.
The discriminating metric is mean absolute error (MAE) between prediction and ground truth matrix. Note that
DECONbench series is optimized to run methods developed in the statistical programming language R.

Implementation. Using the Codabench platform, the COMETH consortium firstly developed a benchmark for
continuous evaluation of computational methods based on epigenomic datzﬂ Since we are at the same time interested
in other modalities of data under similar task, it would be ideal to reuse previously created bundles instead of going
through everything again. Thanks to the portability of Codabench bundle design, we only need to replace the data files
and adjust slightly the protocol code. All other configuration files can be reused. As a result, this first benchmark was

https://www.codabench.org/competitions/174

https://www.codabench.org/competitions/174

Codabench SUBMISSION TO PATTERNS

easily cloned and extended to similar benchmarks using other types of data, e.g. all-cell-type transcriptomic dataﬂ
immune-cell-types transcriptomic dateﬂ all-cell-types multimodal transcriptomic and epigenomic dat

3.2.3 Use case 3: COMETH benchmark

In this section, we introduce the COMETH benchmark, motivated by real clinical application and it is an exciting
step towards Data-Centric Al ﬂ With this use case, we show that (1) Codabench supports a transposed benchmark
consolidating Data-Centric AI (2) the provided API interaction opens a window for other customization scenarios.

Background. When it comes to clinical application, it is often necessary for health data scientists and clinicians to
identify the most suitable existing method to be applied on a given dataset. In this case, we focus more on the data used
for training and inference instead of algorithmic development, which aligns with Data-Centric Al

Implementation. To solve this question, the COMETH consortium developed the COMETH benchmark a transposed
challenge in which datasets should be submitted to be evaluated against existing different reference deconvolution
methods (ie “tasks” in the Codabench design) and people can retrieve the corresponding outputs, in a fully reproducible
environment. To facilitate the use of this functionality by clinicians who are less familar with data science programming
details, COMETH benchmark has been connected to an external client displaying a user-friendly web dashboard. This
external client is able to send requests to users directly on the COMETH benchmark using APIs provided by Codabench
and return the generated results from all reference algorithms. This feature strongly contributes to a direct transfer of
knowledge between data scientists and healthcare professionals. This design was used at a winter school for training
clinicians and data scientists

3.2.4 Use case 4: AutoRL benchmark

We lastly introduce another use case: AutoRL benchmark focusing on reinforcement learning and operational research.
With this use case, we show that Codabench is RL-friendly with the help of flexible design of benchmark bundles.

Background. We consider the problem of Dynamic Job-Shop Scheduling. The task is to allocate a set of jobs to a
set of machines with stochastic events. Each job has a pre-determined operation sequence to be executed on certain
machines. To mimic real life scenarios, we add aleatoric machine down events to the problem. We thus expect an agent
policy making decisions on how to schedule better the jobs in minimal time. The reward depends on the makespan.

Implementation. This task can be well formulated into a reinforcement learning framework. As explained in Sec 2, our
design of bundle and ingestion/scoring program makes it very natural and flexible for RL problems. We could either
follow Figure[I]and use scoring as environment and ingestion as agent, or it is also possible to wrap everything into the
ingestion module.

4 Discussion and Conclusion

Codabench is a new open-source platform for data science benchmarks. Codabench is compatible with diverse tasks
(including supervised learning and reinforcement learning) and and supports result, code, and dataset submission. It
is easy to use Codabench and reproducibility is guaranteed by Dockers. Codabench has a public instance free for
use, deployed at Université Paris-Saclay, but can also be deployed locally, with the technology stack provided in
documentation. Hosting, maintaining, and further developing the platform is funded by grants and donations. As real
scenarios, we introduce 4 benchmark use cases illustrating the flexibility, easiness in use, reproducibility and other
features of Codabench. We note also that tremendous other tasks could be integrated into Codabench as well including
EEQG classification, drug discovery and property prediction, dynamic simulation for weather, traffic, fluid, etc., which
are important tasks towards Al for Science.

The current limitations of Codabench are mainly as follows. First, since it is relatively new, we do not have yet an
active community of organizers and benchmark participants. Second, although supported by design, we have not had
yet a distributed computation scenario, where complex multi-node compute workers are used. This could enrich our
benchmark template library with benchmarks for algorithm parallelization. Thirdly, although Codabench supports both
code submission and dataset submission, we do not currently allow users to extend the leaderboard in both directions

https://www.codabench.org/competitions/147
"https://www.codabench.org/competitions/148
$https://www.codabench.org/competitions/237
http://datacentricai.org/
Uhttps://www.codabench.org/competitions/218
"https://cancer-heterogeneity.github.io/cometh.html

https://www.codabench.org/competitions/147
https://www.codabench.org/competitions/148
https://www.codabench.org/competitions/237
http://datacentricai.org/
https://www.codabench.org/competitions/218
https://cancer-heterogeneity.github.io/cometh.html

Codabench SUBMISSION TO PATTERNS

simultaneously, i.e. submit either code or datasets. This feature could largely increase the user experience of the
platform. Lastly, Codabench doesn’t support yet hardware related benchmarks or human-in-the-loop benchmarks which
could be interesting to consider in the future.

Potentially harmful uses of Codabench could result from poor benchmark designs (e.g. no scientific question is asked
by hosting a benchmark), or bad data collections (e.g. data license, data quality), as in any machine learning project.
We are working on an open-access book (to appear in 2022) on best practices for designing challenges and benchmarks
including data preparation, task evaluation, benchmark analyse paper, etc.

Further work includes providing more comprehensive usage templates illustrating features such as: (1) splitting an
algorithm workflow into sub-modules and scoring the effectiveness of the modules individually (e.g., with ablation or
sensitivity analysis); (2) providing templates of fact sheets to extract information about algorithms (similar to datasheets
for datasets, but for algorithms); and (3) providing guidelines to benchmark participants to produce enriched detailed
results, amenable to meta-analyses.

Acknowledgments

The Codabench project shares the same community governance|as CodaLab Competitions. The openness of Codabench
is total: the Apache 2.0 licence|is used, the |source code 1s on GitHub; the development framework and all the used
components are open-source. Codabench has received important contributions from many people who did not co-author
this paper, and we would like to thank their efforts in making Codabench what it is today, including early CodaLab
Competitions developers and contributors (alphabetically): Pujun Bhatnagar, Justin Carden, Richard Caruana, Francis
Cleary, Xiawei Guo, Ivan Judson, Lori Ada Kilty, Shaunak Kishore, Stephen Koo, Percy Liang, Zhengying Liu, Pragnya
Maduskar, Simon Mercer, Arthur Pesah, Christophe Poulain, Lukasz Romaszko, Laurent Senta, Lisheng Sun, Sebastien
Treguer Cedric Vachaudez, Evelyne Viegas, Paul Viola, Erick Watson, Tony Yang, Flavio Zhingri, Michael Zyskowski.
We would like thank particularly the people who contributed to the design, development, and testing of Codabench
including (alphabetically): Alexis Arnaud, Xavier Bar6, Feng Bin, Yuna Blum, Eric Carmichael, Laurent Darré. Hugo
Jair Escalante, Sergio Escalera, Eric Frichot, Yuxuan He, James Keith, Anne-Catherine Letournel, Shouxiang Liu,
Zhenwu Liu, Adrien Pavao, Magali Richard, Tyler Thomas, Nic Threfts, Bailey Trefts, Catherine Wallez, Lanning
Wei. Université Paris-Saclay is hosting the main instance of Codabench. Funding and support have been received
by several research grants, including Big Data Chair of Excellence FDS Paris-Saclay, Paris Région Ile-de-France,
EU EIT projects HADACA and COMETH, United Health Foundation INCITE project, and ANR Chair of Artificial
Intelligence HUMANIA ANR-19-CHIA-0022, 4Paradigm, Chalearn, Microsoft, Google. We also appreciate the
following people and institutes for open sourcing datasets which are used in our use cases: Andrew McCallum, C.
Lee Giles, Ken Lang, Tom Mitchell, William L. Hamilton, Maximilian Mumme, Oleksandr Shchur, David D. Lewis,
William Hersh, Just Research and Carnegie Mellon University, NEC Research Institute, Carnegie Mellon University,
Stanford University, Technical University of Munich, AT&T Labs, Oregon Health Sciences University. This work has
been partially supported by the Spanish project PID2019-105093GB-100 and by ICREA under the ICREA Academia
programme. We are also very grateful to Joaquin Vanschoren for fruitful discussions.

References

Google. Kaggle, 2010. URL https://wuw.kaggle.com/|
Alibaba. Tianchi, 2015. URL https://tianchi.aliyun.com/.
Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL http://archive.ics.uci.edu/ml.

Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, and Luis Torgo. Openml: Networked science in machine learning.
SIGKDD Explorations, 15(2):49-60, 2013. doiz10.1145/2641190.2641198. URL http://doi.acm.org/10.1145/
2641190.2641198.

Meta. Paperswithcode, 2017. URL https://paperswithcode. com/.

Coleman Cody A., Narayanan Deepak, Kang Daniel, Zhao Tian, Zhang Jian, Nardi Luigi, Bailis Peter, Olukotun Kunle,
Re Chris, and Zaharia Matei. Dawnbench: An end-to-end deep learning benchmark and competition. NIPS ML
Systems Workshop, 2017.

Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous driving? the kitti vision benchmark
suite. In Conference on Computer Vision and Pattern Recognition (CVPR), 2012.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research, 12:2825-2830, 2011.

https://github.com/codalab/codalab-competitions/blob/master/docs/Community-Governance.md
https://github.com/codalab/codabench/blob/develop/LICENSE
https://github.com/codalab/codabench
https://www.kaggle.com/
https://tianchi.aliyun.com/
http://archive.ics.uci.edu/ml
https://doi.org/10.1145/2641190.2641198
http://doi.acm.org/10.1145/2641190.2641198
http://doi.acm.org/10.1145/2641190.2641198
https://paperswithcode.com/

Codabench SUBMISSION TO PATTERNS

William L. Hamilton, Rex Ying, and Jure Leskovec. Representation learning on graphs: Methods and applications.
IEEE Data Eng. Bull., 2017.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Durdn, Jason Weston, and Oksana Yakhnenko. Translating embed-
dings for modeling multi-relational data. In Advances in Neural Information Processing Systems, 2013.

Clémentine Decamps, Alexis Arnaud, Florent Petitprez, Mira Ayadi, Aurélia Baures, Lucile Armenoult, HADACA
consortium, Rémy Nicolle, Richard Tomasini, Aurélien de Reynies, Jérome Cros, Yuna Blum, and Magali Richard.
Deconbench: a benchmarking platform dedicated to deconvolution methods for tumor heterogeneity quantification.
bioRxiv, 2020.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition
Challenge. International Journal of Computer Vision (IJCV), 115(3):211-252, 2015. doi:10.1007/s11263-015-0816+
yh

Robert M. Bell and Yehuda Koren. Lessons from the netflix prize challenge. SIGKDD Explor., 2007.

10

https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y

Codabench SUBMISSION TO PATTERNS

Appendix A ChaSuite family and comparison between competition/benchmark

Codabench is the last born of a suite of tools from the open-source “ChaSuite” project (Figure[3), which all have public
instances available for free use of charge. “ChaSuite” provides a comprehensive suite of tools for competition and
benchmark organizers. Codabench is inspired by CodaLab Competitions, an open-source platform for running data
science competitions, which has been used in hundreds of challenges associated to physics, machine learning, computer
vision, natural language processing, health and life sciences, among many other fields. Data science competitions
have played an important role for solving machine learning problems both in theory and application (e.g. ImageNet
challenge [Russakovsky et al.,|2015], the Netflix Prize [Bell and Koren, 2007]], etc). Benchmarks can be viewed as
a never-ending competition enabling continuous evaluation of methods under the same settings (see Table 2] in the
Appendix for a comparison between benchmark and competitions).

Compared with CodaLab Competitions, Codabench has made significant improvements to better address the organization
of benchmarks. The full code has been completely rewritten and the code base is much cleaner and maintainable. We
introduce a new “task’” concept (as mentioned in Sec 2 and Sec 3) for flexibility and portability purposes. We now
support data submission in addition to results and code submission, which makes Codabench an important platform for
Data Centric Al, which is a new trending paradigm focusing more on the underlying data used to train and evaluate
models. We also provide low level APIs to facilitate third party’s customization. A new fact sheet system has been
added to allow submit more information in an integrated way and the leaderboard now supports multiple modes of
display and advanced ranking.

Backward compatibility with Codalab. While Codabench’s novelty is the possibility of creating benchmarks,
it is fully compatible with CodaLab Competitions. Competition bundles in the old format e.g. dumped from
the Codalab public instance|can be re-uploaded to Codabench. Competition features such as having multiple-phases
(not usually relevance for benchmarks) are supported for compatibility reasons in Codabench. Multi-phase challenges
help organizers keep participants engaged over long periods of time.

Table 2: Comparisons of competition and benchmark.

| Competition | Benchmark
Purpose Crowdsourcing problems in a short time | Continuous fair evaluation, over a long time
and harvesting solutions period, in a unified framework
Phases | Multiple phases | Single phase
Time period | Usually limited | Often never ending

Cooperation & in- | Limited due to the competitive nature As extensive as possible
formation sharing

Submissions Usually algorithm predictions or algo- | Algorithm code or datasets; code or dataset
rithm code name, description, documentation meta-
data and/or fact-sheets; scoring programs
for custom analyses

Outcome Leaderboard with usually a single | Table with all the submissions made; sort-
global ranking based on one score from | ing with multiple scores possible; multiple
each team (last or best) analyses, graphs, figures, code sharing

Appendix B Codabench usage: getting started

Using Codabench as a participant is straightforward. First, create an account and login on|Codabench. Then choose
an existing benchmark to join following the instructions provided by the organizers. To organize a benchmark, a
user can either use the Codabench editor or upload a benchmark bundle which is a zip file containing code, dataset,
and configuration file. Detailed instructions are found on |Codabench Documentation. For advanced users who wish
to deploy a private instance of Codabench please refer to Codabench deployment instructions in the same wiki. To
illustrate better the benchmark bundle, we provide a simplified bundle example in the next section, which contains
ingestion program, scoring program, data, text descriptions and a configuration YAML file.

11

http://competitions.codalab.org
https://www.codabench.org/
https://github.com/codalab/codabench/wiki

Codabench SUBMISSION TO PATTERNS

CHASUITE ADMINS ORGANIZER ADMINS PLATFORM ADMINS

BACKEND FRONTEND

—

CHAREPO / DerAuLT

{ compu
\ W

BENCHMARK ORGANIZER _
COMPUTE-WORKER K BROKSY DATABASE

BENCHMARKS
L

BENCHMARKS

CODALAB,
RAMP, KAGGLE,
GRAND-CHALLENGE.ORG

AND OTHER PLATFORMS
CHALADMIN

PARTICIPANT

Figure 3: ChaSuite architecture. Codabench is part of the CodaLab Competitions project, including a suite of tools to
organize challenges and benchmarks called the*“ChaSuite". Right: The kernel of Codabench is interfaced with a web
browsers, a database, and a backend dispatching jobs to compute-workers, configured and administered by organizers.
Left: The ChaSuite includes an index of competitions and benchmarks (ChaHub) with a search engine (Chagle), a
wizard to design challenges (ChaLab), a data repository (ChaRepo), a tool to administer classes (ChaGrade).

Appendix C Sample bundle file for Codabench

In this section, we provide a concrete bundle example to show how simple it is to organize benchmarks on Codabench.
A bundle consists of five parts as in Figure [} (1) a YAML configuration file (2) ingestion program (3) scoring program
(4) data (5) text files for additional description.

N ¢ help.html
= © overview.html
= ~ logo.png

competition.yaml

r'3

!
title: ... I ingestion_program.zip
pages: ... ! input_data_a.zip
phases: ... I input_data_b.zip
tasks: ... I reference_data_a.zip
i
i

leaderboards: ... reference_data_b.zip
scoring_program.zip

Figure 4: Bundle structure. The details of competitions.yaml is given below.

The ingestion program usually reads data and participant’s submission. It calls participant’s method on the dataset and
produces predictions to a shared space. The scoring program usually reads ingestion program’s output and evaluate

12

Codabench SUBMISSION TO PATTERNS

w.r.t ground truth according to organizer customized metric. It finally writes scores to a text file which will be read by
platform and be displayed on leaderboard. The data contain input data (in supervised learning, they are usually X_train,
y_train, and X_test) and reference data (in supervised learning, it is usually y_test). Both are zipped into separate files.
The text files are just html or markdown files for organizers to provide other information e.g. instructions, references,
etc. A final YAML file connects all previous parts and provides more configurations for the benchmark. A simplified
YAML file is as follows. It contains general configurations like title, logo image, docker image, and which htmls to be
displayed, leaderboard configuration (e.g. which metrics will be used in the leaderboard) and tasks. Each task is by
itself a complete unit for running. It contains name, id, ingestion program, scoring program, input data, reference data.

13

=T L - T T S T e

Codabench SUBMISSION TO PATTERNS

Sample YAML file based on AutoGraph benchmark

title: 'AutoGraph Benchmark'

description: 'Automated Graph Representation Learning Challenge'
docker_image: nehzux/kddcup2020:v2 # Docker Hub ID

pages: # These are "free style" documentation pages
- title: help # You can have any title and file name
file: 'help.html' # You may use HTML or Markdown (.md files)
- title: overview # These pages will show up in the benchmark site
file: 'overview.html'
phases: # Benchmarks usually have s single phase
(competitions may have several)
- index: O # Phase order number

name: 'AutoGraph'
start: 2021-01-01
end: 2022-12-31

tasks: # Tasks included in this phase
-0 # Reference number in task list below,
-1 # or absolute reference in Codabench database

max_submissions: 1000
max_submissions_per_day: 100
execution_time_limit_ms: 60000

tasks: # Tasks for the above defined phase
- index: O
name: 'Task a' # For public display on leaderboad
description: 'Dataset a' # Private comments

Ingestion module:
ingestion_program: ingestion_program.zip
input_data: input_data_a.zip
Scoring module
scoring_program: scoring_program.zip
reference_data: reference_data_a.zip
whether the ingestion program is run first, then the
scoring program, or the are run in parallel
ingestion_only_during_scoring: True

- index: 1
name: 'Task b'
description: 'Dataset b'
Ingestion module:
ingestion_program: ingestion_program.zip
input_data: input_data_b.zip
Scoring module
reference_data: reference_data_b.zip
scoring_program: scoring_program.zip
ingestion_only_during_scoring: True

leaderboards: # Leader board form
- title: Results # single leaderboard supported in this wversion

key: main # main key, leave untouched

columns:

- title: 'Acc' # Name of the column displayed
key: acc # Data key mame used by scoring program
index: 0O # Order of columns
sorting: desc # Sort in descending order

- title: 'BalAcc'
key: bacc
index: 1
sorting: desc

14

	Introduction
	Method: Design of Codabench
	Results
	Key features of Codabench
	Flexibility
	Easy-to-use
	Reproducibility
	Other features

	Use cases of Codabench
	Use case 1: AutoGraph benchmark
	Use case 2: DECONbench benchmark
	Use case 3: COMETH benchmark
	Use case 4: AutoRL benchmark

	Discussion and Conclusion
	ChaSuite family and comparison between competition/benchmark
	Codabench usage: getting started
	Sample bundle file for Codabench

