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Abstract

Obtaining standardized crowdsourced benchmark of computational methods is a
major issue in scientific communities. Dedicated frameworks enabling fair con-
tinuous benchmarking in a unified environment are yet to be developed. Here we
introduce Codabench, an open-sourced, community-driven platform for bench-
marking algorithms or software agents versus datasets or tasks. A public instance
of Codabench is open to everyone, free of charge, and allows benchmark organizers
to compare fairly submissions, under the same setting (software, hardware, data,
algorithms), with custom protocols and data formats. Codabench has unique fea-
tures facilitating the organization of benchmarks flexibly, easily and reproducibly.
Firstly, it supports code submission and data submission for testing on dedicated
compute workers, which can be supplied by the benchmark organizers. This makes
the system scalable, at low cost for the platform providers. Secondly, Codabench
benchmarks are created from self-contained “bundles”, which are zip files con-
taining a full description of the benchmark in a configuration file (following a
well-defined schema), documentation pages, data, ingestion and scoring programs,
making benchmarks reusable and portable. The Codabench documentation in-
cludes many examples of bundles that can serve as templates. Thirdly, Codabench
uses dockers for each task’s running environment to make results reproducible.
Codabench has been used internally and externally with more than 10 applica-
tions during the past 6 months. As illustrative use cases, we introduce 4 diverse
benchmarks covering Graph Machine Learning, Cancer Heterogeneity, Clinical
Diagnosis and Reinforcement Learning.

1 Introduction

The methodology of unbiased algorithm evaluation is crucial for machine learning, and has recently
received renewed attention in all data science scientific communities. Often, researchers have
difficulties understanding which dataset to choose for fair evaluation, with which metrics, under
which software/hardware configurations, and on which platform. The concept of benchmark itself
is not well standardized and includes many different settings. For instance, the following may be
referred to as a benchmark: a set of datasets; a set of artificial tasks; a set of algorithms; one or several
dataset(s) coupled with reference baseline algorithms; a package for fast prototyping algorithms
for a specific task; a hub for compilation of related algorithm implementations. In addition, many
algorithm benchmarks do not offer the easiness to further integrate new methodological developments.
A platform for benchmarking tasks in a flexible and reproducible way is thus much needed for
everyone to use.

Preprint. Under review.



Table 1: Comparison of various reproducible science platforms.P means that this feature is not or
minimally supported. PP means that some efforts have been put to support this feature. PPP
means that this feature is well supported. “Reproducibility” means whether we can easily reproduce
the reported performance. “Portability” means whether a certain benchmark design makes creating
another one easier. “Data-Centric” means whether the platform has a focus on data, e.g. hosting
datasets, submiting datasets instead of methods. “API access” means whether we could interact with
the platform through command line and eventually develop customized applications. “RL-friendly”
means whether the platform supports this important task by design. “Computation resource” means
whether machine resources are provided or easily managed. “Open Source” means whether we could
deploy our own version of the platform through public materials. “Free usage” means whether we are
free to organize benchmarks or submit solutions.

Reprodu-
cibility

Portability Data-
Centric

API
access

RL-
friendly

Computation
resource

Open
Source

Free
usage

Kaggle PP PP PP PP PPP PPP P PP
Tianchi PP PP PP P PPP PP P PP
UCI P P PP P P P PPP PPP
OpenML PP PP PP PP PP P PPP PPP
PapersWithCode P PP P P PP P P PPP
DAWNBench P P P P P P P PPP
CodaLab PPP PPP P P PP PP PPP PPP

Codabench PPP PPP PPP PPP PPP PP PPP PPP

Typical examples of existing frameworks addressing such need are inventoried in Table 1. Firstly,
they include competition platforms, such as Kaggle and Tianchi organizing many data science
challenges attracting a large number of participants. They provide elaborate ways of hosting third
party competitions and offer services for a fee for commercial competitions. The platform providers
retain some control: the organizers do not have full flexibility and control over their competitions.
Secondly, data repositories such as UCI repository[5] also play an important role for benchmarks
and research. But they do not host methods, or results. In contrast, OpenML[22] is an example of
open-sourced and free hub of datasets also making available machine learning results. However,
reproducibility by running code in given containers (or similar ways) is not guaranteed. Similarly,
PapersWithCode collects many tasks and state of the art results from papers. But the platform
doesn’t guarantee the reproducibility of these performances. Besides the above mentioned platforms,
many domain specific benchmarks exist, e.g. DAWNBench [3], KITTI Benchmark Suite[7]. These
benchmarks usually focus on a couple of closely related tasks but are not designed to host general
benchmarks. In addition, they require repetitive efforts to develop and maintain, which is not
always affordable by data science teams. We thus need a platform DEMOCRATIZED FOR
EVERYONE that supports diverse benchmark types, facilitates benchmark organization, and
guarantees reproducibility.

To answer these unmet needs for benchmark platforms, we developed Codabench to allow users to
flexibly and easily create benchmarks with well-defined custom evaluation protocols and custom
data formats, and execution in a controlled reproducible environment, which is totally free and
open sourced. Codabench is an important step towards reproducible research and should meet the
interest of all areas of data sciences.

Codabench is the last born of a suite of tools from the open-source“ChaSuite” (Figure 1), which all
have public instances available for use free of charge. “ChaSuite” provides a comprehensive suite of
tools for competition and benchmark organizers. Codabench is inspired by CodaLab Competitions,
an open source platform for running data science competitions, which has been used in hundreds of
challenges associated to physics, machine learning, computer vision, natural language processing,
health and life sciences, among many other fields. Data science competitions have played an important
role for solving machine learning problems both in theory and application (e.g. ImageNet challenge
[20], the Netflix Prize [1], the 1714 Longitude Prize [19], etc). Benchmarks can be view as a never-
ending competition enabling continuous evaluation of methods under the same settings (see Table 2
for a comparison between benchmark and competitions).

Compared with CodaLab Competitions, Codabench has made significant improvements to better
address the organization of benchmarks. The full code has been completely rewritten and the code
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Figure 1: ChaSuite architecture. Codabench is part of the CodaLab Competitions project, including
a suite of tools to organize challenges and benchmarks called the“ChaSuite". Right: The kernel
of Codabench is interfaced with a web browsers, a database, and a backend dispatching jobs to
compute-workers, configured and administered by organizers. Left: The ChaSuite includes an
index of competitions and benchmarks (ChaHub) with a search engine (Chagle), a wizard to design
challenges (ChaLab), a data repository (ChaRepo), a tool to administer classes (ChaGrade).

base is much cleaner and maintainable. We introduce a new “task” concept (as mentioned in Sec 2
and Sec 3) for flexibility and portability purposes. We now support data submission in addition to
results and code submission, which makes Codabench an important platform for Data Centric AI1,
which is a new trending paradigm focusing more on the underlying data used to train and evaluate
models. We also provide low level APIs to facilitate third party’s customization. A new fact sheet
system has been added to allow submit more information in an integrated way and the leaderboard
now supports multiple modes of display and advanced ranking.

The remaining of this paper is organized as follows. In Sec 2, we introduce the Codabench platform
design and explain the interaction between different modules. In Sec 3, we highlight important
features of Codabench. In Sec 4, for illustrative purposes, we provide 4 use cases of benchmarks,
each focusing on different key features of Codabench: Case 1 AutoGraph benchmark showing
fundamental features on code submission, reproducibility, flexible benchmark design and freely
available computational resources on Codabench; Case 2 DECONbench benchmark series showing
features on portability and flexibility of benchmark bundles; Case 3 COMETH benchmark showing
features on transposed benchmark and the provided APIs access; Case 4 AutoRL benchmark showing
feature on easy customization for reinforcement learning task. All these use cases cover diverse
tasks and application scenarios: node classification of graph-structured data, cancer heterogeneity
inference, educational clinical tool and operational research of environment-agent interaction.

2 Design of Codabench

Codabench is task-oriented (see Figure 2 for detailed internal interaction logistics). A task (supplied
by benchmark organizers) consists of an “ingestion module” (usually coupled with some “input data”)
and a “scoring module” (usually coupled with some “reference data”, invisible to the participant’s

1http://datacentricai.org/
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Figure 2: Operational Codabench workflow. Left side: Task module specified by the organizer,
executed on the platform. Right: Web interface with participants permitting to make submissions and
retrieve results. Orange shaded blocks are provided by organizers. They include (1) a scoring module;
(2) and ingestion modules; (3) public information. White bottom right block: participant prepares a
submission "z" uploaded to the platform. The submission is then executed by the ingestion program.
The role of the scoring program is to produce scores that are then displayed on the leaderboard.

submission). Tasks may be programmed in any programming language and interfaced with data in
any custom way, which are run in a docker specified by organizers.

A hallmark of Codabench is the notion of benchmark bundle, which are zip files containing the entire
specification of the benchmark (including task data and code, documentation pages, and configuration
parameters). Each benchmark bundle can include one or multiple tasks, thus covering both classic
benchmarks (one dataset plus multiple algorithm submissions) as well as benchmarks on AutoML,
Transfer Learning, Meta Learning (multiple datasets or multiple methods are needed). Such bundles
also make it easy to export, import, archive benchmarks, and create benchmarks templates for sharing
and dissemination.

Codabench is a free public platform with small computing resources accessible for basic usage. It
also enables flexible and extensible computational resources supplied by the benchmark organizers:
indeed, jobs submitted by a participant to a benchmark can be directed to compute-workers supplied
by the organizers.

Take supervised learning tasks as an example. A typical usage is that benchmark participants submit a
class (e.g., a Python object) “z”, with 2 methods: z.fit and z.predict, similarly to scikit-learn [18]
objects. The ingestion program reads data, calls z.fit with labeled training data and z.predict
with unlabeled test data (labeled training data and unlabeled test data being part of the so-called
“input data”), then outputs predictions. The scoring program reads the predictions and evaluates them
based on custom scoring metric(s), using the test labels (called “reference data”). Other application
usages are possible, including: transposed benchmarks (datasets are submitted by participants instead
of algorithms; the organizers supply a set of algorithms), and reinforcement-learning benchmarks
(the ingestion program plays the role of an agent wrapping around the submission of the participant
and interacting with a world (scoring program) in a specific way.
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Table 2: Comparisons of competition and benchmark.
Competition Benchmark

Purpose Crowdsourcing problems in a short time
and harvesting solutions

Continuous fair evaluation, over a long time
period, in a unified framework

Phases Multiple phases Single phase

Time period Usually limited Often never ending

Cooperation & in-
formation sharing

Limited due to the competitive nature As extensive as possible

Submissions Usually algorithm predictions or algo-
rithm code

Algorithm code or datasets; code or dataset
name, description, documentation meta-
data and/or fact-sheets; scoring programs
for custom analyses

Outcome Leaderboard with usually a single
global ranking based on one score from
each team (last or best)

Table with all the submissions made; sort-
ing with multiple scores possible; multiple
analyses, graphs, figures, code sharing

The reader is referred to Codabench official repository2 where the code and complete documentation
are found. In Appendix, we also include instructions and references to get started. To use the public
instance of Codabench please visit the Codabench website. To test and install locally, the instructions
are given in the readme file of the official repository. The Codabench code is released under an
Apache 2.0 License. Under the organization group, there is also CodaLab Competitions, which
is the aforementioned competition platform, and CodaLab Worksheets, which features dynamical
workflows, particularly useful for Natural Language Processing. This paper concerns only Codabench.

3 Key features of Codabench

Codabench is a flexible, easy-to-use and reproducible benchmark platform that is open sourced and
freely provided for everyone. In this section, we introduce the key features of Codabench contributing
to the flexibility, easiness and reproducibility respectively. We mention briefly other features at last.

3.1 Flexibility

Task. A new concept of task is introduced in Codabench. A task is composed of an “ingestion
module” (including ingestion program and input data), a “scoring module” (including a scoring
program and reference data), a baseline solution with sample data, and meta-data information, like
name and description. It is the minimal unit for composing a benchmark. Using tasks, the organizers
have the flexibility of implementing any benchmark protocol, with any dataset format and API, or
even using data generating models, allowing them to organize reinforcement learning challenges.

Benchmark bundle. A benchmark bundle is a zip file containing all necessary constituents of
a benchmark: tasks, documentation, and configuration settings (such as leaderboard settings). A
Codabench bundle may include single or multiple tasks. Classical benchmark usually single-taks
while AutoML, Transfer Learning, Meta Learning benchmarks are multi-task.

Results or code submission. “Classic” Codabench benchmarks are either with result or code
submission. On one hand, result submissions are used when organizers wish that participants use
they own computational resources. In supervised learning competitions, participants would supply
e.g., predictions of output values on some test datasets. Other types of results may be supplied, for
instance high resolution images in a hyper-resolution challenge for which inputs are low-resolution
images. On the other hand, if the organizers wish to run all algorithms in a uniform manner on the
platform, Codabench allows the participants to make code submissions. The submitted software is
run in a docker supplied by the organizers, either on the default compute worker, or on compute
workers supplied by the organizers. This code submission design allows organizers to provide suitable
computational resources (e.g., GPUs), and improve reproducibility.

2https://github.com/codalab/competitions-v2/
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Dataset submission. To faciliate Data-Centric AI, the role of dataset and algorithm can be trans-
posed with Codabench. In a “classic” benchmark, organizers provide dataset(s) and participants
submit algorithms. In a transposed benchmark, participants submit datasets and organizers provide
reference algorithms. A “classic” benchmark will have a leaderboard with datasets in columns, grow-
ing by adding more lines are algorithm submissions are made. In a transposed dataset submission
benchmark, the leaderboard will have algorithms in columns and lines are added as more datasets are
submitted. Codabench does not support yet bechmarks in which both dimensions of the leaderboard
are grown (i.e., participants can supply either algorithms or datasets).

Dedicated queues and compute workers to add external computational resources). The
public instance of Codabench provides default compute workers. However, to run computation-
ally demanding benchmarks, organizers can create a dedicated job queue and connect it to they own
CPU or GPU compute workers (physical or virtual machines on any cloud service), which listen to the
queue dispatching jobs and pick them up on a first-come first serve basis. This modular architecture
of Codabench is a key ingredient to grow its usage flexibly, without requiring that the institution
hosting the main instance covers all computational costs. Another interesting aspect of this feature
is that the training and testing of algorithms can be done on confidential data, without any leakage,
by putting the datasets directly inside the compute workers. This should be useful in particular for
medical research, industry benchmarks, and other restricted domains.

3.2 Easy-to-use

Multiple benchmark creation methods. A benchmark can be created either with platform editor
or by uploading a locally prepared benchmark bundle. Once created, a benchmark can further be
modified using the platform editor. An existing benchmark can be saved as another bundle, which
facilitates the sharing and portability. Similar benchmark bundles can be easily prepared with shared
template bundles. There is also an option to download a light version of the bundle, without datasets
and/or programs; the configuration file then points to database endpoints on the platform. This
facilitates sharing and cloning benchmarks without having to re-upload data or code.

APIs to external clients. We provide APIs3 for interacting with the platform, including “robot”
submissions via command lines, without going through the regular Codabench web interface, and
likewise a programmatic way of recuperating results directly without going through the leaderboard.

3.3 Reproducibility

Benchmark environments using Docker image. Codabench makes extensive use of Dockers.
Benchmark organizers specify the Docker image by providing its Docker Hub name and tag. The
ingestion program and the scoring program are run separately in different Docker containers. This
ensures that “reference data” is inaccessible to the participant code (if relevant). All algorithms are
evaluated in the same way, and the benchmark does not get deprecated after some time by inadequate
library updates. It is with Docker that Codabench provides full reproducibility to everyone.

3.4 Other features

Custom leaderboard. To better facilitate benchmarks, the leaderboard is fully customizable and can
handle multiple datasets and multiple custom scoring functions. We provide multiple ways to display
submissions (best per participant, multiple submissions per participant, etc) and the leaderboard can
flexibly ranking submissions by average score, per task, per sub-metric of a certain task, etc.)

Documentation. The documentation is organized according to stakeholders categories organizers,
administrators, and contributors directly on the first page of the documentation 4. As an organizer,
you are accompanied with several benchmark templates, from simple to elaborate, to ease the
technical aspects of building a benchmark, and to let you concentrate on scientific aspects of the
benchmark. As an administrator of your own instance of Codabench, each piece of the infrastructure
is configurable and offered as a docker component. You can deploy your instance in a very flexible
way concerning the sizing of your project thanks to deployment guide hints. As an contributor, you

3https://github.com/codalab/competitions-v2/wiki/Robot-submissions
4https://github.com/codalab/competitions-v2/wiki
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can discuss with the main developers via the GitHub issues and suggest pull requests to solve some
of the issues you have encountered.

Backward compatibility with Codalab. While Codabench’s novelty is the possibility of creating
benchmarks, it is fully compatible with CodaLab Competitions. Competition bundles in the old
format e.g., dumped from the Codalab public instance can be re-uploaded to Codabench. Competition
features such as having multiple-phases (not usually relevance for benchmarks) are supported for
compatibility reasons in Codabench. Multi-phase challenges help organizers keep participants
engaged over long periods of time.

4 Use cases of Codabench

Codabench has been used not only internally at 4Paradigm and LISN Lab for tasks of AutoML,
Graph Machine Learning, Reinforcement Learning, Speech Recognition and Weakly Supervised
Learning, but also externally by University Grenoble Alphes for hosting scientific benchmark in
cancer heterogeneity and training clinicians. A total of more than 10 use cases are developed during
the past 6 months. In this section, we introduce 4 use cases of Codabench, aiming at demonstrating
different Codabench features and capabilities.

4.1 Use case 1: AutoGraph benchmark

In this section, we introduce Automated Graph Representation Learning (AutoGraph) benchmark,
which targets at automated node classification methods on diverse dataset scenarios. With this
use case, we show a set of fundamental features of Codabench: (1) the code submission mode
(2) reproducibility guaranteed by docker (3) flexible benchmark bundle configuration with
multiple tasks, and (4) customizable computational resources. More technical details can be
found in Appendix.

Background. The AutoGraph benchmark inherits from the Automated Graph Representation Learn-
ing (AutoGraph) Challenge at KDD Cup 2020. Graph representation learning has been a very hot
topic due to ubiquity of graph-structured data, e.g. social network [9], knowledge graph [2], etc. The
task of our focus here is node classification under the transductive setting.

Implementation. The AutoGraph benchmark is a typical code submission use case. It focuses on
AutoML methods which requires more than one dataset to be evaluated together. Codabench bundle
is by design flexible with multiple tasks each of which contains seperate dataset. We also provide
a docker hosted on DockerHub, which will be pulled automatically by Codabench platform to run
each algorithm submission and could also be used for researchers’ local development. Every time
a new method is uploaded, a new docker container instance will be called to independently run
for each dataset. This way we make sure every algorithm is fairly run under the same setting and
the whole process can be fully reproduced on other machines. Codabench is designed to adapt to
any Docker-enabled computational resource (local machine, cluster server, cloud machines, etc.).
We currently host the AutoGraph benchmark on Codabench with free computational resources
thanks to Google’s sponsorship, encouraging everyone to contribute5. Besides, the datasets are also
available to the public for local usage and further benchmarking on Github and Kaggle. To bootstrap
the benchmark submissions, we uploaded the solutions of the winners of the challenge. A sample
leaderboard can be found in Figure 3. Since the benchmark datasets are released already, users can
also run complementary experiments on their local computers and debug mode easily, thus more
rapidly making progress. The main incentives to submit to the platform are free hardware and the
possibility of showcase results in a common data table.

4.2 Use case 2: DECONbench benchmark

In this section, we introduce DECONbench[4] for benchmarking deconvolution methods inferring
the tumor micro-environment composition. We show two features of Codabench: (1) flexibility
of benchmark bundle (in this use case, another task and programming language R supported)
(2) reusability and portability of benchmark bundles.

5The public AutoGraph benchmark link will be provided later
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Figure 3: AutoGraph benchmark on Codabench. We show here the leaderboard of AutoGraph
benchmark. For each dataset, we customize here two metrics as in previous section, accuracy and
balanced accuracy. We add extra column for naming the method based on teams to avoid confusion.
This leaderboard is set to allow multiple submissions per user to display. On the website, the bottom
scroll allows investigation of all the datasets.

Background. Successful treatment of cancer is still a challenge and this is partly due to a wide
heterogeneity of cancer composition across patient population. Unfortunately, accounting for such
heterogeneity is very difficult and often requires the expertise of anatomical pathologists and radi-
ologists. Therefore, it is pertinent to address this question using computational methods that take
advantage of the recent massive generation of high throughput molecular data (called omic data,
such as epigenomic or transcriptomic data). DECONbench is a series of benchmarks dedicated to
the quantification of intra-tumor heterogeneity on cancer omics data, focusing on estimating cell
types and proportion in biological samples using epigenomic and transcriptomic datasets (unimodal
and/or multimodal). Participants have to identify an estimation of the cell-types proportion matrix
underlying the tumor micro-environment composition. The discriminating metric is mean absolute
error (MAE) between prediction and ground truth matrix. Note that DECONbench series is optimized
to run methods developed in the statistical programming language R.

Implementation. Using the Codabench platform, the COMETH consortium firstly developed a
benchmark for continuous evaluation of computational methods based on epigenomic data6. Since
we are at the same time interested in other modalities of data under similar task, it would be ideal to
reuse previously created bundles instead of going through everything again. Thanks to the portability
of Codabench bundle design, we only need to replace the data files and adjust slightly the protocol
code. All other configuration files can be reused. As a result, this first benchmark was easily cloned
and extended to similar benchmarks using other types of data, e.g. all-cell-type transcriptomic data7,
immune-cell-types transcriptomic data8, all-cell-types multimodal transcriptomic and epigenomic
data9.

4.3 Use case 3: COMETH benchmark

In this section, we introduce the COMETH benchmark, motivated by real clinical application and it is
an exciting step towards Data-Centric AI. With this use case, we show that (1) Codabench supports a
transposed benchmark consolidating Data-Centric AI (2) the provided API interaction opens
a window for other customization scenarios.

Background. When it comes to clinical application, it is often necessary for health data scientists
and clinicians to identify the most suitable existing method to be applied on a given dataset. In this
case, we focus more on the data used for training and inference instead of algorithmic development,
which aligns with Data-Centric AI.

Implementation. To solve this question, the COMETH consortium developed the COMETH bench-
mark 10, a transposed challenge in which datasets should be submitted to be evaluated against existing

6https://www.codabench.org/competitions/174
7https://www.codabench.org/competitions/147
8https://www.codabench.org/competitions/148
9https://www.codabench.org/competitions/237

10https://www.codabench.org/competitions/218
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different reference deconvolution methods (ie “tasks” in the Codabench design) and people can
retrieve the corresponding outputs, in a fully reproducible environment. To facilitate the use of this
functionality by clinicians who are less familar with data science programming details, COMETH
benchmark has been connected to an external client displaying a user-friendly web dashboard. This
external client is able to send requests to users directly on the COMETH benchmark using APIs
provided by Codabench and return the generated results from all reference algorithms. This fea-
ture strongly contributes to a direct transfer of knowledge between data scientists and healthcare
professionals. This design was used at a winter school for training clinicians and data scientists 11.

4.4 Use case 4: AutoRL benchmark

We lastly introduce another use case: AutoRL benchmark focusing on reinforcement learning and
operational research. With this use case, we show that Codabench is RL-friendly with the help of
flexible design of benchmark bundles.

Background. We consider the problem of Dynamic Job-Shop Scheduling. The task is to allocate
a set of jobs to a set of machines with stochastic events. Each job has a pre-determined operation
sequence to be executed on certain machines. To mimic real life scenarios, we add aleatoric machine
down events to the problem. We thus expect an agent policy making decisions on how to schedule
better the jobs in minimal time. The reward depends on the makespan.

Implementation. This task can be well formulated into a reinforcement learning framework. As
explained in Sec 2, our design of bundle and ingestion/scoring program makes it very natural and
flexible for RL problems. We could either follow Figure 2 and use scoring as environment and
ingestion as agent, or it is also possible to wrap everything into the ingestion module.

5 Discussion and conclusion

Codabench is a new open sourced platform for data science benchmarks. Codabench is compatible
with diverse tasks (including supervised learning and reinforcement learning) and and supports result,
code, and dataset submission. It is easy to use Codabench and reproducibility is guaranteed by
Dockers. Codabench has a public instance free for use, deployed at Université Paris-Saclay, but can
also be deployed locally, with the technology stack provided in documentation. Hosting, maintaining,
and further developing the platform is funded by grants and donations. As real scenarios, we introduce
4 benchmark use cases illustrating the flexibility, easiness in use, reproducibility and other features of
Codabench.

The current limitations of Codabench are mainly as follows. First, since it is really new, there are few
benchmarks and we do not have yet an active community of organizers and benchmark participants.
Second, although supported by design, we have not had yet a distributed computation scenario, where
complex multi-node compute workers are used. This could enrich our benchmark template library
with benchmarks for algorithm parallelization. Thirdly, although Codabench supports both code
submission and dataset submission, we do not currently allow users to extend the leaderboard in both
directions simultaneously, i.e. submit either code or datasets. This feature could largely increase the
user experience of the platform. Lastly, Codabench doesn’t support yet hardware related benchmarks
or human-in-the-loop benchmarks which could be interesting to consider in the further.

Potentially harmful uses of Codabench could result from poor benchmark designs (e.g. no scientific
question is asked by hosting a benchmark), or bad data collections (e.g. data license, data quality),
as in any machine learning project. We are working on an open-access book (to appear in 2022) on
best practices for designing challenges and benchmarks including data preparation, task evaluation,
benchmark analyse paper, etc.

Further work includes providing more comprehensive usage templates illustrating features such as:
(1) splitting an algorithm workflow into sub-modules and scoring the effectiveness of the modules
individually (e.g., with ablation or sensitivity analysis); (2) providing templates of fact sheets to
extract information about algorithms (similar to datasheets for datasets, but for algorithms); and (3)
providing guidelines to benchmark participants to produce enriched detailed results, amenable to
meta-analyses.

11https://cancer-heterogeneity.github.io/cometh.html
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Appendix A Codabench usage: getting started

Using Codabench as a participant is straightforward. First, create an account and login on Codabench.
Then choose an existing benchmark to join following the instructions provided by the organizers. To
organize a benchmark, a user can either use the Codabench editor or upload a benchmark bundle
which is a zip file containing code, dataset, and configuration file. Detailed instructions are found on
Codabench Documentation. For advanced users who wish to deploy a private instance of Codabench
please refer to Codabench deployment instructions in the same wiki. To illustrate better the benchmark
bundle, we provide a simplified bundle example in the next section, which contains ingestion program,
scoring program, data, text descriptions and a configuration YAML file.

Appendix B Technical aspects of Codabench

In this section, we provide briefly technical implementation details of Codabench. Codabench
is implemented in Python’s Django framework, which is one of the most flexible and stable web
application framework in Python. The whole system is divided in three main blocks: Front-end, API,
and workers. Codabench adopts a philosophy of Front-Back separation development. Front-end
uses ReactJS, which is open sourced by Facebook in 2013. React largely reduces the interaction
with Document Object Model (DOM) by simulating DOM actions. React supports one-way data
flow in order to reuse code as much as possible, which makes Codabench more extensible. This
front-back separation also facilitates the community’s maintenance and support. For the API, the
Django Rest Framework is used. PostgreSQL database for managing data and MinIO for file storage.
In addition, we follow the classic producer-consumer design pattern to allow asynchronous operation,
leveraging RabbitMQ as a queue manager, Celery client for message management, Docker for
containerization pf Codabench itself but also for benchmarks’ own consistency (computation workers
and customized environment). For more details of the technology implementation, please refer to the
Codabench Github. Any contribution is welcome.

Appendix C Sample bundle file for Codabench

In this section, we provide a concrete bundle example to show how simple it is to organize benchmarks
on Codabench. A bundle consists of five parts: (1) a YAML configuration file (2) ingestion program
(3) scoring program (4) data (5) text files for additional description.

The ingestion program usually reads data and participant’s submission. It calls participant’s method
on the dataset and produces predictions to a shared space. The scoring program usually reads
ingestion program’s output and evaluate w.r.t ground truth according to organizer customized metric.
It finally writes scores to a text file which will be read by platform and be displayed on leaderboard.
The data contain input data (in supervised learning, they are usually X_train, y_train, and X_test) and
reference data (in supervised learning, it is usually y_test). Both are zipped into separate files. The
text files are just html or markdown files for organizers to provide other information e.g. instructions,
references, etc. A final YAML file connects all previous parts and provides more configurations for
the benchmark. A simplified YAML file is as follows. It contains general configurations like title,
logo image, docker image, and which htmls to be displayed, leaderboard configuration (e.g. which
metrics will be used in the leaderboard) and tasks. Each task is by itself a complete unit for running.
It contains name, id, ingestion program, scoring program, input data, reference data.
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1 # Sample bundle based on AutoGraph benchmark
2 title: 'AutoGraph Benchmark'
3 description: 'Automated Graph Representation Learning Challenge'
4 docker_image: nehzux/kddcup2020:v2 # Docker Hub ID
5 pages: # These are "free style" documentation pages
6 - title: help # You can have any title and file name
7 file: 'help.html' # You may use HTML or Markdown (.md files)
8 - title: overview # These pages will show up in the benchmark site
9 file: 'overview.html'

10 phases: # Benchmarks usually have s single phase
11 # (competitions may have several)
12 - index: 0 # Phase order number
13 name: 'AutoGraph'
14 start: 2021-01-01
15 end: 2022-12-31
16 tasks: # Tasks included in this phase
17 - 0 # Reference number in task list below,
18 - 1 # or absolute reference in Codabench database
19 max_submissions: 1000
20 max_submissions_per_day: 100
21 execution_time_limit_ms: 60000
22 tasks: # Tasks for the above defined phase
23 - index: 0
24 name: 'Task a' # For public display on leaderboad
25 description: 'Dataset a' # Private comments
26 # Ingestion module:
27 ingestion_program: ingestion_program.zip
28 input_data: input_data_a.zip
29 # Scoring module
30 scoring_program: scoring_program.zip
31 reference_data: reference_data_a.zip
32 # whether the ingestion program is run first, then the
33 # scoring program, or the are run in parallel
34 ingestion_only_during_scoring: True
35 - index: 1
36 name: 'Task b'
37 description: 'Dataset b'
38 # Ingestion module:
39 ingestion_program: ingestion_program.zip
40 input_data: input_data_b.zip
41 # Scoring module
42 reference_data: reference_data_b.zip
43 scoring_program: scoring_program.zip
44 ingestion_only_during_scoring: True
45 leaderboards: # Leader board form
46 - title: Results # single leaderboard supported in this version
47 key: main # main key, leave untouched
48 columns:
49 - title: 'Acc' # Name of the column displayed
50 key: acc # Data key name used by scoring program
51 index: 0 # Order of columns
52 sorting: desc # Sort in descending order
53 - title: 'BalAcc'
54 key: bacc
55 index: 1
56 sorting: desc

13



Table 3: Comparisons of AutoGraph competition and AutoGraph benchmark.
AutoGraph Competition AutoGraph Benchmark (this paper)

Purpose Harvesting automated node classifica-
tion solutions in a short time

Continuous fair evaluation of AutoGraph
solutions, over a long time period, in a uni-
fied framework to answer multiple qualita-
tive and quantitative questions

Cooperation & in-
formation sharing

Limited to submission instructions Release datasets and meta-data, release
challenge winning solutions, forum, Github
issues

Submissions Code with prescribed “fit” and “predict”
methods

Code whose execution can produce detailed
results in free format

Outcome Leaderboard with accuracy score for
last submission per team

Table with all the submissions made; sort-
ing with 2 scores possible; multiple user-
provided analyses, graphs, figures, code
sharing

Appendix D More details about AutoGraph benchmark

D.1 AutoGraph Challenge at KDD Cup 2020

The AutoGraph challenge lasted for two months. We received over 2200 submissions and more
than 140 teams from both universities (UCLA, Tsinghua University, Peking University, Nanyang
Technological University, etc.) and high-tech companies (Bytedance, Twitter, Meituan Dianping, Ant
Financial, Criteo, etc.), coming from various countries. The top five teams are: aister, PASA_NJU,
qqerret, common, PostDawn.

D.2 Benchmark motivation

The motivation of turning AutoGraph challenge into a benchmark are three fold. Firstly, we emphasize
the necessity of having a benchmark platform to fast build domain specific benchmarks under the
exactly same software/hardware configurations. Then we want to demonstrate how easy it is to use
Codabench to create benchmarks boosting reproducible research. Besides, this benchmark focusing
on automated node classification task brings much value to both communities of AutoML and graph
representation learning. The AutoGraph competition has its own limitations: strict time constraint,
single accuracy metric and last for short period. Codabench enables us to fast build a benchmark with
more customized metrics, relaxed computational constraints and it never ends. we are now able to
allow state of the art methods to be compared in a better way with AutoGraph benchmark. A detailed
comparison of AutoGraph challenge and AutoGraph benchmark is illustrated in Table 3.

D.3 Problem formulation

The task of AutoGraph benchmark is node classification under the transductive setting. Formally
speaking, consider a graph G = (V, E), where V = {v1, · · · , vN} is the set of nodes, i.e. |V| = N
and E is the set of edges, which is usually encoded by an adjacency matrix A ∈ [0, 1]N×N . Aij

is positive if there is an edge connecting from node vi to node vj . Additionally, a feature matrix
X ∈ RN×D gives features of each node. Each node vi has a class label yi ∈ L = {1, · · · , c},
resulting in the label vector Y ∈ LN . In the transductive semi-supervised node classification task,
part of labels are available during training and the goal is to learn a mapping F : V → L and predict
classes of unlabeled nodes.

In recent years, sophisticated models such as Graph Neural Networks (GNN), e.g. GraphSAGE
[10] or GAT [23], have been proposed, leading to the state-of-the-art results in node classification.
However, huge computational and expertise resources are needed to achieve a satisfactory perfor-
mance given a dataset, limiting the application of the existing graph representation models. AutoML
[14, 24]/AutoDL12 is a promising approach to lower the manpower costs of machine learning appli-
cations, and has achieved encouraging successes in hyperparameter tuning, model selection, neural

12https://autodl.chalearn.org
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architecture search, and feature engineering. Through this AutoGraph benchmark, we hope to make
progress on automated node classification task, which is at the same time challenging and beneficial
to practical deployment.

D.4 Benchmark setting

Protocol. The protocol of AutoGraph benchmark is straightforward. Participants should submit a
python file containing a Model class with required fit and predict method. We prepare an ingestion
program reading dataset and instantiate the class and call fit and predict method until prediction
finishes or the running time has reached the limit. Ingestion program outputs model’s prediction on
test data and save to a shared space. Then another scoring program reads the prediction and ground
truth and outputs evaluation scores. When developing locally, we provide script to call model.py file
methods directly.

Metric. We use Accuracy (Acc) and Balanced Accuracy (BalAcc) as evaluation metrics, defined
as

Acc =
1

|Ω|
∑
i∈Ω

1ŷi=yi

BalAcc =
1

|C|
∑
i∈C

Recalli ,

where Ω is the set of test nodes indexes, yi is the ground truth label for node vi and ŷi is the predicted
label, C is the set of classes and Recalli is the recall score for class i.

Datasets. Fifteen graph datasets were used during the competition: 5 public datasets were directly
downloadable by the participants so they could develop their solutions offline. Five feedback datasets
were made available on the platform during the feedback phase to evaluate AutoGraph algorithms
on the public leaderboard. Finally, the AutoGraph algorithms were evaluated with 5 final datasets,
without human intervention. In the AutoGraph benchmark, we use all datasets from the competition
except 2 datasets which can’t be published due to IP reason. However, we still provide information
about all 15 datasets below. These dataset are quite diverse in domains, shapes, density and other
graph properties because We expect AutoGraph solutions to have good generalization ability. We
summarize dataset statistics in Table 4. The datasheet, licenses and original sources of these datasets
can be found in Appendix.

Table 4: Statistics of all datasets. “Avg Deg” is the average number of edges per node. “Directed”
and “Weighted” indicate the two properties of a graph. “Skewness” here is calculated by number of
nodes in the largest class divided by number of nodes in the smallest class.

Dataset Phase Domain #Node #Edge #Feature #Class Avg Deg Directed? Weighted? Skewness

a Public Citation 2.7K 5.3K 1.4K 7 1.9 F F 5
b Public Citation 3.3K 4.6K 3.7K 6 1.4 F F 3
c Public Social 10K 733K 0.6K 41 73.3 F F 81
d Public News 10K 2,917K 0.3K 20 291.7 T T 467
e Public Finance 7.5K 7.8K 0 3 1.0 F F 111

f Feedback Sales 10K 194K 0.7K 10 19.4 F F 18
g Feedback Citation 10K 41K 8K 5 4.1 F F 6
h Feedback Medicine 10K 2,461K 0.3K 23 246.1 T T 1,773
i Feedback Finance 15K 16K 0 3 1.1 F F 213
j Feedback Medicine 11K 22K 0 9 2.0 F F 227

k Private Sales 8K 119K 0.7K 8 14.9 F F 6
l Private Citation 10K 40K 7K 15 4 F F 34

m Private News 10K 1,425K 0.3K 8 142.5 T T 360
n Private Finance 14K 22K 0 10 1.6 F F 61
o Private Social 12K 19K 0 19 1.6 F F 62

D.5 Novelty of the AutoGraph benchmark

We compare the AutoGraph benchmark with a widely used benchmark, including node classification
tasks: the Open Graph Benchmark (OGB) [13, 12], see Table 5. The biggest novel elements of
AutoGraph are: larger number of datasets, multiple simultaneous metrics, automatic code execution
in a controlled manner on a platform, comprehensive comparison on ALL benchmark datasets. On
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Table 5: Comparison between OGB node classification benchmark [13, 12] with AutoGraph.
OGB Node Classification Benchmark AutoGraph Benchmark (this paper)

Scope Node classification, link prediction,
and graph classification

Node classification

Metric Accuracy (multiclass) or ROC-AUC
(binary classif)

Both Accuracy and Balanced Accu-
racy

Dataset 5 large scale datasets 13 medium scale datasets

Code execution Not on platform Code executed on platform, with
free resources

Transfer learn-
ing

No. One leaderboard per dataset cre-
ated from harvesting paper results

Yes. Code executed on multi-task
benchmark pushing automation

the negative side for OGB, it collects results manually on a per dataset basis with a single metric,
and few datasets. On the positive side for OBG, it provides multiple tasks: node classification, link
prediction, and graph classification, while AutoGraph focuses only on graph classification.

D.6 Algorithm solutions of AutoGraph benchmark

In this part, we introduce various methods suitable for the AutoGraph benchmark, including Auto-
Graph challenge baseline and AutoGraph challenge top-3 winners.

Baseline. The baseline is implemented with PyTorch [17] and PyTorch Geometric [6]. In the
provided baseline, there is no feature engineering except for using the raw node features. For graph
without node features, e.g. dataset i,j, one hot encoding is used to unroll the node lists to a dummy
feature table. During model training, a MLP is first used to map node features to the same embedding
dimension. Then a two layer vanilla GCN is applied for learning node embeddings. Another MLP
with softmax outputs the final classification. Dropout is used. All the hyperparameters are fixed by
experience. No time management since the model is very simple and one full training won’t cost
more than the allowed time budget.

1st placed winner. The 1st winner is from team aister. Their code is open source here13. The authors
use four GNN models, two spatial ones: GraphSage and GAT, two spectral ones: GCN and TAGC
to process node features collectively. For each GNN model, a heavy search is applied offline to
determine the important hyperparameters as well as the boundaries. In the online stage, they use
a smaller search space to determine the hyperparameters. In order to accelerate the search, they
don’t fully train each configuration but instead early stop in 16 epochs if the validation loss is not
satisfactory. Additional features are used: node degrees, distribution of 1-hop and 2-hop neighbor
nodes’ features, etc.

2nd place winner. The 2nd winner is from team PASA_NJU. Their code is open source here14. They
also split the solution in two stages: offline stage and online stage. In the offline stage, the authors
train a decision tree based on public data and other self collected datasets to classify graph type
into one of three classes. Then they use GraphNAS to search massively optimal GNN architectures
including aggregation function, activation, number of heads in attention, hidden units, etc. In the
online stage, the authors rapidly classify the dataset and fine tune the offline searched model.

3rd place winner. The 3rd winner is from team qqerret. Their code is open source here15. The
core model is a variant of spatial based GNN, which aggregates two hops neighbors of a node
with additional linear parts for the node itself. Basically, the new embedding of node i is ĥ(i) =∑

j∈N2(i) ajh(i) +α(wh(i) + b). Additionally, in the GNN output layer, a few features per node are
concatenated for final fully connected layer, including number of edges, whether this node connects to
a central node who has a lot of edges, label distribution of 1-hop neighbor nodes, and label distribution
of 2-hop neighbor nodes.

13https://github.com/aister2020/KDDCUP_2020_AutoGraph_1st_Place
14https://github.com/Unkrible/AutoGraph2020
15https://github.com/white-bird/kdd2020_GCN
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D.7 Experiments on benchmark

We reproduce all winning methods on all the datasets and include their results in Table 6. The first
leaderboard column indicates ranking according the the metric of the challenge (average Acc rank).
But, for the benchmark, this is largely irrelevant. Indeed, when we analyse multiple scores on multiple
datasets, it is clear that no single method outperforms all the others.

Table 6: Accuracy and Balanced accuracy of top methods on all datasets (%). Variances are
omitted since all methods fix randomness such that the std is negligeable compared to mean.

Dataset Phase Baseline 1st aister 2nd pasanju 3rd qqerret

Acc BalAcc Acc BalAcc Acc BalAcc Acc BalAcc

a Public 85.7 84.9 88.5 87.8 88.2 87.2 87.2 85.5
b Public 71.4 67.8 75.2 69.0 75.8 71.2 75.6 71.2
c Public 86.5 72.0 94.3 87.5 94.2 90.9 95.4 91.3
d Public 93.7 6.1 96.5 48.7 95.1 28.8 94.6 21.0
e Public 59.6 38.8 88.7 92.7 88.5 90.7 88.8 92.8
f Feedback 86.6 78.2 92.8 92.1 92.3 92.3 92.4 91.4
g Feedback 94.7 92.8 95.3 93.5 95.6 93.8 95.8 94.2
h Feedback 90.4 8.8 93.5 26.3 92.2 17.6 92.1 16.6
i Feedback 88.2 59.2 88.4 87.5 88.4 92.6 88.5 91.1
j Feedback 90.7 68.1 95.9 89.0 96.1 93.7 96.6 93.3

k Private 93.5 92.2 95.4 94.2 95.5 94.4 94.8 93.1
l Private 90.9 84.5 94.9 92.4 94.7 91.8 95.0 92.6

m Private 85.5 24.5 98.1 79.7 95.7 69.0 98.1 79.4
n Private 85.6 47.3 99.0 97.3 99.0 98.4 99.0 97.0
o Private 49.6 15.6 91.0 84.6 91.3 90.6 91.4 88.5

D.8 Dataset difficulty

In this section, we define and calculate further the concept of dataset difficulty in Figure 4 to retrospect
on the benchmark datasets. The intrinsic difficulty is defined as 1 minus accuracy score or 1 minus
balanced accuracy score. The modeling difficulty is defined as best performance minus baseline
performance. For research interest, it is preferrable to choose datasets of low intrinsic difficulty and
high modeling difficulty.

(a) Dataset difficulty based on accuracy (b) Dataset difficulty based on balanced accuracy

Figure 4: Dataset difficulty measure.

D.9 License information on AutoGraph datasets

This section provides the license related information on the AutoGraph datasets of Section 4.
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Table 7: License for all the datasets
ID Original dataset Reference License
a Cora [16] MITa

b Citeseer [8] CC BY-NC-SA 3.0 b

c Reddit [10] MITc

d 20 Newsgroups [15] Credit to Ken Lang and Tom Mitchell
e private private Subset of (i)
f amazon_computer [21] MITd

g coauther_physics [21] MITd

h ohsumed [11] CC BY-NC 4.0e

i privatef private AutoGraph challenge dataset, not part of
the published benchmark

j Fresh data Novel CC BY-NC 4.0
k amazon_photo [21] MITd

l coauthor_cs [21] MITd

m R8 Linkg Copyright to Reuters Ltdg

n Fresh data Novel CC BY-NC 4.0
o Fresh data Novel CC BY-NC 4.0

ahttps://github.com/kimiyoung/planetoid
bhttp://clgiles.ist.psu.edu/pubs.shtml
chttp://snap.stanford.edu/graphsage/
dhttps://github.com/shchur/gnn-benchmark
ehttps://github.com/huggingface/datasets/blob/master/datasets/ohsumed/ohsumed.py
fWe mention datasets (e) and (i) because they are used in AutoGraph challenge. However, due to IP reason,

we cannot publicly release them. Thus they are not part of the benchmark.
ghttp://kdd.ics.uci.edu/databases/reuters21578/README.txt
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