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Abstract—Estimating the features to be extracted from an
image for classification tasks are sometimes difficult, especially if
images are related to a particular kind of noise. The aim of this
paper is to propose a neural network architecture named Guided-
Generative Network (GGN) to extract refined information that
allows to correctly quantify the noise present in a sliding window
of images. GNN tends to find the desired features to address
such a problem in order to emit a detection criterion of this
noise. The proposed GGN is applied on photorealistic images
which are rendered by Monte-Carlo methods by evaluating a
large number of samples per pixel. An insufficient number of
samples per pixel tends to result in residual noise which is very
noticeable to humans. This noise can be reduced by increasing
the number of samples, as proven by Monte-Carlo theory, but
this involves considerable computational time. Finding the right
number of samples needed for human observers to perceive no
noise is still an open problem. The results obtained show that
GGN can correctly solve the problem without prior knowledge
of the noise while being competitive with existing methods.

Index Terms—Deep Learning, GAN, Monte-Carlo, Computer
Graphics, Noise detection

I. INTRODUCTION

Modern realistic image algorithms mimics the natural pro-
cess of acquiring pictures by simulating the physical inter-
actions of light between every existing objects, lights and
cameras lying within a 3D modelled scene. Light simulation
process in a 3D scene is known as global illumination and
was formalised by Kajiya [1] with the light transport rendering
equation.

This equation cannot be analytically solved in most cases
and Monte-Carlo (MC) approaches are generally used to esti-
mate the value of the final image pixels. Sampling is achieved
by constructing random light paths between the camera and
the light sources located in the 3D scene in order to collect
the contribution of the light emitted by each light source to
the pixels in the image.
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Fig. 1: A view of the scene Kitchen available from [2] rendered
using the PBRT engine [3] with 3 levels of sampling per
pixel. The number of samples required can be very high before
residual noise is no longer noticeable.

The final MC estimator approximation of the expected
value for n samples is obtained from the empirical mean.
This computation initially causes considerable noise when
generating the image, but as the calculation progresses, this
noise is reduced and almost invisible (see Fig. 1).

Unfortunately convergence requires often several hours
(even days) before a visually usable image is available, due
to both the complexity of paths computation and the high
number of samples that are required. Then, information about
the number of paths that are really required for the image to
be visually converged is unknown. Stopping computation too
soon provides images with visual noise and computing too
much samples can lead to a loss of time and higher production
costs. Furthermore the identification of features relevant for the
identification of visual noise is difficult given the nature of the
noise generated, which is very dependent on the computational
algorithms used and the complexity of virtual scenes (material
properties, caustic effects, indirect lighting...).

In this paper we propose to exploit Deep Learning methods
such as U-Net Denoising Autoencoder [4] and Generative
Neural Networks (GAN) [5] to automatically generate Noise
Feature Maps (NFM) which guide a Discriminator neural
network to better characterize the task of identifying humanly
perceptible noise in images.



Based on these ideas, the work presented in this paper will
be organised as follows: first, in Section II the previous works
related to this problem are presented. Then, in Section III the
proposed neural network architecture is introduced. The results
obtained on a large database are compared to previous methods
in Section IV before concluding on the performance of the
developed method and the perspectives of this work.

II. PREVIOUS WORKS

When trying to identify noise in an image, two problems
arise; on the one hand, it is necessary to find attributes to
characterise this noise and on the other hand, it is necessary
to have access to the visual detection thresholds of this artefact
for many images in order either to train learning models or
to verify the results obtained. On this last point, the works
carried out in [6] and [7] use a base of 12 images calculated
with different sampling levels. These images, of size 512×512,
have been cut into 16 disjoint blocks (of size 128× 128) for
which noise prediction thresholds have been acquired from
human users. However, these images are not publicly available
and the visual effects that appear in them do not cover all
the effects that exist in real images. More recently a larger
database has been published in [8] for which 40 images with
various light effects are available with a very large number of
sampling levels and associated human perceptual thresholds.
The images are of size 800× 800 and are sliced in a manner
similar to previous work into 16 blocks of size 200× 200. As
this database will be used in our works, Fig. 2 illustrates the
way in which the data relating to these images are presented:
division into blocks, human perceptual thresholds associated
with each block, reference image calculated with a very large
number of samples.

Identifying the representative characteristics of MC noise is
also a complex task and various proposals have been made.
[6] proposed to extract 26 features from each image block.
They first extract the L channel from Lab color space and
then apply four different denoising algorithms to this channel:
linear filtering with averaging filters of sizes 3× 3 and 5× 5,
linear filtering with Gaussian filters of same sizes and with
standard deviations σ ∈ {0.5, 1, 1.5}, median filters and
adaptive Wiener filters of same sizes. From these 13 denoised
gray images, they compute the mean and standard-deviation
in order to get their 26 features. These features are then used
as inputs of a Support Vector Machine (SVM) classifier that
allows to predict the binary label (noisy, noiseless) of each
image block. In [7], authors proposed to first compute an ap-
proximated reference image using quick ray-tracing technique
[9] which is computed once at the beginning of the image
rendering process. Next, they compute a noise mask for both
the current image obtained during the rendering process and
the reference image. These masks are computed by applying
a Gaussian filter to their respective image before obtaining the
absolute difference between the initial image and the filtered
image. Finally, the two masks are passed to an SVM model
that allows to classify the current image block as still noisy or
not where each block is of size 128 × 128. Giving 2 images

(a) Image block numbering (b) Human thresholds

(c) Reference image (d) Reconstructed

Fig. 2: Some of the data associated to the image dataset
available in [8] : (a) the 16 image blocks, (b) the human
visual threshold for each block (in samples per pixel) (c) the
reference image computed with 10, 000 samples per pixel and
(d) the image reconstructed from the human thresholds.

directly as input to an SVM model can lead to what is called
the dimension curse problem, as the image size increases. The
SVM model will therefore need more time to learn and find
its hyper separator plane.

More recently [10] proposed to use the SVD-Entropy [11]
measurement as a noise feature. They compute the SVD-
Entropy on each block, taking into account a sliding window
of size S for which each version of the block has a decreasing
noise level. A sub-part of the SVD-entropy vector is extracted
for each block of the window and used for training a Recur-
rent Neural Network (RNN) with Long Short-Term Memory
(LSTM) cells [12]. The obtained model seems to generalize
correctly on the unlearned blocks of some images but it seems
that it does not work in some particular cases.

III. GUIDED-GENERATIVE NETWORK

As mentioned earlier, it is difficult to identify the features
that are representative of noise in images generated in MC
methods. In this paper, we aim to propose an approach
where these features are generated automatically before binary
classification. For this purpose, we rely on the notion of
noise mask [7] which will be provided by a generative neural
network model and the use of a sliding window of images that
appears to bring a better robustness of the models [10]. The
proposal for such an approach is justified by the emergence



of robust deep convolution learning methods for both noise
processing and recognition [13, 14].

Our proposed GGN architecture whose purpose is to obtain
automatic noise-related features is composed of 3 neural
network models, for which a sliding window of images of
different noise levels of size S is used. Before going into
the details of each sub-model, Fig. 3 illustrates the desired
interaction between each of them.

A. Denoising Autoencoder

In [7], a noise mask is computed from both the image being
calculated (potentially noisy) and an approximate reference
image, obtained by the ray-tracing method. The main draw-
back is that some important light effects cannot be simulated
by ray tracing and thus induces errors as compared to the final
image that should be computed. The idea proposed to remedy
this problem is an Autoencoder neural network to best denoise
an image. In Computer Graphics, the preservation of structures
and light effects is important, that’s why the Autoencoder used
is of type U-Net as exploited for denoising task in [4, 15],
since it makes it possible to preserve the structure of the
image more easily while proposing a powerful denoising of
the input image. U-Net is a convolutional autoencoder with
skip connections and regular dimensionality progression. The
proposed encoder and decoder have symmetrical structure:
each 4 encoder stages uses two 3 × 3 convolutions and
doubles the dimensional depth K, while each 4 decoder
stages has two 3 × 3 deconvolutions and reduces the depth
by half. All intermediate stages use batch normalization and
LeakyReLU activation functions. The output stage has two
3 × 3 deconvolutions with LeakyReLU, and a final 1 × 1
convolution with LeakyReLU activation to output the final
denoised image. Each downsampling stage uses a 2 × 2
MaxPooling, and the upsampling stages use 2 × 2 Bilinear
Upsampling. An additional ZeroPadding layer is used for the
decoder stage when it is necessary to obtain an odd tile size
after upsampling. We set K = 16 as image input is of size
200 × 200 which implies a rather substantial storage. Also,
the Structural Similarity metric (SSIM) [16] was used for
loss function i.e., L(ŷ, y) = 1 − SSIM(ŷ, y) where ŷ is the
known reference block image computed with 10, 000 samples,
and y is the output image of the U-Net neural network. The
SSIM also offers good structure preservation [17, 18] rather
than a function of L1 or L2, both related to pixel values. As
mentioned before, the use of a sliding window of input images
of size S is actually processed for better detection robustness
later on. Each image of different noise level is sent one after
the other to the U-Net in order to be denoised and to obtain
a sliding window of S approximated reference images. Thus,
the model learns to denoise the images on several noise levels.

B. Feature Map Generator

The Feature Map Generator is also an autoencoder and has
the same structure as the previous denoising model but without
skip connections and regular dimensionality progression as
proposed by a U-Net model. Then a final 1 × 1 convolution

is applied with LeakyReLU activation to output the final
expected gray image with K = 1. Hence, this model takes as
input an image sliding window of size S and aims at producing
a NFM with unknown expectation. In our approach and as
detailed in Fig. 3, it will take either the sliding window of input
image or the sliding window of approximated reference images
obtained previously. It’s important to note that models such
as the Variational AutoEncoders (VAE) [19] which generally
offer better generated data were also tested but did not provide
good results.

C. Discriminator for binary classification

Finally, the discriminator takes as input 2 NFM obtained
from the Feature Map Generator, either the NFM from the
input sliding window or the NFM from the sliding window
of approximated reference images. The discriminator must
provide a binary label, so it is first composed of 3 convolution
layers which doubles the dimensional depth K with a kernel
size of 3×3 and padding of 2 to reduce the dimensionality of
the NFM. For each of these convolution layers, intermediate
layers of batch normalization, LeakyReLU and MaxPooling
with a kernel size of 3, a stride of size 2 and a padding of size
1 are processed. Then 4 classical linear layers are exploited
to propagate and reduce the information until reaching a
probability of belonging to a noisy or non-noisy label. The first
linear layer returns data of size K × 4 then the two following
layers reduce the output data by half. The last linear layer
proposes a single output before applying a Sigmoid function.
Each linear layer applies intermediate layers such as a batch
normalization, a LeakyReLU layer and a 50% dropout layer
to avoid overfitting. Only the last layer, where the probability
is obtained, does not have a dropout layer.

The Binary Cross-Entropy loss function [17] is used to
both propagate the error of the discriminator, but also the
Feature Map Generator. This allows to obtain NFM that are
representative of the expected classification task and to guide
the discriminator, hence the name Guided-Generative Network
for such an architecture.

The next section details the training procedure of such an
architecture and the results we obtained.

IV. RESULTS

The proposed architecture composed of the 3 models de-
scribed above is trained on the synthetic image data where
human thresholds are available. The 3 models learn together
with respect to the input data as shown in Fig. 3. From the
40 images available in [8], 35 have been selected for training,
and 5 for verifying the model performance.

A. Experimental setup

The amount of data is quite significant with 35 images,
where each image is composed of 16 blocks of size 200 ×
200. For each image 500 different noise levels ranging from
20 samples to 10, 000 samples are used. This allows to learn
from a total of 280, 000 labeled data. Regarding the training
parameters, the model was trained on the data for 30 epochs,



Fig. 3: Proposed model architecture where a sliding window of images of different noise level and of size S is given as input
to the Autoencoder model for denoising in order to obtain a sliding window of approximated reference images of size S. One
after the other, the two image sliding windows, the input one and the approximated reference one, are sent to the Feature
Map Generator model to obtain respectively a noise feature map (NFM). Finally, the two NFM obtained are transmitted to the
Discriminator to evaluate whether the last image of the input sliding window is considered to be still noisy or not using. The
propagation of the error is then possible thanks to the known label (noisy / not noisy) from the last image of the input sliding
window.

with a batch size of 64 and a sliding window of images of size
S = 6, which we consider sufficiently robust for prediction.

The U-Net Autoencoder model appears to provide MC
noise removal results that are close to the reference image,
as illustrated in Fig. 4, where the SSIM scores show an
improvement in the quality and closeness of the resulting
image compared to the reference image.

(a) Noisy image
SSIM: 0.6433

(b) Denoised image
SSIM: 0.9859

(c) Reference
SSIM: 1.0

Fig. 4: Result of the U-Net Autoencoder denoising on one
block of the Kitchen image with corresponding SSIM scores.

An overview of the outputs of the Feature Map Generator
is available in Fig. 5, for the same image block that as been
used in Fig. 4. Let us note that differences appear between
the two NFMs obtained. These ones are due to the fact that
different noise levels coexist in the same sliding window for
the images under calculation, whereas these differences are
attenuated in the images that are denoised in the second sliding
window. This confirms the interest of the approach, as the
NFM provides discriminating information as to the presence
or absence of noise in the images considered.

These NFM are then sent to the Discriminator for evaluation
of the probability of the last image of the input sliding window
to belong to label 1, noisy, and label 0, not noisy.

(a) Input noise feature map (b) Approximated reference
feature map

Fig. 5: Results of the Feature Map Generator on the block
of Fig. 4 : the NFM from the sliding windows of computed
images (a) and the NFM from the denoised images (b).

B. Models comparisons

The model obtained after a training of 30 epochs on the
training dataset is compared to the RNN proposed by [10]
with the same training conditions, i.e. the same train and test
dataset, the same batch size and the same sliding window size
(S = 6). The metrics used to compare the performance of
the two models are the accuracy and the area under the ROC
curve (AUC ROC) [20], which defines how well the model
separates the two classes of the binary classification.

The performance of the models on the training and testing
datasets is presented in Table I with several decision thresholds
in order to check the accuracy performance. The LSTM model
seems to have a better generalisation. However, even if the
GGN has a slight overfitting, it shows a correct performance
in test when its decision threshold t ≥ 0.95. In addition, Fig. 6
shows the predictions of the models during the rendering of an
image and illustrates the general behaviour of the prediction



t Accuracy AUC ROC Accuracy AUC ROC Accuracy AUC ROC
threshold Train Train Test Test Global Global

L
ST

M
0.3 0.7619 0.9115 0.8122 0.9297 0.7682 0.9137
0.4 0.8085 0.9115 0.8456 0.9297 0.8131 0.9137
0.5 0.8281 0.9115 0.8519 0.9297 0.8311 0.9137
0.6 0.8329 0.9115 0.8385 0.9297 0.8336 0.9137
0.7 0.8225 0.9115 0.8055 0.9297 0.8204 0.9137
0.8 0.7965 0.9115 0.7542 0.9297 0.7912 0.9137
0.9 0.7533 0.9115 0.6896 0.9297 0.7454 0.9137
0.95 0.7331 0.9115 0.6654 0.9297 0.7246 0.9137
0.98 0.6888 0.9115 0.6284 0.9297 0.6812 0.9137

G
G

N

0.3 0.6598 0.9735 0.6641 0.8422 0.6603 0.9571
0.4 0.7152 0.9735 0.6719 0.8422 0.7098 0.9571
0.5 0.7902 0.9735 0.7310 0.8422 0.7828 0.9571
0.6 0.8219 0.9735 0.7415 0.8422 0.8118 0.9571
0.7 0.8553 0.9735 0.7554 0.8422 0.8429 0.9571
0.8 0.8809 0.9735 0.7709 0.8422 0.8672 0.9571
0.9 0.9067 0.9735 0.7858 0.8422 0.8916 0.9571
0.95 0.9204 0.9735 0.8013 0.8422 0.9055 0.9571
0.98 0.9201 0.9735 0.8216 0.8422 0.9078 0.9571

TABLE I: Performance of the models on the training and test-
ing sets with several proposed t-probability decision thresholds
for comparing the accuracy of each model. The AUC ROC
score therefore does not change for the t-value but remains
indicative. The best accuracy scores are indicated with a grey
background corresponding to the t-value.

results obtained. The decision threshold of GGN is set at
t = 0.95 as it avoids early prediction on the whole set of
images in the training database although its accuracy is lower.
Indeed, a conservative capability, although less effective, is to
be preferred to an early termination, which would imply a poor
quality of the final image obtained. It can be noticed that GGN
fluctuates and hesitates much less than LSTM which indicates
a stability of the model when predicting. It allows in particular
in certain cases to avoid a prediction too early of computation
as illustrated for a block of the Classroom image. On the other
hand, GGN tends at times to predict later than LSTM such as
for the image block San-Miguel. GGN shows good results even
though initially no indication of noise features was given. The
model slightly overfits but provides predictions that are fairly
accurate.

V. CONCLUSION

In this paper we propose a GGN architecture that allows
to generate accurate noise detection data to guide the binary
classification task. In this way, it is not necessary to worry
about using a precise method for extracting such features. The
results of the proposed GGN model suggest that the automated
generation of such features as input to a classification model
relative to the expected task is relevant. Compared to other
more recent approaches, the GGN brings equally significant
or even more precise results on the way to predict. Indeed, its
decision threshold is more robust and conservative, which is a
preferable behaviour in Computer Graphics. In fact, stopping
too early leads to a remaining perceptible noise, whereas
stopping later allows the quality to be identical (or improved)
even if the computation time is more substantial.

The proposed method has been tested here on noise induced
by a Monte-Carlo path tracing algorithm. Given the generality
of the GGN, the same method could be adapted to other kind
of visual artifacts caused by other computational methods.

One of the perspectives considered in relation to the work
done is to study methods to avoid such model to overfit
over training data. We then plan to study the use of smaller
image blocks (typically 50× 50 pixels), to enable us to check
whether a bias is not introduced during the training process
on larger blocks. The noise may indeed not be uniform in an
block of size 200× 200, complicating the task of the learning
algorithm. This will however require to measure some more
accurate human thresholds for noise perception, that were not
available in [8]. Another perspective would be to use this
same type of approach but for stereoscopic images where the
human thresholds would be captured relative to two images
(left image and right image) in order to verify the robustness
of such an approach.
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