
HAL Id: hal-03374179
https://hal.science/hal-03374179

Submitted on 12 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Range Proofs with Transparent Setup from
Bounded Integer Commitments

Geoffroy Couteau, Michael Klooss, Huang Lin, Michael Reichle

To cite this version:
Geoffroy Couteau, Michael Klooss, Huang Lin, Michael Reichle. Efficient Range Proofs with Trans-
parent Setup from Bounded Integer Commitments. EUROCRYPT 2021 - Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques, Oct 2021, Zagreb, Croatia.
pp.247-277, �10.1007/978-3-030-77883-5_9�. �hal-03374179�

https://hal.science/hal-03374179
https://hal.archives-ouvertes.fr

Efficient Range Proofs with Transparent Setup from
Bounded Integer Commitments

Geoffroy Couteau1, Michael Klooß2, Huang Lin3, and Michael Reichle4,5

1 CNRS, IRIF, Université de Paris, France, couteau@irif.fr
2 Karlsruhe Institute for Technology, michael.klooss@kit.edu

3 Mercury’s Wing and Suterusu Project, huanglinepfl@gmail.com
4 DIENS, École normale supérieure, CNRS, PSL University, 75005 Paris, France

5 Inria, Paris, France, michael.reichle@ens.fr

Abstract. We introduce a new approach for constructing range proofs. Our approach is
modular, and leads to highly competitive range proofs under standard assumption, using
less communication and (much) less computation than the state of the art methods, without
relying on a trusted setup. Our range proofs can be used as a drop-in replacement in a variety
of protocols such as distributed ledgers, anonymous transaction systems, and many more,
leading to significant reductions in communication and computation for these applications.
At the heart of our result is a new method to transform any commitment over a finite field
into a commitment scheme which allows to commit to and efficiently prove relations about
bounded integers. Combining these new commitments with a classical approach for range
proofs based on square decomposition, we obtain several new instantiations of a paradigm
which was previously limited to RSA-based range proofs (with high communication and
computation, and trusted setup). More specifically, we get:
– Under the discrete logarithm assumption, we obtain the most compact and efficient range

proof among all existing candidates (with or without trusted setup). Our proofs are 12%
to 20% shorter than the state of the art Bulletproof (Bünz et al., IEEE S&P ’18) for
standard choices of range size and security parameter, and are more efficient (both for
the prover and the verifier) by more than an order of magnitude.

– Under the LWE assumption, we obtain range proofs that improve over the state of the
art in a batch setting when at least a few dozen range proofs are required.

– Eventually, under standard class group assumptions, we obtain the first concretely efficient
standard integer commitment scheme (without bounds on the size of the committed
integer) which does not assume trusted setup.

Keywords. Range Proof, Integer Commitments.

mailto:couteau@irif.fr
mailto:michael.klooss@kit.edu
mailto:huanglinepfl@gmail.com
mailto:michael.reichle@ens.fr

Table of Contents

1 Introduction . 3
1.1 Standard Approaches for Building Range Proofs . 3
1.2 Our Contribution . 5

2 Technical Overview . 7
2.1 A Natural Approach via Σ-Protocols . 7
2.2 Encoding Integers as mod-q Rationals . 9
2.3 Instantiation in the Discrete Log Setting . 10

3 Preliminaries . 11
3.1 Hash Functions . 12
3.2 Commitment Schemes . 12
3.3 Zero-Knowledge Proofs . 13
3.4 Tools in the DLOG setting . 15
3.5 Tools in the Lattice setting . 16
3.6 Tools in the Class Group Setting . 17
3.7 Tools for Zero-Knowledge . 19

4 Integer Commitments from Rounding Fractions . 20
4.1 Bounded Integer Commitment Scheme . 20

5 Range Proof in a DLOG Setting . 23
5.1 Overview . 23
5.2 Parameters . 23
5.3 Scheme . 24
5.4 Optimizations . 27
5.5 Efficiency . 28

6 Range Proof in a Lattice Setting . 29
6.1 Overview . 29
6.2 Parameters . 30
6.3 Scheme . 31
6.4 Optimizations . 37
6.5 Efficiency . 37

7 Unbounded Integer Commitments . 38
7.1 Overview . 38
7.2 Parameters . 39
7.3 Scheme . 39
7.4 Properties . 40
7.5 Range Proof . 40
7.6 Remarks . 43

A Remark on the Ring LWE setting. 46
B Script For Proof Size Computation . 46

1 Introduction

In this work, we develop new techniques to construct range proofs, an important building block in
a variety of modern cryptographic protocols such as distributed ledgers, anonymous transactions, e-
cash, e-voting, and many more. The range proofs obtained with our methods are highly competitive
with the state of the art: they rely on standard assumptions, require less communication and
computation, and do not assume any trusted setup. Furthermore, our approach is modular and can
be instantiated in the discrete logarithm setting, in the lattice setting (leading to the most efficient
post-quantum range proofs in a batch setting), and in the class group setting. Below, we review
some background.

Range proofs and anonymous transactions. Zero-knowledge proofs, introduced in the seminal
work of Goldwasser, Micali, and Rackoff [GMR89], allow a prover to convince a verifier that a
statement is true, while concealing all information beyond the truth of the statement. They are
a fundamental primitive in cryptography, with inumerable applications. Range proofs, whose
genesis can be traced back to [BCDv88], are a particular type of zero-knowledge proof where the
prover wishes to convince the verifier that a committed value belongs to a certain range. Range
proofs are a core building block in numerous applications such as anonymous credentials [Cha90],
e-voting [Gro05], and e-cash [CHL05]. Furthermore, efficient range proofs have recently become
central components in distributed ledgers, the prime example being the recent integration of
Bulletproof [BBB+18] in the cryptocurrency Monero6 and later Mimblewimble-based anonymous
cryptocurrencies such as Beam7 and Grin8. Range proofs also play an essential role in anonymous
payment schemes for smart contract platforms such as Zether [BAZB20].

In most of these anonymous payment schemes, (positive and negative) integers are encoded as
finite field elements, and negative spendings constitute a valid transaction in general, if they are not
explicitly disallowed. This feature can be exploited to launch a double-spending attack, allowing
the adversary to print money out of thin air [MIO18]. In a confidential payment scheme where both
inputs and outputs of a transaction are hidden in either a digital commitment (as in Monero) or an
encryption (as in Zether), range proofs are necessary to guarantee that the hidden value falls into
the correct range and prevent the aforementioned overflow attack.

The maximum throughput of a distributed ledger protocol is mainly determined by the maximum
block size and average transaction size [CDE+16]. The smaller the transaction size is, the larger
the maximum throughput is. The average transaction size in an anonymous payment scheme is
largely determined by the zero-knowledge range proof size. Therefore, the proof size is a crucial
parameter for the design of a range proof scheme. The proof generation and verification time
are also vital to the performance of the system built on the range proof scheme. In the case of a
decentralized anonymous payment scheme, the proof generation time will determine how fast the
anonymous payment can be launched and have a direct impact on the user experience and system
scalability [CZJ+17]. The proof verification time, on the other hand, has a great impact on the
workload of the miners. gi

1.1 Standard Approaches for Building Range Proofs

Due to their wide variety of applications, many constructions of range proofs have been proposed
over the past decades. All these constructions can be categorized in two main high level approaches,
which we outline below.

First method: n-ary decomposition. The first method is the one employed both in the early
(folklore) constructions of range proofs, as well as in the latest state-of-the-art constructions (such
as Bulletproof). To prove that a committed integer x belong to an interval of the form [0, n` − 1],
where n is some small value, this method uses the following high-level template:
6 https://web.getmonero.org/resources/moneropedia/bulletproofs.html
7 https://github.com/BeamMW/beam
8 https://cointelegraph.com/news/cryptocurrency-grin-follows-through-with-anticipated-

july-17-mainnet-hardfork

3

https://web.getmonero.org/resources/moneropedia/bulletproofs.html
https://github.com/BeamMW/beam
https://cointelegraph.com/news/cryptocurrency-grin-follows-through-with-anticipated-july-17-mainnet-hardfork
https://cointelegraph.com/news/cryptocurrency-grin-follows-through-with-anticipated-july-17-mainnet-hardfork

1. First, commit to the n-ary decomposition of x, denoted (x0, · · · , x`−1).
2. Second, prove that the relation x =

∑`−1
i=0 xi · ni holds.

3. Third, prove that each component of the committed tuple belongs to [0, n − 1]. Since n is
typically very small, this can be achieved using some brute-force method (for example, when
using binary decomposition, it amounts to proving that each component is a bit, which can be
done using standard methods).

When the commitment scheme satisfies some homomorphic properties, it is generally simple to lift
a proof as above to a proof for a more general interval [a, b]. The first instance of this approach is a
folklore discrete-logarithm-based construction using the Pedersen commitment scheme to commit
to the bit decomposition of x. Denoting β = log(b − a) the bitlength of the interval size and λ
the bitlength of group elements, This leads to a range proof communicating O(λ · β) bits. This
approach was first improved in [CCs08] to O(λ · β/log β) by using decomposition in a larger basis,
and later in [Gro11] to O(λ · β1/3), using pairings.

In a recent breakthrough work, the authors of [BBB+18] introduced Bulletproof, which managed
to reduce the communication to O(λ · log β) under the plain DLOG assumption (without pairings)
while still remaining computationally efficient. Their approach relies on generalized Pedersen
commitment to commit to the entire bit-decomposition of x using few group elements, and on a
clever recursive proof strategy to simultaneously prove that all committed values are bits.9 This
comes at the cost of a larger number of rounds O(log β) (but this is typically not a concern in
real-world applications, where the Fiat-Shamir heuristic is used to make the proof non-interactive)
and a computational soundness guarantee (leading to a zero-knowledge argument instead of a
proof).

A strong advantage of the proofs obtained in this line of work is that they do not require any
trusted setup. In real-world applications such as cryptocurrencies, this is an important feature
to avoid having to trust any central authority with the secure generation of the parameters (we
will discuss this more later). Due to this feature and its good concrete efficiency, Bulletproof is
currently considered the state of the art method for range proofs, and has found its way into several
real-world protocols.

Second method: square decomposition. The second method can be traced back to the work of
Boudot [Bou00], and was initially introduced to avoid the large O(λ · β) cost of the range proofs
obtained (at the time) by the first method. It relies on the following high-level template (or a
close variant thereof): first, proving that x ∈ [a, b] reduces to proving that x− a and b− x (whose
commitments can typically be computed homomorphically from a commitment to x) are positive.
Now, to prove that a committed value y is positive:

1. First, decompose y as y =
∑4
i=1 y

2
i over the integers. Lagrange’s four square theorem guarantees

that such a decomposition exists, and efficient algorithms allow to quickly find one.
2. Second, commit to the yi and prove (using standard methods) that y =

∑4
i=1 y

2
i over the

integers.

The advantage of this method is that it requires committing only to a constant number of components
(independent of the interval size), instead of ≈ β components with the first method. This typically
leads to proofs with communication O(β + λ) bits. However, it is crucial for this method that the
relation is proven over the integers: standard commitment schemes such as Pedersen only allow
committing values over Zp for some prime p, but finding a 4-square decomposition over Zp does
not provide any guarantee of positivity. Hence, a core component of this line of work is the notion
of integer commitment schemes, introduced in [FO97,DF02], which allows to commit and prove
relations among values directly over the integers.

The square decomposition method has been refined in [Lip03]. Later, the work of Groth [Gro05]
observed that one can instead decompose 4y + 1 as a sum of three squares (positive integers
congruent to 1 modulo 4 can always be decomposed this way) to reduce the proof size, and further
efficiency and security improvements were described in [CPP17]. A common issue of all these works
9 There have been several recent follow up works [HKR19,AC20] to Bulletproof, which expand the set of
relations captured by the framework, but do not translate into concrete improvements on the size of the
range proofs produced by this framework.

4

is that all known integer commitment schemes require the use of RSA groups or class groups with
a hard-to-factor discriminant. This means that the group size is very large (typically 2048 or 3072
bits), and that these proofs all require a trusted setup to generate a public product of secret prime
factors10. Assuming a trusted setup is a rather undesirable property in a decentralized anonymous
payment scheme: in general, the party responsible for the setup step can exploit the trapdoor
information obtained through this process to print an unlimited amount of cryptocurrency without
being detected [Sle,Ben]. Although one could potentially mitigate the risk of the above attack by
using secure multi-party computation to execute the setup step (as was done e.g. for zcash11), it
introduces additional engineering complexity and potential vulnerabilities.

Furthermore, even before Bulletproof, these proof systems were competitive with proofs obtained
with the first method only for very large intervals. Compared to Bulletproof, they lead to much
larger proof sizes for any interval size (and are also computationally less efficient). Due to their
higher cost and their need of a trusted setup, this second method is largely considered obsolete and
non-competitive with the proofs obtained through the first method.

1.2 Our Contribution

In this work, we turn the tables and demonstrate that the square decomposition method can be
refined to create highly competitive range proofs, with smaller communication and computation
compared to the state of the art Bulletproof, without trusted setup (meaning that our proofs
only require a transparent setup), and under standard assumptions. Among other advantages, our
method is modular and can also be instantiated in the lattice setting to obtain post-quantum range
proofs which are highly competitive with the sate of the art in a batch scenario (where several
range proofs must be computed at once), and in the class group setting with prime discriminant.
Furthermore, our proofs require only three rounds of interaction, an important feature if one
does not want to rely on the Fiat-Shamir heuristic, and can be modified to achieve statistical
soundness instead of computational soundness (at a small cost in efficiency). At the heart of our
constructions is a new generic method to convert any commitment scheme over Zp into a bounded
integer commitment scheme, i.e., a commitment scheme which allows to commit to bounded-range
integers and to prove relations over Z between committed bounded-range integers.

Instantiation in the discrete-log setting. Instantiating our framework with the standard
Pedersen commitment scheme, we obtain a bounded integer commitment scheme under the discrete
logarithm assumption. When plugging this bounded integer commitment scheme in the range proof
of [CPP17], we obtain a range proof which does not require any trusted setup and can benefit
simultaneously from the compactness of square-decomposition-based range proofs (i.e., constant
number of group elements) and the possibility of instantiating the Pedersen commitment scheme
over prime-order elliptic curve, with small group elements12. To further optimize the proof size, we
describe an optimized variant which relies on the short-exponents discrete logarithm assumption
(i.e., the assumption that it is hard to compute discrete logarithm even when the exponent is
sampled from a large enough bounded range), which is a well-studied variant of the standard discrete
log assumption. For example, for an interval size of 232 and 128 bits of security, we obtain range
proofs of size 501 Bytes, compared to the 608 Bytes of Bulletproof. For the same parameters, the
computational cost for both the prover and the verifier are more than an order of magnitude smaller
compared to Bulletproof. The high efficiency of prover and verifier is crucial for use of (range)
proofs on resource constrained devices, such as smartphones. Such devices are of special interest for
privacy-enhancing technologies, such as anonymous credentials [Cha90] and payment systems. To
achieve practicalility, tradeoffs have to made. For example, the work [BBDE19] relies on [CCs08],
10 While it is theoretically possible to use a very large random integer as RSA modulus, without relying on

a trusted party to compute a product of safe primes, this approach is completely impractical due to the
very large group size and amount of computation, see the discussion on RSA-UFO in [LM19].

11 https://z.cash/technology/paramgen/
12 Since our bounded integer commitment scheme requires the committed values to remain into a bounded

range, we actually require slightly larger group size compared to Bulletproof to achieve the same security
level; this is accounted for in our concrete comparison and will be covered in details in the technical
overview.

5

https://z.cash/technology/paramgen/

which requires pairings and relatively large public parameters, whereas the work [HKRR20] relies
on uncompressed, i.e. linear-size, Bulletproofs, trading communication for computation. Our range
proofs are a great fit for these settings.

Detailed comparison with Bulletproof. A more detailed comparison with Bulletproof is given in
Table 1. Below, we explain how the numbers in the table have been obtained. Computing the exact
costs of our range proof is rather tedious, since it involves careful optimizations with rejection
sampling techniques, and optimizations using the short-exponent discrete logarithm assumption.
We consider range proofs over an interval [a, b] with β = log(b− a) ∈ {32, 64}, a security parameter
λ ∈ {80, 128}, and a group of size q (which might not be the same for Bulletproof and our range
proof). The formula below additionally uses parameters C, S, L′ corresponding respectively to the
challenge size, a bound on the length of short exponents, and a bound for rejection sampling.
Our concrete numbers are obtained by setting C = 2λ, S = 22λ, L′ = d256

√
2λe. The formulas for

computing the range proof size (in the non-interactive setting, when Fiat-Shamir is used), the
prover work, and the verifier work, are given below:

– Proof size (in bits): 30(β + log(CL′)) + dlog(C)/λe(2λ+ 4(2β + log(CL′) + 2 log(SCL′)) + 2)
(our work) versus log q · (2β + 9) (Bulletproof).

– Prover work (in group multiplications): 2.31 · (4β + 8 logS + 6 logC + 7 logL′) + 30 (our work)
versus 18 · (β log q) (Bulletproof).

– Verifier work (in group multiplications): 4.5β + 7 logS + 13 logC + 9 logL′ + 10 versus at least
3β · log q (lower bound on the cost for Bulletproof, computed as the cost of a single inner product
argument)

– Group size (in bits): log q = log(32(2βCL′)2) + 1 (our work) versus log q = 2λ (Bulletproof)

In the above, prover and verifier work are computed as the number of multiplications required
for the exponentiations (we do not directly count the exponentiations for fairness of comparison:
Bulletproof and our work do not use the same group size, and our optimized construction also uses
exponentiations with short exponents), which largely dominate the overall cost. We note that in both
our work and Bulletproof, the verifier work can be optimized by relying on multiexponentiations
techniques; since these techniques apply identically in both works and do not significantly change
the bottom line in terms of comparisons, we ignore them in this overview.

Asymptotically, our proofs have size O(λ+β), while Bulletproof has size O(λ log β). We note that
in the range of parameters β = O(λ), our techniques actually lead to an asymptotic improvement
over Bulletproof; for larger ranges, Bulletproof is more efficient, and for very small ranges, the
asymptotic costs are the same for both. Previous square-decomposition-based range proofs had
asymptotic cost O(β + λ3−o(1)) due to their use of RSA modulus (which allow for subexponential
attacks).

We stress that when not using the Fiat-Shamir heuristic, our scheme can be instantiated
to have only three rounds (this slightly increases the proof size, because it requires to not use
rejection sampling, since the latter causes the protocol to restart with non-negligible probability)
while Bulletproof requires log β rounds. Even with rejection sampling and our concrete choice of
parameters, the expected number of rounds is less than 5. The round complexity is known to
strongly impact the tightness of the security loss in the random oracle model. Thus for sufficiently
large β, our security analysis is significantly tighter than the one of Bulletproofs in the random
oracle model.

Furthermore, our scheme can be instantiated to have statistical soundness. On the other hand,
Bulletproof allows for extremely efficient batching of a large number of range proofs communication-
wise, and would therefore become preferable when many range proofs must be performed at once if
communication is the sole concern (though it usually is not). In any case, and independently of the
number of range proofs, our range proofs requires 20 to 40 times less group multiplications for the
prover, and 6 to 15 times less for the verifier.

Instantiation in the lattice setting. For the instantiation of our framework in the lattice
setting, we build upon the commitment scheme and proof system from [YAZ+19]. The commitments
built this way allow to commit to long vectors over Znq (think of n as being a few thousands, e.g.

6

Table 1. Comparison between the optimized range proof of Section 5.4 and Bullet-
proof [BBB+18] for various choices of security parameter λ and log of interval size
β. Proof size and group size are in Bytes, prover and verifier work are counted as a
number of group multiplications, rounded to two decimal places. See the paragraph
“detailed comparison with Bulletproof” for the details on our computations.

(β, λ) proof size prover work verifier work Group size

(32, 80) This Work 339 4.6k 2.4k 32
Bulletproof 380 92k > 15k 20

(32, 128) This Work 501 7k 3.7k 44
Bulletproof 608 150k > 25k 32

(64, 80) This Work 383 4.9k 2.6k 40
Bulletproof 420 180k > 31k 20

(64, 128) This Work 545 7.3k 3.8k 52
Bulletproof 672 290k > 49k 32

n = 5000). Our techniques require to use a relatively large modulus q in order to avoid overflows in
the computation. As a consequence, our commitments and proofs are quite large.

However, in exchange for using a large modulus, the commitment and proof system obtained
by compiling the commitment of [YAZ+19] with our techniques allow to batch many range proofs
extremely efficiently: we can essentially perform up to n range proofs in parallel for the cost
of a single range proof, even if the range proofs have different ranges. This improves over the
communication achieved by the best plain LWE-based range proofs [YAZ+19] in a batch setting.
For example for a total proof size of 1.21 MB and β = 32, the scheme from [YAZ+19] allows to
batch 32 range proofs at once, wheras our scheme allows for 180 range proofs.

Note that under Ring-LWE (or Module-LWE) assumptions, range proofs ([ESLL19,BLLS20])
obtain better efficiency. In appendix A, we discuss the application of our techniques in this setting.

Instantiation in the class group setting. Eventually, we also instantiate our method in the
class group setting. The proofs obtained this way improve over our DLOG-based proofs only for
large ranges, where Bulletproof would be more efficient. On the other hand, instantiating our
approach in the class group setting leads to the first concretely efficient construction of unbounded
integer commitment scheme which does not require a trusted setup (the only known alternative
uses RSA-UFO, which is impractical, see the discussion in [LM19]).

Concurrent Works. In the DLOG setting, the work of [CHJ+20] recently claimed an improvement
in proof size compared to [BBB+18] by slightly reducing the number of group elements required in
[BBB+18]. The computational cost of their proof is the same as in [BBB+18]. To our knowledge,
their scheme was not peer reviewed yet; we note that our range proofs are still shorter than theirs,
and more than an order of magnitude computationally more efficient.

2 Technical Overview

As we outlined in the introduction, at the heart of our results is a method to convert standard
homomorphic commitment schemes into bounded integer commitment schemes – that is, a scheme
that allows to commit to integers from a bounded range, but also to prove in zero-knowledge
relations between commited values over the integers, see [FO97,DF02] – with a certain set of
additional specific properties. We now provide details on our approach.

2.1 A Natural Approach via Σ-Protocols

For simplicity, suppose that we have at our disposal a commitment scheme com with message space
and random coin space Zq, for some large prime q, which is homomorphic over the messages and

7

the coins: com(m1; r1) · com(m2; r2) = com(m1 +m2; r1 + r2). This is satisfied for example by the
Pedersen commitment scheme com(m; r) = gmhr for two group elements (g, h) over a group of
order q. The transformation works for a more general class of commitments, this choice of structure
is for the sake of concreteness in the presentation. Suppose now that we would like to obtain a
bounded integer commitment scheme out of com. The first obvious idea is to proceed as follows:

– map values in Zq to integers [−(q − 1)/2, (q − 1)/2] in the natural way;
– define com′ to be exactly like com, but where the committed values are restricted to [−R,R],

where R� (q − 1)/2 is some bound.

Intuitively, the bound R is here to ensure that we will have enough “room” to guarantee that if
a relation between elements of [−R,R] holds modulo q, then it must also hold over the integers.
Looking ahead, for building a range proof, we will want to prove relations of the form x =

∑
i x

2
i ,

and we will choose R such that no overflow occurs when computing
∑
i x

2
i mod q with xi ∈ [−R,R].

The next step is to equip this commitment com′ with a zero-knowledge proof system allowing
to prove relations between committed values over the integers. However, this turns out to be
particularly challenging. To see this, consider the standard Σ-protocol between a prover P and a
verifier V for proving knowledge of an opening (m, r) to a commitment c = com(m; r):

– P: pick (m′, r′) $← Z2
q and send c′ = com(m′; r′).

– V: send a challenge e $← Zq.
– P: send dm = em+m′ and dr = er + r′.
– V: accept if com(m; r)e · com(m′; r′) = com(dm; dr).

Using a standard rewinding argument, we can extract a valid opening (m; r) ∈ Z2
q of c from any

(potentially malicious) prover P∗ which produces accepting proofs with non-negligible probability ε:
run P∗ to get c′, fork it, and run it on two different random challenges e, e′, receiving (dm, dr) and
(d′m, d′r). By a standard probability lemma (see the splitting lemma from [PS96,PS00]), (c′, e, dm, dr)
and (c′, e′, d′m, d′r) will both be accepting transcript with non-negligible probability Ω(ε2). From
the two accepting equations, one gets

c = com((dm − d′m) · (e− e′)−1, (dr − d′r) · (e− e′)−1). (1)

To adapt the protocol to com′, we would need to modify the Σ-protocol such that it additionally
guarantees that the extracted value m belongs to [−R,R]. This actually seems feasible at first
sight if we agree to settle for a relaxed correctness and zero-knowledge guarantee: we only enforce
correctness and (honest-verifier) zero-knowledge whenever m belongs to [−R′, R′], for a bound R′
such that 2λ+κR′ ≤ R, where κ is a statistical security parameter for zero-knowledge, and λ is a
statistical security parameter for soundness (we keep both separate for generality). Then, we can
modify the protocol as follows:

– P: pick (m′, r′) $← [−2λ+κR′, 2λ+κR′]× Zq and send c′ = com(m′; r′).
– V: send a challenge e $← [1, 2λ].
– P: send dm = em+m′ and dr = er + r′.
– V: accept if com(m; r)e · com(m′; r′) = com(dm; dr) and dm ∈ [−R,R].

Intuitively, relaxed correctness and relaxed statistical zero-knowledge follow from the fact that
for m ∈ [−R′, R′] and e ∈ [1, 2λ], dm = em+m′ for m′ $← [−2λ+κR′, 2λ+κR′] will be 2−κ-close to
uniform (in statistical distance) over [−R,R]. It remains to analyze whether we can extract from an
accepting prover a valid witness for com′. However, even though we restricted e and dm to be small,
recall that the extracted value (Equation 1) is of the form m = (dm − d′m) · (e− e′)−1 mod q. That
is, m is not an element of [−R,R] in general; rather, it is the product of an element in [−R,R] and
the inverse modulo q of an element in [1, 2λ]. Therefore, this approach fails at binding the prover to
a value m ∈ [−R,R].

We note that the failure of this approach – the impossibility of extracting values guaranteed to
be short in general – is a well-known problem in the context of lattice-based cryptography. Indeed,
standard Σ-protocol for proving knowledge of a short solution to a system of equation – i.e., a
witness for the SIS problem – suffer from exactly the same limitation (see e.g. the discussions

8

in [BCK+14]). The standard solution is to restrict the challenge set to {0, 1} (to guarantee that
the inverse of the difference between distinct challenges remains small), and to amplify soudness
via parallel repetitions. However, in our context, this would lead to a very inefficient proof system.
Unfortunately, finding a different proof system with much better efficiency seems to be a hard
problem (especially in the single-proof setting).

2.2 Encoding Integers as mod-q Rationals

Instead, we follow a different approach by turning the problem around: rather than searching
an efficient and sound proof system for the commitment com′ above, we seek to find a different
construction of bounded integer commitment com such that the above efficient proof system – which
is not sound because it only allows extracting fractions of small values modulo p – becomes a sound
proof system for com (allowing to extract bounded integers committed with com). Abstracting out,
we saw above that we can extract from a cheating prover a triple (y, d, ρ) ∈ [−R,R]× [1, 2λ]× Zq
such that c = com(y · d−1 mod q; ρ). Our goal will be to find an appropriate choice of encoding
Encode satisfying the following properties:

– com(x; ρ) = com(Encode(x); ρ), such that a commitment to a value x′ with com can be seen as
a commitment to some different value x = Decode(x′) with com.

– Extracting a tuple (y, d, ρ) ∈ [−R,R] × [1, 2λ] × Zq should correspond to extracting a valid
opening of com to some bounded integer x in an appropriate bounded range.

Looking ahead, we will need a few additional properties to hold for Encode if we want to build an
efficient range proofs for com.

– First, we want Encode to satisfy some appropriate homomorphic properties. Informally, we want:
Encode(−x) = −Encode(x), Encode(x+ a) = Encode(x) + a, and Encode(a · x) = a · Encode(x),
for a sufficiently small integer a.

– Second, we want to be able to transfer a square decomposition from encodings modulo q
to encoded integers: informally, proving a relation of the form x′ =

∑
i(x′i)2 mod q where

x′ = Encode(x) and x′i = Encode(xi) should guarantee that x =
∑
x2
i over the integers.

Our choice of encoding. It turns out that there is a choice of (randomized) encoding that
satisfies all of the above constraints simultaneously. In hindsight, this encoding is quite simple and
natural: we view any pair (y, d) ∈ [−R,R]× [1, 2λ] as an encoding (y, d) = Encode(x) of the integer

x =
⌊y
d

⌉
∈ [−R,R],

where the fraction denotes standard division, and b·e denotes rounding to the nearest integer. Given
this choice of encoding, com is defined as follows:

– com(x): pick ρ $← Zq and output commitment c = com(x; ρ) and opening (x, 1, ρ).
– com.Verify(c, ~x, (y, d, ρ)): check that c = com(y · d−1; ρ), x = by/de, y ∈ [−R,R], and d ∈ [1, 2λ].

Some remarks are in order. First, observe that com(x) is defined exactly as com(x); that is,
an honest commitment with com is just a normal commitment with com. This is because we can
view any x ∈ [−R,R] as an encoding (x, 1) of itself (since x = bx/1e). The only difference is that
we relax the verification to accept general openings (y, d) = Encode(x) of x. Second, the fact that
extracting a triple (y, d, ρ) in the Σ-protocol corresponds to extracting a valid opening (w.r.t. com)
of an integer in [−R,R] becomes trivially true. It remains to check two things:

1. com must remain binding and hiding;
2. com must satisfy some homomorphic properties that we outlined above.

9

com is binding and hiding. That com is hiding follows immediatly from the fact that com is
hiding. It remains to consider binding. Suppose that an adversary finds two valid openings (y, d, ρ)
and (y′, d′, ρ′) in [−R,R] × [1, 2λ] × Zq to a commitment c; that is, c = com(y · d−1 mod q; ρ) =
com(y′ · (d′)−1 mod q; ρ′). Since com itself is binding, we must have y · d−1 = y′ · (d′)−1 mod q. This
last equation implies

yd′ = y′d mod q =⇒ yd′ = y′d over Z =⇒ by/d′e = by′/de,

where the first implication holds as long as q is chosen large enough compared to R and 2λ, i.e.,
q/2 > R · 2λ.

Properties of com. First, we check some basic homomorphic properties:

– If (y, d) encodes x = by/de, then (−y, d) encodes −x.
– If (y, d) encodes x = by/de and a is an integer such that ya ≤ R, then com(x)a = com(ayd−1)

is a valid commitment com(ax).
– If (y, d) encodes x = by/de and a is an integer such that y + da ≤ R, then com(x) · com(a) =

com(yd−1 + a) = com((y + da)d−1) is a valid commitment com(x + a) since b(y + da)/de =
by/d+ ae = by/de+ a.

Second, in our most optimized range proof constructions, we will reduce the task of proving that x
belongs to an interval [a, b] to the task of proving that x0 = (x− a)(b− x) is positive. To show the
latter, we will prove that there exists three integers (x1, x2, x3) such that 4x0 + 1 =

∑3
i=1 x

3
i ; such

a decomposition exists (and can be found efficiently) if and only if x0 ≥ 0 [Gro05]. Now, suppose
we extracted encodings (y, d), ((yi, d)i≤3) to 4x0 + 1 and (x1, x2, x3) respectively, with the following
guarantee: yd−1 =

∑3
i=1(yid−1)2 mod q.

Intuitively, this guarantee will be obtained by using a standard Σ-protocol to prove knowledge
of a 3-square decomposition directly over commitments with com. The extracted encodings will all
have a common d, because of the structure of the extraction procedure: d corresponds simply to the
difference between two distinct challenges for which the prover produced an accepting transcript.
The above equation can be rewritten yd =

∑3
i=1 y

2
i mod q, which necessarily holds over the integers

(i.e., no overflow occurs) given that 3R2 < q/2 and 2λR < q/2, since the values y and yi are bounded
by R and d is bounded by 2λ. From there, dividing both sides by d2 over the rationals, we get that
y/d can we written as a sum of three squares over Q. A simple technical lemma shows that this
relation over Q actually suffices to guarantee x = by/de ∈ [a, b]; we omit details in this high level
overview.

Note that in related work [FSW03], a similar encoding is used to allow for homomorphic
computations with bounded rationals. However in our case, bounded rationals appear as an
intermediate result as extracted value (y − y′) · (d− d′)−1 mod q of the proof of knowledge. Our
encoding is for small integers, hence the rounding. Also, the work [LN17] uses the fact that the
extracted value is unique to construct verifiable encryption schemes. Again, the application differs.

2.3 Instantiation in the Discrete Log Setting

Equipped with a method to build bounded integer commitment schemes which satisfy some necessary
properties, we turn to the problem of instantiating the construction in different settings, and building
a range proof from it. In the discrete logarithm setting, we set com to be the standard Pedersen
commitment scheme: com(m; r) = gmhr where (g, h) are two random generators over a group where
computing discrete logarithms is hard. As for the range proof, we rely on the efficient Σ-protocol
of [CPP17], adapting it to prime order group (since the scheme is described over subgroups of Zn
for an RSA modulus n in [CPP17]). This is a relatively standard Σ-protocol where the prover,
given an opening (x, r) for a commitment c = gxhr, commits to three values (x1, x2, x3) such that
4(x−a)(b−x) + 1 =

∑
i x

2
i , and proves knowledge of openings to x, x1, x2, x3 such that this relation

is satisfied. We provide a detailed security analysis of the resulting protocol.
The scheme of [CPP17] already includes a standard optimization for Σ-protocols, which relies

on a collision-resistant hash function to compress the first flow while preserving soundness. We
introduce two important additional optimizations tailored to our setting.

10

First Optimization. Due to our use of a group with a large order, we can actually reduce the size
of the random coins used in the Pedersen commitments, at the cost of relying on the short-exponent
discrete logarithm assumption (DLSE). This improves the computational efficiency, but also reduces
the communication when proving knowledge of an opening. Furthermore, relying on DLSE has an
important consequence: while the protocol of [CPP17] has computational soundness (and statistical
zero-knowledge), we get an alternative instantiation which satisfies statistical soundness (and
computational zero-knowledge).

On getting range proofs with statistical soundness. This alternative instantiation is obtained by
changing the commitment as follows: To commit to m ∈ [−R,R], sample r $← [1,K] and output
gmhr. Here, R is a bound on the committed messages, and K is chosen such that the short-
exponent discrete log assumption, with random exponent chosen from [1,K], is believed to hold.
Applying DLSE, hr is indistinguishable from a uniformly random group element (using a standard
search-to-decision reduction for DLSE in prime-order groups [KK04]). Hence, the scheme remains
(computationally) hiding. Furthermore, gmhr is perfectly binding: the probability (over the random
choice of s such that gs = h) that there exists (m, r,m′, r′) with m′ 6= m such that m+sr = m′+sr′
is negligible by the Schwartz-Zippel lemma and a union bound (when R,K are small enough).

Therefore, using our proof system with short randomness in the Pedersen commitments, with
appropriate parameter adjustment to guarantee perfect binding, we obtain a range proof with
statistical soundness. We note that this is an important feature: the impossibility of getting
statistical soundness with Bulletproof is discussed in Section 4.6 of the Bulletproof paper [BBB+18].
In anonymous transaction schemes, statistical soundness is more important than statistical zero-
knowledge, since the former is crucial for avoiding indetectable creation of coins (which would render
the currency useless), while the second is only necessary to guarantee anonymity (without which the
currency remains usable). Not getting statistical soundness was generally believed to be inherent
to efficient range proofs, since very compact commitments require computational soundness; our
method shows that it is actually possible to get competitive range proofs with statistical soundness.
Note that there is also a natural instantiation of our approach using ElGamal encryption as the
underlying commitment scheme. This also yields a statistically sound range proof but it is less
efficient than the variant of this work.

Second Optimization. The scheme of [CPP17] relies on standard “flooding” to achieve statistical
zero-knowledge: the value e ·m, where m ∈ [−R,R] is a secret value and e ≤ 2λ is a challenge, is
masked with a random m′

$← [1, 2λ+κR] to ensure that em + m′ will be 2−κ-close in statistical
distance to the uniform distribution over [1, 2λ+κR]. However, it turns out that our constraints
are closely related to the constraints satisfied by several Σ-protocols in the lattice setting, which
also deal with careful bounds on the size of secret values. Building upon this observation, we
import a standard optimization of Σ-protocols in the lattice-setting, namely, the rejection-sampling
method [Lyu12]. Using rejection sampling allows different tradeoffs between the group size, the
number of repetitions of the underlying protocol, and the size of the masks used to hide secret values.
We show that an appropriate choice of tradeoff allows to significantly reduce the communication
complexity of our protocol.

3 Preliminaries

Notation. In this work, we generally perform calculations in Z/qZ with representatives Zq =
[− q−1

2 , q−1
2] for an odd modulus q ∈ N, and we identify Zq with Z/qZ, unless stated otherwise.

Inside of flooring bab c or rounding bab e = bab + 1
2c operations, we generally have a, b in Z with

division over Q, i.e. we work with the representatives and not in Z/qZ.
For some randomized algorithm A with input x, we sometimes write y ← A (x; r) for its

execution with explicit randomness r. If the randomness is not explicit, we write y ← A (x) and
assume that the randomness was sampled accordingly. We also write s $← S for sampling s uniformly
random from a finite set S or d $← D to sample d randomly according to a given probability
distribution D. Further, we often assume that some public parameters, denoted by pp, and the

11

security parameter, denoted by λ, are implicitly passed as input to algorithms if it is clear by
context.

Throughout, we write integers a ∈ Z in lower case letters, vectors as ~a ∈ Zn with components
ai, and matrices A ∈ Zm×n in bold upper case letters. Computations on vectors are performed
component-wise, unless stated otherwise. For example, for vectors ~a = (ai)i=1..n,~b = (bi)i=1..n ∈ Zn

and scalar y ∈ Z, we write ~c = ~a ·~b = (ai · bi)i=1..n, y
~B = (ybi)i=1..n and ~By = (byi)i=1..n. For some

constant c ∈ Z, we let by ~c = (c)i=1..n the vector with all components equal to c.
We denote by |x| the absolute value of x ∈ R and by ‖·‖1, ‖·‖2, ‖·‖∞ the norms defined as

‖~x‖1 =
∑
i|xi|, ‖~x‖2 =

√∑
i x

2
i , ‖~x‖∞ = maxi|xi| for ~x ∈ Rm.

3.1 Hash Functions

A (keyed) hash function H is of the form H:K × {0, 1}∗ 7→ {0, 1}l. The key (i.e. the first input) to
H is usually implicit, and part of the public parameters. We require keyed hash functions to achieve
collision-resistance against non-uniform adversaries.

Definition 1 (CRHF). Let H:K × {0, 1} 7→ {0, 1}l be a hash function. We call H a collision-
resistant hash function (CRHF), if for all PPT adversaries A there exists a negligible function negl
such that

Pr
[
k ← K; (m0,m1)← A (1λ, k): m0 6= m1 ∧ H(k,m0) = H(k,m1)

]
≤ negl(λ).

We generally let l = 2λ since there are black box attacks (for example generic birthday attacks)
that break collision resistance in expected 2l/2 accesses, so l ≥ 2λ is necessary for achieving λ bits
of security.

3.2 Commitment Schemes

A commitment scheme com with message space Mcom, commitment space Ccom and opening space
Rcom is a 3-tuple of PPT algorithms (Setup,Commit,Verify) such that

– com.Setup(1λ): outputs public parameters pp,
– com.Commitpp(x): computes a commitment c ∈ Ccom to x ∈Mcom with its opening d ∈ Rcom

and outputs the pair (c, d),
– com.Verifypp(c, x, d): verifies the commitment c ∈ Ccom to x ∈Mcom with the opening d ∈ Rcom

and outputs a bit b ∈ {0, 1}

Further, we require that com statisfies the correctness, binding and hiding properties defined below.
Often, d consists of the randomness used in the commitment generation, but it can include other
auxiliary information.

Definition 2 (Correctness of a Commitment Scheme). A commitment scheme com is correct
if for any pp $← com.Setup(1λ), any message m ∈ Mcom and for (c, d) ← com.Commitpp(m), it
holds that com.Verifypp(c, d,m) = 1− negl(λ).

Definition 3 (Hiding Property of a Commitment Scheme). A commitment scheme com is
hiding if for any PPT adversary A , it holds that

Pr

pp $← com.Setup(1λ), (m0,m1, st)← A (pp),
b

$← {0, 1}, (c, d)← com.Commitpp(mb), : b′ = b
b′ ← A (st, c)

 ≤ 1
2 + µ(λ)

for some function µ(λ) = negl(λ).

Definition 4 (Binding Property of a Commitment Scheme). A commitment scheme com
is binding if for any PPT adversary A , it holds that

Pr
[

pp $← com.Setup(1λ), (c, d0, d1,m0,m1)← A (pp) :
m0 6= m1 ∧ com.Verifypp(c, d,m0) = com.Verifypp(c, d,m1) = 1

]
≤ µ(λ)

for some function µ(λ) = negl(λ).

12

(Homomorphic) Integer Commitment Schemes. In this work, we are interested in integer
commitment schemes which allow to commit to an integer x ∈ Z. An integer commitment scheme
has message space Mcom = Z and allows for proving relations, such as knowledge of an opening, in
a zero-knowledge manner (see section 3.3). We also establish bounded integer commitment schemes
(section 4.1) where the message space is Mcom = {x ∈ Z | |x| ≤ R} for some upper bound R. The
crucial difference between message space Mcom = Zq and Mcom = {x ∈ Z | |x| ≤ R} is: The
former can have additive homomorphism (over Zq), but only binds to a representative of x ∈ Zq,
not to an integer. The latter binds to a (bounded) integer, but has limited homomorphism (over Z).

3.3 Zero-Knowledge Proofs

We define zero-knowledge with setup GenCRS, which generates a common reference string (CRS)
crs← GenCRS(pp). In this work, we only require an unstructured CRS 13. Let R be a NP-relation
over a set X defining a (pp-dependent) NP-language L = {x ∈ X | ∃w : R(pp, x, w) = 1}. For
simplicity, we suppress the dependency on pp when it is clear. A zero-knowledge proof system for
L is a protocol between a prover P and verifier V. We write tr ← 〈P(s),V(t)〉 for the transcript
of an interaction where P (resp. V) has input s (resp. t) and implicit inputs 1λ, pp, crs. We write
b = 〈P(s),V(t)〉 for the verifier’s verdict b. A proof system is public coin if the verifier’s messages are
uniformly random and independent of the prover’s messages, and the verifier outputs b = Verify(x, tr)
for a PPT algorithm Verify.

Due to rejection sampling, our schemes have non-negligible correctness error.

Definition 5 (Correctness). A proof system (GenCRS,P,V) for L has correctness error γerr,
or is γerr-correct, if for every adversary A

Pr
[

pp← GenPP(1λ); crs← GenCRS(pp);
(x,w)← A (pp, crs): 〈P(x,w),V(x)〉 = 1]

]
≥ 1− γerr(λ)

We call (GenCRS,P,V) correct if γerr = negl.

To separate (statistical) simulation and knowledge errors from hardness assumptions as much
as possible, we define zero-knowledge and knowledge extraction by means of adversary advantages.

Definition 6 (HVZK). A simulator Sim for a public coin proof system (GenCRS,P,V) for L is
a PPT algorithm with input a statement x for which (pp, x, w) ∈ R and implicit inputs 1λ, pp, crs,
and output a transcript tr . Let A be a stateful algorithm and let

RealA (λ) = Pr
[

pp← GenPP(1λ); crs← GenCRS(pp); (x,w)← A (pp, crs);
tr ← 〈P(x,w),V(x)〉; b← A (tr): b ∧ R(x,w) = 1

]
IdealA (λ) = Pr

[
pp← GenPP(1λ); crs← GenCRS(pp); (x,w)← A (pp, crs);

tr ← Sim(x); b← A (tr): b ∧ R(x,w) = 1

]
Define the advantage of A by Advhvzk

A ,P,V(λ) = RealA (λ)− IdealA (λ). Then Sim (and by extension
(GenCRS,P,V)) is honest verifier zero-knowledge with simulation error σerr = σerr(λ), if for all PPT
A we have Advhvzk

A ,P,V ≤ σerr + negl.

Definition 7 (Knowledge error). Let (GenCRS,P,V) be a public coin proof system for L . Let
Ext be an expected polynomial time oracle algorithm (with oracle steps counted as one step) with
implicit inputs 1λ, pp, crs. Let A be a (probabilistic) and P∗ be a deterministic algorithm.

RealA (λ) = Pr
[

pp← GenPP(1λ); crs← GenCRS(pp); (x, s)← A (pp, crs);
tr ← 〈P∗(x, s),V(x)〉: Verify(x, tr) = 1

]
IdealA (λ) = Pr

[
pp← GenPP(1λ); crs← GenCRS(pp); (x, s)← A (pp, crs);

(tr , w)← ExtP∗(x,s): Verify(x, tr) = 1 ∧ R(x,w) = 1

]
13 Note that the distinction between structured and unstructured random strings is crucial in real-world

applications: the former unavoidably requires either a trusted third party, or a secure distributed setup.
However, the latter can be instantiated in the real-world using standard heuristic “nothing-up-my-sleeve”
methods.

13

W.l.o.g. Ext let w = ⊥ if Verify(x, tr) 6= 1. The advantage of (A ,P∗) is Advke
A ,P∗,V(λ) =

RealA (λ) − IdealA (λ). A proof system has knowledge error κerr, if for any PPT A , P∗ we have
Advke

A ,P∗,V ≤ κerr + negl.

Our definition of knowledge error is closely related to witness extended emulation [Lin03,GI08],
which also requires that an extractor produces convincing transcripts. This property is trivial to
achieve in our setting, but interferes with our definition of knowledge error. All of our proof systems
are Σ-protocols.

Definition 8. A Σ-protocol Σ for relation R is an interactive three-move protocol consisting of
four PPT algorithms (Σ.Init,Σ.Chall,Σ.Resp,Σ.Verify) between prover P holding a witness w for
the statement x ∈ L and verifier V such that:

– Σ.Init(1λ, w, x)→ (α, st): On input of statement and witness (x,w) with R(x,w) = 1, outputs a
first message α and a state st.

– Σ.Chall(1λ)→ γ: Draw challenge γ uniformly from the set of challenges [0, C].
– Σ.Resp(st, γ)→ ω: On input of previous state st and challenge γ, outputs a response ω.
– Σ.Verify(x, α, γ, ω)→ b: On input statement x and transcript α, γ, ω, accepts (b = 1) or rejects
(b = 0).

Moreover, Σ must satisfy correctness and HVZK. As usual, the algorithms have implicit inputs
1λ, pp, crs.

The simulators for our Σ-protocols actually show special HVZK, that is, they work given any
(adversarial) challenge γ. Letting Sim pick γ $← [0, C] yields standard HVZK. To prove knowledge
extraction, we rely on k-special soundness.

Definition 9 (k-special soundness). A k-special soundness extractor Ext is a PPT algorithm
which takes as input a set of k accepting transcripts Γ = {(α, γi, ωi) | Σ.Verify(x, α, γi, ωi) = 1}i=1..k
with fixed α and pair-wise distinct challenges γi, and outputs a valid witness w ← Ext(Γ), i.e.
R(w, x) = 1.

In security proofs, k transcripts will either yield a witness or break an assumption. Formally,
we consider the language L ∨Lhard instead of L . We recall how to obtain k transcripts for a
special-soundness extractor as in definition 9.

Remark 1 (Getting k transcripts). If the adversary’s success probability is at least k/((C + 1)),
this is easily solved in expected polynomial time. Just rewind and try fresh challenge. In expected
constant rewinds, a second accepting challenge γ will be found. The probability that γ was not
encountered before is at least 1/k. Since k = poly in expected polynomial time, k distinct transcript
are found. Thus, we can assume w.l.o.g. that we have k transcripts as in definition 9.

Instead of relying on expected polynomial time, one can reduce to strict PPT by truncation while
retaining inversely polynomial advantage, but this incurs a hard to quantify loss. Alternatively, by
standard arguments, e.g. the forking lemma [PS00], k rewinds yield k accepting transcripts with
probability at least (ε2)k and these are as in definition 9 with probability at least (k−1)!

(ε·(C+1))k .

Definition 10 (Fiat–Shamir Transformation). The Fiat–Shamir transformation applied to
a Σ-protocol replaces the verifier’s random challenge by a hash, resulting in a non-interactive
proof system. Concretely, the prover computes (α, st) ← Σ.Init(w, x), then γ = H(x, α) and
ω ← Resp(st, γ). This results in a non-interactive proof π = (α,w), since a verifier can check
Σ.Verify(x, α, γ, ω) by recomputing γ = H(x, α). Our Σ-protocols satisfy the property, that given
x, γ, ω, the unique accepting α can be computed efficiently. Thus, an alternative, often shorter,
non-interactive proof π = (γ, ω) is possible. Now, the verifier computes α, and checks γ = H(x, α)
and Σ.Verify(x, α, γ, ω). Security can be proven if H is modelled as a random oracle (and C is
superpolynomial). The technique can be extended to work with random aborts of the prover.[Lyu09].

14

Fig. 1. The execution of a Σ-protocol between a prover and a verifier.

Prover(w,x)

Commit to the mask of the witness
(α, st)← Init(1λ, w, x)

Compute masked witness
ω ← Resp(st, γ)

Verifier(x)

Draw random challenge
γ ← Chall(1λ)

Output 1 iff
Verify(x, α, γ, ω) = 1

α

γ

ω

Range Proofs. A range proof is essentially a zero-knowledge proof that guarantees that a
committed value x resides inside a specified interval [a, b]. We can show so by setting y = (b−x)(x−a),
computing the commitment to y homomorphically from the commitment to x and the constants
a, b, and showing that y ≥ 0 in a zero-knowledge manner. The following lemma yields a strategy to
show that committed integers are non-negative.

Lemma 1 (Decomposition into 3 Squares [RS86,Gro05]). Let y ∈ Z be an integer. It holds
that

y ≥ 0 ⇐⇒ ∃{xi}i=1..3 : 4y + 1 =
∑
i=1..3

x2
i

Further, the integers xi can be efficiently computed. In [PS19], the runtime of finding the decompo-
sition was improved to O(log2(y)/log log(y)) multiplications.

3.4 Tools in the DLOG setting

Hardness Assumptions. First, we establish the hardness assumptions that our scheme in the
DLOG setting is based on (see section 5). To avoid trusted setup, we assume a deterministic family
G = Gλ of cyclic groups with generator gλ and known order qλ, generated by a group generator
(Gλ, gλ, qλ) = GenGrp(1λ). For notational simplicity, we leave GenGrp implicit in the rest of the
work.

Definition 11 (S-Bounded DLSE and SEI Assumption). Consider a group G of order q with
generator g. Let S < q. The S-bounded DLSE assumption holds if for all PPT A there is a negligible
negl such that

Pr
[
z

$← {0..S − 1}, z′ ← A (gz): z = z′
]
≤ negl(λ)

The S-bounded short exponent indistinguishability (SEI) assumption holds if for all PPT A there
is a negligible negl such that∣∣∣Pr

[
z

$← {0..S − 1} : A (gz) = 1
]
− Pr

[
z

$← Zord : A (gz) = 1
]∣∣∣ ≤ negl(λ)

Throughout this work, we generally set S = 22λ. Note that DLOG assumption is equivalent to the
q-bounded DLSE assumption.

Tools. Now, we introduce some lemmas and a commitment scheme that we later on utilize for
constructing the bounded integer commitment and range proof.

Lemma 2 ([KK04]). Let G be a group of prime order q with generator g ∈ G. For S < q/2, the
S-bounded DLSE and SEI assumptions are equivalent.

We consider a Pedersen commitment scheme [Ped92] with smaller openings in exchange for a
computational (instead of statistical) hiding property.

15

Definition 12 (Pedersen Commitments with Short Openings.). Let G be a group of prime
order q. The scheme Ped consists of a 3-tuple of PPT algorithms (Ped.Setup,Ped.Commit,Ped.Verify)
such that

– Ped.Setup(1λ): samples g, h $← G and outputs public parameters pp = (g, h),
– Ped.Commitpp(x): samples d $← [0, 22λ] for x ∈ Zq, sets c = gxhd and outputs the pair (c, d),
– Ped.Verifypp(c, x, d): outputs 1 iff c = gxhd.

Using d $← [0, 22λ] instead of d $← [0, q−1] (as in [Ped92]) still achieves computational hiding: Under
SEI (or equivalently DLSE), we can replace the short random exponent d in hd with a full random
d

$← [0..q − 1] in a hybrid game. Now gxhd is uniformly distributed, independent of x.

3.5 Tools in the Lattice setting

Hardness Assumptions Now, we state the required hardness assumptions for section 6. Note
that we generally instantiate the distribution χ of the LWE assumption with a discrete Gaussian
distribution defined further below.

LWEn,m,q,χ (Normal Form) Given a random matrix A ∈ Z(m−n)×n
q and a vector ~b ∈ Zm−nq

generated according to either of the following cases:

1. ~b = A · ~s+ ~e where ~s $← χm−n and ~e $← χn

2. ~b $← Zm−nq

distinguish which is the case.

SISn,m,q,β (Normal Form) Given a random matrix A ∈ Zn×(m−n)
q , find a non-zero ~z ∈ Zm s.t.

‖z‖ ≤ β and
[
In A

]
· ~z = ~0.

Tools. Gaussian distributions and related lemmata introduced in section 3.7, such as rejection
sampling, are standard tools in the lattice setting. Now, we state the commitment scheme from
which we construct a bounded integer commitment scheme.

Definition 13 (Commitments with Relaxed Opening in the Lattice Setting.). The fol-
lowing commitment scheme was defined in [BDL+18] and adapted to the standard LWE setting in
[YAZ+19]. Let q ∈ N be a large enough power of a prime and n ∈ N. Let l1, l2, C ∈ poly(λ) and
σ ≥

√
2l2/π be positive integers. We define l := l1 + l2 + n. Let T ∈ N such that T ≥ σ

√
l. The

commitment scheme with Mcom = Znq is defined as follows:

– Lat.Setup(1λ): for A1
$← Zl1×(l2+n)

q ,A2
$← Zn×l2q , sets

A =
[

Il1 A1
0n×l1 In A2

]
and outputs pp = A.

– Lat.Commitpp(x): for ~x ∈Mcom, samples ~r $← Dl
σ, sets ~c = A · ~r + (~0 ‖ ~x) and outputs the pair

(~c, (~r, 1)).
– Lat.Verifypp(~c, ~x, (~r, f)): for ~x ∈Mcom with the opening (~r, f) ∈ Zl1+n+l2 × Z checks if

f · ~c = A · ~r + f · (~0 ‖ ~x)
‖~r‖ ≤ T
|f | ≤ 2C

Note that a commitment has bit-size (l1 + n) · log(q). In the following, we extract the proof of
security of Lat of [YAZ+19] from the proof of security of their zero-knowledge scheme.

16

Lemma 3. The commitment scheme Lat is correct.

Proof. We have f = 1 ≤ 2C, by design ~c = ~A ·~r+(~0‖~x) and using lemma 10 also with overwhelming
probability ‖~r‖ ≤ σ

√
l1 + l2 + n ≤ T .

Lemma 4. The commitment scheme Lat is binding under the SISl1,(l2+n+l1),q,β assumption for
any β ≥ 4CT .

Proof. Given a SIS instance A1 ∈ Zl1×(l2+n)
q , sample A2

$← Zn×l2q and set pp = A =
[

Il1 A1
0n×l1 In A2

]
.

Assume an adversary given pp can output (~c, (~r0, f0), (~r1, f1), ~x0, ~x1) such that ~m0 6= ~m1 and
Lat.Verifypp(~c, ~x0, (~r0, f0)) = Lat.Verifypp(~c, ~x1, (~r1, f1)) = 1, so:

f0 · ~c = A · ~r0 + f0 · (~0 ‖ ~x0) ∧
f1 · ~c = A · ~r1 + f1 · (~0 ‖ ~x1)

=⇒ f1f0 · ~c = f1A · ~r0 + f1f0 · (~0 ‖ ~x0) ∧
f0f1 · ~c = f0A · ~r1 + f0f1 · (~0 ‖ ~x1)

=⇒ f0A · ~r1 + f0f1 · (~0 ‖ ~x1) = f1A · ~r0 + f1f0 · (~0 ‖ ~x0)
=⇒ A · (f0~r1 − f1~r0) + f0f1 · (~0 ‖ ~x1 − ~x0) = ~0
=⇒

[
Il1 A1

]
· (f0~r1 − f1~r0) = ~0

So ~z = (f0~r1 − f1~r0) is a solution to the SIS instance because additionally it holds that:

‖f0~r1 − f1~r0‖ ≤ ‖f0~r1‖ + ‖f1~r0‖
≤ 2 · (2CT)
≤ β

Lemma 5. The commitment scheme Lat is hiding under the LWEl2,l1+n+l2,q,Dσ assumption.

Proof. On input of LWE instance (A,~b) ∈ Z(l1+n)×l2
q × Zl1+n

q , sample matrix R
$← Zl1×nq . Set

B =
[

Il1 R AU + RAL

~0n×l1 In AL

]
,~c =

[
~bU + R ·~bL

~bL

]

for A =
[
AU

AL

]
and ~b =

[
~bU
~bL

]
. Since A is random, public parameter pp = B is distributed as in

Lat.Setup and in case of ~b = ~A ·~s+~e for ~s $← Dl2
σ and ~e $← Dl1+n

σ , ~c is distributed as a commitment
to ~x and otherwise a random element of Zl1+n

q .

In summary, the security of the commitment scheme Lat relies on the LWEl2,l1+n+l2,q,Dσ assumption
and the SISl1,(l2+n+l1),q,β assumption with β ≥ 4CT .

3.6 Tools in the Class Group Setting

We recap the definition of class groups and present the setting considered in this work. The class
group assumptions in this setting are discussed in [BFS20].

Class Groups. A class group G = Cl(∆) of an imaginary quadratic order is the quotient group of
fractional ideals by principal ideals of the group Q(∆) with ideal multiplication. It is defined by its
discriminant ∆ which must satisfy ∆ ≡ 1 mod 4 and −∆ must be a prime. Note that the ∆ can
be generated from public coins for a given security parameters λ. We can compute bounds of the
order of the group L,U ∈ poly(λ) such that 2L ≤ ord(G) ≤ 2U .

Further as in [DF02], we split G in two subgroups G = U×H such that U and H only contain
elements of order comprised of small and large prime factors respectively. In more detail, we compute

17

functions lG(·), CG(·) such that CG(λ) > lG(λ), lG is a polynomial in λ with ord(U) < lG(λ) and
ord(H) only has prime factors larger than CG. We call elements u ∈ U CG(λ)-smooth and elements
h ∈ H CG(λ)-rough. This split is necessary for a statistical argument in the proof of security of a
range proof scheme in this setting. We will setup group elements as public parameters that are
CG(λ)-rough which can be done by taking some random group element to the power of lG(λ)!. This
is feasible since lG(λ) is polynomial in λ. Also, we assume that whenever an entity receives a group
element it verifies the membership in protocols.

Note that there exists an efficient algorithm for computing square roots of arbitrary elements.
Thus class groups can be used to commit to dyadic rationals a

2k for a, k ∈ Z. Applying the
encoding technique from section 4, we can map dyadic rationals to unique integers while retaining
homomorphic properties. This gives rise to an unbounded integer commitment scheme without
trusted setup described in section 7.

Lemma 6 (Random Group Elements). For given g ∈ Cl(∆), the statistical distance of the
distributions U 〈g〉 and {gx | x $← [0, 2U · L]} is at most L−1.

Proof. This follows similarly as in lemma 8 and we omit the details.

Assumptions. The following assumptions are believed to hold in class groups. Note that we adapted
the version of [BFS20] slightly to exclude zero solutions.14

Definition 14 (ORD). The order (ORD) assumption holds for a given group G if for any PPT
adversary A it holds that

Pr

(w,α)← A (G)
w ∈ G \ {1},
0 6= |α| < 2poly(λ)

: wα = 1

 ≤ µ(λ)

for some function µ(λ) = negl(λ).

Definition 15 (r-fROOT). The r-fractional root (r-fROOT) assumption holds for group G if for
any PPT adversary A it holds that

Pr

g

$← G
(α, β, u)← A (G, g)
0 6= |α| < 2poly(λ) ∈ Z
|β| < 2poly(λ) ∈ Z
u ∈ G

: uβ = gα ∧ β

gcd(α, β) 6= rk for k ∈ N

 ≤ µ(λ)

Note that the 2-fROOT assumption is believed to hold in the setting of class groups with imaginary
quadratic order.

Definition 16 (SI). The subgroup indistinguishability (SI) assumption holds for group G if for
any PPT adversary A it holds that

Pr
[
g, h0

$← G, h1
$← 〈g〉,

b
$← {0, 1}, b′ ← A (G, g, hb)

: b = b′
]
≤ 1

2 + µ(λ)

This assumption was introduced in [BG10] and instantiated in RSA groups under the quadratic
residuocity assumption (or the decisional composite residuocity assumption). It was also mentioned
in [BFS20] and was slightly adapted to fit their setting in class groups.

14 This refers to excluding that α = 0 in the following assumptions. This condition is not checked in the
definitions of [BFS20] but assumed to be true in the reductions between common RSA group assumptions,
namely the adaptive root assumption and the strong RSA assumption, and the order and fractional root
assumption. Further, the problems in the given assumptions would be trivial if α = 0 was accepted as
solution.

18

Lemma 7 (Forcing Zero Exponents). Let g, h $← G = Cl(∆). For any PPT adversary A it
holds that

Pr
[
(α, β)← A (G, g, h)
|α|, |β| < 2poly(λ) : gα = hβ ∧ α 6= 0

]
≤ µ(λ)

under the (weak) ORD and SI assumption for some function µ(λ) = negl(λ).

Proof. Let A be a successful PPT adversary on the above problem and U ∈ poly(λ) be a bound on
the order of the group G, so ord(G) < 2U . We construct an adversary B on the ORD assumption.

B receives G from the challenger, samples g $← G, ν ∈ [0, 22U+λ], sets h = gν and provides
(G, g, h) as input to A . In return, B receives α, β and answers with α− νβ to the ORD challenger.

By the SI assumption and lemma 6, gν is indistinguishable from an uniformly random h ∈ G.
Thus A will retain a non-negligible success rate and in the event of success, it holds that |α|, |β| <
2poly(λ), α 6= 0 and gα = hβ . Thus, it holds that

α− νβ = 0 mod ord(g)

Note that B only reveals ν mod ord(g) to A . So the particular choice of ν ∈ Z is hidden and with
overwhelming probability of 22U+λ/2U , it holds that α− νβ 6= 0 in Z.

3.7 Tools for Zero-Knowledge

As a technical tool for achieving zero knowledge, our protocols use additive masking of the witness.
We recall the tools for masking here.

Lemma 8 (Masking with the Security Parameter). For any C,B,L ∈ N and fixed x ∈
[−B,B], γ ∈ [−C,C], the distributions U = U [0, BCL] and V = {m+ γ · x | m $← [0, BCL]} have
statistical distance at most 1/L.

Rejection sampling and Gaussian noise allow to use smaller masks.

Definition 17 (Discrete Gaussian Distributions, [YAZ+19]). The continuous Gaussian dis-
tribution over Rm centered around ~v ∈ Rm with standard deviation σ is defined by the den-

sity function ρm~v,σ(~x) = (1√
2πσ2)me

−‖x−v‖2
2

2σ2 . The discrete Gaussian distribution over Zm centered
around ~v ∈ Zm with standard deviation σ is defined as Dm

~v,σ(~x) = ρm~v,σ(~x)/ρmσ (Zm), where
ρmσ (Zm) =

∑
x∈Zm ρ

m
σ (x). We write Dm

σ (~x) = Dm
~0,σ(~x) for short.

Lemma 9 (Relationship between norms). For v ∈ Rm, the inequalities of norms, ‖v‖∞ ≤
‖v‖1 ≤

√
N‖v‖2 ≤ N‖v‖∞, are well known.

Lemma 10 (Lemma 4.4, [Lyu12]).

– For any k > 0 it holds that Pr[|z| > kσ | z $← Dσ] ≤ 2e−k
2

2 .
– For any k > 1 it holds that Pr[‖~z‖2 > kσ

√
m | ~z $← Dm

σ] < kme
m
2 (1−k2).

Lemma 11 (Theorem 4.6, [Lyu12]). Let V be a subset of Zm in which all elements have ‖·‖2
norms less than T , σ ∈ R such that σ = ω(T

√
logm) and h : V 7→ R a probability distribution.

Define algorithms T (resp. S) as follows:

1. ~v $← h
2. ~t $← Dm

~v,σ (resp. ~t $← Dm
σ)

3. output (~t,~v) with probability min
(

Dmσ (~t)
M ·Dm

~v,σ
(~t) , 1

)
(resp. with probability 1/M)

Then there exists a constant M = O(1) such that the output distributions of T and S are
within statistical distance 2−ω(logm)

M . Moreover, the probability that T outputs something is at least
1−2−ω(logm)

M .

Note that if σ = αT for some α > 0, then M = e13.3/α+1/(2α2), the output of algorithm T is within
statistical distance 2−128/M of the output of S and the probability that T outputs something is
at least 1−2−128

M [YAZ+19,HPWZ17].

19

4 Integer Commitments from Rounding Fractions

In this section, we introduce bounded integer commitments and motivate the construction of range
proofs based on these commitments.

4.1 Bounded Integer Commitment Scheme

We introduce a commitment scheme transformation that allows to commit to bounded integers.
The core feature of this transformation is its proof-friendliness: standard Σ-protocols for proving
knowledge of a square decomposition (or, more generally, any low-degree polynomial relation)
with the original commitment (over a field Zq) can be re-interpreted (with minor adaptations) as
Σ-protocols for proving knowledge of a square decomposition (resp. low-degree relation) over Z with
respect to the transformed commitment scheme. In addition, the transformation preserves some
homomorphic properties of the underlying scheme, which turns out to be crucial in the application
to range proofs.

Definition 18 (The Transformation). Let com be a commitment scheme with message space
com.Mcom = Znq and opening space com.Rcom. We define the commitment scheme com over
parameters U,C ∈ N such that U < q−1

2 with

– com.Mcom = {~x ∈ Zn | ‖~x‖∞ ≤ U/C}
– com.Rcom = {(d, γ, ~y) ∈ Rcom × Z× Zn | γ ≤ C, ‖~y‖∞ ≤ U/C}

as follows:

– com.Setup(1λ): outputs pp← com.Setup(1λ).
– com.Commitpp(~x): computes (c, r)← com.Commitpp(~x) and outputs

(c, (r, 1, ~x)).
– com.Verifypp(c, ~x, (r, γ, ~y)): sets ~z = ~y · γ−1 mod q and checks ~x = b ~yγ e, |γ| ≤ C, γ 6= 0, ‖~y‖∞ ≤
U/C, com.Verifypp(c, ~z, r) = 1 as well as ~x = b ~yγ e, where division is performed in Qn.

Lemma 12. The commitment scheme com is correct, binding and hiding.

The correctness and hiding properties follow directly from the security of com. The binding property
can be argued similarly.

Let A be a PPT adversary breaking the binding property of com. We design a PPT adversary
B that breaks the binding property of com with challenger C.

On receiving pp from the challenger C, B forwards pp to A and receives (c, (d0, γ0, ~y0),
((d1, γ1, ~y1), ~x0, ~x1). B sets ~zi = ~yi · γ−1

i mod q and just forwards (c, d0, d1, ~z0, ~zi) to C. If A
is successful, both commitments verify correctly with respect to com and ~x0 6= ~x1. Thus by defini-
tion of com.Verify, the verification check for the sent openings are valid with respect to the scheme
com. Note that ‖~yi‖∞ ≤ U/C, |γi| ≤ C for i ∈ [0, 1]. So ‖~yi · γi‖∞ ≤ U ≤

q−1
2 . Assume for the sake

of contradiction that ~z0 = ~z1:

~z0 = ~z1 =⇒ ~y0 · γ1 = ~y1 · γ0 mod q =⇒ ~y0 · γ1 = ~y1 · γ0 in Q

=⇒ ~y0

γ0
= ~y1

γ1
in Q =⇒

⌊
~y0

γ0

⌉
=
⌊
~y1

γ1

⌉
in Q

This contradicts ~x0 6= ~x1 and thus the advantage of B is the same as A .

Arguing over the Integers. Now, we motivate how to perform proofs over the integers on the
example Ped. Let Ped be the scheme obtained by the above transformation applied to Ped. Let
C = 2λ determine the challenge space, S = 22λ determine the size of the randomness and L = 2λ
be the masking overhead. Let 2λ = C < U ∈ N and let q be prime with 2U < q. Let G be a group
of order q. For clarity, we restate the scheme:

– Ped.Setup(1λ): outputs pp = (g, h) $← G2.
– Ped.Commit(pp, x): samples r $← [0, S] and outputs (c = gxhr, (r, 1, x)).

20

– Ped.Verify(pp, c, x, (r, γ, y)): checks gy·γ−1
hr = c as well as x = b yγ e, where the division is

performed in Q, |γ| ≤ C, γ 6= 0 and |y| ≤ U/C.

The most essential protocol is the proof of knowledge of an opening. We now establish an unoptimized
version in order to gain a basic understanding of the underlying arguments. The relation we prove is

R = {(c, (x, (r, γ, y))) | Ped.Verify(c, x, (r, γ, y)) = 1}.

For the correctness property, we are only interested in honest openings, so γ = 1, y = x. The proof
scheme follows the conventional strategy of blinding the witnesses (x, r) with a mask. We add a
size check for the masked witness to ensure the shortness of the opening. Note that the message
space of Ped is {x ∈ Z | x ≤ U/C} but we can only perform proofs for smaller x values because the
commitments need to stay binding after the masking process. In more detail, we let B ∈ N such
that 2BCL ≤ U/C and we allow for messages |xi| ≤ B. The following protocol proves knowledge
of an opening.

– Init(c, (x ∈ [−B,B], r ∈ [0, S])): m $← [0, BCL], s $← [0, SCL]; outputs d = gmhs.
– Chall(): outputs γ $← [0, C]
– Resp(γ): sets z = m+ γ · x, t = s+ γ · r. Outputs (z, t)
– Verify(d, γ, z, t): checks |z| ≤ BCL and gzht = d · cγ .

The first verification check succeeds with overwhelming probability since the probability that the
random m is too close to BCL is small. The second check succeeds due to

gzht = gm+γ·xhs+γ·r = gmhs · (gxhr)γ = d · cγ .

Further, lemma 8 also implies that z, t hide the witnesses x, r statistically and using d = gzht · c−γ ,
a valid transcript can be computed for a given challenge γ. Thus, the scheme honest-verifier is
zero-knowledge. The following soundness argument shows how to extract correct openings.

First, let (d, γ, z, t), (d, γ′, z′, t′) be two accepting transcripts with γ 6= γ′. Without loss of
generality, we assume that γ′ > γ. We denote z = z′ − z, t = t′ − t and γ = γ′ − γ. We know
that gz′−zht′−t = cγ

′−γ which directly implies gz/γht/γ = c. Thus, γ∗ = γ, r∗ = t/γ, y∗ = z and
x∗ = b y

∗

γ∗ e is a valid opening for c. Note that the size checks are satisfied:

|γ∗| ≤ C, |y∗| ≤ 2BCL ≤ U/C.

Note that we know that x∗ is short because γ∗ and y∗ are short, so the above protocol can already be
seen as range proof that guarantees that the committed value lies in [−2BCL, 2BCL]. Nonetheless,
this is not very satisfying yet because the slackness of 2CL = 22λ+1 is very large. But the shortness
of the extracted values can be used to argue in Z instead of Zq which opens the door for more
sophisticated arguments.

On Retaining Homomorphism. If the original scheme is homomorphic, the transformation
retains (restricted) homomorphic properties. Firstly, if the commitments are generated honestly,
the homomorphic property is retained as long as the homomorphic calculation is performed inside
the bound U/C of the scheme. In case of dishonest commitments, the scheme still retains a more
limited form of homomorphic properties.

If the scheme com allows for addition of constants to the committed value, the homomorphic
property is retained up to overflow over the bound U/C. To illustrate, let ~t ∈ Znq be some constant
and c a commitment to message ~m = b~y/γe with opening (r, γ, ~y). Note that c commits to ~y/γ
modulo q with respect to com and we can use the homomorphic operations. We have

(~y/γ) + ~t = ~y/γ + (~t · γ)/γ = (~y + ~t · γ)/γ mod q

and b~y+~t·γ
γ e = b~y/γe + ~t = ~m + ~t. So the result of the homomorphic operation is actually exact

because the additional operand does not introduce an additional error term. Note that for the
opening to be correct, the norm

∥∥~y + ~t · γ
∥∥
∞ needs to be smaller than U/C. So, enough space needs

21

to be guaranteed to perform homomorphic operations. The analysis for retaining multiplicative
homomorphic properties for small constants is similar.

In the case of additive and multiplicative homomorphisms between dishonest commitments,
there are some small error terms and thus, the properties do not translate as directly. For
homomorphic properties between dishonest commitments, the analysis is a bit more complicated
and properties do not transfer directly. We illustrate this for the additive homomorphism. Let com
be additively homomorphic, so there exists a function ⊕ for all commitments c0, c1 to messages
~m0, ~m1 ∈ com.Mcom with openings r0, r1 respectively, it holds that:

c = com.Commit(~m0 + ~m1, r0 ⊕ r1) = c0 ⊕ c1.

Let c0, c1 be commitments with messagesm0,m1 and valid openings (r0, γ, ~y0), (r1, γ, ~y1) respectively
with respect to the scheme com. We set c = c0 ⊕ c1. Since the commitments c0 and c1 are valid
commitments to messages ~y0/γ (q) and ~y1/γ (q) with respect to the scheme com, c is a commitment
to ~y = (~y0 + ~y1)/γ (q) with opening r0 ⊕ r1. The bound and non-zero check for γ succeed by
definition and if ‖~y0 + ~y1‖∞ < U/C, then ~y passes the check as well.

The commitment will commit to m = b~y0+~y1
γ e, where the division is performed in Rn. We can

write ~yi
γ = ~mi + ~µi for −0.5 ≤ ~µi < 0.5. With this, we have

~m = ~m0 + ~m1 + b~µ0 + ~µ1e.

So the homomorphic calculation is correct, if ~µ0 + ~µ1 rounds to 0 for each component. This is not
guaranteed for all possible openings, so the homomorphic property does not translate directly in
the transformation without further care. Also, in case ~y0 + ~y1 is larger than U/C, the result of
the homomorphic operation results in commitments that do not commit to the “desired” value.
For example, let y0 + y1 = 1/3 mod q with (non-zero) representative of 1/3 > U/C. The opening
(d0 ⊕ d1, 3, 1) with message 0 will be a valid opening for the commitment. Thus, the use of
homomorphic operations in com need to be performed with attention to the specific setting.

For range proofs, the homomorphism with small constants can be used to prove the 3-square
decomposition of the integer and the complications from multiplicative and the additive homomorphic
error terms can be balanced out such that we can still prove the relation with the homomorphic
property of the underlying schemes.

Ensuring Membership of an Interval. We use the 3 square decomposition in order to show
membership of [0, B]. This can be extended to a range proof for interval [a, b] by setting B = b− a.
Since com allows for addition of constants, the prover can show x− a ∈ [0, B] =⇒ x ∈ [a, b]. Note
that the values still need to lie inside the given bounds.

We are using the 3 square decomposition to show that x ∈ [0, B]. Since the extracted x is a
rounded fraction, we still need to ensure that the decomposition shows the desired range membership.

Lemma 13 (Three Square for Rounded Fractions). Let n, d ∈ Z and x = bnd e, {xi}i=1..3 ∈ Q
and B ≥ 2. Then:

1 + 4n
d

(
B − n

d

)
=

3∑
i=1

x2
i =⇒ x ∈ [0, B].

Proof. A simple calculation shows that n
d ∈ [1

2 (B −
√
B2 + 1), 1

2 (B +
√
B2 + 1)]. This interval can

further be bound as follows:

1
2

(
B +

√
B2 + 1

)
= 1

2B
(

1 +
√

1 + 1
B2

)
≤ 1

2B
(
1 + 1 + 1

B2

)
= B + 1

2B

A similar computation for the left bound shows that the 3-squares decomposition implies n
d ∈

[− 1
2B , B + 1

2B]. Since B ≥ 2, we find n
d ∈ [− 1

4 , B + 1
4]. Rounding leads to the desired result. (In

fact, this holds even for B = 1.)

22

Further Properties. Our adapted commitment scheme and range proofs have additional useful
properties.

Remark 2 (RP for com). For denominator γ = 1, com coincides with com. Under this precondition,
our range proofs establish x ∈ [0, B] for also com-commitments.

Remark 3 (Positivity). Our proofs show x ∈ [0, B]. However, in many applications, proofs of
positivity (x ≥ 0) suffice. That is, B could be made into a zero-knowledge threshold (used for
masking only), so that for x > B no zero-knowledge guarantees hold.15 This change is achieved by
proving 1 + 4x =

∑3
i=1 x

2
i . Now, soundness guarantees x ∈ [0, q−1

2].

Remark 4 (Denominators). A closer look at soundness shows, that a denominator γ > 1 leads to a
rejection with probability 1− 1

γ . Thus, the larger γ, the less likely will a (malicious) verifier succeed.

5 Range Proof in a DLOG Setting

5.1 Overview

In this section, we present the range proof in the setting of a group G with prime order q under the
DLOG (or DLSE) assumption.16 As basis, we use Pedersen commitments Ped, which we transform
in a bounded rational commitment schemes Ped as in section 4.1. Recall that the difference of Ped
and Ped is mostly in the interpretation of the committed values.

Our protocol reuses the structure of existing range proofs based on Pedersen commitments
in the RSA setting (see [Lip03,Gro05,CPP17]). For a given commitment c = gxhr, the prover
computes the square decomposition 1 + 4(b− x)x =

∑
i=1..3 x

2
i and lets x0 = b− x. Thus, we prove

1 + 4x0x =
∑
i=1..3 x

2
i . Note that all xi are in the range [0, B]. The prover commits to ci = gxihri

for some randomly sampled ri for i ∈ [1, 3], and sets c0 = gbc−1. For a proof of knowledge of xi, he
computes mask commitments di = gmihsi (and an additional “garbage” term d), and sends them
to the verifier. After receiving the challenge γ, the prover reveals zi = mi + γxi and ti = si + γri
and the verifier can check whether the equation gzihti = cγi di holds (and an equation for the square
decomposition).17 The verifier checks the proof of knowledge and accepts only if zi and ti are
small. As usual, if the prover can answer two different challenges γ, γ̃, openings can be extracted.
These openings are xi = zi−z̃i

γ−γ̃ with short nominator and denominator, and they satisfy the square
decomposition (or DLOG is broken). This shows soundness (for Ped openings), Furthermore, as
we sketched in the introduction, when small exponents are used for the masking term hy, and by
adjusting the parameters, soundness can actually be proven statistically. In our parameter choice,
however, we will optimize for efficiency and focus on computational soundness.

For zero-knowledge, the witness is blinded by the masks mi. Since the mi’s must be small (hence
are not uniform in Zq), we do not get perfect zero-knowledge. However, xi+mi still statistically hides
xi. This is enough to establish (statistical) zero-knowledge by the usual “simulation by execution in
reverse”. The construction and proof is somewhat complicated by using small exponents for the
masking term hy, which consequently must be masked itself.

5.2 Parameters

Let pp = (g, h, q) be the public parameters of the commitment scheme Ped in group G with order q,
let H : {0, 1}∗ 7→ {0, 1}2λ be a collision resistant hash function, and let [0, B] be the range with
B ≥ 2. Let [0, C] be the challenge set. Let S be the size of small exponents in the SEI assumption,
and let L be the growth factor of masked intervals due to additive noise, that is, masking [0, B]
results in [0, BL]. We define U = 32B2C2L2 and note that it serves as an upper bound for the
integers appearing in the security proof. In particular, we require U < q−1

2 . The prover shows that
he knows x, r committed in c = gxhr = Ped.Commit(x; r) and that x ∈ [0, B]. (Other commitments
are interpreted as Ped)
15 In fact, masking and hence zero-knowledge degrades gracefully in the size of x.
16 The optimization of the Pedersen commitment scheme with short exponents relies on the SEI, which for

relevant ranges is equivalent to DLSE.
17 In the scheme, we use a hash function to avoid having to send the mask commitments to the verifier to

save space.

23

5.3 Scheme

The scheme RPLog follows the structure of the line of work [Lip03,Gro05,CPP17]. We adapt the
scheme to the DLOG setting and apply our encoding technique.

– RPLog.Init(c = gxhr, x ∈ [0, B], r ∈ [0, S]):
1. compute xi s.t. 4x(B − x) + 1 =

∑3
i=1 x

2
i

2. Set r0 = −r, x0 = B − x
3. Set c0 = c−1gB

4. Set ∀i ∈ [1, 3] : ri $← [0, S], ci = gxihri

5. Set ∀i ∈ [0, 3] : mi
$← [0, BCL], si $← [0, SCL], di = gmihsi

6. Set σ $← [0, 4SBCL], d = hσc4m0
∏
i=1..3 c

−mi
i

7. Set ∆ = H({di}i=0..3, d)
8. Outputs {ci}i=1..3,∆

– RPLog.Chall(): outputs γ $← [0, C]
– RPLog.Resp(γ):

1. Sets ∀i ∈ [0, 3] : zi = mi + γ · xi, ti = si + γ · ri
2. Sets τ = σ + γ(

∑
i=1..3 xiri + 4x0r0)

3. Outputs {zi, ti}i=0..3, τ
– RPLog.Verify({ci}i=1..3,∆, γ, {zi, ti}i=0..3, τ):

1. Compute c0 = c−1gB

2. Compute ∀i ∈ [0, 3] : fi = gzihtic−γi
3. Compute f = hτ · gγ · c4z0 ·

∏
i=1..3 c

−zi
i

4. Check ∆ = H({fi}i=0..3, f)
5. Check zi ∈ [0, BC(L+ 1)]

Note that any interval [0, T], where term T contains S, may be replaced by [0,max(q − 1, T)], as
these masks only serve zero-knowledge and do not affect soundness, hence wraparound is not a
problem. In particular, the scheme is correct, sound and HVZK if S = q − 1.

Theorem 1. The scheme RPLog is perfectly correct, i.e. has correctness error 0.

Proof. The three-square decomposition {xi}i=1..3 can be efficiently computed by lemma 1. We have
x, x0, . . . x3 ∈ [0, B], γ ∈ [0, C], mi ∈ [0, BCL], and hence zi = γxi + mi ∈ [0, BC(L + 1)]. Thus,
the size check for zi never fails. Also for i ∈ [0, 3] :

Fi = gzihtic−γi

= gmi+γ·xihsi+γ·ri(gxihri)−γ

= gmihsi(gxihri)γ(gxihri)−γ = di

and further:

f = hτ · gγ · c4z0 ·
∏
i=1..3

c−zii

= hτ · gγ · c4z0 · g−γ
∑

i=1..3
x2
i · h−γ

∑
i=1..3

ri·xi ·
∏
i=1..3

g−ximi · h−ri·mi

= hτ · gγ · c4z0 · g−γ·(4x(B−x)+1) · h−γ
∑

i=1..3
ri·xi ·

∏
i=1..3

c−mii

= hτ · gγ · (g4xh4r)m0+γ·x0) · g−γ·(4x(B−x)+1) · h−γ
∑

i=1..3
ri·xi ·

∏
i=1..3

c−mii

= hτ · c4m0 · gγ·(4x(B−x)+1) · hγ·4rx0 · g−γ·(4x(B−x)+1) · h−γ
∑

i=1..3
ri·xi ·

∏
i=1..3

c−mii

= hτ · hγ·(4r0x0−
∑

i=1..3
ri·xi) · c4m0 ·

∏
i=1..3

c−mii

= hσ · c4m0 ·
∏
i=1..3

c−mii = d

24

Theorem 2. The proof system RPLog is HVZK with simulation error 9/L. If S = q − 1, this holds
against unbounded adversaries.
More precisely, for every HVZK adversary A , there is a SEI adversary B with roughly the same
running time as A , such that Advhvzk

A ≤ 9/L+ 4Advsei
B .

Proof. First, recall that S = q − 1, then Advsei
B = 0. Hence SEI is unconditionally secure and the

simulation error holds against unbounded adversaries. With this, we turn to the general security
reduction.

We modify the distribution of valid transcripts in four indistinguishable steps such that the
last game does not require a witness as input. The simulator SimZK defined by game 4 fulfills the
requirements of the zero-knowledge definition.

Game 1:
Outputs an unmodified transcript from an interaction of an honest verifier and prover from
the definition:

– Compute xi s.t. 4x(B − x) + 1 =
∑3
i=1 x

2
i

– Set r0 = −r, x0 = B − x
– Set c0 = c−1gB

– Set ∀i ∈ [1, 3] : ri $← [0, S], ci = gxihri

– Set ∀i ∈ [0, 3] : mi
$← [0, BCL], si $← [0, SCL], di = gmihsi

– Set σ $← [0, 4SBCL], d = hσc4m0
∏
i=1..3 d

−mi
i

– Set ∆ = H({di}i=0..3, d)
– ∀i ∈ [0, 3] : zi = mi + γ · xi, ti = si + γ · ri
– τ = σ + γ(

∑
i=1..3 xiri − 4x0r0)

– Outputs {{ci}i=1..3,∆, {zi, ti}i=0..3, τ}

for given γ ∈ [0, C], c = gxhr, x ∈ [0, B], r ∈ [0, S].

Game 2:
Rewrites the mask commitments {di}i=1..3, d as in the verification check.:

– Compute xi s.t. 4x(B − x) + 1 =
∑3
i=1 x

2
i

– Set r0 = −r, x0 = B − x
– Set c0 = c−1gB

– Set ∀i ∈ [1, 3] : ri $← [0, S], ci = gxihri

– Set ∀i ∈ [0, 3] : mi
$← [0, BCL], si $← [0, SCL]

– Set σ $← [0, 4SBCL]
– ∀i ∈ [0, 3] : zi = mi + γ · xi, ti = si + γ · ri
– τ = σ + γ(

∑
i=1..3 xiri − 4x0r0)

– Set ∀i ∈ [0, 3] : di = gzihtic−γi

– Set d = hτ · gγc4z0 ·
∏
i=1..3

c−zii

– Set ∆ = H({di}i=0..3, d)
– Outputs {{ci}i=1..3,∆, {zi, ti}i=0..3, τ}

for given γ ∈ [0, C], c = gxhr, x ∈ [0, B], r ∈ [0, S].

Claim. Game 1 and Game 2 are identically distributed.

Proof. As shown in the correctness proof, it holds that gmihsi = gzihtic−γi for i ∈ [0, 3] and
hσdm0

a

∏
i=1..3 d

−mi
i = hτ · gγc4z0 ·

∏
i=1..3 c

−zi
i .

25

Game 3:
Removes the dependency on x in the zero-knowledge witnesses ti, zi.τ for i ∈ [0, 3]:

– compute xi s.t. 4x(B − x) + 1 =
∑3
i=1 x

2
i

– Set r0 = −r, x0 = B − x
– Set c0 = c−1gB

– Set ∀i ∈ [1, 3] : ri $← [0, S], ci = gxihri

– ∀i ∈ [0, 3] : zi
$← [0, BCL], ti $← [0, SCL]

– τ
$← [0, 4SBCL]

– Set ∀i ∈ [0, 3] : di = gzihtic−γi
– Set d = hτ · gγc4z0 ·

∏
i=1..3 c

−zi
i

– Set ∆ = H({di}i=0..3, d)
– Outputs {{ci}i=1..3,∆, {zi, ti}i=0..3, τ}

for given γ ∈ [0, C], c = gxhr, x ∈ [0, B], r ∈ [0, S].

Claim. Game 2 and Game 3 have statistical distance at most 9/L.

Proof. The claim follows from the bounds

0 ≤xi ≤ B,
0 ≤ri ≤ S,

−4 ·BS2 ≤ −4x0r0 ≤
∑
i=1..3

xiri − 4x0r0 ≤
∑
i=1..3

xiri ≤ 4 ·BS

and our choice of masking. Namely, lemma 8 asserts a statistical distance of L−1 per application of
masking.

Game 4:
Removes the dependency on x from the commitments:

– Set c0 = c−1gB

– ∀i ∈ [0, 3] : zi $← [0, BCL], ti $← [0, SCL]
– τ

$← [0, 4SBCL]
– Set ∀i ∈ [1, 3] : ri $← [0, S], ci $← g0hri

– Set ∀i ∈ [0, 3] : di = gzihtic−γi
– Set d = hτ · gγc4z0 ·

∏
i=1..3 c

−zi
i

– Set ∆ = H({di}i=0..3, d)
– Outputs {{ci}i=1..3,∆, {zi, ti}i=0..3, τ}

for given γ ∈ [0, C], c = gxhr.

Claim. Game 3 and Game 4 are indistinguishable under the hiding property of the commitment
scheme Ped.

Proof. We provide an algorithm B breaking the hiding property of Ped using a distinguisher A
of Game 3 and Game 4. First, B sets up the parameters of the range proof with the pp = (g, h)
received from the hiding challenger C . Then it computes xi s.t. 4x(B− x) + 1 =

∑3
i=1 x

2
i and sends

m0 = (x1, x2, x3) and m1 = (0, 0, 0) to C . It then constructs the transcript of a proof as before
utilizing the received commitments {ci}i=1..3 and sends the transcript to A . After receiving b from
A it forwards the bit to the challenger C .

Now, if challenger committed to m0, the output of B is distributed as in game 3 and otherwise as
in game 4. Thus if A has non-negligible advantage, B breaks the hiding property of the commitment

26

scheme. Note that we argue utilize the hiding property on vectors of messages which is implied by
the hiding property of definition 3 for a constant vector size.

Theorem 3. Suppose L ≥ 32. The range proof RPLog for [0, B] is 2-special sound with knowledge
error 1

(C+1) under DLOG and CRHF assumptions.
More precisely, for every adversary A with strict running time T there are adversaries B1,B2 with expected
running time roughly 2T and Advke

A ≤ 1
(C+1) + Advdlog

B1
+ Advcrhf

B2 .

Proof. Assume we have two accepting transcripts for distinct challenges γ 6= γ̃ with witnesses
zi, ti, τ and z̃i, t̃i, τ̃ respectively. Without loss of generality, say γ > γ̃. We show that either we
obtain a valid witness, or we break DLOG or collision resistance.

By collision resistance of H, we have d = f = f̃ and ∀i ∈ [0, 3] : di = fi = f̃i. Denote by a the
difference of a− ã for a ∈ {zi, ti, τ}. From fi = f̃i we find

gzihtic−γi = gz̃iht̃ic−γ̃i ⇐⇒ gzihti = cγi ⇐⇒ gzi/γhti/γ = ci.

Thus for all i ∈ [1, 3], we have valid openings xi = zi/γ and ri = ti/γ for commitment ci. For c0,
we obtain c = g(γ·B−z0)/γh−t0/γ and therefore x0 = z0/γ and r0 = t0/γ is an opening to c−1gB.
Moreover x = B − z0/γ = B − x0 is the committed value in c.

Now we turn to the square decomposition. We have

f = f̃ =⇒ hτ · gγ · c4z0 =
∏
i=1..3

czii

=⇒ hτ · gγ · g4(B−z0/γ)z0 · h4r·z0 =
∏
i=1..3

gxi·zihri·zi

=⇒ gγ · g4(B−z0/γ)z0 ·
∏
i=1..3

g−xi·zi = h−4r·z0 · h−τ ·
∏
i=1..3

hri·zi

=⇒ gγ+4(B−z0/γ)z0−
∑

i=1..3
xi·zi = h−4r·z0−τ+

∑
i=1..3

ri·zi .

Under the DLOG assumption (or statistically, when the exponent of h remains small enough), this
forces

γ + 4(B − z0/γ)z0 −
∑
i=1..3

xi · zi = 0 mod q

=⇒ γ + 4(B − z0/γ)z0 =
∑
i=1..3

zi
2/γ mod q

=⇒ γ2 + 4(γ ·B − z0)z0 =
∑
i=1..3

zi
2 mod q

The final equality holds over the integers, because all values are small enough so that there is
no wrap-around. More precisely: Let K = BC(L + 1) be the maximal (accepting) value of |zi|.
For the right hand side, |zi| ≤ |zi| + |z̃i| ≤ 2K and hence

∑
i=1..3 zi

2 ≤ 16K2 ≤ U < q−1
2 .

Rewrite the left hand side as γ2 + 4γBz0 − z0
2. Shortness follows from |γ|B ≤ K and thus

K2 +8K2 +16K2 ≤ 25K2 ≤ U < q−1
2 . Here we use that 25K2 = 25(BC(L+1))2 ≤ 32(BCL)2 = U

since L ≥ 32.
Since the equality holds over the integers, after dividing by γ2 it holds overQ. Using z0 = γ(B−x),

we see that γ2 + 4γx(γB − γx) =
∑3
i=1 γ

2x2
i and hence 1 + 4x(B − x) =

∑3
i=1 x

2
i for x = B − z0

γ .
Now, lemma 13 finishes the proof. (Note that we extracted a valid opening for c.)

5.4 Optimizations

We discuss some optimizations to either reduce the proof size or the group size.

27

Rejection sampling for smaller group size. In RPLog, we hide the values γ · xi ∈ [0, BC] by an
additive uniformly random mask z ∈ [0, BCL]. So the masking has an overhead of log(L) bits. By
using rejection sampling for masking, as used in the lattice setting, this overhead can be traded for
a (small) correctness error. For this, we apply lemma 11 instead of lemma 8. That is, we choose
the mask from a discrete Gaussian distribution with large enough standard deviation σx, and the
prover aborts in Resp with (small) probability.

More concretely: Let the parameters for rejection sampling be standard deviation σx = α ·BC
and M = e13.3/α+1/(2α2) for some α. Let k =

√
2λ and let L′ = dkαe. Then the probability that the

mask m← Dσx is too large (and causes verification to abort) is O(2e−k2/2) = negl(λ) by lemma 10.
The protocol is adapted as follows18:

– In Init, sample mi ← Dσx for i ∈ [0, 3] (instead of mi ← [0, BCL′]).
– In Resp, abort with probability 1−min

(
Dσx(zi)

M ·Dγ·xi,σx (zi) , 1
)
for i ∈ [0, 3],

– In Verify, check |zi| ≤ BC(L′ + 1) for i ∈ [0, 3] instead of zi ∈ [0, BC(L′ + 1)].

Since |mi| ≤ BCL′ (and thus |zi| ≤ BC(L′ + 1)) with overwhelming probability, the completeness
is mostly affected by aborting in Resp. For the concrete value α = 256 which implies M ≈ 1.05,
the abort probability is very small (roughly 0.05). The statistical distance between honest masking
and “simulated” masked values is at most δ = 2−120, by lemma 11. Using this property the HVZK
simulator is easily adapted and achieves simulation error 4δ+5L−1. (Note that si and σ are sampled
as before.) The soundness proof uses L′ but is otherwise unchanged.

To achieve non-negligible completeness, the protocol needs to be repeated, increasing computation
and communication. For the Fiat–Shamir transformation, only computation increases.

Lastly, note that 2U = 32(BCL′)2 is a lower bound on the group size q. With rejection sampling,
we can choose smaller L′, and hence smaller q. One can use rejection sampling for the masks σ
and si as well, but these do not affect the group size, only the communication (and the simulation
error). More concretely, let σr = α · SCL and further modify the protocol as follows:

– In Init choose si ← Dσr for i ∈ [0, 3].
– In Resp abort with probability 1−min

(
Dσr(ti)

M ·Dγ·ri,σr ti)
, 1
)
for i ∈ [0, 3].

This results in a size of |ti| ≤ SCL′. Also applying this to σ yields |τ | ≤ 4SBCL′.

Soundness amplification for smaller group size. The soundness error of the scheme is 1/(C + 1),
and since C affects U and hence the group size, decreasing it allows smaller groups. However, to
achieve negligible soundness error, multiple iterations are required, namely λ/log(C) iterations for
a soundness error of 2−λ. Note that the commitments ci only need to be sent in the first repetition
and can be reused in the following ones.

5.5 Efficiency

Now, we discuss the concrete efficiency of the (optimized) construction. For this we instantiate
the parameters as follows: B ∈ {232, 264}, C = 2λ, L = 2λ, S = 22λ, L′ = d256

√
2λe. Note that the

group size is 64(BCL)2 or, using rejection sampling for masking xi, 64(BCL′)2.

Optimized Non-Interactive Range Proof with Standard Soundness. An entire proof of
the scheme consists of elements {ci}i=1..3,∆, {zi, ti}i=0..3, τ . The proof sizes for ranges 32 and 64
bit are summarized in Table more detailed comparison with Bulletproof is given in Table 1 in the
introduction, for λ ∈ {80, 128}. They were computed with a Python script presented in appendix B.
The following remarks of section section 5.4 were applied on the scheme:

– Rejection sampling for mi, si, σ,
– Fiat-Shamir transformation for non-interactivity.

18 For more details on the technique and the proof of security, we refer to the range proof in the lattice
setting of section 6. It uses rejection sampling for masking the randomness of the commitment scheme.

28

Since zi ∈ [0, BCL′] with overwhelming probability, we calculate with this bound as opposed to the
one from the scheme. Note that we use a challenge size of λ bits but for all examples, a standard
group size can be achieved by utilizing a smaller challenge and repeating the proof the corresponding
number of times. For U = 32(BCL′)2 the proof size in bit is

3(log(2U)) + dλ/log(C)e(2λ+ 4(log(BCL′) + log(SCL′)) + log(4SBCL′))

Concrete parameteres and proof sizes are given in the introduction in table 1.

Computational Efficiency. We count the computational efficiency of the optimized non-interactive
range proof in multiplications of group elements. Multiplications in elliptic curves are generally
expensive, whereas discrete Gaussian sampling and the computation of the 3 square decomposition
are comparatively insignificant, since they have a O(1) and expected O(B2/log(B)) complexity
respectively [MW17,PS19]. The decomposition algorithm takes on average 30 ms for 500 bit values
[PS19], thus accounting for the decrease in input size the decomposition will take less than 1
ms on average for 32 or 64 bit ranges 19. Additionally, the proof might have to be aborted and
rerun in case the constant M of lemma 11 is not chosen overwhelmingly close to 1. This can be
ensured in exchange for slightly larger witnesses (and thus a slight increase in group size). The total
probability of a rerun is about 65% with our chosen parameters of the optimized range proof. Thus,
the expected number of group operations is about 1.54 of group operations of a single successful
run. Note that if we only apply rejection sampling on the masks {mi}i=0..3, the protocol needs to
be repeated with a probability of 18% while keeping the same group size.

An exponentiation with a k-bit value costs on average 1.5 · k multiplications and we count
inverting separately. Further, in order to speedup the calculation of a Pedersen commitment
c = gxhr, we utilise the following trick. Let us assume that x > r without loss of generality. We set
c = (gh)r · gx−r. Thus, the commitment is computed in 1.5 · x+ 1 multiplications. Lastly, we also
assume that B < λ. We disregard other possible optimizations for verification.

– The prover has to perform 2.31 · (4 logB + 8 logS + 6 logC + 7 logL′) + 30 multiplications and
1.54 inversions.

– The verifier has to perform 4.5 logB + 7 logS + 13 logC + 9 logL′ + 10 multiplications and 6
inversions.

6 Range Proof in a Lattice Setting

6.1 Overview

We now establish a range proof protocol in the lattice setting. The setup and scheme mainly rely
upon the techniques from [YAZ+19]. In the lattice setting, we naturally deal with vectors ~x ∈ Znq .
Because our technique requires a large modulus q, performing one range proof at a time would waste
a significant amount of space. Thus, we look at a more general batch setting, where a commitment
to ~x ∈ Zn is given and we desire to prove xi ∈ [0, Bi] for ~B ∈ Zn. We write shortly ~x ∈ [0, ~B] for
this statement.

We use the commitment scheme Lat defined in definition 13 and its corresponding bounded
integer commitment scheme Lat as basis for the proof. The proof of knowledge of an opening of a
Lat commitment ~c = A · ~r + (~0 ‖ ~x) for ~x ∈ [0, ~B], ~r $← Dl

σ is performed by masking the witnesses
via ~z = ~m+ γ · ~x and ~t = ~s+ γ · ~r and sending a commitment ~d = A · ~s+ (~0 ‖ ~m) of the masks in
order to allow to verify the relation. Here, γ is a short challenge, ~m ∈ Znq hides γ · ~x and the mask
~s is sampled from a discrete Gaussian distribution such that ~t is short enough to suffice as opening
for the commitment and γ · ~r is hidden according to lemma 11.

The verifier checks the relation via A ·~t+ (~0 ‖ ~z) = ~d+ γ ·~c and the binding property is retained
if the verifier checks that ~t is indeed short. In the soundness proof, the extractor can extract the
opening of the commitments via ~x = (~z′−~z) · (γ′−γ)−1 and ~r = (~t′−~t) · (γ′−γ)−1 given transcripts
τ, τ ′ of the proof with distinct challenges γ, γ′.
19 The average runtime was calculated as follows: 30ms · (642/log2(64))/(5002/log2(500)).

29

For our integer commitment technique, we further require the vector ~z to be short. Since ~x will
be short component-wise, we can simply verify that ~z is short if ~m is chosen short but large enough
to hide γ · ~x according to lemma 8. In summary, with the above techniques we can show that we
know openings of the commitment ~c← Lat.Commit(~x),~ci ← Lat.Commit(~xi). We still need to prove
the relation

4~x(~B − ~x) +~1 =
3∑
i=1

~x2
i (2)

for ~x ∈ [0, ~B] and appropriate vectors ~xi. We utilize a commitment to ~x0 = ~B − ~x which can be
computed homomorphically. Now, the equation eq. (2) can be rewritten as follows:

4~x~x0 +~1−
3∑
i=1

~x2
i = 0 (3)

Since the commitments are not sufficiently homomorphic to check the relation eq. (3) directly, we
need to show the relation in a different manner. In our proof, we utilize a standard technique in
lattice-based zero-knowledge proofs that allows to check the verification using the masked witnesses
~zi = ~mi + γ · ~xi. The core observation is that since ~zi contains ~xi, we can try to check the equation
by replacing ~xi with ~zi in eq. (3). A simple calculation shows that if we also replace ~1 with ~γ2 and
~B with γ ~Bb, and further interpret the vector

~f = 4 · ~z~z0 + ~γ2 −
∑
i=1..3

~z2
i

as polynomial ~f = ~f2γ
2 + ~f1γ+ ~f0 ∈ Zq[γ], the leading coefficient ~f2 is equal to the left side of eq. (3).

Since ~f can be computed by the verifier, it suffices that the prover proves that ~f is a polynomial of
degree 1. This can be done by committing to the garbage terms ~f0 and ~f1 in ~cf = Lat.Commit(~f1;~rf)
and ~df = Lat.Commit(~f0;~sf) respectively. Now if the prover sends (~cf , ~df) and ~tf = ~sf +γ ·~rf to the
verifier, he can verify whether indeed Lat.Commit(~f ;~tf) = ~df +γ~cf using the additive homomorphic
properties of Lat. This check ensures that ~f is a polynomial of degree 1. Revealing ~t does not reveal
either opening if ~s is sampled by a discrete gaussian distribution according to lemma 11. Since
the sampled ~s is short enough to suffice as opening for the commitment, the binding property is
guaranteed. The commitments ~cf , ~df are sent in the first step and the polynomial ~f only has 3
roots. Since γ has to be one of them and it is chosen at random by the verifier in the next step, the
prover can not cheat. Note that in the proof, we denote ~f as ~z4 in order to simplify the notation.

This concludes the proof of eq. (2) and we can extract the witnesses of the commitments via
~xi = (~z′i − ~zi) · (γ′ − γ)−1, where γ′ − γ and ~z′i − ~zi are short. Since the extracted elements are
short, the decomposition holds over the integers and subsequently, lemma 13 yields ~x ∈ [0, ~B] after
rounding.

Note that we chose this lattice setting due to complications when applying this technique to
ring lattices (see appendix A for further details).

6.2 Parameters

Let n ∈ N and ~B ∈ Zn with ~B ≥ ~2. Let l1, l2, C ∈ poly(λ) and l := l1 + n + l2. Further, let
σ ≥

√
2l2/π and σrej ≥ 2C ·

√
l · log(l) · σ be positive integers. Let M = e

13.3
log(l) + 1

2 log2(l) and
T = 4

√
l · (σrej + C · σ) and let q = qe0 for some prime q0 and e ∈ N+. Let A ← Lat.Setup(1λ).

Further, let U = 32B2C2L2 < q−1
2 for B =

∥∥∥ ~B∥∥∥
∞

and L ∈ N.

Hereby, the values q, n, l1, l2, C, σ, T are the parameters of the commitment scheme Lat and Lat.
In addition, the value U is the size requirement parameter of the scheme Lat. The value σrej is
the standard deviation of the Gaussian distribution Dσrej used to mask the opening via rejection
sampling with constantM (see lemma 11). The vector ~B defines the range [0, Bi] for each performed
range proof. The values B,L are bounds on the range and masking overhead respectively.

30

6.3 Scheme

The setup and scheme uses techniques from [YAZ+19] but is adapted to proving the statement
~1 + 4~x(~B − ~x) =

∑3
i=1 ~x

2
i for ~x ∈ [0, ~B] and appropriate vectors ~xi.

– RPLat.Init(~c = A · ~r + (~0 ‖ ~x), ~x ∈ [0, ~B], ~r $← Dl
σ):

1. compute ~xi s.t. 4~x(~B − ~x) +~1 =
∑
i=1..3 ~x

2
i

2. Set ~r0 = −~r, ~x0 = ~B − ~x and ~c0 = (~0 ‖ ~B)− ~c
3. Set ∀i ∈ [0, 3] : ~mi

$← [~0, ~BCL]
4. Set ~x4 = 4 · ~m0(~B − 2~x0)− 2 ·

∑
i=1..3 ~xi ~mi

and ~m4 = −4(~m0)2 −
∑
i=1..3(~mi)2

5. Set ∀i ∈ [1, 4] : ~ri $← Dl
σ

6. Set ∀i ∈ [0, 4] : ~si $← Dl
σrej

7. Set ∀i ∈ [1, 4] : ~ci = A · ~ri + (~0 ‖ ~xi)
8. Set ∀i ∈ [0, 4] : ~di = A · ~si + (~0 ‖ ~mi)
9. Output {~ci}i=1..4, {~di}i=0..4

– RPLat.Chall(): Output γ $← [−C,C]
– RPLat.Resp(γ):

1. Sets ∀i ∈ [0, 3] : ~zi = ~mi + γ · ~xi
2. Set ∀i ∈ [0, 4] : ~ti = ~si + γ · ~ri
3. For all i ∈ [0, 4] : abort with probability 1−min

(
Dlσrej

(~ti)

M ·Dl2+n+l1
γ~ri,σrej

(~ti)
, 1
)

4. Outputs {~zi}i=0..3, {~ti}i=0..4

– RPLat.Verify({~ci}i=1..4, {~di}i=0..4, γ, {~zi}i=0..3, {~ti}i=0..4):
1. Check ∀i ∈ [0, 4] : ‖~ti‖ ≤ 2

√
l · (σrej + C · σ)

2. Check ∀i ∈ [1, 3] : ~zi ∈ [~0, ~BCL]
3. Set ~c0 = (~0 ‖ ~B)− ~c
4. Set ~z4 = 4 · ~z0(γ ~B − ~z0) + ~γ2 −

∑
i=1..3 ~z

2
i

5. Check ∀i ∈ [0, 4] : A · ~ti + (~0 ‖ ~zi) = ~di + γ · ~ci

Note that we check ~zi ∈ [~BCL] instead of ~zi ∈ [~BC(L+ 1)], since rejection sampling already
brings non-perfect completeness with certain parameter choices. This introduces an additional
completeness error of 4/L.

Theorem 4. The scheme RPLat is correct with correctness error 1− (1/M)5 + 10(2le−3l/2) + 4/L.

Proof. The three-square decomposition {xi}i=1..3 can be efficiently computed by lemma 1. We
show that each check of the verifier is confirmed if both parties are honest. By definition of σ and
lemma 11, the algorithm outputs something with probability 1− (1/M)5. For all i ∈ [0, 4], we have
‖~ri‖ ≤ 2σ

√
l with probability 1− 5(2le−3l/2) and thus ‖~ti‖ ≤ 2σrej

√
l + 2Cσ

√
l = 2

√
l · (σrej + Cσ)

with the same probability by lemma 10. Also, for i ∈ [0, 3] it holds that:

A · ~ti + (~0n ‖ ~zi) = A · (~si + γ · ~ri) + (~0 ‖ ~mi + γ · ~xi)
= (A · ~si + (~0n ‖ ~mi)) + γ(A · ~ri + (~0 ‖ ~xi))

= ~di + γ · ~ci

By lemma 8, it holds that ~zi ∈ [0, ~BCL] for i ∈ [1, 3] with probability 1/L and because 4~x(~B−~x)+~1 =∑
i=1..3 ~x

2
i holds by construction, we have:

A · ~t4 + (~0 ‖ ~z4) = A · (γ · ~r4 + ~s4) + (~0 ‖ 4 · ~z0(γ ~B − ~z0) + ~γ2 −
∑
i=1..3

~z2
i)

= (A · ~s4) + (~0 ‖ ~m4)) + γ · (A · ~r4 + (~0 ‖ ~z4))

= ~d4 + γ · ~c4

31

Theorem 5. Suppose L ≥ 16. Then RPLat for [0, B] satisfies 3-special soundness with soundness
error 2

2C+1 under the SISl1,l,q,4CT assumption (and additionally the CRHF assumption if a hash
function si used for compressing the first flow).

Proof. Assume that a PPT adversary can interactively produce three valid transcripts with chal-
lenges γ, γ′, γ′′ and witnesses [~ti, ~zi,~t4], [~t′i, ~z′i,~t′4] and [~t′′i , ~z′′i ,~t′′4] for i ∈ [0, 3]. We denote by a, a the
difference of a′− a, a′′− a respectively for a ∈ {~ti, ~zi,~ty}. Also, we assume without loss of generality
that γ > 0, γ > 0. First, for all i ∈ [0, 4] it holds that:

A · ~ti + (~0 ‖ ~zi) = ~di + γ · ~ci ∧A · ~t′i + (~0 ‖ ~z′i) = ~di + γ′ · ~ci
∧ A · ~t′′i + (~0 ‖ ~z′′i) = ~di + γ′′ · ~ci

=⇒ A · ~ti + (~0 ‖ ~zi) = γ · ~ci ∧A · ~ti + (~0 ‖ ~zi) = γ · ~ci

=⇒ A · ~ti + γ(~0 ‖ ~zi/γ) = γ · ~ci ∧A · ~ti + γ(~0 ‖ ~zi/γ) = γ · ~ci

Additionally, we have ‖~ti‖ ≤ ‖~t′i‖+ ‖~ti‖ ≤ 4
√
l · (σrej +C ·σ) and equally

∥∥~ti∥∥2 ≤ 4
√
l · (σrej +C ·σ).

Thus for i ∈ [1, 4], the commitments ~ci commits to message ~xi = ~zi/γ with opening (~ti, γ) and
because of the binding property of Lat also ~xi = ~zi/γ.

Similarly, we set ~x0 = ~z0/γ = ~z0/γ which would be committed in ~c0 if it were interpreted as Lat
commitment. This shows that ~c is a commitment to message ~x = b(γ · ~B − ~z0)/γc = ~B − b~z0/γc
with opening (~ti, γ, γ · ~B − ~z0). Note that the openings are small enough, i.e.

∥∥∥γ · ~B − ~z0

∥∥∥
∞
≤ 2CB +BCL

≤ 3BCL
≤ U/C,

|γ| ≤ C.

Because of the binding property of Lat also ~x = ~B − b~z0/γc. All that is left to check is that ~x is
indeed in the desired bounds. Denoting ~µi = ~zi − γ · ~xi for [i ∈ [0, 3], we have:

~z′i − ~µi = ~z′i − ~zi + γ · ~xi
= ~zi + γ · ~xi
= γ · ~xi + γ · ~xi
= (γ′ − γ) · ~xi + γ · ~xi
= γ′ · ~xi,

~z′′i − ~µi = ~z′′i − ~zi + γ · ~xi
= ~zi + γ · ~xi
= γ · ~xi + γ · ~xi
= (γ′′ − γ) · ~xi + γ · ~xi
= γ′′ · ~xi.

32

And with that, we can identify vectors ~xi in ~z4:

~z4 = 4 · ~z0(γ ~B − ~z0) + ~γ2 −
∑
i=1..3

~z2
i

= 4 · (γ~x0 + ~µ0)(γ ~B − (γ~x0 + ~µ0)) + ~γ2 −
∑
i=1..3

(γ~xi + ~µi)2

= 4[γ~x0(γ ~B − γ~x0 − γ ~µ0(~B − 2~x0)− ~µ0
2] + ~γ2

−
∑
i=1..3

[(γ~xi)2 + 2c~xi~µi + ~µ2
i]

= γ2[4~x0(~B − ~x0) +~1−
∑
i=1..3

~x2
i]

+ γ[4 ~µ0(~B − 2~x0)− 2
∑
i=1..3

~xi~µi]

− 4~µ2
0 −

∑
i=0..3

~µ2
i

Setting ~φ = 4 ~µ0(~B − 2~x0)− 2
∑
i=1..3 ~xi~µi and ~ψ = −4~µ2

0 −
∑
i=0..3 ~µ

2
i , we equally obtain:

~z4 = γ2[4~x0(~B − ~x0) +~1−
∑
i=1..3

~x2
i] + γ~φ+ ~ψ

~z′4 = (γ′)2[4~x0(~B − ~x0) +~1−
∑
i=1..3

~x2
i] + γ′~φ+ ~ψ

~z′′4 = (γ′′)2[4~x0(~B − ~x0) +~1−
∑
i=1..3

~x2
i] + γ′′~φ+ ~ψ

Further since ~z4/γ = ~z4/γ, we obtain:

~z′4 − ~z4 = ((γ′)2 − γ2)[4~x0(~B − ~x0) +~1−
∑
i=1..3

~x2
i] + (γ′ − γ)~φ ∧

~z′′4 − ~z4 = ((γ′′)2 − γ2)[4~x0(~B − ~x0) +~1−
∑
i=1..3

~x2
i] + (γ′′ − γ)~φ

=⇒ ~z4/γ = (γ′ + γ)[4~x0(~B − ~x0) +~1−
∑
i=1..3

~x2
i] + ~φ ∧

~z4/γ = (γ′′ + γ)[4~x0(~B − ~x0) +~1−
∑
i=1..3

~x2
i] + ~φ

=⇒ (γ′ + γ)[4~x0(~B − ~x0) +~1−
∑
i=1..3

~x2
i] =

(γ′′ + γ)[4~x0(~B − ~x0) +~1−
∑
i=1..3

~x2
i]

=⇒ (γ′ − γ′′)[4~x0(~B − ~x0) +~1−
∑
i=1..3

~x2
i] = 0

=⇒ 4~x0(~B − ~x0) +~1 =
∑
i=1..3

~x2
i

=⇒ 4~z0(γ ~B − ~z0) + ~γ
2 =

∑
i=1..3

~zi
2

This implies that 4~z0(γ ~B − ~z0) + ~γ
2 ≥ ~0 in Qn and further that ~x ∈ [0, ~B]. In more detail, we

show that both sides of the equation are short which implies that it holds over the integers. We set
K = (BCL). For the right side, it holds that ‖

∑
i=1..3 ~zi

2‖∞ ≤ 3 · (2BCL)2 = 12K2 ≤ U ≤ q−1
2 .

Similarly, ‖4~z0(γ ~B − ~z0) + ~γ
2‖∞ ≤ 8K2 + 16K2 +K2 ≤ 32K2 ≤ U . Thus ~z0(γ ~B − ~z0) + ~γ

2 ≥ ~0 in
Qn and lemma 13 yields that x = b~z/γe ∈ [0, ~B]

33

Theorem 6. The scheme RPLat is HVZK under the LWEl2,l,q,σ with simulation error 4/L.

Proof. We show that the scheme is zero-knowledge by modifying an honest transcript, given the
challenge γ, in 4 indistinguishable steps into a transcript that does not require the witnesses.

Game 1:
Outputs an unmodified transcript from an interaction of an honest verifier and prover from
the definition:

– compute ~xi s.t. 4~x(~B − ~x) +~1 =
∑
i=1..3 ~x

2
i

– Set ~r0 = −~r, ~x0 = ~B − ~x and ~c0 = (~0 ‖ ~B)− ~c
– Set ∀i ∈ [0, 3] : ~mi

$← [~0, ~BCL]
– Set ~z4 = 4 · ~m0(~B − 2~x0)− 2 ·

∑
i=1..3 ~xi ~mi

and ~m4 = −4(~m0)2 −
∑
i=1..3(~mi)2

– Set ∀i ∈ [1, 4] : ~ri $← Dl
σ

– Set ∀i ∈ [0, 4] : ~si $← Dl
σrej

– Set ∀i ∈ [1, 4] : ~ci = A · ~ri + (~0 ‖ ~xi)
– Set ∀i ∈ [0, 4] : ~di = A · ~si + (~0 ‖ ~mi)
– set ∀i ∈ [0, 3] : ~zi = ~mi + γ · ~xi
– set ∀i ∈ [0, 4] : ~ti = ~si + γ · ~ri
– for all i ∈ [0, 4] : abort with probability 1−min

(
Dlσrej

(~ti)

M ·Dl2+n+l1
γ~ri,σrej

(~ti)
, 1
)

– outputs {{~ci}i=1..4, {~di}i=0..4, {~zi}i=0..3, {~ti}i=0..4}

for given γ ∈ [−C,C],~c← Lat.Commit(~x;~r), ~x, ~r.

Game 2:
Rewrites the mask commitments as in the verification check:

– compute ~xi s.t. 4~x(~B − ~x) +~1 =
∑
i=1..3 ~x

2
i

– Set ~r0 = −~r, ~x0 = ~B − ~x and ~c0 = (~0 ‖ ~B)− ~c
– Set ∀i ∈ [0, 3] : ~mi

$← [~0, ~BCL]
– Set ~z4 = 4 · ~m0(~B − 2~x0)− 2 ·

∑
i=1..3 ~xi ~mi

and ~m4 = −4(~m0)2 −
∑
i=1..3(~mi)2

– Set ∀i ∈ [1, 4] : ~ri $← Dl
σ

– Set ∀i ∈ [0, 4] : ~si $← Dl
σrej

– set ∀i ∈ [0, 3] : ~zi = ~mi + γ · ~xi
– set ∀i ∈ [0, 4] : ~ti = ~si + γ · ~ri
– Set ~z4 = 4 · ~z0(γ ~B − ~z0) + ~γ2 −

∑
i=1..3

~z2
i

– Set ∀i ∈ [1, 4] : ~ci = A · ~ri + (~0 ‖ ~xi)
– set ∀i ∈ [0, 4] : ~di = A · ~ti + (~0n ‖ ~zi)− γ · ~ci

– for all i ∈ [0, 4] : abort with probability 1−min
(

Dlσrej
(~ti)

M ·Dl2+n+l1
γ~ri,σrej

(~ti)
, 1
)

– outputs {{~ci}i=1..4, {~di}i=0..4, {~zi}i=0..3, {~ti}i=0..4}

for given γ ∈ [−C,C],~c← Lat.Commit(~x;~r), ~x, ~r.

Claim. Game 1 and game 2 are identify distributed.

Proof. The equalities are shown in the correctness proof.

34

Game 3:
Removes the dependency on the witness ~ri in the zero-knowledge witnesses ~ti for i ∈ [0, 4]:

– compute ~xi s.t. 4~x(~B − ~x) +~1 =
∑
i=1..3 ~x

2
i

– Set ~r0 = −~r, ~x0 = ~B − ~x and ~c0 = (~0 ‖ ~B)− ~c
– Set ∀i ∈ [0, 3] : ~mi

$← [~0, ~BCL]
– Set ~z4 = 4 · ~m0(~B − 2~x0)− 2 ·

∑
i=1..3 ~xi ~mi

and ~m4 = −4(~m0)2 −
∑
i=1..3(~mi)2

– set ∀i ∈ [0, 4] : ~ti $← Dl
σrej

– Set ∀i ∈ [1, 4] : ~ri $← Dl
σ

– set ∀i ∈ [0, 3] : ~zi = ~mi + γ · ~xi
– Set ∀i ∈ [1, 4] : ~ci = A · ~ri + (~0 ‖ ~xi)
– set ∀i ∈ [0, 4] : ~di = A · ~ti + (~0n ‖ ~zi)− γ · ~ci
– for all i ∈ [0, 4] : abort with probability 1− 1/M
– outputs {{~ci}i=1..4, {~di}i=0..4, {~zi}i=0..3, {~ti}i=0..4}

for given γ ∈ [−C,C],~c← Lat.Commit(~x;~r), ~x, ~r.

Claim. Game 2 and game 3 are statistically indistinguishable.

Proof. We define subgames 2.i for i ∈ [−1, 4], where subgame 2.(−1) is identical to game 2 and
subgame 2.i is identical to subgame 2.(i− 1) for i ∈ [0, 4] but the vector ~ti is sampled from Dl

σrej
and

in the abortion check, the subgame aborts with probability 1− 1/M . Now, the adjacent subgames
only differ in the form of a rejection sampling simulation simulation as in lemma 11 as shown in
the following.

Let i ∈ [0, 4] and let A be an adversary that can distinguish subgame 2.(i-1) and subgame 2.i.
We construct an adversary B distinguishing between the algorithms in lemma 11. Let h be the
distribution of ~v = γ ·~ri, i.e. γ ∈ [−C,C], ~ri $← Dl

σ. Then ‖~v‖ ≤ T := 2pσ
√
l2 + n+ l1 by lemma 10

and thus σrej = ω(T
√

log l2 + n+ l1). Let (~t,~v), aborted ∈ {0, 1} be the output of either algorithm
T or S of lemma 11, i.e. we assume if the algorithm aborts it outputs aborted = 1 and (~t,~v) is
invalid. The distinguisher B proceeds as in subgame 2.3 but it aborts if aborted = 1 and it instead
sets ~ti = ~t and ~ri = ~v · γ−1 which is possible if γ 6= 0. Note that if γ = 0 the games are identically
distributed if not-aborted and thus indistinguishable since the abortion probability is negligible.

Now, if (~t,~v), aborted is sampled as in T , the distribution is identical to subgame 2.3 and
otherwise the distribution is identical to subgame 2.4. This concludes the claim.

35

Game 4:
Removes the dependency on the witness ~xi in the zero-knowledge witnesses ~zi for i ∈ [0, 3]:

– compute ~xi s.t. 4~x(~B − ~x) +~1 =
∑
i=1..3 ~x

2
i

– Set ~r0 = −~r, ~x0 = ~B − ~x and ~c0 = (~0 ‖ ~B)− ~c
– set ∀i ∈ [0, 3] : ~zi $← [~0, ~BCL]

– Set ∀i ∈ [0, 3] : ~mi = ~zi − γ · ~xi
– Set ~z4 = 4 · ~m0(~B − 2~x0)− 2 ·

∑
i=1..3 ~xi ~mi

and ~m4 = −4(~m0)2 −
∑
i=1..3(~mi)2

– set ∀i ∈ [0, 4] : ~ti $← Dl
σrej

– Set ∀i ∈ [1, 4] : ~ri $← Dl
σ

– Set ~z4 = 4 · ~z0(γ ~B − ~z0) + ~γ2 −
∑
i=1..3 ~z

2
i

– Set ∀i ∈ [1, 4] : ~ci = A · ~ri + (~0 ‖ ~xi)
– set ∀i ∈ [0, 4] : ~di = A · ~ti + (~0n ‖ ~zi)− γ · ~ci
– for all i ∈ [0, 4] : abort with probability 1− 1/M
– outputs {{~ci}i=1..4, {~di}i=0..4, {~zi}i=0..3, {~ti}i=0..4}

for given γ ∈ [−C,C],~c← Lat.Commit(~x;~r), ~x, ~r.

Claim. Game 3 and Game 4 are statistically indistinguishable.

Proof. The claim follows directly from lemma 8 applied on each coordinate and since ~0 ≤ ~xi ≤ 2 ~B .

Game 5:
Removes the dependency on ~xi in the commitment to ~ci:

– Set ~c0 = (~0 ‖ ~B)− ~c
– set ∀i ∈ [0, 3] : ~zi $← [~0, ~BCL]
– set ∀i ∈ [0, 4] : ~ti $← Dl

σrej

– Set ∀i ∈ [1, 4] : ~ri $← Dl
σ

– Set ~z4 = 4 · ~z0(γ ~B − ~z0) + ~γ2 −
∑
i=1..3 ~z

2
i

– Set ∀i ∈ [1, 4] : ~ci = A · ~ri + (~0 ‖~0)
– set ∀i ∈ [0, 4] : ~di = A · ~ti + (~0n ‖ ~zi)− γ · ~ci
– for all i ∈ [0, 4] : abort with probability 1− 1/M
– outputs {{~ci}i=1..4, {~di}i=0..4, {~zi}i=0..3, {~ti}i=0..4}

for given γ ∈ [−C,C],~c← Lat.Commit(~x;~r), ~x, ~r.

Claim. Game 4 and Game 5 are indistinguishable under the hiding property of the commitment
scheme Lat.

Proof. We define subgames 4.i for i ∈ [0, 4], where subgame 4.0 is identical to game 4 and subgame
4.i is identical to subgame 4.(i-1) for i ∈ [1, 4] but the the commitment ~ci = A · ~ri + (~0 ‖~0) commits
to ~0 instead of ~xi.

For i ∈ [1, 4], we provide an algorithm B breaking the hiding property of Lat using a distinguisher
A of subgame 4.(i-1) and subgame 4.i. First, B sets up the parameters of the range proof with
the pp = B received from the hiding challenger C . Then it proceeds as in game 4.(i-1), with the
adaption of ~ci = ~c′ for the received vector ~c′ from C on input m0 = ~z4 and m1 = ~0. Next, it sends
the computed transcript to A . After receiving b from A it forwards the bit to the challenger C .

Now, if challenger committed to m0, the output of B is distributed as in game subgame subgame
4.(i-1) and otherwise as in subgame 4.i. Thus if A has non-negligible advantage, B breaks the
hiding property of the commitment scheme.

36

6.4 Optimizations

Rejection Sampling for ~zi. In the above protocol, we mask the committed values ~xi with a
mask ~mi and set ~zi = ~mi + γ · ~xi. The mask ~mi is chosen such that γ · ~xi is statistically blinded
and that the resulting masked witness is kept short. In general, we can use the rejection sampling
technique (lemma 11) that is utilized for blinding the small randomness γ · ~ri to also blind γ · ~xi.
Note that ~xi has length n and thus Mx = e

13.3
log(n) + 1

2 log2(n) . For a low correctness error, M needs
to be minimized. For example n ≥ 140 results in a correctness error of at most 31% for all ~xi. If
n < 140, we can group the vectors into ~χ = ~x0 ‖ .. ‖ ~x4 into a single one and blind this vector via
rejection sampling. Thus, length n′ ≥ 140 for n ≥ 35 and the correctness error is small enough in
practice.

In the case of n ≥ 140, the maximal size of the blinded vector is ‖γ · ~xi‖∞ ≤ BC. Thus
‖γ · ~xi‖2 ≤ BC

√
n by lemma 9. According to lemma 10, we require 2ne− 3n

2 = negl(λ) in order for
the bound to apply with overwhelming probability. This already holds for n ≥ 109 for λ = 128.
Further, we require that σx ≥ nBC, where σx is the standard deviation for the discrete Gaussian
distribution for rejection sampling. Under these parameters, the overhead of the masking process is
L′ = 2n3/2.

In the case of 35 ≤ n < 140, we group ~xi in ~χ and apply a single rejection sampling operation.
As above, we obtain the masking overhead L′ = 2(n′)3/2. For even lower batch sizes n, we can adapt
the approach of the DLOG setting and sample each value separately with a sufficiently large α.

Since the maximal size of ~zi determines the necessary size of the modulus and thus this technique
reduces the size of the scheme further. Essentially, we can set U = 32BCL′.

Utilizing a Hash Function. In order to avoid sending the mask commitments ~di, the prover can
utilize a collision resistant hash function H : {0, 1}∗ 7→ {0, 1}2λ to fix its choice in Init. Concretely,
the scheme is adapted as follows:

– Instead of outputting {~di}i=0..4 in Init, the prover sets ∆ = H({~di}i=0..4),
– Instead of checking ∀i ∈ [0, 4] : A · ~ti + (~0 ‖ ~zi) = ~di + γ · ~ci in Verify, the verifier sets
~fi = A · ~ti + (~0 ‖ ~zi)− γ · ~ci and checks that ∆ = H({~fi}i=0..4) holds.

The collision resistance of H forces ~fi = ~di and because ∆ was sent in Init, the prover can not cheat
because he does not know the challenge yet. This technique was also used in section 5 to which we
refer for details on the proof of security. Because the hash function has an image of only 2λ bits
and sending 4 commitments requires (l1 + n) log(q) bits, the size of the range proof is reduced by
(l1 + n)(2 log(B) + 4λ+ 6)− 2λ bit.

Non-Interactive Zero Knowledge Proof. Using the Fiat-Shamir transformation (definition 10),
the scheme RPLat or RP∗Lat can be transformed into a non-interactive range. This also removes the
requirement of sending the challenge and thus saves C bits of communication.

Efficient Repetitions. If the value C−1 is not negligible, the protocol needs to be repeated
for N = d λ

log(C)e rounds in order to achieve negligible soundness error. In repetitions, the values
{~xi}i=1..3 were already computed and committed to in {~ci}i=1..3 and thus, the prover can avoid
sending them again in the following repetitions. This saves (N − 1) · 3(l1 + n) log(q) bits in the
proof.

6.5 Efficiency

The entire proof consists of elements {~ci}i=1..4, {~di}i=0..4, γ, {~zi}i=0..3, {~ti}i=0..4 and requires N =
d λ

log(C)e repetitions. We compute concrete parameters, including the size of the proof, with the
script provided in appendix B. The following modifications from section 6.4 were applied:

– Hash function to avoid sending the mask commitments,
– Avoid resending commitments ~ci in repetitions,

37

Table 2. Parameters and total proof size in MB of the optimized range proof.

proof size log(q)

(B = 232, λ = 80)
n = 1000 1.55 126
n = 500 1.357 125
n = 180 1.218 123

(B = 232, λ = 128)
n = 1000 3.194 118
n = 500 2.824 117
n = 180 2.611 115

proof size log(q)

(B = 264, λ = 80)
n = 1000 2.57 190
n = 500 2.289 189
n = 180 2.09 187

(B = 264, λ = 128)
n = 1000 5.36 182
n = 500 4.873 181
n = 180 4.52 180

– Rejection sampling to mask ~xi,

While choosing the parameters, we need to make sure that SISl1,l,q,4CT and LWEl2,l,q,Dσ are hard
to solve in practice. We adapt the approach of [YAZ+19] for estimating the hardness of the SIS and
LWE problem. In more detail, we use similar parameters for the commitment scheme and inspect
the root Hermite factor (RHF) [GN08] for the respective lattice problems. To achieve 80 and 128
bit security, the corresponding RHF are 1.0048 and 1.0035 respectively. The RHF of SISn,m,q,β and

LWEn,m,q,Dσ are 2
log2(β)

4n log(q) and 2
log2(α/5.31)

4n log(q) respectively for α = σ ·
√

2π/q.
The results are summarized for a range [0, B] of 32 and 64 bits in table 2. We choose C =

220, C = 216 for λ = 80, λ = 128 respectively. Further, we choose (l1 = 2655, l2 = 2830), (l1 =
3180, l2 = 3620), (l1 = 3120, l2 = 3420), (l1 = 3760, l2 = 4510) for (λ = 80, B = 232), (λ = 128, B =
232), (λ = 80, B = 264), (λ = 128, B = 264) respectively.

Note that while [YAZ+19] only considers a range of 1000 bits, this range is not very common
in practical applications. We stress that even though our proof is amortized over a large number
of range proofs for optimal use of space, the intervals defined by ~B do not need to be equal
component-wise.

7 Unbounded Integer Commitments

In this section, we apply our technique to obtain range proofs in the class group setting.

7.1 Overview

The previously established commitment scheme of section 4.1 requires the parameters, especially
the size of the underlying algebraic structure, to be scaled with the size of the committed integers.
In this section, we establish a commitment scheme and an accompanying range proof in the class
group setting without scaling parameters. The core difference to the Zq setting is that class groups
allow us to commit to unbounded dyadic rationals a

2k directly, and we have a canonical choice of
representatives and absolute value for Z[1/2], unlike Zq, since there is no wrap-around to account
for. Thus, the parameters of the commitment scheme do not need to be adapted to commit to
larger integers, and our encoding (i.e. rounding) applies directly.

We take the commitment scheme of [DF02] as basis for our integer commitment. [DF02]
establishes an integer commitment in the form of Pedersen commitments in the RSA and class
group setting, but with trusted setup. In this setting, square roots can not be efficiently computed
and thus the denominator 2k of the dyadic rational will be 1 and the commitments commit to
integers directly. The arguments of [DF02] can be translated to class groups without trusted setup
with some slight adaptions.20 Thus, we again work with a form of Pedersen commitments. Our
encoding maps a dyadic rational a

2k to b a2k e.

20 In [DF02], there occurs an element of low order in the opening of a commitment. Note that the low
order element is not necessary since it can not be produced efficiently under the ORD assumption in our
setting.

38

For the range proof, we use the same structure as in section 5. That is, the range proof is group
based, honest commitments are Pedersen commitments and the encoding uses rounding. The main
technical contribution of the range proof is the proof of soundness. Again, the argument from [DF02]
can be transferred to our setting, we just need to account for the additional denominator 2k of the
dyadic rationals. As before, our encoding then ensures that x ∈ [0, B].

7.2 Parameters

Let G be a class group Cl(∆). Further, let L,U be polynomial bounds with 2L ≤ ord(G) ≤ 2U and
let lG(·), CG(·) be functions with CG(λ) > lG(λ), and lG polynomial in λ. We also define ρ = lG(λ)!
for better readability. Let U,H be subgroups of G such that G = U×H where ord(U) < lG(λ) and
all prime factors ord(H) are bigger than CG(·). Let B ≥ 2, C, L be bounds for the range, challenge
size and masking overhead resepectively. We set S = 2U+λ and sample random group elements
g, h that are CG(λ)-rough. Lastly, let H be a collision resistant hash function. Note that since the
order of the group is unknown by assumption, there is no need for lower bounds of the order in this
setting.

7.3 Scheme

We define the integer commitment scheme CG over class group group G = Cl(∆) with message space
Mcom = Z. Essentially, we apply the encoding technique to the commitment scheme of [DF02] in
order to deal with dyadic numbers in class groups without trusted setup.

The scheme is thus defined as follows:

– CG.Setup(1λ): outputs pp = (g, h) with randomly chosen CG(λ)-rough group elements g, h,21

– CG.Commitpp(x): samples r ← [0, 2U+λ], computes c = gxhr, sets d = (x, 0, r) and outputs
(x, d),

– CG.Verifypp(c, x, (y, `, r)): verifies that the following checks pass:

c = g
y

2` h
r

2` ,

x = b y2` e.

Note that the first verification check is possible because square roots are efficiently computable
in class groups with imaginary order.

Note that r ← [0, S] is analogous to the DLOG setting with short exponents of size S = 2U+λ.
(Beware that U here and U in section 5 are unrelated.)

Lemma 14. The commitment scheme CG is correct.

Proof. For every (g.h) ← CG.Setup(1λ), (c = gxhr, (x, 0, r)) ← com.Commit(x), it holds that
1 · gxhr = c and x = bx1 e.

Lemma 15. The commitment scheme CG is hiding under SI assumption.

Proof. First, by the SI assumption the game is indistinguishable from a hiding game where the
public parameters are chosen from the same subgroup. Since the exponent is chosen with at least
λ bits more than the upper bound of the group, the element hr is statistically overwhelmingly
close to a uniformly random group element of that subgroup by lemma 6. Since hr blinds the value
depending on x of the commitment, namely gx, the commitment resembles a random group element
of that subgroup. Indeed, the statistical distance of gxhr to a random group element is at most 2−λ.

Lemma 16. The commitment scheme CG is binding under the ORD and SI assumption.
21 This can be achieved by taking them to the power of lG(λ)!. Note that this procedure is still polynomial

in λ due to the way lG(·) was defined.

39

Proof. This follows directly from lemma 7. In more detail, let A be a successful PPT adversary on
the binding property of CG. We construct an adversary B on the game from lemma 7 as follows.
On input (G, g, h), the adversary B forwards pp = (gρ, hρ) to A and receives (c, d0, d1,m0,m1)
such that m0 6= m1 and c commits to m0,m1 with opening (y0, `0, r0), (y1, `1, r1) respectively. B
outputs

α = ρ · 2`1y0 − 2`0y1, β = ρ · 2`0r1 − 2`1r0.

Due to the success condition of A , with non-negligible probability it holds that mi = b yi2`i e for
i ∈ [0, 1] and:

g
ρ
y0

2`0 h
ρ
r0

2`0 = g
ρ
y1

2`1 h
ρ
r1

2`1

=⇒ g
ρ(y0

2`0
− y1

2`1
) = h

ρ(r1
2`1
− r0

2`0
)

=⇒ gρ·(2`1y0−2`0y1) = hρ·(2`0r1−2`1r0)

=⇒ gα = hβ

So we need to show that α 6= 0. So assume for the sake of contradiction that α = 0:

ρ(2`1y0 − 2`0y1) = 0

=⇒ y0

2`0
= y1

2`1

=⇒ b y0

2`0
e = b y1

2`1
e

=⇒ m0 = m1

This contradiction concludes the proof.

7.4 Properties

This scheme has the same homomorphic properties as the bounded integer commitment scheme
from section 4.1 with underlying additively homomorphic commitment scheme, without the risk of
wrap-around. Essentially, it allows for multiplication and addition of constants and retains a limited
form of an additive homomorphism, i.e. for commitment c0, c1 to x0, x1 the resulting commitment
c0 · c1 will either commit to x0 +x1 or x0 +x1 + 1. Note that in case the commitments are generated
honestly, the first case will hold.

Further, for a given security parameter, the parameters do not need to be scaled to the size of
the committed integers while allowing for an untrusted setup.

7.5 Range Proof

For consistency with DLOG, we use B, C, L and S. As noted before, we let S = 2U+λ. Since the
group order in unknown, we have no restrictions on B, C, L, and choose L = 2λ for strong security
guarantees. However, our security proof requires challenges in [0, `G − 1], so we let C = `G − 1.

– RPCG.Init(c = gxhr, x ∈ [0, B], r ∈ [0, S]):
1. compute xi s.t. 4x(B − x) + 1 =

∑3
i=1 x

2
i

2. Set r0 = −r, x0 = B − x
3. Set c0 = c−1gB

4. Set ∀i ∈ [1, 3] : ri $← [0, S], ci = gxihri

5. Set ∀i ∈ [0, 3] : mi
$← [0, BCL], si $← [0, CLS], di = gmihsi

6. Set σ $← [0, 2`G(λ)+8BCLS], d = hσc4m0
∏
i=1..3 c

−mi
i

7. Set ∆ = H({di}i=0..3, d)
8. Outputs {ci}i=1..3,∆

– RPCG.Chall(): outputs γ $← [0, C].
– RPCG.Resp(γ):

1. Sets ∀i ∈ [0, 3] : zi = mi + γ · xi, ti = si + γ · ri
2. Sets τ = σ + γ(

∑
i=1..3 xiri + 4x0r0)

40

3. Outputs {zi, ti}i=0..3, τ
– RPCG.Verify({ci}i=1..3,∆, γ, {zi, ti}i=0..3, τ):

1. Compute c0 = c−1gB

2. Compute ∀i ∈ [0, 3] : fi = gzihtic−γi
3. Compute f = hτ · gγ · c4z0 ·

∏
i=1..3 c

−zi
i

4. Check ∆ = H({fi}i=0..3, f)
5. Check zi ∈ [0, BC(L+ 1)]

Theorem 7. The scheme RPCG is correct.

Proof. This follows similarly as in theorem 1.

Theorem 8. Suppose L ≥ 32. The scheme RPCG fulfills soundness under the SI, ORD, 2-fROOT
and CRHF assumptions with soundness error 1/`G(λ).

Recall that `G = C + 1 by definition.

Proof. We assume we have two accepting transcripts for distinct challenges γ 6= γ̃ with witnesses
zi, ti, τ and z̃i, t̃i, τ̃ respectively. Without loss of generality, say γ > γ̃. First, by the collision
resistance of the hash function H, we have d = f = f̃ and ∀i ∈ [0, 3] : di = fi = f̃i. We denote by
a the difference of a− ã for a ∈ {zi, ti, τ}. The proof of opening is similar to the argument from
[DF02] (lemma 1, case 2), but adapted to the class group setting without trusted setup. We shorten
some arguments and refer to the original paper for details. First, look at the following case:
Assumption: 6∃ `i : ziγ · 2

`i , tiγ · 2
`i ∈ Z

By the SI assumption and lemma 6, a successful PPT adversary will stay successful for
g

$← G, h← gν for ν ∈ [0, 22U+λ] if g is CG(λ)-rough. This happens with probability at least
1/lG(λ). We assume that this is indeed the case. Thus:

fi = f̃i =⇒ gzihtic−γi = gz̃iht̃ic−γ̃i

=⇒ gzihti = cγi

=⇒ gzi+ν·ti = cγi

We set αi = zi + ν · ti and βi = γ. We argue that αi 6= 0 with overwhelmingly probability.
First, a part of αi, precisely ν, is unknown to the adversary22. Thus, the claim holds if
ti 6= 0. If we assume the contrary, we have gzi = cγi . Now, the 2-fROOT assumption yields a
contradictions, since we assumed that there is no `i : ziγ · 2

`i , tiγ · 2
`i ∈ Z.

Thus, the 2-fROOT assumption implies that βi
gcd(αi,βi) = 2`i , `i ∈ N. Thus it holds that:

γ

2`i = gcd(αi, γ) = gcd(αi,
γ

2`i).

So γ
2`i | zi + ν · ti. Because the concrete choice of ν is unknown to the adversary, it holds

that γ
2`i | zi and

γ
2`i | ti with a probability at least overwhelmingly close to 1

2 . In more detail,
this can be argued as follows:
Because of the assumption, γ

2`i does not divide zi and ti at the same time. Let q be some
prime factor of γ

2`i such that qj is the maximal q-power dividing γ
2`i and at least one of zi

and ti is non-zero modulo qj . If qj divides ti, it would also have to divide zi, contradicting
the assumption. Thus ti 6= 0 mod qj . Note that if we write ν = n + m · ord(g), the only
information the adversary receives about ν is n determined by h. So based on the above, it
holds that:

ν · ti + zi = n · ti +m · ord(g) · ti + zi = 0 mod qj

Further since q ≤ γ < Cλ and g is CG(λ)-rough, it holds that ord(g) 6= 0 mod q. For the
adversary, the choice if m is now uniformly random among at least 22U+λ

2U = 2U+λ values.
The equation has at most qj−1 solutions and the distribution of m is statistically close to
uniform in Zqj , the probability that m satisfies the above equation is overwhelmingly close to
1/q < 1/2. So after rewinding the adversary a few times, we can check that the assumption
does not hold (otherwise we could solve the 2-fROOT problem using A).

22 This is explained in a similar argument further below.

41

Thus we can now safely assume for the rest of the proof that it holds that there exists an `i such
that zi

γ · 2
`i , tiγ · 2

`i ∈ Z. Note that the smallest such `i can be computed since the denominator γ

is bounded in size. We now set µi := g
− zi
γ h
− ti
γ ci which is computable since square roots can be

computed efficiently in this setting. Because of the identity gzihti = cγi , it holds that µi vanishes
after taking it to the power of γ 6= 0 as shown in the following computation:

µγi = g−zih−ticγi = 1.

Thus it follows that µi = 1 with overwhelming probability by the ORD assumption and we can
define the opening for ci as follows:

yi := zi
γ
· 2`i ,

ri := ti
γ
· 2`i ,

xi := b yi2`i e.

Now ci opens to message xi with opening (yi, `i, ri) since the verification passes:

ci · g
− yi

2`i h
− ri

2`i = 1 =⇒ ci = g
yi

2`i h
ri

2`i

Further, the message x = b−x0 and opening (2`0B− y0, `0,−r0) opens the commitment c correctly
as can be verified using the identity c0 = c−1gB as follows:

c = c−1
0 gB

= g
B− y0

2`0 h
− r0

2`0

= g
2`0B−y0

2`0 h
− r0

2`0

Lastly, we argue that x is indeed in the specified range. We obtain similarly as in the proof of
theorem 3:

f = f̃ =⇒ hτ · gγ · c4z0 ·
∏
i=1..3

c−zii = hτ̃ · gγ̃ · cz̃0
a ·

∏
i=1..3

c−z̃ii

=⇒ hτ · gγ · c4z0 =
∏
i=1..3

czii

=⇒ hτ · gγ · g4z0(B− y0
2`0

)
h
−4z0

r0
2`0 =

∏
i=1..3

(gzi
yi

2`i h
zi

ri

2`i)

=⇒ g
4z0(B− y0

2`0
)+γ−

∑
i=1..3

zi
yi

2`i = h
4z0

r0
2`0
−τ+

∑
i=1..3

zi
ri

2`i

Because 2`i divides γ for all i ∈ [0, 3] we can use lemma 7, and we obtain 4z0(B − y0
2`0) + γ =∑

i=1..3 ziyi ≥ 0. After dividing out γ, we obtain:

1 + 4 y0

2`0
(B − y0

2`0
) =

∑
i=1..3

zi
2 ≥ 0

By lemma 13, this implies b y0
2`0 e ∈ [0, B] as claimed.

Theorem 9. The scheme RPCG is honest-verifier zero-knowledge under the hiding property of the
commitment scheme CG.

Proof. This follows similarly as in theorem 2 and thus we ommit the details.

42

7.6 Remarks

On avoiding the indistinguishability assumption. The SI assumption is necessary to avoid
avoid a trusted setup where g, h are chosen in the same subgroup but with hidden exponent.
We could also use only one group element g ∈ G and define a (honest) commitment to x with
randomness r as gx‖r where ‖ denotes bitwise concatenation. The disadvantage of this definition is
that homomorphic operations are limited because the randomness can overflow into the committed
value. Since our goal was to avoid scaling parameters, we chose the Pedersen format for our
commitment scheme.

Acknowledgments

We thank Muhammed Esgin for helpful comments, especially concerning the choice of parameters
and for pointing out a calculation error in a previous version of this work in the lattice setting.

References

AC20. T. Attema and R. Cramer. Compressed Σ-protocol theory and practical application to plug &
play secure algorithmics. In CRYPTO 2020, Part III, LNCS 12172, pages 513–543. Springer,
Heidelberg, August 2020.

BAZB20. B. Bünz, S. Agrawal, M. Zamani, and D. Boneh. Zether: Towards privacy in a smart contract
world. In International Conference on Financial Cryptography and Data Security, pages 423–443.
Springer, 2020.

BBB+18. B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell. Bulletproofs: Short proofs
for confidential transactions and more. In 2018 IEEE Symposium on Security and Privacy,
pages 315–334. IEEE Computer Society Press, May 2018.

BBDE19. J. Blömer, J. Bobolz, D. Diemert, and F. Eidens. Updatable anonymous credentials and
applications to incentive systems. In ACM CCS 2019, pages 1671–1685. ACM Press, November
2019.

BCDv88. E. F. Brickell, D. Chaum, I. Damgård, and J. van de Graaf. Gradual and verifiable release of a
secret. In CRYPTO’87, LNCS 293, pages 156–166. Springer, Heidelberg, August 1988.

BCK+14. F. Benhamouda, J. Camenisch, S. Krenn, V. Lyubashevsky, and G. Neven. Better zero-knowledge
proofs for lattice encryption and their application to group signatures. In ASIACRYPT 2014,
Part I, LNCS 8873, pages 551–572. Springer, Heidelberg, December 2014.

BDL+18. C. Baum, I. Damgård, V. Lyubashevsky, S. Oechsner, and C. Peikert. More efficient commit-
ments from structured lattice assumptions. In SCN 18, LNCS 11035, pages 368–385. Springer,
Heidelberg, September 2018.

Ben. D. Benarroch. Diving into the zk-snarks setup phase. https://medium.com/qed-it/diving-
into-the-snarks-setup-phase-b7660242a0d7.

BFS20. B. Bünz, B. Fisch, and A. Szepieniec. Transparent SNARKs from DARK compilers. In
EUROCRYPT 2020, Part I, LNCS 12105, pages 677–706. Springer, Heidelberg, May 2020.

BG10. Z. Brakerski and S. Goldwasser. Circular and leakage resilient public-key encryption under
subgroup indistinguishability - (or: Quadratic residuosity strikes back). In CRYPTO 2010,
LNCS 6223, pages 1–20. Springer, Heidelberg, August 2010.

BLLS20. J. Bootle, A. Lehmann, V. Lyubashevsky, and G. Seiler. Compact privacy protocols from post-
quantum and timed classical assumptions. In Post-Quantum Cryptography - 11th International
Conference, PQCrypto 2020, pages 226–246. Springer, Heidelberg, 2020.

Bou00. F. Boudot. Efficient proofs that a committed number lies in an interval. In EUROCRYPT 2000,
LNCS 1807, pages 431–444. Springer, Heidelberg, May 2000.

CCs08. J. Camenisch, R. Chaabouni, and a. shelat. Efficient protocols for set membership and range
proofs. In ASIACRYPT 2008, LNCS 5350, pages 234–252. Springer, Heidelberg, December 2008.

CDE+16. K. Croman, C. Decker, I. Eyal, A. E. Gencer, A. Juels, A. Kosba, A. Miller, P. Saxena, E. Shi,
E. G. Sirer, et al. On scaling decentralized blockchains. In International conference on financial
cryptography and data security, pages 106–125. Springer, 2016.

Cha90. D. Chaum. Showing credentials without identification transferring signatures between uncon-
ditionally unlinkable pseudonyms. In AUSCRYPT’90, LNCS 453, pages 246–264. Springer,
Heidelberg, January 1990.

CHJ+20. H. Chung, K. Han, C. Ju, M. Kim, and J. H. Seo. Bulletproofs+: Shorter proofs for privacy-
enhanced distributed ledger. Cryptology ePrint Archive, Report 2020/735, 2020. https:
//eprint.iacr.org/2020/735.

43

https://medium.com/qed-it/diving-into-the-snarks-setup-phase-b7660242a0d7
https://medium.com/qed-it/diving-into-the-snarks-setup-phase-b7660242a0d7
https://eprint.iacr.org/2020/735
https://eprint.iacr.org/2020/735

CHL05. J. Camenisch, S. Hohenberger, and A. Lysyanskaya. Compact e-cash. In EUROCRYPT 2005,
LNCS 3494, pages 302–321. Springer, Heidelberg, May 2005.

CPP17. G. Couteau, T. Peters, and D. Pointcheval. Removing the strong RSA assumption from
arguments over the integers. In EUROCRYPT 2017, Part II, LNCS 10211, pages 321–350.
Springer, Heidelberg, April / May 2017.

CZJ+17. E. Cecchetti, F. Zhang, Y. Ji, A. Kosba, A. Juels, and E. Shi. Solidus: Confidential distributed
ledger transactions via pvorm. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, pages 701–717, 2017.

DF02. I. Damgård and E. Fujisaki. A statistically-hiding integer commitment scheme based on groups
with hidden order. In ASIACRYPT 2002, LNCS 2501, pages 125–142. Springer, Heidelberg,
December 2002.

ENS20. M. F. Esgin, N. K. Nguyen, and G. Seiler. Practical exact proofs from lattices: New techniques
to exploit fully-splitting rings. In International Conference on the Theory and Application of
Cryptology and Information Security, pages 259–288. Springer, 2020.

ESLL19. M. F. Esgin, R. Steinfeld, J. K. Liu, and D. Liu. Lattice-based zero-knowledge proofs: New
techniques for shorter and faster constructions and applications. In CRYPTO 2019, Part I,
LNCS 11692, pages 115–146. Springer, Heidelberg, August 2019.

FO97. E. Fujisaki and T. Okamoto. Statistical zero knowledge protocols to prove modular polynomial
relations. In CRYPTO’97, LNCS 1294, pages 16–30. Springer, Heidelberg, August 1997.

FSW03. P.-A. Fouque, J. Stern, and J.-G. Wackers. Cryptocomputing with rationals. In FC 2002, LNCS
2357, pages 136–146. Springer, Heidelberg, March 2003.

GI08. J. Groth and Y. Ishai. Sub-linear zero-knowledge argument for correctness of a shuffle. In
EUROCRYPT 2008, LNCS 4965, pages 379–396. Springer, Heidelberg, April 2008.

GMR89. S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof systems.
SIAM Journal on Computing, 18(1):186–208, 1989.

GN08. N. Gama and P. Q. Nguyen. Predicting lattice reduction. In EUROCRYPT 2008, LNCS 4965,
pages 31–51. Springer, Heidelberg, April 2008.

Gro05. J. Groth. Non-interactive zero-knowledge arguments for voting. In ACNS 05, LNCS 3531, pages
467–482. Springer, Heidelberg, June 2005.

Gro11. J. Groth. Efficient zero-knowledge arguments from two-tiered homomorphic commitments. In
ASIACRYPT 2011, LNCS 7073, pages 431–448. Springer, Heidelberg, December 2011.

HKR19. M. Hoffmann, M. Klooß, and A. Rupp. Efficient zero-knowledge arguments in the discrete log
setting, revisited. In ACM CCS 2019, pages 2093–2110. ACM Press, November 2019.

HKRR20. M. Hoffmann, M. Klooß, M. Raiber, and A. Rupp. Black-box wallets: Fast anonymous two-way
payments for constrained devices. PoPETs, 2020(1):165–194, January 2020.

HPWZ17. J. Hoffstein, J. Pipher, W. Whyte, and Z. Zhang. A signature scheme from learning with
truncation. Cryptology ePrint Archive, Report 2017/995, 2017. https://eprint.iacr.org/
2017/995.

KK04. T. Koshiba and K. Kurosawa. Short exponent Diffie-Hellman problems. In PKC 2004, LNCS
2947, pages 173–186. Springer, Heidelberg, March 2004.

Lin03. Y. Lindell. Parallel coin-tossing and constant-round secure two-party computation. Journal of
Cryptology, 16(3):143–184, June 2003.

Lip03. H. Lipmaa. On diophantine complexity and statistical zero-knowledge arguments. In ASI-
ACRYPT 2003, LNCS 2894, pages 398–415. Springer, Heidelberg, November / December 2003.

LM19. R. W. F. Lai and G. Malavolta. Subvector commitments with application to succinct arguments.
In CRYPTO 2019, Part I, LNCS 11692, pages 530–560. Springer, Heidelberg, August 2019.

LN17. V. Lyubashevsky and G. Neven. One-shot verifiable encryption from lattices. In EURO-
CRYPT 2017, Part I, LNCS 10210, pages 293–323. Springer, Heidelberg, April / May 2017.

LS18. V. Lyubashevsky and G. Seiler. Short, invertible elements in partially splitting cyclotomic rings
and applications to lattice-based zero-knowledge proofs. In EUROCRYPT 2018, Part I, LNCS
10820, pages 204–224. Springer, Heidelberg, April / May 2018.

Lyu09. V. Lyubashevsky. Fiat-Shamir with aborts: Applications to lattice and factoring-based signatures.
In ASIACRYPT 2009, LNCS 5912, pages 598–616. Springer, Heidelberg, December 2009.

Lyu12. V. Lyubashevsky. Lattice signatures without trapdoors. In EUROCRYPT 2012, LNCS 7237,
pages 738–755. Springer, Heidelberg, April 2012.

MIO18. A. MIOLA. Addressing privacy and fungibility issues in bitcoin: confidential transactions. 2018.
MW17. D. Micciancio and M. Walter. Gaussian sampling over the integers: Efficient, generic, constant-

time. In CRYPTO 2017, Part II, LNCS 10402, pages 455–485. Springer, Heidelberg, August
2017.

Ped92. T. P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. In
CRYPTO’91, LNCS 576, pages 129–140. Springer, Heidelberg, August 1992.

44

https://eprint.iacr.org/2017/995
https://eprint.iacr.org/2017/995

PS96. D. Pointcheval and J. Stern. Security proofs for signature schemes. In EUROCRYPT’96, LNCS
1070, pages 387–398. Springer, Heidelberg, May 1996.

PS00. D. Pointcheval and J. Stern. Security arguments for digital signatures and blind signatures.
Journal of Cryptology, 13(3):361–396, June 2000.

PS19. P. Pollack and P. Schorn. Dirichlet’s proof of the three-square theorem: An algorithmic
perspective. Math. Comput., 88(316):1007–1019, 2019.

RS86. M. O. Rabin and J. O. Shallit. Randomized algorithms in number theory. pages S239–S256,
1986.

Sle. G. Slepak. How to compromise zcash and take over the world. https://blog.okturtles.org/
2016/09/how-to-compromise-zcash-and-take-over-the-world/.

YAZ+19. R. Yang, M. H. Au, Z. Zhang, Q. Xu, Z. Yu, and W. Whyte. Efficient lattice-based zero-knowledge
arguments with standard soundness: Construction and applications. In CRYPTO 2019, Part I,
LNCS 11692, pages 147–175. Springer, Heidelberg, August 2019.

45

https://blog.okturtles.org/2016/09/how-to-compromise-zcash-and-take-over-the-world/
https://blog.okturtles.org/2016/09/how-to-compromise-zcash-and-take-over-the-world/

Supplementary Material

A Remark on the Ring LWE setting.

We simplify the setting and keep the details minimal, so we might skip some necessary properties
of the ring R or other entities. At first, we present the basics for Ring LWE and Ring SIS and for
understanding the advantage of the setting and then detail the problem of our approach in the
setting.

Let R = Z[X]/〈Xd + 1〉 and Rq = Zq[X]/〈Xd + 1〉. The Ring LWE and Ring SIS problems are
now defined over the ring Rq. So for a random matrix A

$← R(m−n)×n
q , the Ring LWE problem

asks to distinguish between ~b = A · ~s+ ~e with short ~s ∈ Rnq , ~e ∈ Rm−nq and a random ~b
$← R(m−n)

q .
Similarly, the Ring SIS problem asks to find a short solution ~z for A · ~z = ~0. The commitment
scheme of [BDL+18] has the same structure as presented in definition 13, i.e. ~c = A · ~r + (~0 ‖ ~x) for
some matrix A and short vector ~r with entries in Rq. Also, it has a relaxed opening in the form of
checking f · ~c = A · ~r + f · (~0 ‖ ~x) for some small f ∈ Rq.

The structure of the zero-knowledge scheme for proving knowledge of the opening of a commit-
ment is similar, since most needed results for the zero-knowledge can directly be translated to the
different setting. For example lemma 10 and lemma 11 can just be applied on the coefficients of the
polynomials which leads to identical statements. This also applies for the general structure of the
range proof, only that the vectors in Zq are now vectors of polynomials in Rq. The big difference is
that multiplication is defined over the Ring Rq and this allows for some optimizations.

An important optimization is the way the challenge space C for zero-knowledge schemes
can be defined. [LS18] shows that short, non-zero elements in Rq can be inverted. So setting
C = {γ ∈ Rq | γ short} and keeping #C ≥ 2λ allows for proofs with negligible soundness error in
one round. Since γ − γ′ 6= 0 will be short and thus invertible in Rq for γ, γ′ ∈ C, the challenge
difference can thus be used as (part of the) opening for the commitment scheme.

Further, using the NTT coefficient representation of f ∈ Rq allows for efficiently proving
relations in Zdq . We now assume that q ≡ 1 mod 2d. This can be generalized in order to have a
slightly different vector representation in Zq. We refer to [ENS20] for more details on the NTT
transformation. We identify f with its NTT representation ~̂

f ∈ Zdq , where f̂i = f [ri] and ri is the i-th
primitive 2d-th root of unity. This representation has the convenient property that a multiplication
f ·g of two vectors f, g ∈ Rq corresponds to a component-wise multiplication of ~̂f · ~̂g. This also holds
for component-wise addition. This allows us to prove the relation 4(x− a)(b− x) + 1 =

∑3
i=1 x

2
i

in Rq and retain the relation component-wise in the respective NTT vectors in Zdq . The problem
is that despite γ ∈ C being short, there is no guarantee that ~̂γ is also short in Zdq . Thus we can
not argue in the same way as in the standard lattice setting, where we necessarily use the fact
that γ ∈ [−p, p] is short for proving that x ∈ [a, b+ 1]. So in order to utilize the same range proof
technique in the Ring LWE setting, we have to find a challenge space C such that elements γ ∈ C
are simultaneously short in Rq and their NTT representation ~̂c is short in Zdq . Note that γ − γ′
invertible for γ, γ′ ∈ C is not sufficient. That is because the binding property of the commitment
relies on γ − γ′ being short in the proof of soundness in a zero-knowledge scheme.

If C has this desired property, the verification of shortness of the masked witnesses zi = m+γ ·x
can directly be performed for ~̂zi and we could construct a range proof with the techniques introduced
in this work.

B Script For Proof Size Computation

Proof Size in the DLOG Setting In the following, we supply the Python scripts that were used
to calculate the proof sizes. First, we present the script used to compute the concrete proof size and
determine the parameters of the scheme RP∗Log defined in section 5. The following modifications to
RPLog were applied:

– Rejection sampling for mi, si, σ,
– Fiat-Shamir transformation for non-interactivity.
– Avoid resending commitments ~ci in repetitions.

Listing 1.1. The Python script used to determine the parameters and compute proof size of the optimized
non-interactive version of RP∗

Log established in section 5
from math import c e i l , sqrt , pi , exp
import math

colors
HEADER = ’\033[95m’
FAIL = ’\033[91m’
ENDC = ’\033[0m’

def l og (x) :
return math . l og (x , 2)

def getRejSamplingM (alpha) :
return exp (13 . 3/ alpha + 1/(2∗ alpha ∗ alpha))

def compute_proof_size (secpar , C, B) :
"""
Computes the size of the proof for given security parameter secpar ,

challenge size C and maximal range B, each in bit.
"""
--
------------------ Parameters ------------------
--
Constant alpha from the rejection sampling lemma.
alpha = 256
M = getRejSamplingM (alpha)
rounds necessary for negligible error
rounds = c e i l (s ecpar /C)
uniformly random masking overhead
L = secpar
rejection sampling overhead
L_prime = c e i l (l og (sq r t (2∗ secpar) ∗ alpha))
modulus of the group [bit]
q = 2∗L_prime + 2∗C + 2∗B + 6
hash output size [bit]
Hash_size = 2∗ secpar

--
----------------- Scheme Size ------------------
--
comsize = q
mask_z = L_prime + B + C
mask_t = L_prime + 3∗ secpar
tau = L_prime + B + 3∗ secpar + 2

proo f_s i z e = 3∗ comsize + rounds ∗(Hash_size + 4∗(mask_z + mask_t) + tau)
proof_size_B = c e i l (p roo f_s i z e / 8)
print ("M : {:-9}" . format (round(M, 4)))
print ("L’ : {:-9}" . format (round(L_prime , 4)))
print ("Range [bit]: {:-9}" . format (B))
print ("Security Parameter [bit]: {:-9}" . format (secpar))
print ("Challenge Size [bit]: {:-9}" . format (C))
print ("Group Size [bit]: {:-9}" . format (q))
print ("")
print ("Proof Size [B]: {:-9}" . format (proof_size_B))

47

i f __name__ == "__main__" :
s e cpa r s = [80 , 100 , 128]
Cs = [80 , 100 , 128]
Bs = [32 , 64]

for B in Bs :
for (secpar ,C) in zip (secpars , Cs) :

print ("--")
compute_proof_size (secpar , C, B)
print ("--")

Proof Size in the Lattice Setting We provide the Python script used to compute the concrete
proof size and parameters of the lattice scheme RP∗Lat of section 6. It checks whether the necessary
hardness assumptions are fulfilled by the chosen parameters. The following optimizations from
section 6.4 were used:

– Hash function to avoid sending the mask commitments.
– Avoid resending commitments ~ci in repetitions.
– Rejection sampling to mask ~xi.

Listing 1.2. The Python script used to determine the parameters and compute proof size of the optimized
non-interactive version of RP∗

Lat established in section 6
from math import c e i l , sqrt , pi , exp
import math

colors
HEADER = ’\033[95m’
FAIL = ’\033[91m’
ENDC = ’\033[0m’

def l og (x) :
return math . l og (x , 2)

def b i t_s i z e (x) :
return c e i l (l og (x))

def get_rhf_s i s (n , m, q , beta) :
a = log (beta) ∗∗2
b = 4∗n∗q
temp = a / b
return 2∗∗temp

returns the output probability per round
def get_output_P (M_x, M_r) :

return (1/M_x ∗ 1/M_r)

def get_rhf_lwe (n , m, q , sigma) :
a = (log (sigma∗ s q r t (2∗ pi)) - l og (5 . 3 1) -q) ∗∗2
b = 4∗n∗q
temp = a / b
return 2∗∗temp

def compute_proof_size (secpar , l1 , l2 , C, B, req_RHF , alpha_mod , n) :
"""
Computes the size of the proof for given security parameter secpar ,

challenge size C and maximal range B, each in bit.
"""
--

48

------------------ Parameters ------------------
--
parameters of the commitment scheme
l = l 1+l2+n
rounds = c e i l (s ecpar /C)

n_rej = n
for having good output probability , mask all x_i at once for small n
i f (n_rej < 140) :

n_rej = 4∗n
L_x = b i t_s i z e (2∗ (n_rej ∗ ∗ (1 . 5)))
M_x = exp (13 . 3/ log (n_rej) + 1/(2∗ l og (n_rej) ∗ l og (n_rej)))
M_r = exp (13 . 3/ log (l) + 1/(2∗ l og (l) ∗ l og (l)))

q = L_x + 2∗C + 2∗B + 6

standard deviations
alpha = c e i l (q∗alpha_mod)
sigma = c e i l (max(s q r t (2∗ l 2 / p i) , 2∗∗(q - alpha) / sq r t (2∗ pi)))
sigma_rej = c e i l (2∗(2∗∗C) ∗ s q r t (l) ∗ l og (l) ∗ sigma)

size of the hash output [bit]
Hash_size = 2∗ secpar

--
------------------ HARDNESS --------------------
--

Bound of the randomness of the commitment scheme
T = 4∗ s q r t (l) ∗(sigma_rej+2∗∗C+sigma)
RHF for the commitment scheme’s SIS assumption
SIS_RHF = get_rhf_s i s (l1 , l , q , 4∗ (2∗∗C) ∗T)
RHF for the commitment scheme’s LWE assumption
LWE_RHF = get_rhf_lwe (l2 , l , q , sigma)

RHF needs to be smaller than the required RHF
i f LWE_RHF >= req_RHF or q > l2 or SIS_RHF >= req_RHF :

print ("Required RHF: " + FAIL + str (req_RHF) + ENDC)
print ("LWE RHF: " + str (LWE_RHF))
print ("SIS RHF: " + str (SIS_RHF))

--
----------------- Scheme Size ------------------
--
comsize = (l 1+n) ∗q
mask_z = n∗(B + C + L_x)
mask_t = l ∗ b i t_s i z e (T)

compute proof size
proo f_s i z e = 4∗ comsize + rounds ∗(Hash_size + 4∗mask_z + 5∗mask_t)
proof_size_mB = (proo f_s i z e / (8 ∗ 1000 ∗ 1000))

print ("Challenge Size [bit]: {:-9}" . format (C))
print ("Modulus Size [bit]: {:-9}" . format (q))
print ("l_1 : {:-9}" . format (l 1))
print ("l_2 : {:-9}" . format (l 2))
print ("n : {:-9}" . format (n))
print ("sigma [bit]: {:-9}" . format (b i t_s i z e (sigma)))
print ("")
print ("Total Proof Size [mB]: {:-9}" . format (proof_size_mB))

49

print ("Success Probability [%]: {:-9}" . format (get_output_P (M_x, M_r))
)

i f __name__ == "__main__" :
s e cpa r s = [8 0 , 1 2 8]
ps = [20 , 16]
Bs = [32 , 64]
note: change l1, l2 and the alpha modifier to fine -tune the difficulty

of LWE and SIS
l 1 s = [[2 6 5 5 , 3180] , [3120 , 3 7 6 0]]
l 2 s = [[2 8 3 0 , 3620] , [3420 , 4 5 1 0]]
ns = [[1 0 0 0 , 1000] , [1000 , 1 0 0 0]]
alpha_mods = [[0 . 7 2 , 0 . 7 1] , [0 . 6 5 , 0 . 6 5]]
RHFs = [1 . 0 0 48 , 1 . 0 035]

for i , B in enumerate(Bs) :
for secpar , C, rhf , l1 , l2 , alpha_mod , n in zip (secpars , ps , RHFs,

l 1 s [i] , l 2 s [i] , alpha_mods [i] , ns [i]) :
print ("--")
print ("Security Parameter [bit]: {:-9}" . format (secpar))
print ("Challenge Size [bit]: {:-9}" . format (C))
print ("Range [bit]: {:-9}" . format (B))
print ("")
compute_proof_size (secpar , l1 , l2 , C, B, rhf , alpha_mod , n)
print ("--")

50

	Efficient Range Proofs with Transparent Setup from Bounded Integer Commitments
	Introduction
	Standard Approaches for Building Range Proofs
	Our Contribution

	Technical Overview
	A Natural Approach via -Protocols
	Encoding Integers as mod-q Rationals
	Instantiation in the Discrete Log Setting

	Preliminaries
	Hash Functions
	Commitment Schemes
	Zero-Knowledge Proofs
	Tools in the DLOG setting
	Tools in the Lattice setting
	Tools in the Class Group Setting
	Tools for Zero-Knowledge

	Integer Commitments from Rounding Fractions
	Bounded Integer Commitment Scheme

	Range Proof in a DLOG Setting
	Overview
	Parameters
	Scheme
	Optimizations
	Efficiency

	Range Proof in a Lattice Setting
	Overview
	Parameters
	Scheme
	Optimizations
	Efficiency

	Unbounded Integer Commitments
	Overview
	Parameters
	Scheme
	Properties
	Range Proof
	Remarks

	Remark on the Ring LWE setting.
	Script For Proof Size Computation

