
HAL Id: hal-03374178
https://hal.science/hal-03374178v1

Submitted on 11 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Black-Box Uselessness: Composing Separations in
Cryptography

Geoffroy Couteau, Pooya Farshim, Mohammad Mahmoody

To cite this version:
Geoffroy Couteau, Pooya Farshim, Mohammad Mahmoody. Black-Box Uselessness: Composing Sepa-
rations in Cryptography. ITCS 2021 - 12th Innovations in Theoretical Computer Science Conference,
Feb 2021, Online, United States. �hal-03374178�

https://hal.science/hal-03374178v1
https://hal.archives-ouvertes.fr


Black-Box Uselessness: Composing Separations in Cryptography

Geoffroy Couteau∗ Pooya Farshim† Mohammad Mahmoody‡

Abstract

Black-box separations have been successfully used to identify the limits of a powerful set of
tools in cryptography, namely those of black-box reductions. They allow proving that a large
set of techniques are not capable of basing one primitive P on another Q. Such separations,
however, do not say anything about the power of the combination of primitives Q1,Q2 for
constructing P, even if P cannot be based on Q1 or Q2 alone.

By introducing and formalizing the notion of black-box uselessness, we develop a framework
that allows us to make such conclusions. At an informal level, we call primitive Q black-box
useless (BBU) for primitive P if Q cannot help constructing P in a black-box way, even in the
presence of another primitive Z. This is formalized by saying that Q is BBU for P if for any
auxiliary primitive Z, whenever there exists a black-box construction of P from (Q,Z), then
there must already also exist a black-box construction of P from Z alone. We also formalize
various other notions of black-box uselessness, and consider in particular the setting of efficient
black-box constructions when the number of queries to Q is below a threshold.

Impagliazzo and Rudich (STOC’89) initiated the study of black-box separations by separat-
ing key agreement from one-way functions. We prove a number of initial results in this direction,
which indicate that one-way functions are perhaps also black-box useless for key agreement. In
particular, we show that OWFs are black-box useless in any construction of key agreement in
either of the following settings: (1) the key agreement has perfect correctness and one of the par-
ties calls the OWF a constant number of times; (2) the key agreement consists of a single round
of interaction (as in Merkle-type protocols). We conjecture that OWFs are indeed black-box
useless for general key agreement protocols.

We also show that certain techniques for proving black-box separations can be lifted to the
uselessness regime. In particular, we show that known lower bounds for assumptions behind
black-box constructions of indistinguishability obfuscation (IO) can be extended to derive black-
box uselessness of a variety of primitives for obtaining (approximately correct) IO. These results
follow the so-called “compiling out” technique, which we prove to imply black-box uselessness.

Eventually, we study the complementary landscape of black-box uselessness, namely black-
box helpfulness. Formally, we call primitive Q black-box helpful (BBH) for P, if there exists
an auxiliary primitive Z such that there exists a black-box construction of P from (Q,Z), but
there exists no black-box construction of P from Z alone. We put forth the conjecture that
one-way functions are black-box helpful for building collision-resistant hash functions. We define
two natural relaxations of this conjecture, and prove that both of these conjectures are implied
by a natural conjecture regarding random permutations equipped with a collision finder oracle,
as defined by Simon (Eurocrypt’98). This conjecture may also be of interest in other contexts,
such as hardness amplification.

∗CNRS and IRIF, Paris-Diderot University, France
†Department of Computer Science, University of York, UK
‡Department of Computer Science, University of Virginia, USA. Supported by NSF grants CNS-1936799 and

CCF-1910681.



Contents

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Black-Box Uselessness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 One-Way Functions and Key Agreement . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 The Compilation Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 The Case of Collision Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.6 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Preliminaries 6
2.1 Black-Box Reductions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Specific Cryptographic Primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Defining Black-Box Uselessness 9
3.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Restricted Black-Box Uselessness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 On the Black-Box Uselessness of OWFs for Key Agreement 11
4.1 Black-Box Uselessness of OWFs for Perfectly Correct Key Agreement . . . . . . . . 11

4.1.1 A Helpful Logical Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.1.2 Proof of Theorem 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.1.3 Proof of Lemma 4.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.2 Black-Box Uselessness of OWFs for Imperfect KA . . . . . . . . . . . . . . . . . . . 17
4.3 Black-Box Uselessness of OWFs for Merkle-Type Key Agreement . . . . . . . . . . . 19

5 Black-Box Uselessness via Compiling Out 21
5.1 Black-Box Uselessness in (Query) Efficient Constructions . . . . . . . . . . . . . . . 22
5.2 Black-Box Uselessness of OWFs for Approximate IO . . . . . . . . . . . . . . . . . . 24

6 Towards Black-Box Helpfulness of OWFs for Collision-Resistant Hash Functions 26
6.1 A Conjecture on the Black-Box Helpfulness of OWFs for CRHFs . . . . . . . . . . . 27
6.2 A First Relaxation of Conjecture 6.1: Distributional Black-Box Helpfulness . . . . . 28
6.3 A Second Relaxation of Conjecture 6.1: Class Helpfulness . . . . . . . . . . . . . . . 30
6.4 A Black-Box Helpful Idealized Primitive for CRHFs . . . . . . . . . . . . . . . . . . 31



1 Introduction

1.1 Background

Black-box reductions are a central tool in cryptography. They have helped shape a rich landscape
of relations between different cryptographic notions, allowing us to develop a better understanding
of their powers and limitations.

Roughly speaking, in a (fully) black-box reduction both the design and analysis of a protocol
treat the underlying primitives and adversaries in a black-box way, obliviously of their internals.
More precisely, we say there is a fully black-box construction of a primitive P from a primitive
Q if there is an efficient construction PQ that for every implementation Q of primitive Q im-
plements primitive P, and further, there is an efficient security reduction SQ,A which for every
adversary AP that breaks P, breaks Q. This notion originates in the seminal work of Impagliazzo
and Rudich [IR89], and it was later refined by Reingold, Trevisan, and Vadhan [RTV04] as well
as Baecher, Brzuska, and Fischlin [BBF13] who proposed a taxonomy of notions of reducibility
between cryptographic primitives.

Impagliazzo and Rudich showed how to attack any key-agreement (KA) protocol in the random-
oracle (RO) model with only a polynomial number queries to the random oracle.1 This result is
sufficient to rule out fully black-box reductions, since, roughly speaking, the construction is assumed
to work for any OWF oracle f , and in particular for a RO and moreover, the security reduction
works for any adversary A, and in particular for one the does not necessarily run in polynomial
time but makes a polynomial number of queries to f .

Following this work, a successful and long line of research studying separations between differ-
ent cryptographic primitives followed (e.g., see [Sim98, GGKT05, HHRS07, BM09, BKSY11, AS15,
GMM17a] and references therein). In this work we will revisit these works and ask if and to what
extent their results hold in the presence of other primitives.

1.2 Black-Box Uselessness

Cryptographic constructions typically rely on multiple, incomparable building blocks. This raises
the question if, and to what extent, a black-box separation result proves that some primitive
is useless for building another even with other primitives. Take, for example, the case of key-
agreement (KA) and one-way functions (OWFs). Although OWFs on their own are insufficient to
build KA, this leaves the possibility that together with some other primitive Z they do imply KA
in a black-box way, even if Z also does not black-box imply KA.2 More generally, suppose we have
separated primitive P from primitives Q1 and Q2 with respect to black-box reductions. That is,
neither Q1 nor Q2 can be used to build P. Does it then necessarily follow that P is also black-box
separated from Q1 and Q2 put together? More generally, one may ask:

Which black-box impossibility results compose?

In general, not all black-box impossibility results compose. Indeed, consider a primitive P that
is set to be the “union” of primitives Q1 and Q2, where Q1 and Q2 are mutually separated (i.e.,
neither can be based on the other). Then although P cannot be based on Q1 or Q2, it can be

1More precisely, their attack made O((qm)3) RO queries, where q is the number of queries of the protocol to the
RO and m is the number of messages exchanged.

2Note that constructions of PKE from OWFs plus indistinguishability obfuscation are non-black-box [SW14].

1



trivially based on their union.3 This situation is somewhat unsatisfying: due to a joint effort of
the cryptographic community in the past three decades, we have at our disposal a large number of
black-box separations between pairs of primitives, yet we know essentially nothing about whether
this situation changes if we are willing to use several primitives in a black-box construction – and
of course, black-box separating subsets of primitives from a target primitive would be tedious. This
leaves out the possibility that such separations could be obtained more systematically.

In this work, we seek to devise a more efficient strategy, by identifying conditions under which
a primitive P is black-box separated from primitive Q in a composable way. That is, primitive Q
in conjunction with any other primitive Z cannot be used to build P, unless of course P can be
built using Z alone. Our starting point is the following notion of black-box uselessness:4

Definition 1.1 (Black-box uselessness, informal). A primitive Q is black-box useless (BBU) for
primitive P if for any auxiliary primitive Z, whenever there is a black-box construction of P from
(Q,Z) there also exists a black-box construction of P from the auxiliary primitive Z alone.

A composition theorem for black-box uselessness immediately follows: if Q1 is BBU for P
and Q2 is BBU for P then Q1 and Q2 put together are BBU for P. Indeed, for any Z, if
(Q1,Q2,Z) = (Q1, (Q2,Z)) black-box implies P, then (Q2,Z) must black-box imply P (by the
black-box uselessness of Q1). This in turn implies, by the black-box uselessness of Q2, that Z alone
black-box imply P.

Remark 1.2. A black-box uselessness result of Q for P implies in particular that Q does not
black-box imply P, as long as P is not a (trivial) primitive that exists unconditionally. Indeed, by
the black-box uselessness of Q, if Q black-box implies P, then taking Z as the “empty primitive”
we get that P exists unconditionally in the plain model. For instance, although one-way functions
are black-box useless for the one-time pad (since the latter exists unconditionally in the presence
of any auxiliary oracle), one-way functions black-box imply the one-time pad (for essentially the
same reason).

1.3 One-Way Functions and Key Agreement

Perhaps one of the most fundamental questions regarding black-box uselessness is to understand
whether or not one-way functions are black-box useless for key agreement. We start with an
observation on a natural approach for building key-agreement from one-way functions together
with other primitives.

Remark 1.3. When looking for candidate primitives that when combined with one-way functions
imply key agreement, the notion of indistinguishability obfuscation (iO) [BGI+01,SW14] might be
the first that comes to mind. As mentioned, the construction of PKE from IO and OWFs [SW14]

3This formal counterexample can be converted into more “natural” ones. Take identity-based encryption (IBE)
with compact user keys, whose lengths are independent of the length of user identities. One can use a standard IBE
and a collision-resistance hash function (CRHF) to build a compact IBE (by simply hashing the identities). Yet,
compact IBE cannot be based on CRHFs in a black-box way (since PKE cannot be based on ROs). Furthermore,
compact IBE cannot be based on standard IBE, since compact IBE implies CRHF (the keys must be collision-free
for otherwise the compact IBE can be broken by finding a collision among keys) and standard IBE does not imply
CRHFs [MM16].

4The terminology “a primitive X is useless for black-box constructions of a primitive Y ” has been used sometimes
in the literature, e.g. in [MW20], to mean that Y does not black-box reduce to X. Our notion of black-box uselessness
should not be confused with this terminology, which only refers to conventional black-box separations.

2



is not black-box. Furthermore, we observe that this is unavoidable: Impagliazzo and Rudich [IR89]
actually show, along the way, that there is no black-box construction of key agreement from one-
way functions and iO. This is because the result of [IR89] shows that relative to a random oracle
and a PSPACE oracle there is no key agreement, yet one-way functions exist. However, relative
to these oracles, there is also a perfectly secure (deterministic) IO scheme: on input a circuit of a
given size, use the PSPACE oracle to find the lexicographically first functionally equivalent circuit
of the same size.

In this work, we provide a partial answer to the question of whether or not one-way functions
are black-box useless for key agreement. We show that one-way functions are black-box useless
in any construction of key agreement satisfying certain restrictions. To describe our result, it is
instructive to start with the separation of perfectly correct KA from OWFs by Brakerski, Katz,
Segev, and Yerukhimovich [BKSY11].

BKSY11 in a nutshell. Given a perfectly correct, two-party KA protocol in the RO model,
where Alice and Bob place at most q queries to the RO, consider an attacker Eve that proceeds as
follows. Given a transcript T of the protocol, Eve samples coins r′A and a random oracle RO′ for
Alice that are consistent with T . Eve then runs Alice on r′A and RO′ and records all oracle queries
and the resulting key. It then places all these queries to the real RO to obtain an assignment (a list
of query-answer pairs) L. Eve repeats this process, appending to L and storing keys, while ensuring
that the sampling of RO′ is consistent with L computed so far. Now, if in a sampled run of Alice,
there are no queries of Alice in common with those of Bob outside L, by perfect correctness, the
correct key will be computed. Otherwise, a query of Bob will be discovered. Since Bob has at most
q queries, if Eve executes this procedure 2q+1 times, in at least q of the runs no intersection queries
will be discovered, and in these runs the correct key will be computed. Thus taking a majority
over the set of keys computed, Eve obtains the key with probability one.

Upgrading to BBU. In order to convert this proof into a black-box uselessness result, we make
a case distinction based on whether or not one can “lift” the sampling procedure to a Z-relativized
world for any oracle Z. Given a construction KAF,Z of KA from a OWF F and Z, if the sampling
procedure can be successfully carried out in the presence of Z, then we could efficiently break any
perfectly correct KA protocol in the presence of Z only (since the attacker computes the correct
key with probability one).

Now suppose at some iteration Eve is no longer able to find coins and a random oracle consistent
with the transcript while making polynomially many queries to Z. We claim that in this case we
can construct a weak one-way function. Indeed, consider the function that runs the above attack
procedure up to but excluding the stage where Eve fails. Thus, this function starts by running the
protocol, then uses the sampler for the first iteration (if sampling was not already impossible at
this stage) to obtain an assignment, and continues with another round of sampling, until it arrives
at the stage where sampling is no longer possible. The transcript of the protocol at this stage
together with the list of assignments so far constitutes the challenge for which there is no inverter.
From a weak one-way function, a full-fledged one-way function follows by the result of [Yao82], as
this construction is black-box and hence relativizes with respect to Z.

We may now use the one-way function obtained from Z in place of the original one-way function
F to remove reliance on the F all together. Thus, we obtain a KA protocol which relies only on Z,

3



as required. We emphasize that this proof only shows the uselessness of OWFs for (perfect) KA
and not that of random oracles, since we only obtain a one-way function using Z.

Note that since we recursively rely on the existence of an inverter, the query complexity (to Z)
of the samplers can potentially blow up. Indeed, suppose for some Z, any sampler needs to place
O(n2) queries to Z to invert a function that places n queries to Z. After the first iteration, we arrive
at the construction of a function that places n+O(n2) = O(n2) queries to Z. Thus, it may well be
that a successful inverter at this step needs to place O(n4) queries to Z. This in particular implies
that the recursive argument above can be applied for only a constant number of steps. Since we
only need to apply the recursive sampling for either Alice or Bob, we obtain a BBU result as long
as either Alice or Bob makes a constant number of queries to the RO (but polynomially many calls
to Z). We formalize this proof in Section 4, where we point out the other subtleties that arise.

Currently, we are not able to extend the proof to arbitrary protocols where both Alice and Bob
make a polynomial number of RO queries. Despite this, we can show that OWFs are black-box
useless for building constant-round, imperfect key agreements when both parties make a constant
number of queries to the OWF (and an arbitrary number of queries to the auxiliary oracle), and
that OWFs are black-box useless for one-round key agreement (without restriction on the queries
made by the parties). We defer the details to Section 4.2.

1.4 The Compilation Technique

A number of black-box separation results rely on what we here refer to as the efficient compiling-
out (or simply compilation) paradigm [GGKT05, CKP15, GMM17a, GMM17c, BLP17, AKW18,
GHMM18]. At a high-level, here given a construction GP

1 one compiles out the primitive P via
an (oracle-free) simulator Sim which simulates P for the construction in a consistent way and with-
out affecting security. The result is a new construction G2 that no longer uses P. This proof
technique is closely related to black-box uselessness, and as we will see can often be turned into
a black-box uselessness result with minor modifications. This in turn highlights the advantage of
separation results that are achieved using this technique.

In order to show how this can be done, we briefly discuss this in the context of the work of
Canetti, Kalai, Paneth [CKP15], who showed that obfuscation cannot be based on random oracles.5

CKP and black-box uselessness of random oracles for indistinguishability obfuscation.
Consider an obfuscator ObfRO that makes use of a random oracle RO. On input a circuit without
random oracle gates6 the obfuscation algorithm outputs a circuit CRO, which may also call the
random oracle RO. CKP compile out the random oracle RO from any such construction as follows.
First they convert ObfRO to an obfuscator in the plain model by simulating the RO for the obfuscator
via lazy sampling. Next to ensure that the oracle expected by an obfuscated circuit CRO is consistent
with the oracle simulated for obfuscation, CKP execute C on multiple randomly chosen inputs at
the obfuscation phase while simulating the random oracle consistently, record all queries made
and corresponding simulated answers, and return them together with the obfuscated oracle circuit.
Leaking this list cannot hurt security as an adversary in the RO model can also compute such a
list given an obfuscated circuit. On the other hand, having this list allows the evaluation of CRO

5The work of [CKP15] dealt with virtual black-box obfuscation, but it turns out [BBF16,MMN+16a,MMN+16b]
that their proof could also be applied to the case of indistinguishability obfuscation.

6This restriction only makes the results of CKP stronger.

4



to be consistent with the obfuscation phase with high probability on a random input. (This is why
the obtained primitive is only an approximate-correct IO – see Definition 2.8.)

As can be seen, this proof Z-relativizes in the sense that the simulation of the random oracle RO
and the execution of the obfuscated circuit can be both done in the presence of any other oracle Z.
By compiling out the random oracle RO in the presence of Z, we obtain a construction that relies
on Z. That is, we obtain that random oracles are black-box uselessness for obfuscation.

A number of other impossibility results follow the compilation paradigm and here we observe
that they can be lifted to the black-box uselessness regime. In particular, we consider the results
from [GGKT05,CKP15,GMM17a,GMM17c] and show how they can be lifted to black-box useless-
ness. Indeed, as long as compilation is performed for a constant “number of rounds” and each step
can be done efficiently we obtain black-box uselessness.7 As a result we get that approximate IO
cannot be obtained from a black-box combination of random oracles, predicate encryption, fully
homomorphic encryption and witness encryption.8

Remark 1.4. We note that some previous works (e.g., [CKP15]) have described the result of
Impagliazzo and Rudich as “compiling out” the random oracle from any key-agreement protocol.
This process, however, differs from the compiling-out technique that we study in this paper in two
aspects. First, compilation is inefficient and uses the sampling algorithm. Second, the process is
carried out adaptively for multiple rounds. The inefficiency of the sampler translates to obtaining
BBU for one-way functions only; adaptivity restricts our final result to protocols where one party
makes at most a constant number of RO queries. On a similar note, the recent work of Maji and
Wang [MW20] uses the term “black-box useless” as an alternative to proving (traditional) black-box
separations. So, despite similarity in the terms, our notion of uselessness is quite different.

1.5 The Case of Collision Resistance

A classic result of Simon [Sim98] separates collision-resistance hash functions (CRHFs) from one-
way functions (and indeed one-way permutations). This is done by giving a pair of oracles (π,Collπ)
relative to which one-way permutations (and hence one-way functions) exist, but CRHFs don’t.
Here π implements a random permutation, and Collπ is an oracle that takes as input a circuit with
π-gates and returns a random collision for it (by first computing the circuit on a random point and
then picking a random preimage).

Are one-way functions/permutations also black-box useless for collision resistance? One way to
answer this question affirmatively would be to extend Simon’s result along the lines of what was
done for the separation results above. However, in this case we have an oracle separation result,
and it is not clear how to “relativize” the proof. Indeed, we conjecture the opposite: OWFs are
black-box helpful for building CRHFs. To this end, we would need to show that for any one-way
function F there is a primitive Z, which although on its own is insufficient for building CRHFs,
together with F can be used to build CRHFs. We present two possible approaches for proving this
conjecture.

One approach follows the recent result of Holmgren and Lombardi [HL18], who showed how to
obtain CRHFs from exponentially secure one-way product functions (OWPFs) in a black-box way.
Roughly speaking, a OWP is a tuple of one-way functions (F1, . . . ,Fk) where any polynomial-time

7Lemma 3.25 in [GMM17b] shows a similar phenomenon in a context where we completely compile out a sequence
of idealized oracles. Here we deal with a setting that an auxiliary oracle remains at the end.

8We note that this does not apply in the so-called monolithic model; see discussion at the end of Section 5.

5



adversary can invert (F1(x1), . . . ,Fk(xk)) for random xi with probability at most negl(n)/2n (where
n is the security parameter). A good candidate for primitive Z is thus a random permutation π
together with Simon’s oracle Collπ for it. To get a positive helpfulness result we need to show that
for any one-way function F the pair of functions (F, (π,Collπ)) is product one-way. We intuitively
expect this result to hold since π is fully independent of F and essentially all an adversary can
do is to invert the F and (π,Collπ) independently. Formalizing this observation requires handling
additional technicalities; we refer the reader to Section 6 for details. We did not manage to prove
this conjecture, and leave it as an interesting open problem which might be of independent interest.9

A second approach follows the work of Bauer, Farshim, Mazaheri [BFM18], who defined a new
idealized model of computation, known as the backdoored random oracle (BRO) model, whereby
an adversary can obtain arbitrary leakage of the function table of the RO. Under a communication
complexity conjecture related to the set-intersection problem, BFM show that two independent
BROs can be used to build a CRHF by simply xoring their outputs. The leakage oracle defined
by BFM is sufficiently powerful to allow implementing Simon’s collision-finding oracle. As a result,
although a single BRO as an idealized primitive is black-box separated from CRHFs, conjecturally
it is not black-box useless for building CRHFs.

Open problems. The central open problem left by our work is that of black-box uselessness
of OWFs for arbitrary key agreement protocols. Given our BBU results for special classes of
KA protocols, this conjecture may well be within reach. On the other hand, a straightforward
generalization seems to require a refined sampler technique with low adaptivity. At the moment,
however, it seems challenging to reduce the adaptivities of known samplers [IR89,BM09,BKSY11,
MMV11]. Besides OWFs, whether or not CRHFs, or for that matter random oracles, are black-
box useless for key agreement remains open. More generally, black-box separation results can be
revisited from the point of view of uselessness. In particular, it would be interesting to consider
extensions of the recent monolithic models to the BBU setting, as these capture certain well-known
non-black-box techniques in cryptography.

1.6 Organization

We start by defining notions of reducibility and a number of cryptographic primitives in Section 2.
Then in Section 3 we formally define various notions of black-box uselessness. In Section 4 we
study the helpfulness of one-way functions for building key agreement. In Section 5 we show that
a number of separations utilizing the complication technique lift to black-box uselessness results.
We conclude the paper in Section 6 with a number of conjectures on the helpfulness of one-way
functions for building collision-resistance hash functions.

2 Preliminaries

Notation. PPT stands for probabilistic polynomial time. An oracle-aided PPT machine/circuit
AO is a PPT machine/circuit with oracle access/gates, such that for any oracle O machine/circuit
AO runs in probabilistic polynomial time, where we count each call to the oracle as one step. For
any n ∈ N, we let [n] denote the set {1, . . . , n}. Given an interactive protocol between two parties

9It might be helpful to consider weaker versions of this problem. For example, given an ε-secure one-way permu-
tation and a random oracle, can an attacker invert both simultaneously with probability better than negl(n)/2n?

6



Alice and Bob with access to an oracle O, we let 〈AliceO,BobO〉 denote the distribution of triples
(T, yA, yB) over the randomness of the parties and the oracle, where T denotes the transcript of the
protocol, and yA (resp., yB) denotes the output of Alice (resp., Bob). We also use the same notation
when O comes from a distribution over the oracles, in which case the probability distribution of
the outputs are also over the randomness of the oracle.

2.1 Black-Box Reductions

The definitions and notions in this section mostly follow those in [RTV04]. Throughout, we use
calligraphic letters such as P or KA for a cryptographic primitive, sans-serif letters (for example
P or KA) for specific implementations, S for the security reduction/proof and P for a “generic”
implementation. We denote an auxiliary oracle by Z and an adversary by A.

Definition 2.1 (Cryptographic primitive). A cryptographic primitive P is a pair (FP , RP), where
FP is the set of functions implementing P and RP is a relation. For each P ∈ FP , the relation
(P,A) ∈ RP means that the adversary A breaks the implementation P (according to P). It is
required that at least one function P ∈ P is computable by a PPT algorithm.

Definition 2.2 (Fully black-box reduction). A fully black-box reduction of a primitive P to another
primitive Q is a pair (P, S) of oracle-aided PPT machine such that for any implementation Q ∈ Q
the following two conditions hold.

• Implementation reduction: PQ implements P, that is, PQ ∈ FP .

• Security reduction: For any function (adversary) A that P-breaks PQ ∈ FP , i.e., (PQ,A) ∈
RP), it holds that SQ,A Q-breaks Q, i.e., (Q,SQ,A) ∈ RQ.

When clear from context, we will refer to fully black-box reductions simply as black-box reduc-
tions, to the implementation reduction as the construction, and to the security reduction as the
security proof.

Definition 2.3 (Semi and weakly black-box reductions). We say there is a semi-black-box reduction
of a primitive P to primitive Q if there is an oracle-aided PPT P such that for any implementation
Q ∈ Q,

• Implementation reduction: PQ ∈ FP .

• Security reduction: If there exists an oracle-aided PPT A such that AQ P-breaks PQ, then
there exists an oracle-aided PPT S such that SQ Q-breaks Q.

If the order of the quantifiers for the implementation reduction is switched in the sense that for any
implementation Q ∈ Q there is an oracle-aided PPT P such that the above two conditions hold,
then we say there is a ∀∃-semi-black-box reduction of P to Q.

Weakly black-box reductions and its ∀∃ variant thereof are defined analogously with the following
difference. In weakly-black-box reductions (in comparison with semi-black-box ones) the adversary
A cannot call the oracle Q and needs to be a regular PPT. Namely, for any PPT A such that A
P-breaks PQ, then there exists an oracle-aided PPT S such that SQ Q-breaks Q.

Definition 2.4 (Existence relative to an oracle). A primitive P is said to exist relative to an oracle
O whenever (1) there is an oracle-aided PPT P such that PO ∈ FP ; and (2) no oracle-aided PPT
machine AO can P-break PO.

7



Non-uniform variants of security reductions were formalized in [CLMP13]. The following defi-
nition extends this to non-uniform implementation reductions.

Definition 2.5. A fully black-box reduction (P,S) of a primitive P from primitive Q is said to
have a non-uniform implementation if P additionally takes as input a polynomial-sized non-uniform
advice that can also depend on its oracle Q. The reduction is said to have a non-uniform security
reduction if S additionally takes as input a polynomial-sized non-uniform advice that can also
depend on its oracles Q and A.

2.2 Specific Cryptographic Primitives

Definition 2.6 (One-way functions). A one-way function F relative to an oracle O is an oracle-
aided PPT machine such that for any PPT adversary A (modeled as an oracle-aided PPT machine)
there is a negligible function negl(λ) such that

Pr
x

$←{0,1}n
[FO(AO(1λ,FO(x))) = FO(x)] = negl(λ) .

If the above is only required to hold for infinitely many values of λ ∈ N, then F is an infinitely-often
one-way function (io-F).

Definition 2.7 (Key agreement). An oracle-aided ε-key agreement with respect to an oracle O
is an interactive protocol between two oracle-aided PPT machines Alice and Bob that satisfies the
following ε-correctness and security properties.

• (ε-correctness) For any λ ∈ N,

Pr[(T,KA,KB)
$← 〈AliceO(1λ),BobO(1λ)〉 : KA = KB] ≥ ε(λ) .

• (Security) For any PPT adversary Eve, any polynomial p, and any sufficiently large λ,

Pr[(T,KA,KB)
$← 〈AliceO(1λ),BobO(1λ)〉,KE

$← EveO(1λ, T ) : KE = KB] ≤ ε(λ)

p(λ)
.

If security is only required to hold for infinitely many values of λ ∈ N in the sense that for
every polynomial p and all adversaries, there exists an infinite set of values for λ for which the
adversary’s winning probability is below ε(λ)/p(λ), then the construction is called an infinitely-
often key agreement. If the number of queries to O is bounded by a constant for either Alice or
Bob, then we say that the key agreement is unbalanced with respect to O. We say that the key
agreement is perfectly correct if ε(λ) ≡ 1.

Definition 2.8 ((Approximate) indistinguishability obfuscation – (a)IO). An IO scheme IO consists
of two PPT machines (Obf,Eval) as follows.

• Obf(1λ, C) takes as inputs a security parameter and a Boolean circuit C, and outputs D,
which is usually also a circuit.

• Eval(D,x) takes as input D and an input x, and outputs a bit b ∈ {0, 1}.

We define the following correctness and security requirements.

8



• Approximate correctness: There is a function ε such that ε(λ) ≥ 1/poly(λ) for sufficiently
large λ and for every circuit C of input size n it holds that

Pr[x
$←{0, 1}n;D

$← Obf(1λ, C) : D(x) = C(x)] ≥ 1− oλ(1) .

• Security: For every sequences of circuit pairs (C1, C2) of the same size |C1| = |C2|, the
ensembles

Obf(1λ, C1) and Obf(1λ, C2)

are computationally indistinguishable for poly(λ)-sized distinguishers.

We retrieve the standard definition of IO when correctness holds with probability 1 for any λ.
When clear from context we drop 1λ as an input to Obf.

In this definition we could choose to define approximate correctness in other ways, for example
by requiring approximate correctness to hold with probability 1/2 + 1/ poly(λ) or 1 − 1/ poly(λ).
Our main results on black-box uselessness of various primitives for aIO (Theorems 5.6 and 5.7) also
hold for these alternative definitions.

3 Defining Black-Box Uselessness

To formally define black-box uselessness, we first formalize joint primitives, to simplify statements
about black-box constructions from several primitives:

Definition 3.1 (Joint primitive). Given two primitives P = (FP , RP) and Q = (FQ, RQ) the joint
primitive (P,Q) = (F(P,Q), R(P,Q)) is defined by setting F(P,Q) := FP × FQ and for each G =
(P,Q) ∈ F(P,Q) and any A = (AP ,AQ) defining (G,A) ∈ R(P,Q) iff (P,AP) ∈ RP or (Q,AQ) ∈ RQ.

We are now ready to formally define what it means for a cryptographic primitive Q to be
black-box useless for a primitive P.

3.1 Definition

The following definition is more general than complete black-box uselessness of a primitive P for
obtaining another primitive Q. In particular, the definition states a set of primitives Z such that
P is useless for obtaining Q in the presence of any of the primitives R ∈ Z .

Definition 3.2 (Black-box uselessness). Let Z be a set of primitives. A cryptographic primitive
Q is fully (resp., semi, ∀∃-semi) black-box useless for constructing a primitive P in the presence
of auxiliary primitives Z if for every auxiliary primitive Z ∈ Z whenever there exists a fully
(resp., semi, ∀∃-semi) black-box reduction of P to the joint primitive (Q,Z) there also exists a
fully (resp., semi, ∀∃-semi) black-box reduction of P to Z alone. In the special case where Z
contains all primitives, then we simply say that Q is fully (resp., semi, ∀∃-semi) black-box useless
for constructing P.

Remark 3.3 (Other special cases). Here we point out two other important special cases of Def-
inition 3.2 that could be obtained by setting Z differently. For Z = ∅, black-box uselessness is
identical to traditional black-box separation (showing that Q cannot be black-box reduced to P).
In addition, when Z contains a specific primitive Z, then the definition captures the notion that
P is useless for building Q when we already assume the existence of Z as a black box.

9



Remark 3.4 (Other variants of Definition 3.2). By default, we consider the three cases where the
source construction and the target construction in Definition 3.2 both use the same flavor of black-
box reduction (and accordingly use the terms fully, semi, or ∀∃-semi to describe the corresponding
notion of black-box uselessness). However, we can (and will) also consider more general notions
of black-box uselessness whereby the source construction and the target construction use different
notions of black-box reduction. For example, we will write that Q is [semi → ∀∃-semi] black-
box useless for P if for every auxiliary primitive Z ∈ Z , whenever there exists a semi-black-box
reduction of P to the joint primitive (Q,Z) there is a ∀∃-semi-black-box reduction of P to Z alone.

3.2 Composition

Given the definition of black-box uselessness, the following composition theorem follows easily.
Here, we use the term black-box uselessness to refer to any fixed flavor of black-box uselessness.

Theorem 3.5. Let P, Q and R be three cryptographic primitives. If Q is black-box useless for P
and R is black-box useless for P (for the same flavor), then the joint primitive (Q,R) is black-box
useless for P (for the same flavor).

Proof. Let Z be an arbitrary auxiliary primitive. If there is a black-box reduction of P to the
joint primitive (Z, (Q,R)) = ((Z,Q),R), then by the black-box uselessness of R for P, there is a
black-box reduction of P to (Z,Q) (viewing (Z,Q) as an auxiliary primitive). In turn, using the
black-box uselessness of Q for P, we obtain a black-box construction of P from Z alone. Hence,
(Q,R) is black-box useless for P.

We note that a similar composition theorem can be easily established even when Q and R do
not satisfy the same flavor of black-box uselessness for P, in the following sense: if a primitive Q
is [X → Y ] BBU for P and a primitive R is [X ′ → Y ′] BBU for P, where X,Y,X ′, Y ′ are flavors
of black-box reduction, then (Q,R) is [X ′ → Y ] BBU for P as long as X a stronger flavor than Y ′

(e.g., X is “fully” and Y ′ is “semi”).

3.3 Restricted Black-Box Uselessness

In many settings, it can be useful to consider a more general notion of black-box uselessness, which
restricts the type of primitive (e.g., only infinitely-often variants) or the type of construction for
which black-box uselessness is shown to hold. For readability, we will not define cumbersome formal
notations for such variants, but instead will simply state the restriction explicitly when needed.

This generalization is especially useful to study the efficiency of black-box reductions. Indeed,
black-box separations in cryptography are not limited to only showing their nonexistence. A more
concrete treatment would make statements of the form “in any black-box construction of P from
Q, any implementation of P must call an implementation of Q at least q times,” or for interactive
primitives would state that “any black-box construction of P from Q must have at least r rounds.”
This approach to bounding the efficiency of generic cryptographic construction was initiated in the
seminal work of Gennaro, Gertner, Katz, and Trevisan [GGKT05] and has subsequently proven
very fruitful.

10



4 On the Black-Box Uselessness of OWFs for Key Agreement

In this section, we prove black-box uselessness of OWFs for key agreement for several special forms
of key-agreement protocols. We leave the proof of black-box uselessness of OWFs for general
key-agreement protocols as an intriguing open question.

4.1 Black-Box Uselessness of OWFs for Perfectly Correct Key Agreement

In this section, we prove the following result.

Theorem 4.1 (Black-box uselessness of OWFs for perfect unbalanced KA). Infinitely-often one-
way functions are [semi → ∀∃-semi] black-box useless for infinitely-often perfect key agreement in
any construction that is unbalanced with respect to the io-OWF.

Before proving Theorem 4.1, let us breakdown its content. The “dream result” here would be
to show that one-way functions are black-box useless for any key agreement. Unfortunately, we do
not know how to prove this result. Theorem 4.1 provides a meaningful step in this direction, but
it suffers from three limitations:

1. It only applies to infinitely-often one-way functions (though it shows black-box uselessness
for infinitely-often key agreement, which is a weaker primitive).

2. It only applies to constructions where one of the parties makes a constant number of queries
to the io-OWF oracle, which we call unbalanced key agreement. Note that the key agreement
can still make an arbitrary number of queries to the auxiliary primitive.

3. It only applies to perfectly correct key agreement.

The first limitation stems from the fact that our proof of Theorem 4.1 relies on a case distinction
based on the existence of one-way functions: if they exist, we get a construction of key agreement,
else we get an attack on the candidate construction. However, this attack requires applying a
one-way function inverter to several functions at once. But since a one-way function inverter is
only guaranteed to succeed on infinitely many security parameters, which need not be equal across
the different functions that we need to invert (and in fact could be exponentially far apart), this
approach fails. To get around this, we rely on an inverter for an infinitely-often OWF, which
gives an inverter which is guaranteed to work for all sufficiently large security parameters and we
can use to simultaneously invert several functions. This, however, comes at the cost of obtaining
black-box uselessness result for infinitely-often OWFs (for building infinitely-often key agreements).
Such technicalities are relatively common in cryptography and stem from the asymptotic nature of
primitives.

Remark 4.2. In general, statements of the form “A and B black-box imply C” and statements
of the form “io-A and io-B black-box imply io-C”, where io-X denotes an infinitely-often flavor
of a primitive X , can be incomparable for the trivial reason that io-A and io-B can never be
simultaneously secure on the same security parameters. However, this situation does not arise
in the setting of black-box uselessness, since the statement “io-A is BBU for io-C” refers to the
inexistence of black-box construction of io-C from io-A together with any other primitive Z – and
not only “infinitely-often” types of primitives. In general, it is easy to show that the statement “A
is BBU for C” is stronger than (i.e., implies) the statement “io-A is BBU for io-C” for all notions
of black-box uselessness.

11



The second limitation stems from the fact that the proof requires to iteratively define efficient
functions Fi, where each Fi builds upon an (efficient) OWF inverter applied to Fi−1. The total
number of functions can be picked to be the minimum of the number of queries to the OWF made
by either of the two parties. However, this argument crucially relies on the fact that the number
of functions Fi is constant. To see this, imagine that we have at our disposal a OWF inverter that
would always make a number of queries that is quadratic in the number of queries made by the
function in the forward direction. Such an inverter would be efficient (i.e., it inverts any poly-time
function in poly time), yet one cannot obtain a poly-time function by iteratively defining a function
Fi which invokes InvFi−1

unless i is constant, since the complexity of Fi grows as runtime(F1)
2i .

Eventually, our result in this section focuses on perfectly correct key agreement. We discuss the
case of imperfect key agreement in Section 4.2.

4.1.1 A Helpful Logical Lemma

Below, we state a simple lemma which allows for more direct proofs of [semi → ∀∃-semi] black-box
uselessness.

Lemma 4.3. Let P and Q be two primitives. Then whenever the following statement is established,
it implies in particular that Q is [semi → ∀∃-semi] black-box useless for P:

“Fix any primitive Z and any Z ∈ FZ . Assume that there exists an oracle-aided PPT P1 such
that for any Q ∈ FQ, PQ,Z

1 ∈ FP . Further assume that whenever (Q,Z) is a secure implementation

of (Q,Z), then PQ,Z
1 is a secure implementation of P. Then there exists an efficient implementation

PZ
2 of P relative to Z, and furthermore, whenever Z is a secure implementation of Z, PZ

2 is a secure
implementation of P.”

Proof. If Q is semi-black-box useless for P, by Definition 3.2 for any Z the following holds.
Assume that there is a semi-black-box reduction from P to (Q,Z). This means that (1) there

exists an oracle-aided PPT P1 such that for any (Q,Z) ∈ FQ × FZ , PQ,Z
1 ∈ FP (so in particular,

if we fix any primitive Z and any Z ∈ FZ , there exists an oracle-aided PPT P1 such that for any
Q ∈ FQ, PQ,Z

1 ∈ FP). And (2) for any PPT oracle-aided A such that AQ,Z P-breaks PQ,Z
1 , there

exists a PPT oracle-aided S such that SQ,Z (Q,Z)-breaks (Q,Z). Then for any Z ∈ FZ , there exists
an efficient implementation P2 of P relative to Z, such that for any PPT oracle-aided A such that
AZ P-breaks PZ

2 , there exists a PPT oracle-aided S such that SZ Q-breaks Z.
From here, the statement of Lemma 4.3 follows by observing that the statement “for any PPT

oracle-aided A such that AQ,Z P-breaks PQ,Z
1 , there exists a PPT oracle-aided S such that SQ,Z

Q-breaks (Q,Z)” is equivalent to “if there exists no PPT oracle-aided S such that SQ,Z Q-breaks
(Q,Z) (i.e., if (Q,Z) is a secure implementation of (Q,Z)), then there exists no PPT oracle-aided A

such that AQ,Z P-breaks PQ,Z
1 (i.e., PQ,Z

1 is a secure implementation of P)”. The same equivalence
holds for the second part of the definition of ∀∃-semi-black-box uselessness.

4.1.2 Proof of Theorem 4.1

Let io-F be the io-OWF primitive. To prove Theorem 4.1, we will prove the following:

Lemma 4.4. Fix any primitive Z and any Z ∈ FZ . Assume that there exists an oracle-aided
PPT KA1 such that for any implementation ioF of an infinitely-often one-way function, KAioF,Z

1

implements an infinitely-often perfect key agreement unbalanced with respect to ioF, relative to

12



(ioF,Z). Assume furthermore that if (ioF,Z) is a secure implementation of (io-F ,Z), then KAioF,Z
1

is a secure implementation of infinitely-often key agreement, unbalanced with respect to ioF. Then
there exists an efficient implementation KA2 of (infinitely-often) key agreement relative to Z, and
furthermore, if Z is a secure implementation of Z, then KAZ

2 is a secure implementation of infinitely-
often key agreement.

The proof of Theorem 4.1 follows directly from the above lemma by applying Lemma 4.3. To
prove Lemma 4.4, we rely on the following lemma.

Lemma 4.5. Let RO be a random oracle. For any auxiliary oracle Z, if there exists no infinitely-
often one-way function relative to Z, then there exists no construction KARO,Z of a perfect infinitely-
often key agreement which is unbalanced with respect to RO.

Given Lemma 4.5, the proof of Lemma 4.4 follows from a disjunction argument: fix any auxiliary
primitive Z and any Z ∈ FZ . Two complementary cases can occur:

• Either there exists an efficient implementation of an infinitely-often one-way function ioFZ rel-
ative to Z. By the assumption of Lemma 4.4, there exists an efficient implementation KA1 of
key agreement relative to (ioF′,Z) for any ioF′ ∈ Fio-F . Define the following efficient construc-

tion KAZ
2 : KAZ

2 := KAioFZ,Z
1 . By our assumption, this is therefore an efficient implementation

of i.o.-key agreement relative to Z, which is also secure if (ioF,Z) is secure.

• Or there exists no efficient implementation of an infinitely-often one-way function ioFZ relative
to Z. By Lemma 4.5, for a random oracle RO, there must therefore exist an efficient attack
on KARO,Z

1 . By Theorem 5.2 of [IR89], for measure 1 of the choices of the random oracle RO,
RO is a one-way function and therefore in particular an io-OWF. (Note that this theorem
also holds relative to an arbitrary oracle.) Therefore, KA1 is not a secure implementation
of key agreement with respect to any (ioF′,Z) with ioF′ ∈ Fio-F , and by the assumptions
of Lemma 4.5, (RO,Z) is not a secure implementation of (io-F ,Z). Since RO is a secure
implementation of io-OWF, this implies that Z is not a secure implementation of Z. Therefore,
we can define KA2 to be the trivial protocol in which Alice samples the output key and sends
it to Bob. This is an efficient implementation of key agreement; it need not be secure since Z
is not a secure implementation of Z.

4.1.3 Proof of Lemma 4.5

It remains to prove Lemma 4.5. Consider a candidate construction KARO,Z of key agreement such
that one of Alice and Bob makes a constant number of queries to RO. Let λ ∈ N be the security pa-

rameter, and consider a run (T,KA,KB)
$←〈AliceRO,Z(1λ),BobRO,Z(1λ)〉 of the construction KARO,Z.

We will describe an efficient attacker EveRO,Z that breaks KARO,Z for infinitely many λ. The attack
closely follows the (inefficient) strategy of [BKSY11] but relies on InvZ to make the attack efficient.
Without loss of generality, assume that Bob makes at most a constant number of queries qB in any
execution of the protocol. Furthermore, let rA(λ) and rB(λ) be (polynomial) bounds on the length
of the random tapes of Alice and Bob respectively, and let q(λ) = qA(λ) + qB be a (polynomial)
bound on the total number of queries to RO made by both parties in any execution.

13



Lazy oracle sampling. Let q ∈ N. For any string r of length q, and any list L of (query,
answer) pairs, we let SimRO[L]q(·; r) be a stateful lazy sampler for a random oracle consistent with
L. Namely, SimRO[L]q(·; r) works as follows. It maintains a counter i that is initialized to 1 and a list
L′ of (query, answer) pairs that is initially empty. Each time it receives an input x, SimRO[L]q(x; r)
first checks whether or not the query belongs to L ∪ L′, and outputs the corresponding answers
if this holds. If the query does not belong to L or L′, algorithm SimRO[L]q(x; r) defines qi to be
the answer to the query, adds (query, qi) to L′, and sets i ← i + 1. Note that for any interactive
protocol ΠRO where the parties make less than q queries in total, and any list L of (query, answer)
pairs consistent with RO, the distribution of the views of all parties obtained by sampling a random
oracle RO and running ΠRO is identical to the distribution of the views of all parties obtained by
sampling a q-bit string r and running Π while emulating RO using SimRO[L]q(·; r).

An inefficient attack. We first describe an inefficient attack on the candidate construction
KARO,Z, taken almost verbatim from [BKSY11]. The attacker EveRO,Z, given a transcript T of an
execution of KARO,Z, maintains a set QE of query/answer pairs for Z, and a multi-set of candidate
keys K, both initialized to ∅. Eve runs 2qB + 1 iterations of the following procedure.

• Simulation phase: Eve finds a view of AliceRO
′,Z with respect to some (possibly different)

oracle RO′, consistent with the transcript T and all query/answer pairs in QE . This view
contains a random tape rA, the set of queries QA made by AliceRO

′,Z (which is consistent with
QEve, but not necessarily with RO), and the key KA computed by Alice. Eve adds KA to K.

• Update phase: EveRO,Z makes all queries in QA to the true random oracle RO, and adds the
results to QE .

After running 2qB +1 iterations of the above attack, Eve has a multi-set K of 2qB +1 possible keys;
Eve outputs the majority value in K. Observe that during each round of the attack, two events can
happen:

1. Either one of the new queries (not already contained in QE) made by Alice in the simulated
run was made by Bob in the real execution of the protocol. In this case, Eve discovers (and
adds to QE) a new query of Bob.

2. Or none of the new queries of Alice was made by Bob in the real protocol, in which case
there exists an oracle RO′ which is consistent with the view of Bob in the real protocol, and
the view of Alice in the simulated run. By perfect correctness, this means that the key KA

computed by Alice in this run is necessarily the correct key output by Bob.

Now, since Bob makes at most qB distinct queries, the first of the two events can happen at
most qB times, hence the second event necessarily happens at least qB + 1 times, which guarantees
that the majority value in the multi-set K is indeed the correct key with probability 1.

The above attack requires O(qAqB) queries to RO. However, it requires finding a view for
AliceRO

′,Z that is consistent with a given transcript, where RO′ is a simulated random oracle, but Z
is the “true” auxiliary oracle. In general, this might require exponentially many queries to Z and
hence EveRO,Z is not necessarily an efficient oracle-aided algorithm. In the following, we show how
to make the attack efficient given an inverter for io-OWFs.

14



Lazy protocol emulation. Let L be a list of (query, answer) pairs to RO. Given the construction
KARO,Z, let SimCZ

L be an oracle-aided PPT algorithm that emulates a run of Alice and Bob in KARO,Z

that is consistent with L (but not necessarily with the rest of RO). That is, given a random string
rA||rB||q of length rA(λ) + rB(λ) + q(λ), SimCZ

L(1λ; rA||rB||q) runs Alice and Bob on input 1λ and
respective random tapes rA and rB, while using SimRO[L]q(·; q) to lazily emulate the random oracle
RO. After completion of the protocol, SimC outputs the transcript T of the interaction, the lists
(QA, QB) of all queries to RO made by Alice and Bob during the emulation of the protocol (together
with their answers), and the outputs (KA,KB) of both parties. Observe that SimC corresponds to
a valid interaction between AliceRO

′,Z(1λ; rA) and BobRO
′,Z(1λ; rB) with respect to a random oracle

RO′ sampled uniformly at random, conditioned on being consistent with L.

The inverter. Since there is no infinitely-often OWF relative to Z, there exists an efficient
inverter for any efficient oracle-aided function FZ:

Lemma 4.6. For any oracle-aided PPT function FZ and any polynomial p, there exists an oracle-
aided PPT inverter InvZF,p such that for all large enough n ∈ N, it holds that

Pr
x

$←{0,1}n
[InvZF,p(F

Z(x), 1n) ∈ (F−1)Z(FZ(x))] ≥ 1− 1

p(n)
.

Proof. This follows directly from the fact that the inexistence of io-OWFs relative to Z implies the
inexistence of weak io-OWFs relative to Z (a weak OWF is a OWF where security is relaxed by
saying that there exists a polynomial p such that no efficient adversary can invert with probability
better than 1 − 1/p(n)). The latter follows from standard hardness amplification methods as was
initially proven by Yao [Yao82].

The sequence of functions. Let p : λ 7→ 1/(6qB + 3) be a constant polynomial. We iteratively
define a sequence of 2(qB + 1) oracle functions (FZ0 ,G

Z
0 ), · · · , (FZqB ,G

Z
qB

) as follows.

• FZ0 gets as input a string (rA||rB||q0) of length rA(λ) + rB(λ) + q(λ), computes

(T,QA, QB,KA,KB)← SimCZ
∅(1λ; rA||rB||q) ,

and outputs T . The function GZ
0 is defined similarly, but it outputs (T,QA, QB,KA) instead

(without KB).

• FZ1 gets as input a string (rA||rB||q0||q1) of length rA(λ) + rB(λ) + 2q(λ). First, it computes
(T,QA, QB,KA) ← GZ

0 (rA||rB||q0). Second, it sets n ← rA(λ) + rB(λ) + q(λ) and runs
(r′A||r′B||q′0) ← InvZF0,p(T, 1

n). Third, it computes (T ′, Q′A, Q
′
B,K

′
A) ← GZ

0 (1λ; r′A||r′B||q′0).
Eventually, it uses SimRO[QA∪QB](·; q1) to lazily sample the answers to all queries contained
in Q′A, and stores the results in a set QE of pairs query/answer. FZ1 outputs (T,QE). We also
define GZ

1 to be the function defined as FZ1 except that it additionally outputs (QA, QB,K
′
A).

• FZi gets as input a string (rA||rB||q0|| · · · ||qi) of length rA(λ) + rB(λ) + (i + 1) · q(λ). First,
it computes (T,QE , QA, QB,KA)← GZ

i−1(rA||rB||q0|| · · · ||qi−1). Second, it sets n← rA(λ) +

rB(λ) + i · q(λ) and runs (r′A||r′B||q′0|| · · · ||q′i−1) ← InvZFi−1,p
((T,QE), 1n). Third, it computes

(T ′, Q′A, Q
′
B,K

′
A) ← GZ

1 (1λ; r′A||r′B||q′0). Eventually, it uses SimRO[QA ∪ QB](·; qi) to lazily

15



sample the answers to all queries contained in Q′A, and adds the results to QE . FZi outputs
(T,QE). We also define GZ

i to be the function defined as FZi except that it additionally outputs
(QA, QB,K

′
A).

For readability, we also provide a pseudocode for the function FZi for i ≥ 1 below.

function FZi (rA||rB||q0|| · · · ||qi) . (rA||rB||q1|| · · · ||qi) is of length rA(λ) + rB(λ) + (i+ 1) · q(λ)
(T,QE , QA, QB,KA)← GZ

i−1(rA||rB||q1|| · · · ||qi−1)
n← rA(λ) + rB(λ) + i · q(λ)
(r′A||r′B||q′0|| · · · ||q′i−1)← InvZFi−1,p

((T,QE), 1n) . p : λ 7→ 1/(6qB + 3)

(T ′, Q′A, Q
′
B,K

′
A)← GZ

1 (1λ; r′A||r′B||q′0)
for (x, y) ∈ Q′A do

QE ← QE ∪ (x,SimRO[QA ∪QB](x; qi))
end for
return (T,QE) . GZ

i is similar but additionally outputs (QA, QB,K
′
A)

end function

Making the [BKSY11] attack efficient with Inv. To overcome the inefficiency of the attack
of [BKSY11], we leverage the fact that, by assumption, there exists no infinitely-often one-way
function relative to Z. As before, the attacker newEveRO,Z, given a transcript T of an execution of
KARO,Z, maintains a set QE of query/answer pairs for Z, and a multi-set of candidate keys K, both
initialized to ∅. Let p : λ 7→ (6qB + 3) be a constant polynomial. newEve runs 2qB + 1 iterations
of the following attack.

• Simulation phase: During the i-th round of attack, newEve does the following:

1. Finding a view of Alice consistent with T and QE: newEve sets n← rA(λ)+rB(λ)+i·q(λ)
and computes (r′A||r′B||q′0|| · · · ||q′i−1)← InvZFi−1,p

((T,QE); 1n).

2. Simulating the run of Alice with the view above: newEve computes (T ′, Q′A, Q
′
B,K

′
A)←

GZ
1 (1λ; r′A||r′B||q′0).

3. Storing the key: newEve adds K ′A to K.

• Update phase: EveRO,Z makes all queries in Q′A to the true random oracle RO, and adds the
results to QE .

After running 2qB +1 iterations of the above attack, Eve has a multi-set K of 2qB +1 possible keys;
Eve outputs the majority value in K. We now analyze the success probability of the attack.

Claim 4.7. newEve outputs the correct key with probability at least 2/3.

First, observe that by definition of FZ0 , the transcripts T in a real execution of the protocol
(which newEve gets as input) are distributed identically to FZ0 (rA||rB||q0) for uniformly random
(rA, rB, q0), where rA (resp., rB) is the real random tape of AliceRO,Z (resp., BobRO,Z) and q0 is
the ordered string of all answers of RO to distinct queries from Alice and Bob. Therefore, by the
definition of InvZF0,p, the tuple (r′A||r′B||q′0) computed in the first iteration of the attack is consistent
with the real transcript T with probability at least 1− 1/p = 1− 1/(6qB + 3).

Consider now the set QE of queries obtained by newEve after the update phase of the first
iteration. (T,QE) is distributed exactly as FZ1 (rA||rB||q0||q1) for uniformly random (rA, rB, q0, q1).

16



This is because QE in FZ1 is computed by lazily sampling the answers of a random oracle, conditioned
on being consistent with all queries made by Alice and Bob in the execution of FZ0 (rA||rB||q0). The
real run of the protocol corresponds to an execution of FZ0 on a random input (rA||rB||q0), and
making the queries in Q′A to RO is identical to lazily sampling RO while being consistent with q0
(i.e., the query/answer pairs obtained by Alice and Bob in the real execution). Therefore, the tuple
(r′A||r′B||q′0||q′1) which newEve computes in the second iteration of the attack is consistent with the
real transcript T with probability at least 1− 1/p = 1− 1/(6qB + 3).

More generally, the distribution of (T,QE) obtained by newEve during the i-th iteration of the
attack after receiving the transcript T of a real execution of the protocol is distributed exactly as
FZi (rA||rB||q0|| · · · ||qi) for uniformly random (rA, rB, q0, · · · , qi), hence the tuple (r′A||r′B||q′0|| · · · ||q′i)
which newEve computes in the (i+1)-th iteration of the attack is consistent with the real transcript
T with probability at least p = 1/(6qB + 3).

Putting everything together, after finishing the attack, by a straightforward union bound, all
simulated views computed by newEve during the attack are consistent with T with probability at
least 1 − (2qB + 1) · 1/(6qB + 3) = 2/3. When this happens, by the same argument as for the
inefficient attack, the majority key in K is necessarily the correct key, and the claim follows.

Claim 4.8. The number of queries made by newEve to RO and Z is bounded by a polynomial.

As in the inefficient attack, newEve makes at most O(qAqB) = O(qA) queries to RO. The
polynomial bound on the number of queries to Z follows from the efficiency of Inv: InvZF0,p is efficient

by definition, hence FZ1 (which invokes InvZF0,p internally) is an efficient function, from which we get

that InvZF1,p is also efficient, and so on, and the claim follows (note that this crucially relies on our
assumption that the protocol is unbalanced, and therefore qB is constant).

4.2 Black-Box Uselessness of OWFs for Imperfect KA

In this section, we discuss how our result of the previous section can be extended to the case of
imperfect key agreement. More precisely, we provide a sketch of how to modify our previous proof
to show the following:

Theorem 4.9. Infinitely-often one-way functions are [semi → ∀∃-semi] black-box useless for
infinitely-often perfect key agreement in any construction where:

• Both parties make a constant number of queries to the io-OWF (but any polynomial number
of queries to the auxiliary oracle);

• The key agreement protocol has a constant number of rounds.

Proof sketch. The natural approach to extend our result is to replace the attack of [BKSY11] by an
attack that applies to any imperfect key agreement protocol in the random-oracle model, such as
those of Impagliazzo and Rudich [IR89] or Barak and Mahmoody [BM09,BM17], making the same
case distinction based on the existence of io-OWFs to make the attack efficient. The structures of
these attacks are very similar, though more involved than the attack of [BKSY11]: they proceed in
a sequence of steps, where each step has a simulation phase, in which the attacker samples views
consistent with (a portion of) the transcript and a set of queries, and an update phase, where the
attacker makes some queries based on the simulated run.

17



However, two important technicalities arise when modifying our previous proof with the attacks
of [IR89,BM09].

First, in the simpler attack of [BKSY11], perfect correctness guarantees that finding any con-
sistent view is sufficient; in the attacks of [IR89,BM09], on the other hand, the attacker is required
to sample views from a distribution close to the uniform distribution over views conditioned on
a transcript and a set of queries. This can still be achieved assuming only the inexistence of io-
OWFs: the inexistence of io-OWFs further entails the inexistence of distributional io-OWFs [IL89].
Namely, we must rely on the following lemma, a proof of which can be found in [BHT14].

Lemma 4.10. Assume that there exists no infinitely-often one-way function relative to Z. Then
for any efficient oracle-aided function FZ and any polynomial p, there exists an inverter InvZF such
that for all large enough n ∈ N,

Pr
x

$←{0,1}n,y←FZ(x)

[
SD
(

(F−1)Z(y), InvZF(y, 1n)
)
>

1

p(n)

]
≤ 1

p(n)
,

where SD denotes the statistical distance between the two distributions.

Second, the attacks of [IR89, BM09] proceed in a number of steps that grow with the number
of queries of both parties to the random oracle and the round complexity of the protocol. More
precisely, the attack requires executing several simulation and updates phases (of the order of
Õ(qAqB), where qA, qB bound the respective number of queries of Alice and Bob to the random
oracle) for each round of the protocol, where the simulation phase for round i inverse samples
views consistent with the set of queries made by the attacker so far and the transcript of the
protocol up to round i. This means that for the attack to be efficient, the key agreement must be
constant round, and both parties must make a constant number of queries to the random oracle.

From here, a proof of Theorem 4.9 follows by fixing a (constant) bound B on the total number
of steps of the (inefficient) attacker, and using the inverse sampler guaranteed by Lemma 4.10
for statistical distance 1/(10B) to make it efficient, similarly to our previous proof. By a union
bound over all steps, the B steps of the inverse sampling will simultaneously guarantee that with
probability at least 1/10, at any round i, no intersection query between Alice and Bob made prior to
round i was missed by the attacker. This allows us to conclude that the overall success probability of
the efficient attacker (which uses the inverse sampler) is at most one-tenth of the success probability
of the inefficient attacker described in [IR89,BM09].

With these technicalities in mind, this proof shows that io-OWFs are [semi → ∀∃-semi] black-
box useless for constant-query constant-round constructions of imperfect key agreement.

We note that a general technique was described in [MMV11] which allows to reduce the number
of rounds (i.e., the adaptivity) of the attacker against a large variety of protocols (referred to as
puzzles in [MMV11] and capturing in particular key-agreement protocols). It might appear at first
sight that this approach could be used to remove the restriction of protocols being constant round
(though still requiring both parties to make a constant number of queries to the OWF). However,
this technique requires the attacker with lower adaptivity to simulate in “its head” the original
attacker which cannot be done efficiently if the protocol was not constant-round. We leave as the
main open problem of our work the question of showing that (infinitely-often) OWFs are black-box
useless for more general forms of key agreement.

18



4.3 Black-Box Uselessness of OWFs for Merkle-Type Key Agreement

In this section, we prove that OWF are black-box useless for building key-agreement protocols
where both parties place arbitrary many queries to both the OWF oracle, but are restricted in that
the parties place oracles queries, exchange message, and then compute keys and terminate without
placing any further queries. We call such protocols Merkle-type [Mer78], since Merkle’s celebrated
protocol (that achieves only polynomial security) is of this form.

Definition 4.11 (Merkle-type protocols). We call a key agreement in the RO model (or based on
OWFs) with an auxiliary oracle Z a Merkle-type protocol if Alice and Bob ask all of their queries
to the RO before exchanging messages.

We emphasize that the definition above only restricts parties’ access to the oracle that imple-
ments the OWF (e.g., a random oracle) and queries to Z are not restricted.

Theorem 4.12 (OWFs are black-box useless for Merkle-type key agreement). One-way functions
are [semi → ∀∃-semi] black-box useless for any Merkle-type protocol.

We prove a slightly more general result that allows Bob to wait for Alice’s message TA before
asking its own queries and sending out a message TB back to Alice. These protocols in particular
encompass public-key encryption schemes for which the decryption algorithm does not call F. Thus,
we obtain a BBU result for such PKE schemes. More precisely, we prove our result for any protocol
that takes the following structure.

• AliceF,Z1 (1λ): Alice places queries to the OWF oracle F and the auxiliary oracle Z, computes
state stA, sends a message TA to Bob.

• BobF,Z(1λ, TA): Bob receives a message TA from Alice, places queries to F and the auxiliary
oracle Z. Bob sends a message TB to Alice, outputs a key KB, and terminates.

• AliceZ2 (1λ, TB, stA): Alice receives a message TB from Bob, does not query its OWF oracle F
any more, but may place queries to Z. It outputs a key KA and terminates.

In the rest of this section we prove Theorem 4.12. We start with a high-level overview.

Intuition. We follow the same proof strategy for perfect KA (Theorem 4.1). Namely, we will
make a distinction between two cases:

Case (1) : There is a construction of OWFs relative to Z: In this case, we just use this construction
to realize the OWF primitive and hence would realize our key agreement based on Z only.

Case (2) : There are no constructions of OWFs relative to Z, which means that for any efficient
algorithm relative to Z, there is an inversion algorithm. Similarly to the argument in Sec-
tion 4.2, we will use the result of [IL89] and obtain something stronger that we will crucially
rely upon: for any Z-aided PPT machine M, there is an efficient algorithm Inv that, given

M(x) = y for a uniformly random x
$← {0, 1}λ, almost uniformly samples from M−1(y), the

set of preimages of y. Looking ahead, since we will use the existence of such inverters only
once, we will no longer need to state our result with respect to the infinitely often variants of
the primitives involved.

19



In what follows, we assume that we are in Case (2) above, i.e., that no OWFs exist relative to
Z. This is because Case (1) finishes the proof directly as explained. Our goal would be to devise
a polynomial-time attack on the security of the key agreement when we instantiate the one-way
function using a random oracle.

In the following, we first describe a poly-query attack on the key agreement in the RO model
when there are no Z oracles. Then, we show how to make this attack polynomial time relative to
Z, assuming that we are in Case (2).

In this case, we first show how Eve can efficiently compute a list L that contains the heavy
queries of Bob with respect to the random oracle (efficiency of this step will be crucial later on
as we will add the oracle Z back and implement the attack in polynomial time). This is done
by running Bob multiple times using the actual random oracle RO and on the input TA. Using
standard probabilistic arguments, one can show that conditioned on the set L, (the first stage of)
Alice and Bob will have a small chance of having any intersection queries outside L. Eve will then
wait for the actual Bob generating TB, and then it “inverts” the process of the real Bob by sampling
coins and a random oracle for it conditioned on TA, TB, and L. It then simply outputs the key that
this sampled Bob outputs. It is at this stage that we will use an inverter to invert Bob’s process
given (TA, TB, L).

The formal proof. Consider an algorithm EveROε (TA, TB) that operates to break the security of
Merkle-type protocols as follows.

1. Learn Bob’s queries: Run BobRO(TA; r′B) on independent random coins r′B for 1/(n · ε) times.
Record the at most n2/ε queries that Bob makes to its random oracle in a list L consisting
of (query,answer) pairs.

2. Sample Bob: Invert Bob’s view conditioned on (TA, TB, L). This requires waiting for Bob’s
message, and also involves probably a shadow sample for Alice’s view that we will not use.

3. Compute key: Output the key that sampled Bob in the previous step produces.

We first analyze the above attack in the RO model, and then we show how to mimic this attack
in a Z-relativized world, assuming that no OWFs relative to Z exist.

Let T := (TA, TB) be the transcript of the protocol. We claim that the distributions

(Bob | T, L) and (Bob | T, L,View[Alice1])

are O(ε) statistically close. For fixed (View[Alice1], L, T ), we define the event Bad(View[Bob]) over
a candidate view of Bob (which may be real or fake) to hold iff the queries in View[Bob] intersect
with those of Alice outside L. Now, for sake of the proof, imagine the following imaginary Bob
algorithm that we refer to the “fake Bob” algorithm. This algorithm will only stick to L and ignores
the execution of the algorithm on Alice’s side. It also tosses coins for any new random oracle query
that is not answered in L.

A key observation is that the distribution of (Bob | TA, L,View[Alice1],¬Bad(Bob)) is identical
to the distribution of (Fake-Bob | TA, L,¬Bad(Fake-Bob)). That is, Bob and Fake-Bob are the same
processes until Bad happens for them. Thus Pr[Bad] is the same for both of them and conditioned
on Bad not happening, they implement the same process.

20



Fact 4.13. Let X1, . . . , Xk be k i.i.d. Bernoulli random variables. Then10

Pr[X1 = X2 = · · · = Xk−1 = 0 ∧Xk = 1] = (1− p)k · p ≤ 1

ek
.

By Fact 4.13, we already know that the probability of Bad happening for the real Bob is at
most ε. This follows by bounding the probability of Bad in every query of Alice, and applying the
union bound.

We conclude that the distribution of the real Bob conditioned on Alice’s view is ε-close to
the distribution of the fake Bob, which in turn is independent of Alice’s view once we fix T, L.
This means that the views of Alice and Bob are O(ε)-close to being a product distribution, which
means that conditioning or not conditioning on Alice will change Bob’s distribution only by O(ε)
in statistical distance (on average). As a result, Bob’s view that Eve samples in the last step of
the attack is O(ε)-close to the distribution of Bob, even conditioned on the real view of Alice (even
though Eve does not have access to that view and hence does not condition its sample on it). This
finishes the proof of why Eve works in the random-oracle model.

Finishing the proof using inverse samplers. All we need to do now is to observe that the
above proof can be used to derive an attack on any Merkle-type key agreement in the RO model
in the presence of Z, if we are in Case (2). The reason is as follows. First, the initial step of Eve
can easily be implemented relative to Z as well (because we can still run Bob efficiently in the
RO model and relative to Z multiple times). The challenge is that we cannot necessarily invert
the process and sample a view for Bob conditioned on the given (TA, TB, L). This, however, can
be done in polynomial time if no one-way (and hence no distributional one-way) functions exist
relative to Z. More formally, we define an efficient process M which runs the protocol by running
Alice and Bob, followed by Eve’s learning of the heavy queries. The actual input to this process is
only the randomness for Alice and Bob as well as sufficient coins for simulating the random oracle.
M then outputs (TA, TB, L). Since we are in Case (2), we can indeed invert this efficient process and
sample a uniform preimage, by running an efficient oracle-aided algorithm using Z. As a result, we
can indeed use an inverse-sampler Inv for M and efficiently implement the last step of Eve, even in
the presence of Z.

5 Black-Box Uselessness via Compiling Out

In this section, we show that a number of black-box separation results proved in the literature
[GGKT05, CKP15, GMM17a, GMM17c, BLP17, AKW18, GHMM18] can be lifted to the black-box
uselessness setting.

At a very high level, what unifies these works is that they all follow the same blueprint. They
all “compile out” a primitive P from any construction of Q from P and obtain a closely related
construction of Q in the plain model, thereby showing that P was not needed for Q to begin with.
Our key observations in showing how these results can be lifted to the black-box uselessness setting
are as follows:

1. The compiling-out process relativizes; namely it holds even if an auxiliary oracle Z is present
in the process.

10The displayed inequality follows by differentiating the bound with respect to p to obtain the maximum at p = 1/k
and then using the fact that (1− 1/k)k ≤ 1/e for k > 0.

21



2. The new construction, obtained through the compiling out process applied to a fully black-
box construction, is oblivious to the auxiliary oracle Z. This observation is needed if we want
to obtain a (normal) black-box uselessness result that does not suffer from only being a ∀∃
variant. Note that a primitive Z might have many implementations, and we want the obtained
construction (after the compilation process) to be the same for all such implementations.

For concrete examples, we show how to apply the above blueprint to results from [GGKT05,
CKP15, GMM17a, GMM17c, GHMM18]. In [BLP17, AKW18] it was shown how to compile out
random oracles or graded encoding schemes from variants of functional encryption schemes, and
we believe our techniques would allow extending such results also to black-box uselessness from
primitives implied by random oracle or bilinear maps. However, for concrete statements, we only
focus on results from [GGKT05,CKP15,GMM17a,GMM17c,GHMM18].

5.1 Black-Box Uselessness in (Query) Efficient Constructions

We will use the following result proved in [GGKT05]. A useful observation is that, although the
work of [GGKT05] proved this result for the empty auxiliary oracle Z = ⊥, but the same exact
proof works for any fixed auxiliary oracle Z as well. Namely, this result relativizes.

Theorem 5.1 (Gennaro et al. [GGKT05]). Let t(n) ∈ [1, n] be a function of n. Let Πt,n be a
(family of) length-preserving oracle sampled as follows. A sampled πt,n ← Πt,n is a permutation
over {0, 1}n in which the first t(n) bits of the input are mapped to the first t(n) bits of the output
using a random permutation, and the remaining n − t(n) bits are left unchanged. For simplicity,
we call this oracle (distribution) Πt. Then, if t(n) = ω(log n), then there are negligible ε(n) and
super-polynomial s(n) functions such that, for any auxiliary oracle Z, with probability 1−ε(n) over
the sampling of πt ← Πt, it holds that πt is one-way against all s(n)-sized circuits that are allowed
to have πt gates as well as Z gates in their computation.

Theorem 5.2 (Black-box uselessness of OWPs for query efficient PRGs). Suppose Q is the primi-
tive of OWPs and P is the primitive of PRGs with stretch ` = `(λ) (meaning that an implementation
P maps {0, 1}λ → {0, 1}λ+` for all λ). Suppose we limit fully black-box reduction of P to Q as fol-
lows. The implementation reduction P, on inputs of length λ, calls Q at most o(`/ log λ) times on
inputs of length n = poly(λ). Then Q is useless for P (for such class of black-box reductions).

Proof sketch. Here we sketch the key ideas of the proof and refer the reader to the full version for
the full proofs.

The proof is an adaptation of the proof of [GGKT05] to the context of black-box uselessness.
For simplicity, we use ` to denote `(λ). At a high level, [GGKT05] showed how to compile out the
random permutation from any o(`/ log λ)-query black-box construction of PRGs ` bits of stretch.
Here we observe that: (1) the proof of [GGKT05] relativizes and holds in the presence of any
auxiliary oracle Z, and (2) that the produced black-box reduction after the compiling out process
does not depend on the specific oracle Z.

Suppose, for the sake of contradiction, that (PRG,S) is a fully black-box construction of PRGs
with stretch `(λ) from one-way permutations and an auxiliary primitive Z with only q = q(λ) =
o(`/ log λ) number of queries to the OWP oracle π : {0, 1}n 7→ {0, 1}n for n = poly(λ).

We first prove the following claim.

Claim 5.3. We can choose t(λ) = ω(log λ) such that q(λ) · t(n(λ)) < `(λ).

22



Proof. Let t(·) be such that t(n(λ)) = `(λ)/(2q(λ)). Then the following two items hold.

1. q · t(n(λ)) = `/2 < ` holds by the definition of t(·).

2. t(λ) = ω(log λ) holds, because (1) log(n(λ)) = Θ(log λ), and (2) q(λ) = o(`(λ)/ log λ) which
means t(n(λ)) = `(λ)/(2q(λ)) = ω(log λ).

We now continue with the proof of Theorem 5.2. We will describe a new construction that
only uses Z. We first describe its implementation reduction, and then we show that the security
reduction (for this implementation reduction) exists.

The implementation reduction. Consider a new PRG implementation PRG′ solely using Z.
PRG′ that does not call the OWP oracle at all, but rather it takes an input of length λ+ `− 1 and
uses it as follows to produce λ+ ` output bits (which still constitutes one bit of stretch). Suppose
x′ = (x, r) is an input to PRG′ where |x| = λ and |r| = `(λ)−1. PRG′Z(x′) will emulate PRG(·),(·)(x),
in which PRG needs oracle access to implementations of OWP as follows. It forwards any oracle
call by to the implementation of Z to its own implementing oracle Z, but whenever there is a query
to the OWP oracle π, it uses (the remaining unused part of) r to simulate this query according to
the oracle πt described in Theorem 5.1. First note that by Claim 5.3, the extra randomness r is
long enough for emulating all the oracle answers to the oracle πt. So, all we need to do is to analyze
the pseudo-randomness of the input. Then, one can amplify the one-bit stretch of the provided
PRG construction to arbitrarily long stretch as well.

The security reduction. Suppose AZ is a PPT adversary that PRG-breaks PRG′Z. We will
show that there is an oracle-aided PPT Sim such that SimZ,A Z-breaks Z. From A’s perspective it
is the same if PRG′ uses r to emulate an πt ← Πt oracle or to use an actual πt ← Πt oracle. So, the
same A will PRG-break PRGπt,Z over inputs sampled as x← {0, 1}λ and OWP oracles πt ← Πt.

By the weakly black-box security property of the implementation PRG, there should exist an
oracle-aided PPT S such that Sπt,Z,A either OWP-breaks πt or Z-breaks Z. The former can only
happen with a negligible probability by Theorem 5.7 (and for sufficiently large λ, n). Therefore,
the only possibility is that Sπt,Z,A Z-breaks Z. Therefore, if we let S′ be a different reduction that
emulates πt in its head (according to the definition of Πt), it will still break Z with non-negligible
ρ(n) · (ρ(n)− negl(n)) probability.

An alternative approach for in the case of OWFs. In the proof of Theorem 5.2 we used
the single-bit stretching PRG that is realized from the primitive Z to get a PRG with stretch `.
There is a less direct approach to obtain the final result if we did not want to get rid of one-way
permutations, but rather we wanted to do this for one-way functions. In that case, we could use a
(fully) black-box construction of one-way functions from single-bit stretching PRGs (that is being
realized from the primitive Z). We would then plug in this construction and use it to realize
the OWF primitive that is used in the original construction of PRGs from OWFs and Z. This
approach does not work when we want to prove the black-box uselessness of OWPs, since there are
no black-box constructions of OWPs from OWFs [Rud88,KSS00]. However, as we shall see below,
this idea is useful for proving the black-box uselessness of OWFs for public-key encryption when
the message space is large and the number of queries to OWFs is small (see Theorem 5.5).

23



The other results stated in the following theorem can be obtained by adapting the proofs
of [GGKT05] as in the proof of Theorem 5.2 by observing that the proofs of [GGKT05] relativize
to any oracle Z, and that the obtained construction is oblivious to Z. Then, one can compile out
the OWP and obtain a construction of a primitive R (in particular OWFs) relative to Z alone.
Then, in all these cases, the obtained construction of R would be enough to obtain the final goal
primitive in a fully black-box way. By combining these two steps, we get that A can be obtained
from Z in a black-box way.11

Theorem 5.4 (Black-box uselessness in efficient constructions). In all cases below, Q is the one-way
permutation primitive and is fully black-box useless for P, when the construction’s implementation
calls Q at most k times.

• Universal one-way hash functions: P is a universal one-way hash function that uses
randomness of length r = r(λ) and shrinks its inputs from length λ + `(λ) to the length λ.
The limitation on the construction is that the implementation reduction asks k = o(`/ log λ)
queries to the OWP oracle.

• Digital signatures: P is a signature scheme with key length λ and message space ` = `(λ).
The limitation on the construction is that the implementation reduction asks k = o(`/ log λ)
queries to the OWP oracle.

• Private-key encryption: P is a private-key encryption scheme with key length λ and mes-
sage space of ` = `(λ) bits. The limitation on the construction is that the implementation
reduction asks k = o((`− λ)/ log λ) queries to the OWP oracle.

Theorem 5.5 (Black-box uselessness of OWFs for efficient PKE with long messages). OWFs are
fully black-box useless for constructing public-key encryption if messages are of length ` and the
implementation reduction calls OWF at most o(`/ log λ) times, where λ is the security parameter.

The proof of the above theorem follows the blueprint of Theorem 5.2, but here we sketch the
steps. Here, after compiling out the OWP, as shown in [GGKT05], one obtains a private-key
encryption scheme whose keys are shorter than the messages it encrypts. However, [GGKT05]
shows how to obtain one-way functions from this primitive. This proof relativizes with respect to
any auxiliary oracle and with a construction that is oblivious to this auxiliary oracle. Furthermore,
one-way functions can be used to obtain private-key encryption in a black-box way. So, if we choose
to work with one-way functions (instead of permutations) to start with, we get that OWFs are
black-box useless for efficient PKEs with large messages.

5.2 Black-Box Uselessness of OWFs for Approximate IO

In this section, we state black-box uselessness results that can be obtained by lifting the results
of [CKP15, GMM17a, GMM17c]. These results deal with assumptions behind (and separations
for) IO. In fact, to state the results with regard to black-box uselessness, we need to work with
approximately correct IO (see Definition 2.8). We prove the following result formally, and explain
how Theorem 5.7 can be enhanced to black-box uselessness similarly. At a very high level, the
blueprint is the same as that in Section 5.1: we observe that the compilation technique used

11One exception to this is Theorem 5.5 for which we use the obtained OWF to instantiate the primitive that we
want to actually avoid using and show its black-box uselessness.

24



in [CKP15,GMM17a,GMM17c] hold relative to any auxiliary oracle Z, and that the compiling-out
process is oblivious to Z.

Theorem 5.6 (Black-box uselessness of OWFs for aIO). OWFs are fully black-box useless for
approximate IO.

Proof. The proof follows the blueprint of the proof of [CKP15]. Suppose there is a fully black-box
reduction (IO, S) from of aIO to the composition of OWFs and another primitive Z. Let O be
a random oracle and Z be any secure implementation of Z. Since F ← O will be one-way with
measure one [IR89], even in the presence of Z, it would imply that relative to F ← O and any
secure implementation Z of Z the construction (IO,S) would give a secure aIO. Here we show how
to compile out the random oracle from the construction and get a new one in the presence of Z
(whose algorithm does work for any implementation Z of Z uniformly) as follows.

Let IO = (Obf,Eval) be an obfuscation scheme. We design schemes IOk = (Obfk,Evalk) which
do not call the random oracle as follows. ObfZk(C), given a circuit C, operates as follows.

• Run Obf(·),Z(C) while simulating the random oracle F (i.e., the first oracle) using fresh ran-
domness, and keep the simulated answers in a list L. Obtain an obfuscation D.

• Run D over k random inputs x1, . . . , xn using Eval(·),Z(D,xi) while simulating all the an-
swers to the oracle F using fresh randomness and keeping them consistent with the previous
simulations stored in the list L. Let L be the final list of such oracle query-answer simulations.

• Output (D,L) as the obfuscation.

To evaluate the “circuit” D′ = (D,L) on a (random) input x, EvalZk(D′, x) operates as follows.
Run Eval(·),Z(D,x), and if during the execution there was a need to simulate an oracle answer to
F: first look up L. If the answer was not there, toss and use fresh random coins (and keep them
for consistent future answers).

The same analysis as that of [CKP15] can be used to show that when k = ω(n), where n is
the query complexity of the obfuscation algorithm, with probability 1−O(n/k) = 1− o(1) we get
a perfect simulation of the random oracle that is consistent across the obfuscation and evaluation
steps on a random point x. This is because, for any fixed query to F that is used during the
obfuscation step, the probability of not asking this query in the first k iterations on x1, . . . , xk
and then suddenly asking it during the final actual evaluation is at most 1/k. Now by a union
bound the probability of this event happening to some query to F asked during the obfuscation
is at most O(n/k). This means that the correctness of the obfuscated circuit on a random input
can only be lost on at most an o(1) fraction of the inputs. This means that the scheme is still an
approximate IO scheme. The new scheme is also as secure since the extra information revealed in
the new obfuscation algorithm is efficiently simulatable in the random-oracle model by running the
given code D on k random inputs. As is clear from this argument, all the steps hold relative to the
available oracle Z.

Theorem 5.7 (Black-box uselessness for aIO). Let P be any of the following primitives: witness
encryption, predicate encryption, fully homomorphic encryption, or Boolean functional encryption.
Then P is fully black-box useless for approximately correct IO.

25



Proof sketch. Here we sketch why the proofs of [GMM17a,GMM17c] extend to the setting of black-
box uselessness just like how the proof of Theorem 5.6 could be obtained from the similar proof
of [CKP15].

As it was explained in the proof of Theorem 5.6, to get rid of the random oracle (which gives
us OWFs), the compiler of [CKP15] changes the obfuscation mechanism by adding an extra string
L attached to the obfuscated circuit D with several properties:

• L was efficiently computed by the obfuscation algorithm.

• Revealing L does not hurt security of aIO, because one could obtain it in the ideal world with
the oracle that implements the one-way function (i.e.., the random oracle) by running the
obfuscated code D on random inputs quite a few times.

• Having L is enough to allow the evaluator to do an (approximately) correct simulation of the
(in this case random) oracle that is consistent with the simulation of the oracle done during
the obfuscation phase (that generated D).

Our key observation was that the proof achieving above relativizes to any fixed oracle Z. When
it comes to more complicated primitives such as witness encryption and predicate encryption, as
needed by Theorem 5.7, the proofs of [GMM17a, GMM17c] follow the same paradigm described
above for the random oracle, with the only difference that coming up with a useful information L
with all three properties above is much more challenging. However, when it comes to whether the
proof still holds relative to a fixed oracle Z, there is no difference.

Monolithic uselessness. The black-box separations proved in [GMM17a,GMM17c] for IO and
aIO from the primitives listed in Theorem 5.7 hold in a stronger model of separations known as
the monolithic framework, in which the input circuits to these primitives are allowed to have oracle
gates to the primitive itself. For example, in a functional encryption, one has to issue keys SKC
for a circuit C such that SKC allows one to compute C(x) from any ciphertext that encrypts x.
A monolithic extension of functional encryption allows C to have oracle gates to the subroutines
of the functional encryption oracle itself. Just like how [GMM17a, GMM17c] proved their results
for the monolithic extensions of these primitives, our black-box uselessness of Theorem 5.7 also
holds for these monolithic extensions. This suggests developing a theory of monolithic uselessness,
in which one can allow cross plantations of oracle calls in circuits that are given as input to both
primitive P (that we want to prove to be useless) and the auxiliary oracle Z, when these primitives
have the properties that allows them to be monolithically extended.12 We leave the exploration of
such lines of work, as an extension of black-box uselessness, for future work.

6 Towards Black-Box Helpfulness of OWFs for Collision-Resistant
Hash Functions

In this section, we explore a complementary aspect of black-box uselessness, namely that of black-
box helpfulness. A primitive Q is BB helpful for another primitive P if Q is not black-box useless

12We refer to the full version of the work of Garg et al. [GMM17b] for in-depth discussions of what primitives have
this property in general, however a simple rule of thumb is that monolithic extension is possible when inputs are
circuits and are run (in the completeness and security definitions) just as black-box. In that case, one can talk about
planting oracle gates inside those circuits and still obtain a well-defined primitive.

26



for P – meaning, if there exists an auxiliary primitive Z such that (Q,Z) black-box implies P, yet
Z does not black-box imply P. Of course, any primitive Q that black-box implies a primitive P is
BB helpful for P. The more interesting setting is the “gray zone” between black-box uselessness
and black-box separations, namely, the black-box helpfulness of Q for P when P is black-box
separated from Q. We believe the study of black-box helpfulness can unravel a richer landscape
compared to the picture conveyed by the (in)existence of black-box reductions. This can be done
by identifying primitives which even though are insufficient to construct another in a black-box
way, will provably be helpful in future black-box construction from a combination of primitives.
For the sake of readability, we maintain a relatively informal discussion in this section.

We start with the trivial observation that this gray zone is not empty. Consider the artificial
(joint) primitive collision-resistant hash function (CRHF) and trapdoor permutation (TDP). An
implementation of this primitive is any pair (H,F) where H is a CRHF and F a TDP. By [IR89],
there is no black-box construction of this primitive from CRHFs (since [IR89] separates random
oracles from KA, which in particular implies that there is no fully-BB construction of TDPs from
CRHFs). By a result of Fischlin [Fis02], there is no black-box construction of this primitive from
a TDP either (since Fischlin shows, in particular, that there is no fully-BB construction of CRHFs
from TDPs); yet, both TDPs and CRHFs are trivially black-box helpful for this primitive. More
generally, for every pair of primitives (P1,P2) where each is black-box separated from the other,
P1 and P2 are black-box separated from their union, yet each is black-box helpful for (P1,P2).
However, such examples are somewhat artificial.

6.1 A Conjecture on the Black-Box Helpfulness of OWFs for CRHFs

The reader might have observed that while we show that several standard techniques in black-box
separations (the “compiling out” technique, and techniques based on sampling views consistent
with a transcript) can be fully or partially adapted to the black-box uselessness setting, our anal-
yses leaves open several other techniques, the most important of which is perhaps Simon’s oracle
separation of collision-resistant hash functions from one-way functions [Sim98]. This leaves an
important and intriguing open question:

Are one-way functions (fully) black-box useless for collision-resistant hash functions?

At first sight, it is not clear how one would extend Simon’s strategy to prove that one-way functions
are BBU for CRHFs. In fact, we believe that this is inherent: we conjecture that the answer to the
above question is no.

Conjecture 6.1. One-way functions are fully black-box helpful for collision-resistant hash func-
tions.

If Conjecture 6.1 holds, then it provides a natural (and important) example of a primitive
which does not black-box imply another primitive, yet is black-box helpful for it. Perhaps more
importantly, it also provides an indication of why OWFs could play a role in future black-box
construction of CRHFs from seemingly weaker assumptions.

While we believe that Conjecture 6.1 holds, proving it seems quite challenging. Towards getting
a better understanding of its plausibility, we introduce two natural relaxations of the conjecture,
and show that each of these natural relaxations would follow from a plausible conjecture regarding
Simon’s oracle, which might be of independent interest.

27



6.2 A First Relaxation of Conjecture 6.1: Distributional Black-Box Helpfulness

In this first relaxation, we extend the notion of black-box reductions (which work for all imple-
mentations of a primitive) to a notion which we call distributional black-box reductions, which are
reductions which, informally, work for almost all implementations of a primitive. To make this
formal, we must first define the notion of distributional primitives:

Definition 6.2. A distributional primitive D(Q) is a pair (Q,DQ) where Q is a primitive, and DQ
is a distribution over FQ.

The notion of distributional primitives allows to formalize black box reductions which work for
almost all implementations of primitives, by saying that the reduction should work for a measure
1 of implementations of Q with respect to the distribution DQ.

Definition 6.3. A (distributional) primitive D(Q) distributionally fully black-box implies a prim-
itive P if there is a pair (P, S) of oracle-aided PPT machines such that for a measure one of
implementation Q ∈ FQ (with respect to the distribution DQ),

• Implementation reduction: PQ implements P, that is, PQ ∈ FP .

• Security reduction: For any function (adversary) A that P-breaks PQ ∈ FP , it holds that
SQ,A Q-breaks Q.

More generally, when considering a pair (D(Q),R) where D(Q) is a distributional primitive
and R is a (standard) primitive, we say that (Q, D(R)) distributionally fully black-box implies
a primitive P if the above definition holds for all implementations of Q, and for a measure one
of implementations of R w.r.t. DR. Other flavors of almost black-box reductions can be defined
similarly, e.g. almost semi or weakly black-box reductions. Equipped with the above definition, we
can define distributional black-box helpfulness:

Definition 6.4. A primitive Q is distributionally (fully) black-box helpful for a primitive P if there
exists an auxiliary distributional primitive D(Z) such that (Q, D(Z))) distributionally (fully) black-
box implies P, yet Z alone does not distributionally (fully) black-box imply P.

We now state our relaxed conjecture:

Conjecture 6.5. One-way functions are distributionally fully black-box helpful for collision-resistant
hash functions.

We now provide some support for Conjecture 6.5, by relating it to another plausible conjecture
regarding Simon’s oracle; we believe this independent conjecture to be interesting in its own right.
It is well-known that for any attacker A, with measure one over the choice of a random permutation
RP, A cannot invert RP with probability better than poly(λ)/2λ [IR89]. By Simon’s result, this
still holds even in the presence of a collision-finder Coll that samples a random collision for any
oracle circuit with RP-gates and (recursively) Coll-gates [Sim98]. These two results immediately
extend to a setting where an auxiliary oracle Z that is “independent” of RP,Coll is provided. Due
to the random nature of RP, it seems plausible that a stronger statement holds, which states that
the hardness of inverting simultaneously some one-way function and a random permutation should
be very hard:

28



Conjecture 6.6 (Amplification, weak version). Suppose that F is an oracle implementing an ε-
secure one-way function; that is, no oracle-aided PPT machine can invert F(x) on a random x ∈
{0, 1}λ with probability better than ε(λ). Then for any oracle-aided PPT machine A and for a
measure one of random permutation RP,

Pr
[
(x1, x2) = AF,RP(P(x1),RP(x2))

]
≤ ε(λ) · poly(λ)

2λ
,

where the probability is taken over the choice of (x1, x2)
$← ({0, 1}λ)2, and coins of A.

The above conjecture is known in the case where F is itself a random oracle, but not when it
is an arbitrary one-way function. We believe that Conjecture 6.6 is a natural conjecture regarding
random permutations, and its study might be of interest beyond the setting of black-box helpfulness.
In our context, though, we need an even stronger version, which we still deem plausible, where the
random permutation comes with a collision finder Coll:

Conjecture 6.7 (Amplification, strong version). Suppose that F is an oracle implementing an
ε-secure one-way function. Then for any oracle-aided PPT machine A and for a measure one of
random permutation RP and collision-finders CollRP,

Pr
[
(x1, x2) = AF,RP,CollRP(P(x1),RP(x2))

]
≤ ε(λ) · poly(λ)

2λ
,

where the probability is taken over the choice of (x1, x2) from ({0, 1}λ)2, and the coins of the
adversary.

We now sketch why proving the above conjecture would establish that OWFs are distributionally
black-box helpful for collision-resistant hash functions:

Theorem 6.8. If Conjecture 6.7 holds, then Conjecture 6.5 holds.

Proof Sketch. Assume that Conjecture 6.7 holds. Let (RP,CollRP) be as in Simon. Then, for any
one-way function F ∈ FOWF, with measure 1 over the choice of (RP,CollRP), there exists a pair
(F1,F2) of one-way functions such that for any oracle-aided PPT machine A,

Pr
[
(x′1, x

′
2)

$←AF,RP,CollRP(F1(x1),F2(x2)) : F1(x
′
1) = F1(x1) ∧ F2(x

′
2) = F2(x2)

]
≤ negl(λ)

2λ
.

Indeed, one can simply set F1 to be F and F2 to be RP (it follows directly from Simon’s analy-
sis [Sim98] that F2 remains (exponentially) one-way even in the presence of CollRP and any other
independent oracle). From there, the inequality follows directly from Conjecture 6.7.

Now, suppose that a pair (F1,F2) as above exists. By a result of Holmgren and Lombardi [HL18],
this pair can be used to construct collision-resistant hash-functions in a black-box way.13 This
implies that there exists an auxiliary primitive Q, namely, all pairs (one-way permutation, collision
finder for the OWF) such that for any OWF F, there is a measure 1 of implementations Z of Z
such that (F,Z) can be used to construct a CRHF. This, in turn, implies that one-way functions
are distributionally black-box helpful for collision-resistant hash functions.

13More precisely, the result of Holmgren and Lombardi holds whenever F1 = F2 and F1 is injective, but their work
also provides a black-box reduction from an arbitrary (F1,F2) to an injective (F1,F2) with F1 = F2, albeit with some
extra loss. We omit the exact security strength that is needed from F1 from this high-level sketch proof.

29



Note that the measure 1 of implementations Z ∈ FZ needs not be the same for every F, which is
the reason why we cannot extract from this proof a universal primitive for which all implementations
would work.

The notion of distributional black-box reductions is not standard. In the next section, we observe
that our conjecture about Simon’s oracle suffices to prove another relaxation of Conjecture 6.1,
where we consider class reductions instead of black-box reductions. Unlike distributional black-box
reductions, class reductions are a natural notion of reduction which has been used in several recent
works. For class reductions, we show that we can extract a universal primitive, by restricting our
attention solely to efficient one-way functions (i.e. computable by a PPT Turing machine). We
elaborate in the next section.

6.3 A Second Relaxation of Conjecture 6.1: Class Helpfulness

There are several examples in cryptography and complexity theory of non-black-box reductions
which are very similar to black-box reductions, except that they are only guaranteed to succeed
when the oracle implementing the primitive belongs to a class of efficient implementations. Such
reductions have been recently formalized in [Sha20] as class reductions. We observe that if we
restrict our attention to class reductions instead of black-box reductions, then we can actually
extract a universal primitive in our above argument.

Definition 6.9 ((Full) class reduction [Sha20]). A (full) class reduction of a primitive P to another
primitive Q with respect to a class C ⊆ FQ is a pair (P,S) of oracle-aided PPT machine such that
for any implementation Q ∈ C the following two conditions hold.

• Implementation reduction: PQ implements P, that is, PQ ∈ FP .

• Security reduction: For any function (adversary) A that P-breaks PQ ∈ FP , i.e., (PQ,A) ∈
RP), it holds that SQ,A Q-breaks Q, i.e., (Q,SQ,A) ∈ RQ.

Unless specified otherwise, we consider C to be the class of all implementations of Q by PPT Turing
machines (i.e., the class of efficient implementations of Q).

Examples of class reductions include several works on worst-case to average-case reduction
within NP [Gut06, Ats06, GSTS07, GTS07, Hir18]. In recent work [Sha20], Shaltiel proves that
class reductions cannot be used to improve over Yao’s XOR lemma. In all these works, the class
considered is that of all efficient implementations of the primitive.

Definition 6.10 (Class helpfulness). A cryptographic primitive Q is fully class-helpful with respect
to a class C ⊆ FQ for constructing a primitive P if there exists an auxiliary primitive Z such that
there exists a (full) class reduction from P to (Q,Z), yet there is no fully black-box reduction from
P to Z.

Equipped with the above definitions, we can now formulate our second relaxation of Conjec-
ture 6.1.

Conjecture 6.11. One-way functions are fully class-helpful for collision-resistant hash functions,
for the class of all efficient one-way functions.

Theorem 6.12. If Conjecture 6.7 holds, then Conjecture 6.11 holds.

30



Proof sketch. The beginning of the proof proceeds as in the proof of Theorem 6.8. Recall that this
proof gives us a distribution over implementations of a primitive Z such that for any OWF F, there
is a measure 1 of implementations Z of Z such that (F,Z) can be used to construct a CRHF. Now,
we restrict our attention to the class C of efficient implementations of one-way functions. Since this
is a countable set, we can apply the Borel–Cantelli lemma to show that there must therefore exist a
single implementation Z of Z that simultaneously works for all F ∈ C (this is the same argument as
used by Impagliazzo and Rudich to extract a one-way function secure against all efficient adversaries
from a distribution over random oracles [IR89]). Therefore, there exists an implementation Z of
Z such that for any F ∈ C, (F,Z) can be used to construct a CRHF. Define the primitive Z ′ to
be the primitive Z restricted to this single implementation Z (i.e., FZ′ := {Z}). Then there is
a class reduction from P to (F ,Z ′), for the class C ⊆ FF of efficient one-way functions; yet, by
Simon’s separation, Z ′ does not black-box imply collision-resistant hash functions. This concludes
the proof.

6.4 A Black-Box Helpful Idealized Primitive for CRHFs

We conclude this section by observing that, based on a communication complexity conjecture,
the recent work of [BFM18] describes combiners that can turn any pair of backdoored random
oracles into a collision-resistant hash function. Their backdoored random oracle model allows for
fully adaptive leakage on the random oracle, and can in particular can implement Simon’s oracle.
Therefore, although a single backdoored random oracle is black-box separated from CRHFs, two
independent instances of such oracles suffice to build a CRHF (under a communication complexity
conjecture). This provides a relatively natural example of an idealized primitive which does not
black-box imply CRHFs, yet is BB helpful for CRHFs.

References

[AKW18] Shashank Agrawal, Venkata Koppula, and Brent Waters. Impossibility of simulation
secure functional encryption even with random oracles. In Theory of Cryptography
Conference, pages 659–688. Springer, 2018. 4, 21, 22

[AS15] Gilad Asharov and Gil Segev. Limits on the power of indistinguishability obfuscation
and functional encryption. In Venkatesan Guruswami, editor, 56th Annual Symposium
on Foundations of Computer Science, pages 191–209, Berkeley, CA, USA, October 17–
20, 2015. IEEE Computer Society Press. 1

[Ats06] Albert Atserias. Distinguishing sat from polynomial-size circuits, through black-box
queries. In 21st Annual IEEE Conference on Computational Complexity (CCC’06),
pages 8–pp. IEEE, 2006. 30

[BBF13] Paul Baecher, Christina Brzuska, and Marc Fischlin. Notions of black-box reductions,
revisited. In Kazue Sako and Palash Sarkar, editors, Advances in Cryptology – ASI-
ACRYPT 2013, Part I, volume 8269 of Lecture Notes in Computer Science, pages
296–315, Bengalore, India, December 1–5, 2013. Springer, Heidelberg, Germany. 1

[BBF16] Zvika Brakerski, Christina Brzuska, and Nils Fleischhacker. On statistically secure
obfuscation with approximate correctness. In Matthew Robshaw and Jonathan Katz,

31



editors, Advances in Cryptology – CRYPTO 2016, Part II, volume 9815 of Lecture
Notes in Computer Science, pages 551–578, Santa Barbara, CA, USA, August 14–18,
2016. Springer, Heidelberg, Germany. 4

[BFM18] Balthazar Bauer, Pooya Farshim, and Sogol Mazaheri. Combiners for backdoored
random oracles. In Hovav Shacham and Alexandra Boldyreva, editors, Advances in
Cryptology – CRYPTO 2018, Part II, volume 10992 of Lecture Notes in Computer
Science, pages 272–302, Santa Barbara, CA, USA, August 19–23, 2018. Springer,
Heidelberg, Germany. 6, 31

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In Joe Kil-
ian, editor, Advances in Cryptology – CRYPTO 2001, volume 2139 of Lecture Notes
in Computer Science, pages 1–18, Santa Barbara, CA, USA, August 19–23, 2001.
Springer, Heidelberg, Germany. 2

[BHT14] Itay Berman, Iftach Haitner, and Aris Tentes. Coin flipping of any constant bias
implies one-way functions. In David B. Shmoys, editor, 46th Annual ACM Symposium
on Theory of Computing, pages 398–407, New York, NY, USA, May 31 – June 3, 2014.
ACM Press. 18

[BKSY11] Zvika Brakerski, Jonathan Katz, Gil Segev, and Arkady Yerukhimovich. Limits on
the power of zero-knowledge proofs in cryptographic constructions. In Yuval Ishai,
editor, TCC 2011: 8th Theory of Cryptography Conference, volume 6597 of Lecture
Notes in Computer Science, pages 559–578, Providence, RI, USA, March 28–30, 2011.
Springer, Heidelberg, Germany. 1, 3, 6, 13, 14, 16, 17, 18

[BLP17] Nir Bitansky, Huijia Lin, and Omer Paneth. On removing graded encodings from
functional encryption. In Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, pages 3–29. Springer, 2017. 4, 21, 22

[BM09] Boaz Barak and Mohammad Mahmoody-Ghidary. Merkle puzzles are optimal - an
O(n2)-query attack on any key exchange from a random oracle. In Shai Halevi, editor,
Advances in Cryptology – CRYPTO 2009, volume 5677 of Lecture Notes in Computer
Science, pages 374–390, Santa Barbara, CA, USA, August 16–20, 2009. Springer,
Heidelberg, Germany. 1, 6, 17, 18

[BM17] Boaz Barak and Mohammad Mahmoody. Merkle’s key agreement protocol is optimal:
An O(n2) attack on any key agreement from random oracles. Journal of Cryptology,
30(3):699–734, July 2017. 17

[CKP15] Ran Canetti, Yael Tauman Kalai, and Omer Paneth. On obfuscation with random
oracles. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015: 12th The-
ory of Cryptography Conference, Part II, volume 9015 of Lecture Notes in Computer
Science, pages 456–467, Warsaw, Poland, March 23–25, 2015. Springer, Heidelberg,
Germany. 4, 5, 21, 22, 24, 25, 26

[CLMP13] Kai-Min Chung, Huijia Lin, Mohammad Mahmoody, and Rafael Pass. On the power
of nonuniformity in proofs of security. In Robert D. Kleinberg, editor, ITCS 2013:

32



4th Innovations in Theoretical Computer Science, pages 389–400, Berkeley, CA, USA,
January 9–12, 2013. Association for Computing Machinery. 8

[Fis02] Marc Fischlin. On the impossibility of constructing non-interactive statistically-secret
protocols from any trapdoor one-way function. In Bart Preneel, editor, Topics in
Cryptology – CT-RSA 2002, volume 2271 of Lecture Notes in Computer Science, pages
79–95, San Jose, CA, USA, February 18–22, 2002. Springer, Heidelberg, Germany. 27

[GGKT05] Rosario Gennaro, Yael Gertner, Jonathan Katz, and Luca Trevisan. Bounds on
the efficiency of generic cryptographic constructions. SIAM journal on Computing,
35(1):217–246, 2005. 1, 4, 5, 10, 21, 22, 24

[GHMM18] Sanjam Garg, Mohammad Hajiabadi, Mohammad Mahmoody, and Ameer Mo-
hammed. Limits on the power of garbling techniques for public-key encryption.
In Hovav Shacham and Alexandra Boldyreva, editors, Advances in Cryptology –
CRYPTO 2018, Part III, volume 10993 of Lecture Notes in Computer Science, pages
335–364, Santa Barbara, CA, USA, August 19–23, 2018. Springer, Heidelberg, Ger-
many. 4, 21, 22

[GMM17a] Sanjam Garg, Mohammad Mahmoody, and Ameer Mohammed. Lower bounds on
obfuscation from all-or-nothing encryption primitives. In Jonathan Katz and Hovav
Shacham, editors, Advances in Cryptology – CRYPTO 2017, Part I, volume 10401
of Lecture Notes in Computer Science, pages 661–695, Santa Barbara, CA, USA,
August 20–24, 2017. Springer, Heidelberg, Germany. 1, 4, 5, 21, 22, 24, 25, 26

[GMM17b] Sanjam Garg, Mohammad Mahmoody, and Ameer Mohammed. Lower bounds
on obfuscation from all-or-nothing encryption primitives. In Draft of the
full version, 2017. http://www.cs.virginia.edu/~mohammad/files/papers/

IO-all-or-nothing.pdf. 5, 26

[GMM17c] Sanjam Garg, Mohammad Mahmoody, and Ameer Mohammed. When does func-
tional encryption imply obfuscation? In Yael Kalai and Leonid Reyzin, editors,
TCC 2017: 15th Theory of Cryptography Conference, Part I, volume 10677 of Lecture
Notes in Computer Science, pages 82–115, Baltimore, MD, USA, November 12–15,
2017. Springer, Heidelberg, Germany. 4, 5, 21, 22, 24, 25, 26

[GSTS07] Dan Gutfreund, Ronen Shaltiel, and Amnon Ta-Shma. If np languages are hard on
the worst-case, then it is easy to find their hard instances. Computational Complexity,
16(4):412–441, 2007. 30

[GTS07] Dan Gutfreund and Amnon Ta-Shma. Worst-case to average-case reductions revisited.
In Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques, pages 569–583. Springer, 2007. 30

[Gut06] Dan Gutfreund. Worst-case vs. algorithmic average-case complexity in the
polynomial-time hierarchy. In Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques, pages 386–397. Springer, 2006. 30

33

http://www.cs.virginia.edu/~mohammad/files/papers/IO-all-or-nothing.pdf
http://www.cs.virginia.edu/~mohammad/files/papers/IO-all-or-nothing.pdf


[HHRS07] Iftach Haitner, Jonathan J. Hoch, Omer Reingold, and Gil Segev. Finding collisions
in interactive protocols - a tight lower bound on the round complexity of statistically-
hiding commitments. In 48th Annual Symposium on Foundations of Computer Sci-
ence, pages 669–679, Providence, RI, USA, October 20–23, 2007. IEEE Computer
Society Press. 1

[Hir18] Shuichi Hirahara. Non-black-box worst-case to average-case reductions within NP. In
Mikkel Thorup, editor, 59th Annual Symposium on Foundations of Computer Science,
pages 247–258, Paris, France, October 7–9, 2018. IEEE Computer Society Press. 30

[HL18] Justin Holmgren and Alex Lombardi. Cryptographic hashing from strong one-way
functions (or: One-way product functions and their applications). In Mikkel Thorup,
editor, 59th Annual Symposium on Foundations of Computer Science, pages 850–858,
Paris, France, October 7–9, 2018. IEEE Computer Society Press. 5, 29

[IL89] Russell Impagliazzo and Michael Luby. One-way functions are essential for complexity
based cryptography (extended abstract). In 30th Annual Symposium on Foundations
of Computer Science, pages 230–235, Research Triangle Park, NC, USA, October 30 –
November 1, 1989. IEEE Computer Society Press. 18, 19

[IR89] Russell Impagliazzo and Steven Rudich. Limits on the provable consequences of one-
way permutations. In 21st Annual ACM Symposium on Theory of Computing, pages
44–61, Seattle, WA, USA, May 15–17, 1989. ACM Press. 1, 3, 6, 13, 17, 18, 25, 27,
28, 31

[KSS00] Jeff Kahn, Michael Saks, and Cliff Smyth. A dual version of reimer’s inequality
and a proof of rudich’s conjecture. In Proceedings 15th Annual IEEE Conference on
Computational Complexity, pages 98–103. IEEE, 2000. 23

[Mer78] Ralph C Merkle. Secure communications over insecure channels. Communications of
the ACM, 21(4):294–299, 1978. 19

[MM16] Mohammad Mahmoody and Ameer Mohammed. On the power of hierarchical
identity-based encryption. In Marc Fischlin and Jean-Sébastien Coron, editors, Ad-
vances in Cryptology – EUROCRYPT 2016, Part II, volume 9666 of Lecture Notes
in Computer Science, pages 243–272, Vienna, Austria, May 8–12, 2016. Springer,
Heidelberg, Germany. 2

[MMN+16a] Mohammad Mahmoody, Ameer Mohammed, Soheil Nematihaji, Rafael Pass, and
abhi shelat. Lower bounds on assumptions behind indistinguishability obfuscation. In
Eyal Kushilevitz and Tal Malkin, editors, TCC 2016-A: 13th Theory of Cryptography
Conference, Part I, volume 9562 of Lecture Notes in Computer Science, pages 49–66,
Tel Aviv, Israel, January 10–13, 2016. Springer, Heidelberg, Germany. 4

[MMN+16b] Mohammad Mahmoody, Ameer Mohammed, Soheil Nematihaji, Rafael Pass, and
abhi shelat. A note on black-box separations for indistinguishability obfuscation.
Cryptology ePrint Archive, Report 2016/316, 2016. http://eprint.iacr.org/2016/
316. 4

34

http://eprint.iacr.org/2016/316
http://eprint.iacr.org/2016/316


[MMV11] Mohammad Mahmoody, Tal Moran, and Salil P. Vadhan. Time-lock puzzles in
the random oracle model. In Phillip Rogaway, editor, Advances in Cryptology –
CRYPTO 2011, volume 6841 of Lecture Notes in Computer Science, pages 39–50,
Santa Barbara, CA, USA, August 14–18, 2011. Springer, Heidelberg, Germany. 6, 18

[MW20] Hemanta K. Maji and Mingyuan Wang. Black-box use of one-way functions is useless
for optimal fair coin-tossing. In Daniele Micciancio and Thomas Ristenpart, editors,
Advances in Cryptology – CRYPTO 2020, Part II, volume 12171 of Lecture Notes
in Computer Science, pages 593–617, Santa Barbara, CA, USA, August 17–21, 2020.
Springer, Heidelberg, Germany. 2, 5

[RTV04] Omer Reingold, Luca Trevisan, and Salil P. Vadhan. Notions of reducibility between
cryptographic primitives. In Moni Naor, editor, TCC 2004: 1st Theory of Cryptog-
raphy Conference, volume 2951 of Lecture Notes in Computer Science, pages 1–20,
Cambridge, MA, USA, February 19–21, 2004. Springer, Heidelberg, Germany. 1, 7

[Rud88] Steven Rudich. Limits on the provable consequences of one-way functions. University
of California at Berkeley, 1988. 23

[Sha20] Ronen Shaltiel. Is it possible to improve yao’s xor lemma using reductions that exploit
the efficiency of their oracle? In Approximation, Randomization, and Combinato-
rial Optimization. Algorithms and Techniques (APPROX/RANDOM 2020). Schloss
Dagstuhl-Leibniz-Zentrum für Informatik, 2020. 30

[Sim98] Daniel R. Simon. Finding collisions on a one-way street: Can secure hash functions
be based on general assumptions? In Kaisa Nyberg, editor, Advances in Cryptology –
EUROCRYPT’98, volume 1403 of Lecture Notes in Computer Science, pages 334–345,
Espoo, Finland, May 31 – June 4, 1998. Springer, Heidelberg, Germany. 1, 5, 27, 28,
29

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable
encryption, and more. In David B. Shmoys, editor, 46th Annual ACM Symposium on
Theory of Computing, pages 475–484, New York, NY, USA, May 31 – June 3, 2014.
ACM Press. 1, 2

[Yao82] Andrew Chi-Chih Yao. Theory and applications of trapdoor functions (extended
abstract). In 23rd Annual Symposium on Foundations of Computer Science, pages
80–91, Chicago, Illinois, November 3–5, 1982. IEEE Computer Society Press. 3, 15

35


	Introduction
	Background
	Black-Box Uselessness
	One-Way Functions and Key Agreement
	The Compilation Technique
	The Case of Collision Resistance
	Organization

	Preliminaries
	Black-Box Reductions
	Specific Cryptographic Primitives

	Defining Black-Box Uselessness
	Definition
	Composition
	Restricted Black-Box Uselessness

	On the Black-Box Uselessness of OWFs for Key Agreement
	Black-Box Uselessness of OWFs for Perfectly Correct Key Agreement
	A Helpful Logical Lemma
	Proof of Theorem 4.1
	Proof of Lemma 4.5

	Black-Box Uselessness of OWFs for Imperfect KA
	Black-Box Uselessness of OWFs for Merkle-Type Key Agreement

	Black-Box Uselessness via Compiling Out
	Black-Box Uselessness in (Query) Efficient Constructions
	Black-Box Uselessness of OWFs for Approximate IO

	Towards Black-Box Helpfulness of OWFs for Collision-Resistant Hash Functions
	A Conjecture on the Black-Box Helpfulness of OWFs for CRHFs
	A First Relaxation of Conjecture 6.1: Distributional Black-Box Helpfulness
	A Second Relaxation of Conjecture 6.1: Class Helpfulness
	A Black-Box Helpful Idealized Primitive for CRHFs


