
HAL Id: hal-03374160
https://hal.science/hal-03374160

Submitted on 11 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Correlated Pseudorandom Functions from
Variable-Density LPN

Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter
Scholl

To cite this version:
Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, et al.. Correlated Pseudorandom
Functions from Variable-Density LPN. FOCS 2020 - Annual IEEE Symposium on Foundations of
Computer Science, Nov 2020, Durham, United States. �hal-03374160�

https://hal.science/hal-03374160
https://hal.archives-ouvertes.fr


Correlated Pseudorandom Functions
from Variable-Density LPN

Elette Boyle ∗ Geoffroy Couteau † Niv Gilboa ‡ Yuval Ishai § Lisa Kohl ¶

Peter Scholl ‖

November 13, 2020

Abstract

Correlated secret randomness is a useful resource for many cryptographic applications.
We initiate the study of pseudorandom correlation functions (PCFs) that offer the ability
to securely generate virtually unbounded sources of correlated randomness using only local
computation. Concretely, a PCF is a keyed function Fk such that for a suitable joint key
distribution (k0, k1), the outputs (fk0

(x), fk1
(x)) are indistinguishable from instances of a

given target correlation. An essential security requirement is that indistinguishability hold
not only for outsiders, who observe the pairs of outputs, but also for insiders who know one
of the two keys.

We present efficient constructions of PCFs for a broad class of useful correlations, includ-
ing oblivious transfer and multiplication triple correlations, from a variable-density variant of
the Learning Parity with Noise assumption (VDLPN). We also present several cryptographic
applications that motivate our efficient PCF constructions.

The VDLPN assumption is independently motivated by two additional applications.
First, different flavors of this assumption give rise to weak pseudorandom function candi-
dates in depth-2 AC0[⊕] that can be conjectured to have subexponential security, matching
the best known learning algorithms for this class. This is contrasted with the quasipolyno-
mial security of previous (higher-depth) AC0[⊕] candidates. We support our conjectures by
proving resilience to several classes of attacks. Second, VDLPN implies simple constructions
of pseudorandom generators and weak pseudorandom functions with security against XOR
related-key attacks.

∗IDC Herzliya, eboyle@alum.mit.edu
†CNRS, IRIF, Université de Paris, couteau@irif.fr
‡Ben-Gurion University, niv.gilboa@gmail.com
§Technion, yuvali@cs.technion.ac.il
¶Cryptology Group, CWI Amsterdam, lisa.kohl@cwi.nl
‖Aarhus University, peter.scholl@cs.au.dk

mailto:eboyle@alum.mit.edu
mailto:couteau@irif.fr
mailto:niv.gilboa@gmail.com
mailto:yuvali@cs.technion.ac.il
mailto:lisa.kohl@cwi.nl
mailto:peter.scholl@cs.au.dk


Contents

1 Introduction 3
1.1 Overview of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Our Low-Complexity WPRF Candidate . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Variable-Density LPN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Application to XOR-RKA Security . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 From FSS-friendly WPRF to PCF . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.6 Applications of PCFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.7 Advantages of the VDLPN-Based PCF Construction . . . . . . . . . . . . . . . . 9
1.8 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Technical Overview of our WPRF Candidates 11
2.1 Our Approach – the LPN Viewpoint . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Our Approach – the Low-Bias Function Viewpoint . . . . . . . . . . . . . . . . . 15
2.3 On the Security of Our WPRF Candidates . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Preliminaries 17
3.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Preliminaries on Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Concentration Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 Weak Pseudorandom functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Defining Pseudorandom Correlation Functions 19
4.1 From Weak to Strong PCFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 PCFs from Function Secret Sharing for a Weak PRF 23
5.1 PCF for Vector Oblivious Linear Evaluation . . . . . . . . . . . . . . . . . . . . . 24
5.2 PCF for Oblivious Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.3 PCF for Multiplication Triples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6 A Candidate FSS-Friendly WPRF 29
6.1 Variable-Density Learning Parity with Noise . . . . . . . . . . . . . . . . . . . . . 29
6.2 A Candidate WPRF in Depth-2 AC0[⊕] from rVDLPN . . . . . . . . . . . . . . . 30
6.3 Generalization to Arbitrary Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.4 FSS-Friendliness of our WPRF . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.5 Application: XOR-RKA Secure PRGs and Weak PRFs . . . . . . . . . . . . . . . 35

7 Security Analysis 37
7.1 Resistance Against Linear Tests – Theorem and Corollaries . . . . . . . . . . . . 37
7.2 Proof of Resistance Against Linear Tests . . . . . . . . . . . . . . . . . . . . . . . 39
7.3 Resistance Against Algebraic Attacks . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.4 Resistance Against Statistical Query Algorithms . . . . . . . . . . . . . . . . . . 46
7.5 Resistance Against AC0 Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.6 Linear Cryptanalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

8 Other Candidate FSS-Friendly WPRFs 51
8.1 First Variant: Reusing Portions of the Input . . . . . . . . . . . . . . . . . . . . . 51
8.2 Second Variant – Reducing the Key Size . . . . . . . . . . . . . . . . . . . . . . . 52

1



9 Concrete Attacks on our WPRF Candidates 53
9.1 Concrete Linear Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
9.2 Concrete Security Against Other Attacks . . . . . . . . . . . . . . . . . . . . . . . 55
9.3 Concrete Efficiency Estimations for PCF for VOLE . . . . . . . . . . . . . . . . . 55

10 Applications 56
10.1 Secure Multiparty Computation with Fully Reusable Preprocessing . . . . . . . . 56
10.2 Black-box Two-Round MPC with Fully Reusable Preprocessing . . . . . . . . . . 58
10.3 NIZKs with Fully Reusable Preprocessing . . . . . . . . . . . . . . . . . . . . . . 58
10.4 Homomorphic Secret Sharing for Constant-Degree Polynomials . . . . . . . . . . 60
10.5 Programmable PCFs with Applications to MPC with M ≥ 3 parties . . . . . . . 60

11 Acknowledgements 64

A Pseudorandom Correlation Generators 74

B Full PCF Definition 75

C Programmable PCF for VOLE from WPRF and FSS 77

D Multi-Party PCFs 77

2



1 Introduction

Correlated secret randomness is a ubiquitous resource in cryptography. A one-time pad, namely
a pair of identical random keys, enables perfectly secure communication. Kilian [Kil88] and
Beaver [Bea91,Bea95] showed that more complex forms of correlated randomness can similarly
facilitate secure multiparty computation (MPC)—protocols that enable two or more parties to
jointly compute a function of secret inputs revealing nothing beyond the output. A useful
example is an oblivious transfer (OT) correlation, where one party is given two random bits
(s0, s1) and another party gets (b, sb) for a random bit b. Cryptographic power stems from the
fact that the correlation forms a non-product distribution in which neither party can determine
the secret of the other party.

Such correlations not only provide feasibility results, but are a central tool in essentially all
concretely efficient instantiations of MPC in the setting of a dishonest majority. For example, two
honest-but-curious parties can securely evaluate any Boolean circuit with s AND gates (and an
arbitrary number of XOR/NOT gates) using 2s independent instances of an OT correlation, and
communicating 2s bits per party. Moreover, the local computation of both parties involves just a
small constant number of bit-operations per gate [GMW87,Gol04]. The efficiency and simplicity
of MPC protocols based on correlated randomness gives rise to the following common paradigm.
In an offline preprocessing phase, before the inputs are known, the parties use a dedicated
protocol to securely generate correlated randomness. Then, once the inputs are available, the
parties use a (typically very efficient) online protocol to securely evaluate the target function by
consuming the correlated randomness. The main challenge, and the core bottleneck of almost
all practically oriented protocols, is to design efficient methods to securely generate correlated
randomness, without revealing more information than prescribed by the joint distribution.

A sequence of recent works [BCGI18,BCG+19b,BCG+19a,BCG+20] put forth a new tech-
nique for securely generating correlated randomness via pseudorandom correlation generators
(PCGs). In the two-party case, a PCG provides a means for locally expanding a short corre-
lated pair of seeds to a longer instance of a pseudorandom correlation. PCGs enable secure
computation with “silent” preprocessing, where parties use a small amount of communication to
securely generate the correlated seeds and then expand them to the target correlation without
any interaction. Moreover, recent PCG constructions achieve this for useful correlations and
with good concrete efficiency.

However, PCGs come with a major limitation: The expansion of the correlated seeds is
an “all-or-nothing” procedure, where the target correlation is produced all at once without
enabling fast random access to the long output.1 This is similar to the limitation of a standard
pseudorandom generator (PRG), except that existing PCG constructions do not even support
the type of (stateful) incremental evaluation enabled by standard PRGs in a “stream-cipher
mode.” This limits the use of PCGs to a monolithic form of silent preprocessing that requires
parties to generate and store big amounts of correlated randomness they might want to use in
the future.

In this work, we initiate the study of the natural desired target: a pseudorandom correla-
tion function2 (PCF), which extends a PCG analogously to the way a pseudorandom function
(PRF) [GGM86] extends a PRG. Concretely, we seek to design short correlations of keys that
can be expanded “on the fly” to a virtually unbounded number of pseudorandom correlation
instances, and which further enable fast random access to these instances.

A bit more precisely, recall that a PRF is a keyed function fk : {0, 1}n → {0, 1}`(n), such that
1This applies to the so-called “dual” variant of PCG constructions that can achieve an arbitrary polynomial

stretch; settling for at most a quadratic stretch, the “primal” variant allows random access to the output [BCGI18,
SGRR19].

2One could alternatively view a PCF as a pair of correlated pseudorandom functions. The term pseudorandom
correlation function (similarly to a pseudorandom correlation generator) refers to a single function fk that samples
from a pseudorandom correlation given suitably correlated keys.

3



for a secret random key k, the outputs of fk are computationally indistinguishable from those of
a random function. A strong PRF (or just PRF) is secure against distinguishers that query the
function on arbitrary inputs x, while for a weak PRF (WPRF) the distinguisher is only given
samples (xi, fk(xi)) for uniformly random inputs xi. Generalizing this notion, a (two-party)
PCF is a keyed function fk such that for a suitable joint key distribution (k0, k1), the outputs
(fk0(xi), fk1(xi)) are indistinguishable from instances of a given target correlation. An essential
security requirement is that indistinguishability hold not only for outsiders, who observe the
pairs of outputs, but also for insiders who know one of the two keys. Here too, one can consider
both a strong PCF and a weak PCF. We use the weak notion by default, since it is easier to
construct and it suffices for our motivating applications.

Traditional techniques for upgrading a PRG to a PRF in the standard setting, such as the
tree-based GGM construction [GGM86], do not apply here. The challenge lies in the requirement
of security against insiders. Applying a GGM-style approach would require a PCG that expands
its seeds to two instances of its own seed correlation. This seems infeasible for current PCG
constructions and calls for a different approach to PCF design.

1.1 Overview of Contributions

In this work, we initiate a systematic study of pseudorandom correlation functions, and investi-
gate related primitives and assumptions. We make the following main contributions.

Definition and generic construction. We start by formally defining (weak and strong) PCFs
and put forth a natural general template for constructing them. The construction combines a
(weak) PRF fk with a function secret sharing (FSS) [BGI15] scheme for either the PRF class
itself or closely related function classes. A (two-party) FSS scheme for a function class F
enables splitting any function f ∈ F into two succinctly described functions (f0, f1), such that
f = f0 + f1 and each share fi hides f . We show how our template can be instantiated using
known FSS schemes for circuits [DHRW16, BGI+18] together with any PRF. This leads to a
general PCF construction for a useful class of “additive” correlations, which includes most of the
useful correlations for MPC, under a standard cryptographic assumption, namely the Learning
With Errors (LWE) assumption [Reg05].

PCFs from VDLPN. While the above LWE-based construction provides a theoretical feasi-
bility result, it has poor asymptotic and concrete efficiency. Moreover, the construction uses the
heavy machinery of fully homomorphic encryption and leaves open the possibility of constructing
useful PCF instances from other, seemingly weaker, assumptions. We show how to efficiently
construct PCFs for a broad class of useful correlations, including oblivious transfer (OT), vec-
tor oblivious linear-function evaluation (VOLE) [ADI+17,BCGI18], and “multiplication triple”
correlations [Bea91], from a natural variable-density variant of the Learning Parity with Noise
(LPN) assumption [BFKL94], or VDLPN for short, that we introduce and study in this work.
These efficient PCF constructions are motivated by applications to MPC and non-interactive
zero knowledge.

Applications of VDLPN. The VDLPN assumption is independently motivated by two addi-
tional applications. First, different flavors of this assumption give rise to WPRF candidates in
depth-2 AC0[⊕] (concretely, XOR of conjunctions of input variables and their negations) that can
be conjectured to have subexponential security, matching the best known learning algorithms
for this class [HS07]. This is contrasted with the quasipolynomial security of previous (higher-
depth) AC0[⊕] candidates [ABG+14, BR17]. We support the VDLPN assumption and related
conjectures by proving resilience to several classes of attacks, including linear attacks that use
the input samples to find a biased linear combination of the outputs, and algebraic attacks that
exploit low rational degree. Finally, we observe that VDLPN implies simple constructions of

4



PRGs and WPRFs with security against XOR related-key attacks. Previous constructions are
either heuristic or rely on strong assumptions such as multilinear maps [ABP19].

The remainder of the Introduction is organized as follows. First, in Section 1.2, we present
our main candidate as a low-complexity WPRF, and then (Section 1.3) explain how its conjec-
tured security can be viewed as a variable-density variant of the standard LPN assumption. In
Section 1.4, we discuss applications of this candidate WPRF to security against XOR related-key
attacks. Then, in Section 1.5, we discuss the construction of PCFs, which relies on the “FSS-
friendliness” of our WPRF candidate. We conclude by discussing applications and comparison
with alternative approaches and related works. A more detailed discussion of the conjectured
security of our main WPRF candidate and its variants is deferred to Section 2.

1.2 Our Low-Complexity WPRF Candidate

Motivated by the goals of improving the efficiency of PCFs and diversifying the underlying
assumptions, we put forth new WPRF candidates that are “FSS-friendly” in the sense of being
compatible with existing PRG-based FSS schemes. Our candidates are in a very low complexity
class: the class XOR ◦ AND of polynomial-size, depth-2 boolean circuits with one layer of AND
gates at the bottom and a single XOR gate at the top (both of arbitrary fan-in).3 We also refer
to such a circuit as an XNF formula (for XOR Normal Form). This is similar to DNF, except
for replacing disjunction (OR) by XOR. We conjecture our candidates to have subexponential
security in both the key length and the input length. Concretely, our main candidate fk :
{0, 1}n → {0, 1} is of the form

fk(x) =

D⊕
i=1

w⊕
j=1

i∧
h=1

(xi,j,h ⊕ ki,j,h), (1)

where w,D can be set to the security parameter λ, and n = w ·D · (D − 1)/2. We conjecture
that this candidate is secure against 2o(n

1/3)-time distinguishers. The security of this WPRF
candidate is based on a natural variable-density flavor of the well-studied learning parity with
noise (LPN) assumption that we will discuss below. A slightly different candidate is plausibly
secure against 2o(

√
n)-time distinguishers, matching the best known learning algorithm for this

class [HS07]. (For both variants, restricting the distinguisher to 2D samples and D to
be, say, no(1), we get plausible security against 2o(n/ logn)-time distinguishers.) Subexponential
security is good enough to support λ bits of security (against 2λ-bounded adversaries) in poly(λ)
time, and is typically the strongest level of security one can hope to obtain from standard cryp-
tographic assumptions. For a more thorough discussion on the security of our main candidate
and its variants we refer to Section 2.3.

In contrast to our candidates, previous WPRF candidates in AC0[⊕] (namely, of constant-
depth polynomial-size circuits with AND/OR/XOR gates of unbounded fan-in) were restricted
to quasipolynomial security, which is considered “borderline insecure” and cannot support λ bits
of security in poly(λ) time. Thus, our candidates fill a gap in the current landscape of (weak)
PRF candidates in low complexity classes. See Section 2 below for related work.

We support the conjectured security of our candidates by analysis that proves their security
against several classes of natural attacks, capturing essentially any relevant class of attacks we
are aware of. This includes, for instance, linear attacks that try to correlate the outputs via
an input-dependent linear combination, as well as algebraic attacks that exploit a low rational
degree. The latter yielded a quasipolynomial-time distinguisher for a previous WPRF candidate
in AC0[⊕] [ABG+14,BR17].

3As is common in the study of constant-depth PRFs, we consider the complexity of mapping the input to the
output when the key is fixed, where inputs can be negated without counting towards the depth. The latter is
consistent with, for instance, a DNF formula having depth 2. Viewed as a function of both the input and the
key, the depth increases to 3.

5



Assuming our conjectures, the complexity class AC0[⊕] does not admit a 2n
o(1)-time learning

algorithm, even under the uniform distribution. In fact, the same holds for the class of XNF
formulas that can be alternatively viewed as sparse F2-polynomials in inputs and their negations.
This also implies similar hardness for learning sparse F2-polynomials (without negations) in the
standard PAC model, which allows for arbitrary input distributions. Our analysis and conjec-
tured hardness assumptions complement the 2Õ(

√
n)-time PAC learning algorithm from [HS07]

for sparse polynomials, which also applies to XNF formulas by changing the input distribution.
The conjectured hardness should be contrasted with efficient learning algorithms when mem-
bership queries are allowed [SS96,Bsh97]. This corresponds to our WPRF candidates not being
strong PRFs.

1.3 Variable-Density LPN

The security hypothesis for our main WPRF candidate from Eq. (1) can be cast as a new natural
variant of the standard Learning Parity with Noise (LPN) assumption [BFKL94]. We explain
this below.

In its dual formulation, LPN asserts that for suitably chosen parity-check matrix H ∈ FN×M2

(where M > N) and noise vector e ∈ FM2 , the distribution (H,He) is pseudorandom, namely it
is indistinguishable from (H, r) for a uniform vector r ∈ FN2 chosen independently of H. Here
H is typically chosen to be a uniformly random matrix and e an i.i.d. noise vector in which each
entry is set to 1 with probability 0 < p < 1/2. Many other flavors of LPN have been used for
different cryptographic applications. For instance, H can be structured [HKL+12,MBD+18] or
even of “medium density” [MTSB13]. The noise vector e is sometimes chosen to have a fixed
weight or even a regular structure [AFS03], where e consists of disjoint blocks and each block
contains a single nonzero entry in a random position.

We can interpret our WPRF candidate from Eq. (1) as a variable density version of the dual
LPN assumption described above in the following way: For each i, the inner term

∧i
h=1(xi,j,h⊕

ki,j,h) can be rephrased as an inner product of two weight-1 vectorsHi,j , ei,j ∈ {0, 1}2
i .4 Concate-

nating the vectors Hi,j for all i ∈ [D], j ∈ [w] results in one row of the matrix H (corresponding
to one input x), and concatenating the vectors ei,j results in the error vector e. Note that the
length of each such vector isM = O(w2D) and each block has twice the size and half the density
of the previous block. Given N inputs x for the WPRF, we obtain a matrix H of dimension N
times M , such that one output of our original WPRF construction corresponds exactly to one
entry of He.

We refer to the conjectured security of this flavor of variable-density LPN as the VDLPN
assumption. The core idea of VDLPN is that it allows the dimension of H and e to be superpoly-
nomial in the input length n (while each entry of He is polynomial-time computable) without
introducing too much structure or biasing the output. As outlined above, this assumption is
equivalent to the security of the WPRF candidate in Eq. (1). In Section 2 we further motivate
this choice and discuss its provable security against a variety of relevant attacks. We also discuss
other flavors of the VDLPN assumption that correspond to alternative WPRF candidates.

1.4 Application to XOR-RKA Security

Independently of the PCF motivation, our new WPRF candidates are motivated by another
cryptographic application: achieving security against related-key attacks (RKA) with respect to
XOR functions. RKA security captures a model in which the attacker is allowed to see several
instances of a primitive where the keys are not independent, but instead satisfy a relation of its
choice. XOR-RKA security captures the setting where the adversary has access to the primitive
with keys k, k ⊕ ∆1, k ⊕ ∆2, · · · , for fixed offsets of his choice. The VDLPN assumption that

4To see this, one can think of Hi,j as the weight-1 vector with non-zero position (xi,j,1, . . . , xi,j,i) (read as an
integer between 0 and 2i − 1), and ei,j the weight-1 vector with non-zero position (1⊕ ki,j,1, . . . , 1⊕ ki,j,i).

6



implies the security of our main WPRF candidate actually implies the stronger XOR-RKA
security for free. This follows from the fact that the WPRF from Eq. (1) can be written in the
form fk(x) = h(k ⊕ x), and so tampering with the key bits is equivalent to tampering with the
(random) inputs. For details, see Section 6.5.

XOR-RKA is arguably the most natural flavor of RKA security, capturing fault injection
attacks where an adversary can induce bit flips in cryptographic hardware and other forms
of tampering (see [GLM+04] and references therein). However, it is typically very hard to
prove — the only “provable” XOR-RKA secure PRF is based on the very strong cryptographic
assumption of multilinear maps [ABP19]. Our main WPRF candidate implies simple PRGs and
WPRFs whose XOR-RKA security follows from the VDLPN assumption. These can in turn be
used for constructing other types of XOR-RKA secure variants of primitives that can be based
on standard WPRF, including identification and authentication schemes, semantically secure
encryption schemes [AHI11], and passive XOR-RKA secure strong PRFs [AW14]. Finally, since
our WPRF candidate has the form fk(x) = h(k ⊕ x), its security implies that the function h is
correlation-robust in the sense of [IKNP03].

We stress that these XOR-RKA primitives depend on a new security assumption that is yet
to withstand the test of time. This follows previous theory-oriented works that introduce new
simple PRF candidates and study their resistance to concrete classes of attacks [MV12,ABG+14,
BR17,BIP+18].

1.5 From FSS-friendly WPRF to PCF

We start this section by briefly explaining how to obtain a PCF from a WPRF together with
a suitable function secret sharing scheme, and then show why our WPRF candidate is “FSS-
friendly.”

Generic construction of PCFs. Recall that an FSS scheme for a function class F allows
splitting a function f ∈ F compactly into two functions (f0, f1), such that f = f0 + f1 and
each share fi individually hides f . One example for a useful correlation is vector oblivious linear
evaluation (VOLE) over a field F, where one party holds (a, c0,i) and the other party holds
(bi, c1,i) such that c1,i = c0,i + a · bi, for fixed a. Now, a WPRF class F over F together with
a FSS5 for a · F allows to construct a PCF for VOLE as follows: First an element a $← F and
a key k for the WPRF are sampled at random, and then compact shares (f0, f1) of a · fk are
generated via the FSS. Now, a and f0 are given to one party and k and f1 to the other party.
By the correctness of the FSS, for all x it holds f1(x) = −f0(x) + a · fk(x), and by the security
of the FSS neither party learns about the others parties secrets.

A PCF for random OT can be constructed either directly based on the described approach
using the techniques of [BCG+19b,BCG+19a], or alternatively, from a WPRF family over F2 and
a corresponding FSS. Both approaches additionally require a correlation-robust hash function
(which, as discussed in Section 1.4, does not require any additional assumption in our case).
We further show how to construct PCF for oblivious linear evaluation and multiplication triples
given an FSS for both the WPRF class F and the square of F , namely F2 = {f ·f ′ : f, f ′ ∈ F}.

The above constructions only realize our default notion of weak PCF, where inputs are chosen
at random. This is good enough in applications where a common source of public randomness
is available. Moreover, in the random oracle model, one can easily obtain a strong PCF from a
weak one by applying the random oracle to the input.

“FSS-friendliness” of our candidates. The above approach can be instantiated from any
WPRF together with a “high-end” FSS from LWE. Our WPRF candidates, on the other hand,

5Note that for the case of VOLE, and similarly for random OT correlations, one can in fact replace the FSS
primitive by the simpler puncturable pseudorandom function primitive [KPTZ13,BW13,BGI14].

7



are designed to be FSS-friendly, in the sense that they can be evaluated by lightweight function
secret sharing schemes based on the existence of one-way functions. The primitive we use is a
distributed point function (DPF) [GI14], namely an FSS scheme for the class of point functions
{Pα}α∈{0,1}∗ , where the function Pα : {0, 1}|α| → F2 evaluates to 1 on input α, and to 0 on all
other inputs. Concretely efficient DPF schemes from any PRG were given in [BGI15,BGI16b].

Our main WPRF candidate, described in Eq. (1), is “FSS-friendly” as it can be seen as a
sum of w ·D point functions: Each AND term

∧i
h=1(xi,j,h ⊕ ki,j,h) can be viewed as evaluating

a point function Pα with α = (1⊕ ki,j,1, . . . , 1⊕ ki,j,i). Here we make crucial use of the fact that
the identity of the variables in each term of Eq. (1) is public and only whether each variable is
negated or not is secret.

Additionally, we propose an alternative low-complexity WPRF candidate that is even more
FSS-friendly than our main candidate:

fk(x) =
D⊕
i=1

w⊕
j=1

i∧
h=1

(xj,h ⊕ kj,h). (2)

This candidate exploits the fact that in the best known DPF constructions [BGI16b], sharing the
point function Pα directly gives a sharing of all Pα′ for α′ a prefix of α. All of our candidates can
also be adapted to have outputs over rings instead of F2, with the same level of FSS-friendliness.
This leads to PCF constructions for useful correlations over general rings — see Section 6.3.

When plugging in our concrete candidate WPRFs we obtain further benefits. We construct a
PCF for arbitrary, degree-2 correlations — additive secret shares of a random string X, together
with shares of Y = p(X), for some multivariate degree-2 polynomial p — with a universal setup
procedure. The latter means that the PCF key generation is independent of the polynomial
p, and later during expansion the parties have PCFs for any choice of p. This overcomes
the limitation of a previous LPN-based PCG construction from [BCG+19b], which required
computing all N2 monomials.

Compared to the generic LWE-based construction of PCFs, the LPN-style assumptions that
underly our specialized constructions seem qualitatively weaker. For instance, they are not
known to imply additively homomorphic encryption or even collision-resistant hashing. VDLPN-
based PCFs also have attractive efficiency features that beat the generic alternative both asymp-
totically and concretely (by several orders of magnitude). Finally, they achieve perfect correctness
whereas LWE-based constructions have negligible error probability that we do not know how to
remove. See Section 1.7 for a more detailed comparison.

1.6 Applications of PCFs

PCFs give rise to a number of interesting cryptographic applications, which we briefly outline
here, and in more detail in Section 10.

Secure computation with correlated randomness. The most natural use case, as already
mentioned, is their ability to produce a practically unlimited amount of correlated randomness
for use in secure computation protocols. Similar to the case of PCGs, this application is not
entirely immediate — a PCF cannot substitute for an ideal source of correlated randomness
in every protocol, since knowing a short representation of this randomness can in some cases
contradict security. We can show, however, that PCFs can be plugged directly into a large
class of natural, practical protocols in a secure manner; this holds for any protocol that is
secure even when a corrupt party can influence its own correlated randomness. In particular,
this property is satisfied by many, standard secure multi-party computation (MPC) protocols
in the preprocessing model, so PCFs allow us to transform these protocols to have reusable
preprocessing. Here, a one-time setup protocol is first performed to distribute the keys for a
PCF. After this setup, the PCF can be used for as many instances of the MPC protocol as is
needed, without having to re-run the setup.

8



Two-round MPC. A special class of multi-party computation protocols that have been devel-
oped recently [GGHR14,BL18,GS18] is those with just two rounds of interaction, the minimum
that is possible. The two-round protocol of Garg et al. [GIS18] uses a setup phase for producing
a large number of random oblivious transfers, after which the entire protocols makes only black-
box use of a pseudorandom generator. Replacing this oblivious transfer setup with PCFs, we
obtain a fully reusable preprocessing phase, which after its setup, can be used for any number
of two-round MPC protocols.

Non-interactive zero knowledge with fully reusable preprocessing. Non-interactive
zero knowledge (NIZK) allows a prover to convince a verifier of the truth of some statement,
by just sending a single message. NIZK with preprocessing allows a setup phase with a trusted
third party, who generates secret proving and verification keys, which are given to the prover
and verifier, respectively. Preprocessing NIZK can have information-theoretic security given OT
or VOLE correlations [KMO89,CDI+19]. This motivated the use of a PCG-based approach in
this context [BCGI18,BCG+19b,WYKW20]. Using PCFs, we can obtain preprocessing NIZKs
with fully reusable preprocessing, where a single setup consisting of PCF keys can be used to
prove an arbitrary number of statements. Compared with other recent NIZK constructions
in the designated verifier setting [LQR+19], which can be based on LPN, the PCF approach
requires a stronger preprocessing setup, but leads to simpler constructions with better concrete
efficiency. These constructions do not require any cryptographic operations after expanding the
PCF outputs.

Multi-party PCFs. Some of our two-party PCF constructions can be extended to the multi-
party setting, where m parties can obtain correlated randomness, which remains secure even
when up to m − 1 keys have been corrupted. These extensions are possible by exploiting a
programmability feature of the two-party PCFs, which means that some portion of the PCF out-
puts can be reused as outputs in a separate PCF instance. This allows generically constructing
multi-party PCFs, in a similar way to previous constructions of multi-party PCGs [BCG+19b].

1.7 Advantages of the VDLPN-Based PCF Construction

Without an FSS-friendly WPRF such as ours, it seems necessary to rely on general-purpose FSS
schemes based on “public-key assumptions.” These can be constructed from the LWE assumption
using special fully homomorphic encryption (FHE) schemes [DHRW16]. One can also combine
a WPRF in NC1 with an FSS for branching programs, where the latter can be based on the
Decisional Diffie-Hellman assumption [BGI16a]. However, this approach suffers from an inverse
polynomial correctness error and has a high computational cost.

Below, we analyze the properties of LWE-based constructions, and compare these with our
approach. Specifically, we will consider an FSS construction based on the more efficient ring-
LWE assumption, and instantiate this with an exponential ring-LWE modulus q; this allows
to obtain FSS and PCFs with an exponentially small error probability [DHRW16], which is
comparable to our constructions with perfect correctness.

Asymptotic efficiency. We first analyze an optimistic variant of a ring-LWE-based PCF, based
on a WPRF which can be computed by a circuit of size Õ(λ); note that the only candidates we
are aware of satisfying this are our WPRF from VDLPN (in the regime D = polylog(λ)), a
permutation-based a candidate PRF by Miles and Viola [MV12] and an “asymptotically optimal”
candidate from [BIP+18]. Fully homomorphic encryption from the ring-LWE assumption
can be carried out with polylogarithmic overhead on top of the cleartext computation [GHS12].
However, if we want an exponentially small correctness error in the FSS then the ciphertext
modulus q is required to be exponential in the security parameter; this multiplies the overhead
of homomorphic evaluation by Õ(λ), translating to a computational cost of Õ(λ2) for each PCF
evaluation. Regarding storage costs, the PCF key in this construction consists of Õ(λ) ring-LWE

9



ciphertexts, giving a total key size of Õ(λ3) bits.6

Moreover, the above computational cost only holds for a WPRF with Õ(λ) size circuits. PRF
constructions from standard assumptions such as LWE, ring-LWE [BPR12], number-theoretic
assumptions [NR04] or a natural generalization of AES [MV12] require circuits of size Õ(λ2),
and result in Õ(λ4) computation for PCF.

In contrast, our most aggressive candidate has key size Õ(λ2) bits and computational cost
Õ(λ) PRG operations, clearly improving over the alternatives in both complexity measures.

Concrete efficiency. Thanks to its simplicity, our constructions should in practice be more
concretely efficient than LWE-based approaches. For example, we estimate that in our PCFs
for VOLE or OT, each party’s PCF key can be around 120kB, or 2MB based on our most
conservative assumption, for a target bound of 230 samples. The parameters were chosen to
achieve 100 bits of security against natural linear attacks such as BKW or the learning algorithm
of [HS07], and are based on the optimized PCF construction – see Remark 5.6 in Section 5.2 and
Section 6.4. For further discussions and concrete conjectures regarding the exact security of our
candidate, we refer the reader to Section 9. For comparison, Boyle et al. [BCG+19b] considered
building a PCG from ring-LWE-based function secret sharing (or homomorphic secret sharing)
and a suitable pseudorandom generator. To obtain a reasonable computation time, the resulting
PCG keys were larger than 3GB, and the stretch of the PCG was still sub-quadratic. Since
a single FHE ciphertext is typically the order of several megabytes, and a PCF key will need
many such ciphertexts, it seems inherent that LWE-based PCFs will suffer similarly in terms of
concrete key size and/or computational cost.

Conceptually weaker assumption. LWE is a powerful assumption that implies, amongst
other things, the existence of (leveled) fully homomorphic encryption. On the other hand, LPN-
type assumptions, even in a low-noise regime such as VDLPN, are not known to imply additively
homomorphic encryption or even collision-resistant hashing. Despite recent progress towards the
latter [BLVW19,YZW+19], it is still unknown whether we can construct collision-resistant hash-
ing based on the polynomial hardness of LPN. For additively homomorphic encryption, there are
negative results showing that any LPN-based construction must make non-black-box use of the
underlying ring, which seems to require techniques going beyond existing constructions [AAB15].
Therefore, our constructions show that PCFs, although a powerful primitive, can plausibly be
realized under qualitatively weaker assumptions than before.

Perfect correctness. Our constructions satisfy perfect correctness for all parameter choices.
With LWE, one can achieve negligible error probability by using a superpolynomial modulus,
which requires a strong variant of LWE. We do not know how to obtain perfectly correct HSS
under any variant of LWE, and when the modulus is restricted to be polynomial, current con-
structions have an inverse polynomial error probability.

1.8 Related Work

The study of secure computation with silent preprocessing is a recent but active research
area [BCG+17, Sch18, BCGI18, BCG+19b, SGRR19, BCG+19a]. There is a long line of work
which studied constructions of low-bias PRGs and PRFs in low complexity classes [NN90,MST03,
LRTV09, Shp09, Vio10,MRRR14, LV17, AK19]. In particular, the work of [GV04] gives an ε-
biased strong PRF in AC0[⊕]; while it only achieves bias ε ≥ 1/superpoly(λ), it was strengthened
in [Hea08] to achieve exponentially small bias. Our result is incomparable: we only construct a
weak low-bias PRF family, but in the much smaller class XOR ◦ AND. Heuristic constructions
of PRFs and weak PRFs with provable security against classes of attacks have been studied in
several previous work [MV11,ABG+14,BIP+18].

6The number of ciphertexts could be reduced using packing techniques [GHS12], but this requires storing
additional ‘key-switching’ material, and would not change the overall key size.

10



The combination PRFs and FSS (or the dual of homomorphic secret sharing) has been used
before in different contexts. In particular, Boyle et al. used it to establish barriers for FSS [BGI15]
and to obtain low-communication MPC protocols [BGI16a], and Bartusek et al. [BGMM20] used
it to obtain two-round MPC protocols with reusable first round.

2 Technical Overview of our WPRF Candidates

In this section we give a more detailed technical overview of our new WPRF candidates, their
design choices, and security analysis. We start with some general background.

The study of low-complexity cryptography has a long and rich history (see e.g. [Kha93,
NR97, NRR00, AIK04, IKOS08, AR16, ABG+14, BIP+18] and references therein). Beyond the
direct goal of minimizing the complexity of useful cryptographic primitives, this line of work is
motivated by its relevance to hardness results and barriers in computational complexity theory
and learning theory. Another, more recent motivation stems from the fact that many advanced
primitives, such as secure computation, zero-knowledge proofs, fully homomorphic encryption
(FHE), and indistinguishability obfuscation can induce their own efficiency metrics that motivate
new designs of low-complexity primitives. Some relevant works in this direction include [IKOS08,
ARS+15,CCF+16,MJSC16,LT17].

Our work gives yet another example of this kind: we efficiently realize PCFs by relying
on WPRFs with a specific “FSS-friendly” structure. To instantiate this framework, we can
use a “heavy hammer” approach, by relying on advanced constructions of FSS for all cir-
cuits [BGI15,DHRW16]. However, while such an approach is interesting for establishing feasibil-
ity (which we do in Section 5), it is unsatisfactory for several reasons. First, it is unlikely to lead
to any concretely efficient candidate (in the same way that hybrid FHE can be achieved by com-
bining any FHE scheme with any standard block cipher, but the resulting scheme will be highly
inefficient, hence motivating the design of FHE-friendly ciphers [ARS+15,CCF+16,MJSC16]).
Second, it requires a strong flavor of “homomorphic cryptography,” which implies a severe limi-
tation on the type of assumptions we can realistically hope to rely on and the level of concrete
efficiency. Finally, a curious limitation of all known constructions of FSS of circuits is that they
cannot achieve perfect correctness.

Therefore, we take the opposite road: rather than starting from advanced FSS for all circuits
based of FHE-style assumptions, we ask whether the simplest and most efficient known FSS
schemes [BGI16b], which can be based on any one-way function, are already sufficiently powerful
to instantiate our framework. Namely, we ask:

Is there a weak PRF in the complexity class captured by known FSS schemes based on one-way
functions?

The FSS schemes of [BGI16b] capture point functions (which are equal to 0 everywhere
except on a single point) and other classes of functions, interval functions (which take a fixed
value for all inputs from an interval, and 0 otherwise), multi-dimensional generalizations of the
latter, decision trees with fixed topology, as well as all linear combinations of the above. All
these classes can be expressed as sums of point functions applied to different projections of the
inputs. The schemes from [BGI16b] achieve better efficiency than that obtained via independent
instances of DPF. But from a feasibility point of view, all these functions can be expressed as
depth-2 AC0[⊕] circuits.

WPRFs with quasipolynomial security are known to exist in complexity classes as low as
AC0, the class of polysize constant-depth circuits with arbitrary fan-in ∨,∧ gates, under stan-
dard cryptographic assumptions such as factoring and DDH [Kha93,NR97,NRR00] or assuming
the existence of random local functions [AR16]. Furthermore, no weak PRF with better than

11



quasipolynomial security can exist in AC0 [LMN89]. Strong PRFs with quasipolynomial security
are known to exist in AC0[⊕] under standard cryptographic assumptions [Vio13], and quasipoly-
nomial security is the best one can hope for in this class [RR97,CIKK16]. Finally, strong PRFs
with exponential security are known in TC0 [BPR12] and in the “almost constant-depth” variant
of AC0[⊕] [YS16] under standard cryptographic assumptions, and heuristic constructions (with
provable resistance against some classes of attacks) of strong PRFs in ACC0 have been proposed
in [BIP+18]. Our work proposes conceptually simple WPRF candidates in AC0[⊕] that have
depth 2 (the best possible) and are FSS-friendly. See Table 1 for comparison with related work.

Complexity Class

Circuit Depth AC0 AC0[⊕] ACC0†

Depth 2 Weak PRF [BFKL94] Weak PRF Weak PRF [BIP+18]
(quasipolynomial∗) (subexponential∗)‡ (exponential∗)

Depth 3 Weak PRF [AR16] Weak PRF [ABG+14,
BR17]

Strong PRF [BIP+18]

(quasipolynomial) (quasipolynomial∗) (exponential∗)

Depth > 3 Weak PRF [Kha93] Strong PRF [NR97,Vio13] –(quasipolynomial) (quasipolynomial)

Negative Results

No weak PRF with No strong PRF with

–better than better than
quasipolynomial quasipolynomial
security [LMN89] security [RR97,CIKK16]

* Starred entries refer to (provable or heuristic) security against known classes of attacks, as opposed to security
proofs via reductions to well-studied cryptographic assumptions.
† For entries in ACC0, it suffices to consider AC0[6], that is, the class AC0 augmented with mod6 gates.
‡ Subexponential security means that there exists ε > 0 such that the candidate is secure against all distin-
guishers of size 2n

ε

.

Table 1: Comparison of positive and negative results for constant-depth PRFs. When measuring depth, we
consider the complexity of mapping the input to the output when the key is fixed, and do not count negations of
the input. For each candidate, we denote in parenthesis its conjectured level of security. Different constructions
in the same class rely on incomparable assumptions. The entry shown in bold is from this work.

A natural approach. A natural approach to building weak pseudorandom functions in a low
complexity class, which was the starting point of most prior works [BPR12, ABG+14, YS16,
BIP+18], is to start from (variants of) the learning parity with noise assumption. The LPN
assumption postulates that the function family fs,B(x) = 〈s, x〉 + B(x) is a weak PRF, where
s ∈ {0, 1}n is a secret random vector, and B(x) is a noise function which associates to each x a
random noise coordinate that is biased towards zero. In spite of its low complexity, this weak
PRF family is not efficient: the standard formulation of LPN requires entropy for each noise
term, which is too much for storing B in the key, unless the number of samples is restricted to
some fixed polynomial.

An approach followed in several works [BPR12,AKPW13,ABG+14,BIP+18] tries to replace
this B by a low-entropy and relatively simple function. This was partially successful: in [BPR12,
AKPW13], it was shown that, over Fq for a large modulus q (superpolynomial in [BPR12],
polynomial in [AKPW13]), replacing B(x) by some appropriate rounding of 〈x, s〉 leads to a
weak PRF under the LWE assumption. However, the use of larger fields puts the construction
in a higher complexity class, namely, TC0. On the negative side, it was shown by Akavia et
al. [ABG+14] that no choice of rounding function could possibly allow to base the construction
directly on LPN (over F2) by the same approach. A candidate rounding function was suggested
in [ABG+14], and supported by some security analysis against classes of attacks; however, it
was later broken in quasipolynomial time [BR17]. More recently, a different choice of rounding

12



function, using mod-3 addition, was suggested in [BIP+18] and conjectured to resist the attack
which breaks the candidate of Akavia et al.

2.1 Our Approach – the LPN Viewpoint

In this section we provide an intuition of our approach, this time starting from the primal LPN
assumption. The final result of this section will be a more general definition of variable-density
LPN which in particular captures our main candidate.

A first (unsuccessful) attempt. Assume a LPN-based weak PRF, written in the primal
formulation: fs,B(x) = 〈s, x〉 + B(x), where s ∈ {0, 1}n and B is a function corresponding to
sampling random noise biased towards 0 (i.e. B(x) = 1 with some fixed probability ε). What
makes the description of the function B inherently inefficient (when aiming for superpolyno-
mial security) is the following simple attack: consider an adversary getting N random samples
(x(i), fs,B(x(i)))i≤N , arranged in a matrix A. Hence, the adversary gets (A,A ·s+e), where e is a
noise vector such that the i-th entry of e is B(x(i)). To recover s (which suffices to distinguish all
further samples from random), the adversary can attempt to guess a size-n subset of noise-free
equations in the noisy linear system A ·s+e, and solve it with Gaussian elimination. With noise
rate ε (that is, ε = HW(e)/N), a straightforward calculation shows that the attack succeeds
with probability roughly exp(−nε), hence ε cannot be smaller than 1/n, and the description
size of B must be at least N/n. Therefore, the PRF key size is at least n+N/n ≥

√
N ,

where N is the number of adversarial queries.
However, the above attack scales with the length n of the secret vector s, not with its

description complexity (and so do all known attacks on LPN). This suggests that we could rely
on a variant of LPN with a secret vector s of much smaller description complexity d(n); this way,
the key size would scale as d(n)+N/n, which can potentially be exponentially smaller than N if
d(n) is exponentially smaller than n. Fortunately, there is a well-known candidate to instantiate
this approach: one can sample the secret vector s from the same Bernouilli distribution as
the noise vector e, and the resulting assumption will still be equivalent to the standard LPN
assumption (see e.g. [YS16] for a formal statement and proof of this equivalence). Hence, we
could set n ≈ N , ε ≈ 1/n, and have the key size grow as ε(n) ·N , almost independent of N (up
to logarithmic terms, which we ignore in this high level discussion).

Unfortunately, this still does not quite work. The issue is that the input x to fs,B(x) =
〈s, x〉+B(x) has the same length as s: hence, if we make s superpolynomially large by setting
n ≈ N , the input x becomes superpolynomially large as well. To implement this approach
efficiently, we would need the input x to have a short description as well. In other words, what
we need is a variant of LPN which states that it is hard to distinguish A · s + e from random
where s, e, and the rows of A, all have a short description (exponentially shorter than their
length). Unfortunately, simply sampling A from a sparse (e.g.) Bernouilli distribution cannot
work (since A · s+ e would be sparse and easily distinguished from random).

A way around. Let us take a step back, and look at the two alternatives: we can set s to be
short (and dense), hence allowing A to be relatively narrow, but then A · s+ e is easily broken
by a Gaussian elimination attack if e is sparse and the adversary gets enough samples. Or we
can let s be long (and very sparse), but then A must be comparatively large, and if we make it
sparse to reduce the description size of its rows, A · s+ e is easily distinguished from random. In
fact, any intermediate construction that interpolates between these two approaches falls to an
appropriate combination of these simple linear attacks.

13



Our core observation is that we can defeat all such attacks by simultaneously implementing
the above strategy of making x and s larger and more sparse at many different “levels of sparsity”,
and mixing the outcomes together. Concretely, fix some parameter D, and for i = 1 to D, let
xi, ei ∈ {0, 1}w2i be random sparse vectors of density 1/2i, such that each xi, ei is twice larger
than xi−1, ei−1. Then, consider the following candidate weak PRF family:

fe1,··· ,eD(x1, · · · , xD) =
D⊕
i=1

〈xi, ei〉.

(Note that when choosing xi and ei of regular structure, i.e. such that each length-w block
contains exactly one non-zero noise coordinate, this corresponds to our main WPRF candidate
of Eq. (1).)

In the above, each term 〈xi, ei〉 will play both the role of a sparse noise term for masking
the (more dense) previous terms, and the role of a parity term for the next terms. That is, the
candidate is obtained as follows: start from A ·s+e with dense A and a twice more sparse e, then
replace e by a term of the form A′ · s′+ e′ where s′, e′, and the rows of A′ are twice more sparse
than s, e and the rows of A respectively, and iterate the processus. An adversary collecting many
samples must therefore distinguish

⊕D
i=1Hi ·ei from random given (H1, · · · , HD), where each Hi

is a random sparse matrix of density 1/2i, containing many xi samples as its rows. The sparser
terms (with i close to D) defeat Gaussian attacks which attempt to find linear dependencies
between the equations, since the corresponding secret vectors ei involve a very large number
of unknowns. On the other hand, the more dense terms (with i close to 1) guarantee that the
output distribution of f will be dense, and not biased towards 0. More interestingly, as our
analysis will show, any possible linear attack, which attempts to distinguish f from a random
function by detecting a bias in its output, falls somewhere inbetween these two extremal types of
linear attacks, and is defeated by one of the Hi ·ei terms, for at least one i ∈ [1, D]. Furthermore,
since each xi, ei has density 1/2i and length O(2i), they can all be generated from short random
strings. This generation process is extremely simple, and (for xi, ei of regular structure) will
put our candidate weak PRF family into a very low complexity class: the class XOR ◦ AND of
polynomial-size depth-2 circuits consisting of arbitrary negations of the inputs, followed by a
layer of AND gates at the bottom and a single XOR gate at the top. This is about the simplest
strict subclass of AC0[⊕] which can possibly contain weak PRFs.

VDLPN vs. standard LPN. The assumption underlying the security of the above candidate,
which we study in this paper, is that

⊕D
i=1Hi · ei = [H1|| · · · ||HD] · (e1// · · · //eD) (|| denotes

horizontal concatenation, and // vertical concatenation) cannot be distinguished from random.
The standard LPN assumption can be formulated in two ways: the primal formulation states
that As+e is indistinguishable from random, given a random expanding matrix A; the equivalent
dual formulation states that H ·e is indistinguishable from random, given a random compressing
matrix H. Many variants of this assumption exist, which change the distribution of the rows of
H (e.g. to be slightly more sparse [MTSB13] and/or quasi-cyclic [MBD+18]) and of the noise
vector e (e.g. to have a regular structure [AFS03]). All these variants follow the general template
of postulating the hardness of dual LPN when the rows of H and the noise vector are sampled
from some distributions (Drow,Dnoise). However, all known variants rely on pairs of distributions
(Drow,Dnoise) which output vectors of fixed density.

In contrast, our weak PRF candidate also builds upon a dual-LPN-style assumption, with a
matrix H = [H1|| · · · ||HD] and a noise vector e = (e1// · · · //eD), but where the corresponding
distributions (Drow,Dnoise) have both variable density : vectors sampled from these distributions
are divided in D blocks of increasingly smaller density. This variable density structure is the
key to allow simultaneously for exponentially many samples, while maintaining a polynomial-
size compressed representation of the exponentially long vectors. We call this assumption the

14



variable-density learning parity with noise assumption (VDLPN), and initiate its study in this
paper.

2.2 Our Approach – the Low-Bias Function Viewpoint

For an alternative perspective, we can view our candidate as a methodology for obtaining a
family of functions in a simple complexity class and with low bias, meaning that it provably
resists a class of linear attacks. Below, we give some background on this approach, as well as
some intuition behind why our candidate has low bias.

A large body of work has been dedicated to the construction of pseudorandom generators in
low complexity classes. A common strategy is to PRGs which unconditionally resist restricted
class of attacks, and to use them as plausible heuristic candidates for cryptographically secure
PRGs. Perhaps the most representative example is the design of ε-biased PRGs, which uncondi-
tionally resist all linear distinguishers (see e.g. [NN90,MST03,LRTV09,Shp09,Vio10,MRRR14,
LV17, AK19] and references therein). For the reader familiar with the literature on ε-biased
PRG, we find it useful to provide an alternative interpretation of our approach as a natural ap-
proach to design an unconditionally secure low-bias weak pseudorandom function family (which
we then conjecture to be also a cryptographically secure weak PRF family).

An ε-biased PRG is a function G : {0, 1}n 7→ {0, 1}m which maps a short seed s ∈ {0, 1}n to
a longer string G(s), such that no linear function L has advantage more than ε in distinguishing
G(Un) from Um (where Un, Um denote the uniform distributions over {0, 1}n and {0, 1}m respec-
tively). A standard strategy to build a low-bias PRG, used for example in [MST03,Shp09], is to
design two generators, one secure against “light tests” (linear tests of small Hamming weight),
and one secure against “heavy tests” (linear tests of large Hamming weight). Then, the PRG G
is constructed as

G(x, y) = Glight(x)⊕Gheavy(y);

it is relatively easy to show that this gives a low-bias PRG since G inherits the security against
all possible linear tests from its components.

Our candidate WPRF can be seen as following a generalization of this approach. We define
an (ε,N)-biased WPRF to be a family {fk : {0, 1}n 7→ {0, 1}}k of functions such that the
restriction of the function k → (fk(x))x∈{0,1}n to a random size-N subet of its outputs is an
ε-biased pseudorandom generator with very high probability.

The work of Naor and Naor [NN90] shows that to build low-bias sample spaces, it is useful to
restrict our attention to tests whose weight belongs to an interval of the form [2i, 2i+1], because
such tests are provably fooled by random sparse vectors of density 1/2i. Building upon this
observation, we show how to get a low-complexity weak PRF that fools linear tests with weight
in [2i, 2i+1]: we let the random inputs to the PRF define the rows of a random matrix Hi

of density 1/2i. Using a Chernoff-type concentration bound for random variables with limited
dependency, we prove that any given test with weight in [2i, 2i+1] is fooled by a constant fraction
c of the columns of Hi. Therefore, the distribution induced by Hi · ei for a random sparse vector
ei of weight w (i.e., a random subset-sum of columns of Hi) fools any given test with weight in
[2i, 2i+1] with probability at least cw. We let fi,ei be the function which, on input x, samples a
1/2i-dense row h of Hi using randomness x, and outputs hᵀ · ei (by our argument, fi,ei has low
bias against all tests with weight in [2i, 2i+1]). Finally, to get a 2D-sample WPRF which has
low bias with respect to all possible linear tests, we define

fe1···eD(x1, · · · , xD) = f1,e1(x1)⊕ · · · ⊕ fD,eD(xD).

15



Boolean circuit formulation As presented earlier in (1), we can also obtain the equivalent
Boolean circuit formulation:

fk(x) =
D⊕
i=1

w⊕
j=1

i∧
h=1

(xi,j,h ⊕ ki,j,h), (3)

where x, k ∈ {0, 1}wD(D−1)/2 are parsed as D sequences such that the i-th sequence, 1 ≤ i ≤ D
is made up of i blocks of i bits. To see that this is equivalent to the VDLPN formulation above,
observe that each block of i bits defines a binary unit vector of length 2i and

∧i
h=1(xi,j,h⊕ki,j,h) =

1 exactly when the inner product of the associated binary vectors in the key and in the input is 1.
This formulation is conceptually simpler, and highlights that for a fixed key k, it corresponds to
an XNF formula, namely a depth-2 circuit computing a single XOR of ANDs of literals (inputs
or their negations). In the section below, we also mention several variants of the construction
based on this boolean circuit perspective.

2.3 On the Security of Our WPRF Candidates

We conjecture that when instantiating our WPRF candidates with w = D = λ, every 2o(λ)-size
adversary can get a distinguishing advantage of at most 2−Ω(λ). Since our main candidate
has inputs of size n = O(wD2) = O(λ3), this corresponds to security against 2o(n

1/3)-size
adversaries. For the variant with inputs of size n = O(wD) = O(λ2), this corresponds to
security against 2o(

√
n)-size adversaries, which is essentially optimal due to the existence of a

2Õ(
√
n)-time (and -size) learning algorithm for XNF with arbitrary distributions [HS07]. When

setting D = polylog(λ), w = λ, and restricting the adversary to polynomially many samples, we
conjecture quasiexponential security against adversaries of size 2o(n/polylog(n)).

Of course, when defining low-complexity cryptographic primitives, one must be especially
careful with security analysis. For example, the candidate WPRF construction in AC0[⊕]
from [ABG+14], which initially seemed to have plausible near-exponential security, was shown
by Bogdanov and Rosen to be broken in quasipolynomial time via an algebraic “relinearization”
attack [BR17].

Here we prove resistance against this and a wide range of other attacks considered in the
literature. In particular, we identify a large variety of attacks on LPN as special cases of linear
distinguishers, as described above (Section 2.2), and provably rule them out for our main candi-
date, as well as an intermediate variant that has O(wD) input size (but bigger key size compared
to our most “FSS-friendly” candidate). We observe that Gaussian elimination attacks [EKM17],
statistical decoding attacks [AJ01, Ove06, FKI06, DAT17, Zic17], information set decoding at-
tacks [Pra62,Ste88,FS09,BLP11,MMT11,BJMM12,MO15], BKW and variants [BKW00,Lyu05]
all fall under this umbrella of a linear attack. We also rule out general algebraic attacks, which
covers the attack on the Akavia et al. [ABG+14] candidate, and statistical query attacks based
on the learning algorithm of Linial, Mansour and Nisan [LMN89], and prove resistance to linear
cryptanalysis as formalized by Miles and Viola [MV11].

For all of the classes of attacks above, we prove that no 2O(w)-size adversary mounting an
attack from one of these classes can have advantage more than 2−O(w) in distinguishing these
candidates from random functions given 2D samples. Further, we show our construction is
(w/D)-wise independent , so resists all AC0 tests of size 2(w/D)c for some constant c.

Generalization to arbitrary rings. The VDLPN candidate can be generalized to work over
larger rings than Z2, as detailed in Section 6.3. Here, we simply modify the VDLPN distributions
by replacing ones with random non-zero elements from a ring R, which gives a candidate that is
still FSS-friendly, and can be used for PCFs that output correlations over R. For an appropriate
choice of parameters, our proof of resistance to linear attacks also extends to this arithmetic

16



setting, and we conjecture its security against general attacks for an arbitrary choice of the ring
R.

Variants with smaller inputs and smaller keys. Taking the boolean function definition
seen in equation (3), we can consider several variants of the construction by making simplifi-
cations. For instance, our first variant reduces the input size from O(wD2) to O(wD) bits by
reusing inputs, replacing the variable xi,j,h with xj,h. This modified candidate still provably
resists linear attacks, and we conjecture it also resists the other attacks we have considered. We
can further modify this variant by XORing an additional triangular function to the weak PRF.
Since triangular functions have high algebraic immunity, this allows us to prove resistance to
algebraic attacks whilst retaining the benefit of the reduced O(wD) input size.

Finally, we present an aggressive variation which reduces the key size from O(wD2) down to
O(wD) bits. Here, the proofs of resistance for linear and algebraic attacks break down, however,
we have not found any attacks, and put forward the security of this variant as an interesting
direction for future study.

2.4 Organization

The remainder of the paper is organized as follows. After some preliminaries in Section 3, we
first give definitions of PCFs in Section 4. We then present generic constructions of PCFs,
based on function secret sharing for WPRF in Section 5. Section 6 describes our main WPRF
candidate, explains why it is FSS-friendly and how it implies XOR-RKA secure PRGs and
WPRFs. Section 7 analyzes its security, and Section 8 describes our variants. In Section 9
we propose concrete parameters based on concrete attacks. Finally, in Section 10 we describe
further details of the applications of our PCFs.

3 Preliminaries

3.1 Notation

Given a field F and a number p ∈ [0, 1], we let Berp(F) denote the Bernoulli distribution over
F which returns a uniformly random element of F with probability p, and 0 with probability
1−p. When the field is not specified, we assume F = F2 by default. Given a vector ~v, we denote
by HW(~v) the number of nonzero entries of ~v. Given two integers (m,n) with 0 ≤ m ≤ n,
we let Sm,n(F) denote the uniform distribution over the set {~v ∈ Fn : HW(~v) = m}. Here
again, we assume F = F2 when the field is not specified. Given matrices A,B, we denote A//B
their vertical concatenation and A||B their horizontal concatenation (assuming the dimensions
match).

3.2 Preliminaries on Bias

Definition 3.1 (Bias of a Distribution) Given a distribution D over Fn2 and a vector ~u ∈ Fn2 ,
the bias of D with respect to ~u, denoted bias~u(D), is equal to

bias~u(D) =

∣∣∣∣∣12 − Pr
~v

$←D
[~uᵀ · ~v = 1]

∣∣∣∣∣ .
The bias of D, denoted bias(D), is the maximum bias of D with respect to any nonzero vector ~u:

bias(D) = max
~u 6=0n

bias~u(D).

17



We recall a number of useful facts about bias. First, observe that when D is the uniform
distribution over a multiset S, it holds that

bias~u(D) =

∣∣∣∣∣12 − 1

|S|
∑
~v∈S

~uᵀ · ~v

∣∣∣∣∣ .
Given t distributions (D1, · · · ,Dt) over Fn2 , we denote by

⊕
i≤tDi the distribution obtained by

independently sampling ~vi
$← Di for i = 1 to t and outputting ~v ← ~v1 ⊕ · · · ⊕ ~vt.

We will use the following fact about the bias of the exclusive-or of independent distributions
(cf. [Shp09]).

Lemma 3.2 Let t ∈ N be an integer, and let (D1, · · · ,Dt) be t independent distributions over
Fn2 . Then

bias

⊕
i≤t
Di

 ≤ 2t−1 ·
t∏
i=1

bias(Di) ≤ min
i≤t

bias(Di).

3.3 Concentration Bounds

We recall several standard concentration bounds from the literature.

Lemma 3.3 (Bienaymé-Chebyshev Inequality) Let X be a random variable with finite ex-
pected value µ and finite nonzero variance σ2. Then for any k > 0,

Pr[|X − µ| ≥ kσ] ≤ 1

k2
.

Lemma 3.4 (Chernoff Inequality) Let n ∈ N and let (X1, · · · , Xn) be independent random
variables taking values in {0, 1}. Let X denote their sum and µ← E[X]. Then for any δ ∈ [0, 1],

Pr[X ≥ (1 + δ)µ] ≤ exp

(
−δ

2µ

3

)
.

Bounded Difference Inequality. Eventually, we will need a Chernoff-type concentration
bound for dependent random variables. The bounded difference inequality was first proved by
McDiarmid in [McD89]. It is an application of the more general Azuma inequality [Azu67] which
provides a powerful generalization of the Chernoff-Hoeffding inequality to martingales satisfying
some bounded difference condition. Below, we state the bounded difference inequality in a form
less general than the one proven in [McD89], which suffices for our purpose. Let (n,m) ∈ N2 be
two integers. We say that a function Φ : [n]m 7→ R satisfies the Lipschitz property with constant
d if for every ~x, ~x′ ∈ [n]m which differ in a single coordinate, it holds that

|Φ(~x)− Φ(~x′)| ≤ d.

Lemma 3.5 (Bounded Difference Inequality) Let Φ : [n]m 7→ R be a function satisfying
the Lipschitz property with constant d, and let (X1, · · · , Xm) be independent random variables
over [n]. Then

Pr[Φ(X1, · · · , Xm) < E[Φ(X1, · · · , Xm)]− t] ≤ exp

(
− 2t2

m · d2

)
.

18



3.4 Weak Pseudorandom functions

We consider here weak PRFs, which relax standard PRFs by only considering distinguishers that
get the outputs of the function on uniformly random inputs. We require subexponential security
by default, namely security against distinguishers of size 2n

ε for some ε > 0. This is the typical
level of security achieved by constructions based on the strongest plausible versions of standard
cryptographic assumptions. We formally define this notion below.

Definition 3.6 ((Weak) pseudorandom function [GGM84,NR95]) Let λ ∈ N denote a
security parameter and n = n(λ), κ = κ(λ) be monotonically-increasing and polynomially-
bounded input length and key length functions, respectively. A (weak) pseudorandom function
is syntactically defined by a function family F = {Fλ : {0, 1}κ × {0, 1}n → {0, 1}}, where the
output Fλ(K,x) can be computed from (K,x) in polynomial time. Since λ and κ are determined
by the input length n, we will sometimes write FK(x) instead of Fλ(K,x). For T = T (κ) and
ε = ε(κ), we say that F is a (T, ε)-secure strong pseudorandom function (PRF), if for every
λ ∈ N and every oracle circuit D of size T (κ), it holds

Pr
k

[Dfk(·) = 1]− Pr
R

[DR(·) = 1] ≤ ε(κ),

where κ = κ(λ), k $← {0, 1}κ is chosen at random, and R : {0, 1}n → {0, 1} is a truly random
function. A T -secure PRF is a (T, 1/T )-secure PRF.

We say that F is a (T, ε)-secure weak PRF (WPRF) or T -secure WPRF if the above holds
when D only gets access to samples (xi, fk(xi)), where xi

$← {0, 1}n are chosen uniformly and
independently. Finally, we say that a (W)PRF F has polynomial security if it is T -secure
for every polynomial T , and that it has subexponential (resp., quasipolynomial, exponential)
security if there exists c > 0 such that it is T -secure for T = 2κ

c (resp., T = κlogc κ, T = 2κc).
In this work, when we refer to a (weak) PRF without specifying the level of security, we assume
subexponential security by default.

4 Defining Pseudorandom Correlation Functions

In this section we formally define the notion of pseudorandom correlation functions (PCFs), the
new primitive studied in this work. At a high-level, a PCF extends the previous notion of a
pseudorandom correlation generator (PCG) [BCG+19b] analogously to the way a pseudorandom
function (PRF) extends a pseudorandom generator (PRG).

Similarly to the notion of a PCG, a PCF should securely realize some ideal target correla-
tion. A simple example for a useful ideal correlation is a random bit-oblivious-transfer (OT)
correlation, defined by a pair of random variables (Y0, Y1) such that Y0 = (s0, s1) is uniform over
{0, 1}2 and Y1 = (c, sc) for a random bit c. This correlation is “finite” in the sense that it has a
fixed output length.

It is often useful to consider not only finite correlations, but also infinite families of finite
correlations where the output length can grow with the security parameter λ. In order to define
a meaningful notion of PCF for such a family of correlations, we require the correlation to satisfy
the following “reverse sampleability” property: There exists an efficient algorithm that, given an
output yσ in the support of Yσ, reverse-samples the other output y1−σ from the right conditional
distribution, namely [Y1−σ|Yσ = yσ]. We formalize this below.

Definition 4.1 (Reverse-sampleable correlation) Let 1 ≤ `0(λ), `1(λ) ≤ poly(λ) be output-
length functions. Let Y be a probabilistic algorithm that on input 1λ returns a pair of outputs
(y0, y1) ∈ {0, 1}`0(λ) × {0, 1}`1(λ), defining a correlation on the outputs.

We say that Y defines a reverse-sampleable correlation, if there exists a probabilistic polyno-
mial time algorithm RSample that takes as input 1λ, σ ∈ {0, 1} and yσ ∈ {0, 1}`σ(λ), and outputs

19



ExpprA,N,0(λ) :

for i = 1 to N(λ):
x(i) $← {0, 1}n(λ)

(y
(i)
0 , y

(i)
1 )← Y(1λ)

b← A(1λ, (x(i), y
(i)
0 , y

(i)
1 )i∈[N(λ)])

return b

ExpprA,N,1(λ) :

(k0, k1)← PCF.Gen(1λ)
for i = 1 to N(λ):
x(i) $← {0, 1}n(λ)

for σ ∈ {0, 1}: y(i)
σ ← PCF.Eval(σ, kσ, x

(i))

b← A(1λ, (x(i), y
(i)
0 , y

(i)
1 )i∈[N(λ)])

return b

Figure 1: Pseudorandom Y-correlated outputs of a PCF.

y1−σ ∈ {0, 1}`1−σ(λ), such that for all σ ∈ {0, 1} the following distributions are statistically close:

{(y0, y1) | (y0, y1)
$← Y(1λ)} and

{(y0, y1) | (y′0, y′1)
$← Y(1λ), yσ ← y′σ, y1−σ ← RSample(1λ, σ, yσ)}

We would typically like a PCF for a given correlation, say an OT correlation, to output for
each input an independent pair sampled freshly from the correlation. However, we will sometimes
be interested in PCFs that also have correlations across different inputs. For instance, in a vector-
oblivious-linear-evaluation (VOLE) or authenticated multiplication triples correlation there is a
secret multiplier that is common to all inputs. To capture this more general case, we introduce
a reverse sampleable correlation with setup, which allows all algorithms to depend on a fixed
global secret, ensuring consistency across different invocations.

Remark 4.2 A reverse-sampleable correlation with setup consists of an additional algorithm
Setup that on input 1λ samples a master key mk, which the algorithms Y, RSample in Definition
4.1 take as extra input. The reverse sampling property is then required to hold for all mk in the
image of Setup. For a formal definition we refer to Definition D.1 in Appendix B.

We are now ready to formalize our main notions of PCF. We start with our default notion
of weak PCF, in which security holds for randomly chosen inputs, and then define the notion
of strong PCF. As is often done in the context of PRFs, it will be convenient to consider not
a single function defined over {0, 1}∗ but an infinite family of finite functions parameterized by
a security parameter λ, where the input length of the λ-th function is polynomial in λ. For
simplicity, in the following we focus on correlations without setup, for the full definitions we
refer to Appendix B.

Definition 4.3 (Pseudorandom correlation function (PCF)) Let Y be a reverse-sampleable
correlation with output length functions `0(λ), `1(λ) and let λ ≤ n(λ) ≤ poly(λ) be an input length
function. Let (PCF.Gen,PCF.Eval) be a pair of algorithms with the following syntax:

• PCF.Gen(1λ) is a probabilistic polynomial time algorithm that on input 1λ, outputs a pair
of keys (k0, k1); we assume that λ can be inferred from the keys.

• PCF.Eval(σ, kσ, x) is a deterministic polynomial-time algorithm that on input σ ∈ {0, 1},
key kσ and input value x ∈ {0, 1}n(λ), outputs a value yσ ∈ {0, 1}`σ(λ).7

We say (PCF.Gen,PCF.Eval) is a (weak) (N,B, ε)-secure pseudorandom correlation function
(PCF) for Y, if the following conditions hold:

7Note that it would be sufficient for PCF.Eval to take as input kσ and x by appending σ to the key kσ. This
corresponds to the view of a PCF as a single keyed function.

20



ExpsecA,N,σ,0(λ) :

(k0, k1)← PCF.Gen(1λ)
for i = 1 to N(λ):
x(i) $← {0, 1}n(λ)

y
(i)
1−σ ← PCF.Eval(1− σ, k1−σ, x

(i))

b← A(1λ, σ, kσ, (x
(i), y

(i)
1−σ)i∈[N(λ)])

return b

ExpsecA,N,σ,1(λ) :

(k0, k1)← PCF.Gen(1λ)
for i = 1 to N(λ):
x(i) $← {0, 1}n(λ)

y
(i)
σ ← PCF.Eval(σ, kσ, x

(i))

y
(i)
1−σ ← RSample(1λ, σ, y

(i)
σ )

b← A(1λ, σ, kσ, (x
(i), y

(i)
1−σ)i∈[N(λ)])

return b

Figure 2: Security of a PCF. Here, RSample is the algorithm for reverse sampling Y as in Definition 4.1.

• Pseudorandom Y-correlated outputs. For every σ ∈ {0, 1} and non-uniform adversary
A of size B(λ), it holds∣∣∣Pr[ExpprA,N,0(λ) = 1]− Pr[ExpprA,N,1(λ) = 1]

∣∣∣ ≤ ε(λ)

for all sufficiently large λ, where ExpprA,N,b(λ) for b ∈ {0, 1} is as defined in Figure 1. In
particular, the adversary is given access to N(λ) samples.

• Security. For each σ ∈ {0, 1} and non-uniform adversary A of size B(λ), it holds∣∣Pr[ExpsecA,N,σ,0(λ) = 1]− Pr[ExpsecA,N,σ,1(λ) = 1]
∣∣ ≤ ε(λ)

for all sufficiently large λ, where ExpsecA,N,σ,b(λ) for b ∈ {0, 1} is as defined in Figure 2
(again, with N(λ) samples).

We say that (PCF.Gen,PCF.Eval) is a PCF for Y if it is a (p, 1/p, p)-secure PCF for Y for every
polynomial p. If B = N , we will write (B, ε)-secure PCF for short.

Roughly speaking, the above security notion of PCF extends the corresponding security
notion for PCGs (see Definitions A.1, A.3 in Appendix A) as follows: (PCF.Gen,PCF.Eval) is
a PCF for Y, if for every polynomial N = N(λ), and random ensemble of sets X = (Xλ)λ∈N,
where Xλ = (x1, . . . , xN(λ)) ⊆ {0, 1}n(λ), the pair of algorithms PCG = (PCG.Gen,PCG.Expand)
defined as

• PCG.Gen(1λ) samples (k0, k1)← PCF.Gen(1λ).

• PCG.Expand(σ, kσ) computes y(i)
σ ← PCF.Eval(σ, kσ, x

(i)) for all i ∈ [N(λ)] and returns
(y

(i)
σ )i∈[N(λ)].

is a PCG for Y with overwhelming probability over the choice of X .8 .

We turn to define the strong notion of PCF, where pseudorandomness of outputs and security
holds for adversarially chosen queries.

Definition 4.4 (Strong pseudorandom correlation function (sPCF)) Let Y and (PCF.Gen,
PCF.Eval) be as in Definition 4.3. We say that (PCF.Gen,PCF.Eval) is an strong (N,B, ε)-secure
PCF (sPCF) for Y if the following conditions hold:

8More precisely, PCG is a PCG for the correlation generator YN , where YN on input 1λ returns N independent
samples from Y.

21



Exps-prA (λ) :

(k0, k1)
$← PCF.Gen(1λ)

Q = ∅
b

$← {0, 1}
b? ← AOb(·)(1λ)
if b = b? return 1
else return 0

O0(x) :
if (x, y0, y1) ∈ Q:
return (y0, y1)

else:
(y0, y1)← Y(1λ)

Q = Q∪ {(x, y0, y1)}
return (y0, y1)

O1(x) :
for σ ∈ {0, 1}:
yσ ← PCF.Eval(1λ, σ, kσ, x)

return (y0, y1)

Figure 3: Strong pseudorandom Y-correlated outputs of a PCF.

Exps-secA,σ (λ) :

(k0, k1)
$← PCF.Gen(1λ)

b
$← {0, 1}

b? ← AOb(·)(1λ, σ, kσ)
if b = b? return 1
else return 0

O0(x) :

y1−σ ← PCF.Eval(1− σ, k1−σ, x)
return y1−σ

O1(x) :

yσ ← PCF.Eval(σ, kσ, x)
y1−σ ← RSample(1λ, σ, yσ)
return y1−σ

Figure 4: Strong security of a PCF. Here, RSample is the algorithm for reverse sampling Y according to Definition
4.1.

• Strong pseudorandom Y-correlated outputs. For every non-uniform adversary A of
size B(λ) asking at most N(λ) queries to the oracle Ob(·), it holds∣∣∣∣Pr[Exps-prA (λ) = 1]− 1

2

∣∣∣∣ ≤ ε(λ)

for all sufficiently large λ, where Exps-prA (λ) is as defined in Figure 3.

• Strong security. For all σ ∈ {0, 1} and non-uniform adversaries A of size B(λ) asking
at most N(λ) queries to the oracle Ob(·), it holds∣∣∣∣Pr[Exps-secA,σ (λ) = 1]− 1

2

∣∣∣∣ ≤ ε(λ)

for all sufficiently large λ, where Exps-secA,σ (λ) for b ∈ {0, 1} is as defined in Figure 4.

4.1 From Weak to Strong PCFs

Assuming access to a random oracle we can transform a weak PCF into a strong PCF as described
in the following.

Theorem 4.5 Let PCF = (PCF.Gen,PCF,Eval) be an (N,B, ε)-secure PCF for correlation Y
with input length n(λ), and let H : {0, 1}n′(λ) → {0, 1}n(λ) be a hash function modeled as a
programmable random oracle. Then PCF′ = (PCF.Gen′,PCF,Eval′) as defined in Figure 5 is a
strong (N,B′, ε)-secure PCF for correlation Y with input length n′(λ) for any B′(λ) ≤ N(λ).

Proof. LetA be an (N,B′, ε)-adversary on the strong pseudorandomness of outputs of PCF′. We
construct an adversary B on the pseudorandomness of outputs of PCF as follows: The adversary
B obtains (x(i), y

(i)
0 , y

(i)
1 )i∈[N(λ)] via its experiment. Without loss of generality we assume that A

always queries the random oracle before asking a query to the experiment oracles. On the i-th
query of A to H, B replies x(i). Note that the number of oracle queries of B is upper bounded
by its size B′(λ) ≤ N(λ). On an oracle query x, B returns (y

(i)
0 , y

(i)
1 ), where i is such that

x(i) = x. Finally, B forwards the output of A to its own experiment. Then, the probability of

22



Transformation from weak to strong PCF

• PCF.Gen′(1λ): On input 1λ, return (k0, k1)← PCF.Gen(1λ).

• PCF.Eval′(σ, kσ, x): On input σ ∈ {0, 1}, key kσ and input value x ∈ {0, 1}n′(λ), return
yσ ← PCF.Eval(σ, kσ,H(x)).

Figure 5: From weak to strong PCF.

success probability of B in distinguishing the experiments for b = 0 and b = 1 corresponds to
the advantage of A. Further, the size of B is upper bounded by B′(λ) ≤ N(λ) and thus upper
bounded by B(λ) (ignoring constant factors).

We omit the of security of PCF′ as it is almost analogous to the above.
�

5 PCFs from Function Secret Sharing for a Weak PRF

In this section, we construct PCFs for various classes of correlations based on function secret
sharing. Our constructions can be seen as generalizations and extensions of PCG constructions
from previous works [BCGI18,BCG+19b]. These works are based on function secret sharing and
the learning parity with noise assumption, whereas here we assume FSS for a class of functions
defined by a weak pseudorandom function (WPRF). This gives a generic way to build a PCF,
given any suitable function secret sharing scheme for a WPRF.

Function Secret Sharing. A (two-party) function secret sharing scheme [BGI15, BGI16b],
or FSS for short, allows splitting a function f : {0, 1}n → G, where G is an Abelian group, into
two functions f0, f1 that add up to f but individually hide f . Each share fσ of f is described
by a succinct key that enables its efficient evaluation on an input x ∈ {0, 1}n. We assume that
f comes from a public function family F , which is an infinite collection of function descriptions
together with an efficient evaluation algorithm. We abuse notation and write f ∈ F to refer to
both the function and its description.

Definition 5.1 (Function Secret Sharing) A function secret sharing (FSS) scheme for func-
tion family F = {f : {0, 1}n → G}, where (G,+) is a an Abelian group, is pair of PPT algorithms
FSS = (FSS.Gen,FSS.Eval) with the following syntax:

• FSS.Gen(1λ, f), given security parameter λ and description of a function f ∈ F , where
f : {0, 1}n → G, outputs a pair of keys (K0,K1); we assume that λ, n,G are determined
by each key.

• FSS.Eval(σ,Kσ, x), given a key Kσ for party σ ∈ {0, 1}, and an input x ∈ {0, 1}n, outputs
a group element yσ ∈ G.

The scheme should satisfy the following requirements:

• Correctness: For any f ∈ F with input domain {0, 1}n and x ∈ {0, 1}n, we have

Pr

[ ∑
σ∈{0,1}

FSS.Eval(σ,Kσ, x) = f(x)
∣∣ (K0,K1)← FSS.Gen(1λ, f)

]
= 1

• Security: For any σ ∈ {0, 1}, there exists a PPT simulator Sim such that for any sequence
fλ ∈ F of polynomial-size function descriptions, the distributions

{(σ, fλ,Kσ)
∣∣ (K0,K1)← FSS.Gen(1λ, fλ)} and {(σ, fλ,Kσ)

∣∣ Kσ ← Sim(1λ, Leakσ(fλ))}

are computationally indistinguishable.

23



The default choice for the leakage functions is Leakσ(f) = (n,G), namely we allow leaking the
input and output domains of f .

Note that previous FSS definitions only consider a single leakage function Leak that applies
to both parties. Here we will use asymmetric leakage, with distinct functions Leak0, Leak1,
to capture constructions based on puncturable PRFs. When the leakage functions Leakσ are
efficiently invertible, which will always be the case in this work, one could replace the above
simulation-based security definition by requiring indistinguishability of any pair of functions
that have the same leakage.

Some of our constructions also require the following property, that outputs of the Eval algo-
rithm on random inputs are pseudorandom. In other words, this means that FSS.Eval is a weak
pseudorandom function for a suitable distribution of keys.

Definition 5.2 (FSS with Weak Pseudorandom Outputs) We say that an FSS scheme
(FSS.Gen, FSS.Eval) for F has weak pseudorandom outputs if for any σ ∈ {0, 1}, N = poly(λ),
and any sequence of polynomial-size function descriptions fλ ∈ F , with domain {0, 1}n and
range G = G(λ), for n = n(λ) = poly(λ) and log |G(λ)| = poly(λ), the distribution

{
(x(i), y(i))Ni=1

∣∣ (K0,K1)← FSS.Gen(1λ, fλ), x(i) ← {0, 1}n, y(i) ← FSS.Eval(σ,Kσ, x
(i))
}
λ∈N

is computationally indistinguishable from the uniform distribution on ({0, 1}n ×G)N .

Boyle et al. [BGI15] showed that FSS schemes for certain classes of ‘poly-spanning’ function
families have pseudorandom outputs. This does not cover the classes of functions we are inter-
ested in. However, any FSS scheme can be easily modified to have weak pseudorandom outputs
using a weak PRF {Fk : {0, 1}n → G}k, by having each party add or subtract Fk(x) when
running FSS.Eval on input x. Note that our concrete instantiations described in Section 6.4
already have weak pseudorandom outputs, without this modification.

5.1 PCF for Vector Oblivious Linear Evaluation

Vector oblivious linear evaluation, or VOLE, is a correlation over a ring R where each pair of
samples can be seen as an additive secret sharing of one component in a scalar-vector prod-
uct. Concretely, define the ideal VOLE correlation over R by the pair of randomized algo-
rithms (Setup,Y), where Setup samples a uniformly random a ∈ R, and Y(1λ, a) outputs a pair
(a, c0), (b, c1), where b, c0 are uniform in R, and c1 = c0 + a · b. The VOLE correlation can
be used in secure two-party computation tasks such as secure linear algebra, private keyword
search, and computationally efficient zero-knowledge proofs [ADI+17,BCGI18,WYKW20].

In Fig. 6, we give a simple construction of a PCF for VOLE, from any function secret sharing
scheme for scalar multiples of a WPRF family. We remark that for our concrete instantiations
given later, FSS for this function family can be obtained with a small tweak to the basic con-
struction of FSS for the WPRF. In the construction, one party is given the WPRF key, while
the other party gets the secret scalar a ∈ R, and each party additionally gets an FSS share of a
multiplied by the WPRF. This allows an output to be computed with one call to FSS.Eval from
each party.

Theorem 5.3 Let R = R(λ) be a finite commutative ring. Suppose there exists an FSS
scheme for scalar multiples of a family of weak pseudorandom functions F = {FK : {0, 1}n →
R}K∈{0,1}λ . Then, there is a PCF for the VOLE correlation over R, given by the construction
in Fig. 6.

24



Proof. First, note that since we assume the existence of a WPRF, we can assume w.l.o.g. that
the scheme FSS = (FSS.Gen,FSS.Eval) satisfies the weak pseudorandom outputs property. We
prove the PCF security property for the two separate cases in Definition B.2, and then show
that the PCF has pseudorandom correlated outputs.

Security with σ = 0. In the real experiment, ExpsecA,σ,0(λ), the adversary A is run on input
the PCF key k0 = (K fss

0 , a), and the N random input/output pairs (x(i), (bi, c1,i)), where x(i) is
uniformly random, bi = FK(x(i)) and c1,i = FSS.Eval(1,K fss

1 , x). We show that this is indistin-
guishable from the ideal experiment, where (bi, c1,i) are instead reverse-sampled using (a, c0,i)
derived from key k0. We use the following sequence of hybrid experiments.

In the first hybrid, instead of computing c1,i from FSS.Eval using key K fss
1 , we compute

c1,i = c0,i + abi in R. Note that by the correctness property of the FSS scheme, this hybrid is
statistically close to the real experiment.

Next, we switch the FSS key K fss
0 with a simulated key K̃ fss

0 ← Sim(1λ, n,R) using the FSS
simulator Sim. The values c0,i are then obtained from the new key, and c1,i computed from this
as before. Due to the security property of the FSS, and the fact that c1,i is independent of K fss

1 ,
this is computationally indistinguishable from the previous experiment.

In the final hybrid, we replace the bi values with uniformly random elements from R, and
again compute c1,i = c0,i + abi but using the new bi. This is identical to the ideal experiment,
and indistinguishability holds by a standard reduction to the security of the WPRF.

Security with σ = 1. Security in this case follows immediately from the correctness property
of the FSS scheme. We have that in the real experiment, A gets a PCF key k1 = (K fss

1 ,K), and
the N random input/output pairs (x(i), (a, c0,i)), computed using a random x(i) and (a, c0,i) =
PCF.Eval(0, k0, x

(i)). The only difference between this and the ideal experiment is the way c0,i

is computed, and FSS correctness implies that these are statistically close.

Pseudorandom correlated outputs. We now show that the joint distribution of the N
output pairs (a, c0,i), (bi, c1,i), on random inputs x(i), is indistinguishable from a set of samples
from the VOLE correlation. Starting from the real distribution, we use the following sequence
of experiments, which is similar to the hybrids in the security argument when σ = 0; the only
difference here is that we need to rely on the weak pseudorandom outputs property of the FSS,
instead of its security property.

We first replace ci,1 with ci,0 + abi, where we get statistical indistinguishability because of
the FSS correctness property. Next, we replace each c0,i with a random element of R; here, we
appeal to the weak pseudorandom outputs property of the FSS scheme, which implies this is
computational indistinguishable from the previous experiment. Finally, we can replace bi with
random elements of R, due to the security of the WPRF. �

5.2 PCF for Oblivious Transfer

A 1-out-of-2 string-OT correlation is sampled as a pair (s0, s1) and (c, sc), where s0, s1 are the
OT sender’s random strings in {0, 1}λ, and c is a random choice bit given to the receiver. We
construct a PCF for independent instances of string-OT using FSS for a WPRF, together with
a correlation-robust hash function [IKNP03]. Note that the security of our WPRF candidates
implies a correlation-robust hash function, so instantiating with these candidates does not require
the extra assumption.

Definition 5.4 (Correlation robust hash function) Let N = poly(λ). We say that an effi-
ciently computable function H : {0, 1}λ → {0, 1}λ is correlation robust if the distribution

25



PCF for Vector Oblivious Linear Evaluation

Let F = {FK : {0, 1}n → R}K∈{0,1}λ be a weak PRF, and FSS = (FSS.Gen,FSS.Eval)
an FSS scheme for {cFK}c∈R,K∈{0,1}λ with weak pseudorandom outputs.

PCF.Gen(1λ):

1. Sample a WPRF key K ← {0, 1}λ and a← R

2. Sample a pair of FSS keys (K fss
0 ,K fss

1 )← FSS.Gen(1λ, aFk)

3. Output the keys k0 = (K fss
0 , a) and k1 = (K fss

1 ,K).

PCF.Eval(σ, kσ, x): On input a random x:

• If σ = 0:

1. Let c0 = −FSS.Eval(0,K fss
0 , x)

2. Output (a, c0)

• If σ = 1:

1. Let c1 = FSS.Eval(1,K fss
1 , x)

2. Let b = FK(x)

3. Output (b, c1)

Figure 6: PCF for VOLE over the ring R based on FSS for scalar multiples of a weak PRF

{t1, . . . , tN ,H(t1 ⊕ s), . . . ,H(tN ⊕ s)}

where s and t1, . . . , tN are independent and uniformly sampled from {0, 1}λ, is computationally
indistinguishable from the uniform distribution on {0, 1}2λN .

Our construction, in Fig. 7, proceeds by first creating correlated OTs, which are OTs where
the sender’s messages are all of the form qi, qi⊕s for a single, random s. Then, as in [IKNP03] and
later works, the strings are hashed using the public, correlation robust function, which converts
them into OTs on random strings. Note that to rely on correlation robustness instead of a
stronger notion, we require that each qi is uniform; since this is not the case in our construction,
we mask it with a portion of the random, PCF input.

To construct correlated OTs, the setup phase will first sample a key K for a WPRF with
range {0, 1}, and random bits s1, . . . , sλ. We then create FSS keys for λ functions, each of which
is either the WPRF FK or the zero function, depending on the bit sj . Evaluating all λ FSS keys
on a public input x(i), the sender and receiver obtain respective strings qi and ti in {0, 1}λ such
that

qi ⊕ ti = s · FK(x(i))

where s = (s1, . . . , sλ), and · computes the AND of every bit in s with Fk(x(i)).
As well as the FSS keys, we then give out the key K to the receiver and s to the sender.

The receiver’s values ti satisfy ti = qi ⊕ ci · s, where ci = FK(x(i)) is its choice bit, which means
the values (qi, qi ⊕ s) known to the sender form a correlated OT as required.

The above outline assumes we have FSS for a WPRF family together with the zero function.
However, it suffices to have FSS for the WPRF, since any FSS scheme for a family F with
outputs in F2 implies FSS for the class F ∪ {0}, which includes the zero function [BGI15]. This
holds because without loss of generality, we can assume that the FSS.Eval function is symmetric

26



PCF for Oblivious Transfer

Let F = {FK : {0, 1}n → {0, 1}}K∈{0,1}λ be a WPRF, and FSS = (FSS.Gen,FSS.Eval)
an FSS scheme for F ∪ {0}.

PCF.Gen(1λ):

1. Sample a WPRF key K ← {0, 1}λ and a random s← {0, 1}λ

2. For j = 1, . . . , λ, sample (K fss
0,j ,K

fss
1,j)← FSS.Gen(1λ, sjFK)

3. Output the keys k0 = (s,Kfss
0,1, . . . ,K

fss
0,λ) and k1 = (K,K fss

1,1, . . . ,K
fss
1,λ).

PCF.Eval(1λ, σ, kσ, x): On input a random x ∈ {0, 1}n, let x′ be the first λ bits of x
and then:

• If σ = 0:

1. Compute q = (q1, . . . , qλ), where qj = FSS.Eval(0,K fss
0,j , x)

2. Compute y0 = H(x′ ⊕ q), y1 = H(x′ ⊕ q ⊕ s)
3. Output (y0, y1)

• If σ = 1:

1. Compute c = FK(x)

2. Compute t = (t1, . . . , tλ), where tj = FSS.Eval(1,K fss
1,j , x)

3. Output (c, z), where z = H(x′ ⊕ t)

Figure 7: PCF for 1-out-of-2 oblivious transfer based on FSS for a weak PRF

for both keys, and also that each key hides whether it is the key for party 0 or party 1. The
zero function is then shared by sampling a pair (K fss

0 ,K fss
1 ) and giving K fss

0 to both parties.

Theorem 5.5 Suppose there exists an FSS scheme for a family of weak pseudorandom functions
F = {Fk : {0, 1}n → {0, 1}}k∈{0,1}λ , and a correlation robust hash function H : {0, 1}λ →
{0, 1}λ. Then, there is a PCF for the string-OT correlation, given in Fig. 7.

Proof. We first prove the security property of the PCF, and then the pseudorandomness
property. As in Definition 4.3, we consider N = poly(λ) queries on random inputs x(1), . . . , x(N),
where we let (x′)(i) be the first λ bits of x(i).

Corrupt receiver (σ = 1). In the real experiment, ExpsecA,σ,0(λ), the adversary A is given
k1 = (K,Kfss

1,1, . . . ,K
fss
1,λ) and random input/output pairs (x(i), (yi,0, yi,1)). Here, K fss

1,j is an FSS
key for the function sjFK , where sj ∈ {0, 1}, and yi,0, yi,1 are the OT sender’s strings from
applying PCF.Eval on the key k0. Note that computing (yi,0, yi,1) involves first computing a
string qi using FSS.Eval on the keys (K fss

0,1, . . . ,K
fss
0,λ), and then hashing both qi and qi ⊕ s.

Consider a hybrid experiment where we replace the strings qi with qi = ti⊕s·FK(x(i)), where
ti comes from FSS.Eval on the keys (K fss

1,1, . . . ,K
fss
1,λ), and then give A strings yi,0, yi,1 computed

with the new qi. By the correctness of the FSS scheme, this experiment is statistically close to
the previous one.

In the next λ experiments, we successively replace each FSS key K fss
1,j given to A, for j =

1, . . . , λ, with a simulated key Sim(1λ, {0, 1}n+λ,F2), and recompute each ti, qi, yi,0, yi,1 with the
simulated keys. By the fact that the strings yi,0, yi,1 seen by A are now independent of the other

27



FSS keys K fss
0,j , from the security of the FSS scheme we have that this sequence of hybrids is

computationally indistinguishable from the previous one.
In the final experiment, we replace each of the values yi,1−ci with a uniformly random string.

Note that this is identical to the ideal experiment, ExpsecA,σ,1(λ). In the previous experiment, we
had yi,1−ci = H((x′)(i) ⊕ qi ⊕ (1 − ci)s) = H((x′)(i) ⊕ ti ⊕ s). Since (x′)(i), s are independently
uniform, and s is independent of ti and all other values given to A, these are computation-
ally indistinguishable from the random values in ExpsecA,σ,1(λ), by a reduction to the correlation
robustness of H.

Corrupt sender (σ = 0). In the real experiment, the adversaryA is given k0 = (s,Kfss
0,1, . . . ,K

fss
0,λ)

and random input/output pairs (x(i), (ci, zi)), where ci, zi are the OT receiver’s choice bit and
string computed from key k1, for i = 1, . . . , N .

We first define an experiment where zi is replaced with the yi,ci value obtained by running
Eval on key k0. This is statistically close to the first experiment, by the FSS correctness property.

Similarly to the case of a corrupt receiver, we then replace the FSS keysK fss
0,j , for j = 1, . . . , λ,

with simulated keys from the FSS simulator, then recompute (yi,0, yi,1) using the new keys and
let zi = yi,ci . This is indistinguishable from the first experiment, by the security of the FSS
scheme and a hybrid argument.

Finally, we replace c1, . . . , cN with uniformly random bits, and again define zi = yi,ci . This is
computationally indistinguishable to the previous experiment, due to the security of the weak-
PRF FK , since the key K is uniform and independent of all inputs to A, and the inputs x(i) are
uniform. This concludes the proof of the security property.

Pseudorandom correlated outputs. Here, we show that the joint distribution of the PCF
outputs (yi,0, yi,1), (ci, zi) is indistinguishable from a set of independent samples from the OT
correlation. First, again by correctness of FSS, we can replace zi with the value yi,ci that comes
from the sender’s key k0. Then, we can replace the FSS outputs qi, which are used to compute
yi,0 and yi,1, with uniform strings, because of the weak pseudorandomness property of FSS.
Then, as previously, we can replace the FSS keys K fss

0,j with simulated keys, and use these to
compute qi and the outputs (yi,0, yi,1), because of the security property of FSS. Now, since qi
are all independent of s, we use the correlation robustness property of H to replace yi,0, yi,1
with uniformly random strings. Finally, the choice bits c1, . . . , cN are now computationally
indistinguishable from uniform by the security of the weak-PRF, which completes the proof. �

Remark 5.6 The PCF for OT can be optimized if we are instead given FSS for scalar multiples
of the WPRF over F2λ , namely, the class of functions F ′K,s(x) = s · FK(x), for all s ∈ F2λ.
Then, we only need a single pair of FSS keys for this function family, instead of λ sets of keys.
This optimization is used in our concrete instantiation of the PCF for OT, in Section 6.4.

5.3 PCF for Multiplication Triples

A multiplication triple correlation over some ring R is sampled as a pair (a0, b0, c0), (a1, b1, c1),
where a0, b0, a1, b1 are independent and uniform over R, while c0, c1 are uniformly random such
that c0 + c1 = (a0 + a1)(b0 + b1).

We can obtain a PCF for multiplication triples, given both FSS for a WPRF family F and its
square, namely the function family F2 = {f1f2 : f1, f2 ∈ F}. The construction simply samples
two keys k1, k2 ← {0, 1}λ, and gives out FSS keys for the functions Fk1 , Fk2 and Fk1Fk2 . To
evaluate the PCF, the three FSS keys are evaluated in turn to produce additive secret shares of
a, b and c = ab respectively. Similarly to the VOLE correlation in Section 5.1, security of this
construction can be proven based on the security of the WPRF, and the weak pseudorandom
outputs property of the FSS scheme.

28



We remark that in this case, our specific WPRF candidate allows going much further than
the general construction for multiplication triples. In the coming section, we present a PCF for
arbitrary degree-2 correlations based on our WPRF, which comes at the same cost as FSS for
the square of the WPRF family.

6 A Candidate FSS-Friendly WPRF

In this section, we describe candidate weak pseudorandom functions to instantiate the framework
developed in Section 5. As outlined in the introduction, our candidates rely on variable-density
variants of the LPN assumption, which we introduce below.

6.1 Variable-Density Learning Parity with Noise

We first formally introduce the VDLPN assumption. Fix a security parameter λ. VDLPN has
three parameters: a sparsity parameter w = w(λ), which corresponds to the number of nonzero
coordinates in each secret error vector ~ei and each row of the public matrix Hi; a block parameter
D = D(λ), which corresponds to the number of blocks Hi, and a number of samples N = N(λ),
which we set to 2D. For the sake of concreteness, think of w,D as being linear in λ. Given
parameters par = (w,D,N), the assumption can come in three flavors:

• the standard VDLPN assumption (denoted simply VDLPN(par)), in which each ~si and each
row of Hi, of length w · 2i, is sampled independently from Berw·2

i

1/2i ;

• the exact VDLPN assumption (denoted xVDLPN(par)), in which each ~si and each row of
Hi are sampled uniformly from the set of all length-w · 2i vectors with exactly w nonzero
entries;

• the regular VDLPN assumption (denoted rVDLPN(par)), in which each ~si and each row of
Hi are sampled by contatenating w random length-2i unit vectors (i.e., they are divided
into w equal length block with a single random 1 in each block).

The above distinction is analogous to the standard variants of the LPN assumption, which
also comes with an exact variant (see e.g. [Pie12]) and a regular variant (see e.g. [AFS03]). These
are widely believed to be no less secure than the standard LPN assumption (this can actually
be formally proven for the search variant of exact LPN [Pie12]). The main difference is that in
our setting, the exact and regular variant refer not only to the structure of the noise vector, but
also to the structure of the code parity-check matrix, since we always assume that the rows of H
follow the same distribution as the noise vector. In the following, we will focus mainly on the
regular VDLPN assumption by default. This is motivated by the fact that it leads to a simpler
and more efficient WPRF candidate than its standard and exact counterparts.

Distributions. Fix parameters par = (w,D,N = 2D). Let Rw,i be the distribution of random
w-regular vectors over Fw·2i2 (that is, a sample from Rw,i is obtained by concatenating w inde-
pendent samples from S1,2i). We let Hipar denote the distribution over N × (w · 2i) matrices over
F2 where each row is sampled independently from Rw,i, and Hpar denote the distribution over
FN×2N

2 obtained by sampling Hi
$← Hipar for i = 1 to D and outputting H = H1|| · · · ||HD. Even-

tually, we denote by Npar the noise distribution obtained by sampling ~eᵀi
$← Rw,i and outputting

~e← (~e1// · · · //~eD) ∈ F2N
2 .

Definition 6.1 (rVDLPN(w,D,N)) The regular variable-density learning parity with noise as-
sumption with sparsity w, D blocks, and number of samples N , denoted rVDLPN(w,D,N), states
that

{(H,~b) | H $← Hpar, ~e
$← Npar,~b← H · ~e} ≈ {(H,~b) | H $← Hpar,~b

$← FN2 }.

29



For any H in the support of Hpar, we denote by Opar(H) the output distribution, i.e., the
distribution over FN2 induced by sampling ~e $← Npar and outputting H · ~e.

6.2 A Candidate WPRF in Depth-2 AC0[⊕] from rVDLPN

The above rVDLPN assumption immediately implies a weak PRF candidate. Fix parameters
par(λ) = (w(λ), D(λ), N(λ) = 2D(λ)). To simplify the description of the WPRF family, it is
helpful to make explicit the exact number of random bits used to sample from the distribution
Npar. Recall that a sample from Npar is a (vertical) concatenation of D vectors ~ei, where each
vector ~ei is a (transposed) sample from Rw,i. In turn, a sample from Rw,i is a concatenation of
w random unit vectors over F2i

2 , where each can be sampled using i random bits (indicating the
position, between 1 and 2i, of the nonzero entry of the vector). Therefore, sampling from Npar

requires exactly w ·
∑D

i=1 i = w ·D(D− 1)/2 random bits. Given r ∈ {0, 1}w·D(D−1)/2, we write
Npar(r) to denote the value sampled from Npar using the bistring r as the source of random bits.
The construction of the weak PRF family is described below.

• Key size: K ∈ {0, 1}κ(λ) with κ(λ) = n(λ) = w(λ) ·D(λ)(D(λ)− 1)/2.

• Input size: x ∈ {0, 1}n(λ) with n(λ) = w(λ) ·D(λ)(D(λ)− 1)/2.

• FK(x) : on input x ∈ {0, 1}n, sample ~hᵀ ← Npar(x) and output 〈~h,Npar(K)〉.

Theorem 6.2 Assume that rVDLPN(par) holds. Then the above construction is an N -query
weak pseudorandom function family, with input length and key length n = κ = w ·D(D − 1)/2.
Furthermore, for any fixed choice of key K, the function FK can be implemented with a depth-2
AC0[⊕] circuit with a layer of AND gates at the bottom, and a single XOR gate at the top.

Proof. By construction, K is distributed as the noise vector in rVDLPN, and the distribution
of ~h is exactly the same as the distribution each rows of H is sampled from in Hpar. Hence,
distinguishing (FK(~h1), · · · , FK(~hN )) given random (~h1, · · · ,~hN ) and for a random key K is
perfectly equivalent to distinguishing H ·~e from random given H, where H (whose rows are the
~hi) is sampled from Hpar and K = ~e is sampled from Npar. It remains to show that FK can
be implemented with a depth-2 AC0[⊕] circuit with a layer of AND gate at the bottom, and a
single XOR gate at the top. By construction we have

FK(x) = 〈Npar(x),Npar(K)〉.

Let us decompose x as (xi,j)i≤D,j≤w and K as (Ki,j)i≤D,j≤w, with |xi,j | = |Ki,j | = i. The string
xi,j (resp. Ki,j) correspond to the portion of x (resp. of K) which is used to sample the j’th
unit vector from Rw,i when computing Npar(x) (resp. Npar(K)). That is,

Npar(x) = Rw,1((x1,j)j≤w)ᵀ// · · · //Rw,D((xD,j)j≤w)ᵀ

= (S1,2(x1,1)|| · · · ||S1,2(x1,w))ᵀ// · · · //(S1,2D(xD,1)|| · · · ||S1,2D(xD,w))ᵀ,

Npar(K) = Rw,1((K1,j)j≤w)ᵀ// · · · //Rw,D((KD,j)j≤w)ᵀ

= (S1,2(K1,1)|| · · · ||S1,2(K1,w))ᵀ// · · · //(S1,2D(KD,1)|| · · · ||S1,2D(KD,w))ᵀ.

Therefore,

FK(x) = 〈Npar(x),Npar(K)〉

=

D⊕
i=1

w⊕
j=1

〈S1,2i(xi,j),S1,2i(Ki,j)〉.

30



Now, by definition of S1,2i , the inner product 〈S1,2i(xi,j),S1,2i(Ki,j)〉 is equal to 1 if and only if
xi,j = Ki,j , if and only iff xi,j,k ⊕Ki,j,k = 0 for k = 1 to i. Hence:

FK(x) =

D⊕
i=1

w⊕
j=1

i∧
k=1

(xi,j,k ⊕Ki,j,k ⊕ 1).

Therefore, for any fixed choice of key K, the function FK computes a fan-in-D · w XOR of
fan-in-i ANDs of terms, where each term is either an input bit or its complement. �

Note that the above characterization gives an alternative description of our candidate WPRF
as a function computed by a simple boolean circuit. Omitting the “⊕1” terms in the formula
above does not change the function family (since it simply amounts to flipping all the bits of the
PRF key, which does not change its distribution), hence an equivalent formulation of our weak
PRF candidate is given by

FK(x) = F (K ⊕ x)

where the function F is defined as

F (x) =

D⊕
i=1

w⊕
j=1

i∧
k=1

xi,j,k.

We conjecture that this candidate, which is based on the rVDLPN assumption, achieves
exponential security. More precisely, we put forth the following conjecture:

Conjecture 6.3 (Subexponential Security) There exists constants (C1, C2) such that for
every large enough security parameter λ, every distinguisher that runs in time T (λ) has advantage
at most O(T/2λ) against the rVDLPN(C1 · λ,C2 · λ, 2C2·λ) assumption.

In Section 7, we will provide support to this conjecture, by analyzing the security of the
rVDLPN assumption against a wide variety of distinguishers (including linear and low-degree
polynomial distinguisher, algebraic distinguishers, statistical query algorithms, AC0 circuits,
and linear cryptanalysis attacks).

6.3 Generalization to Arbitrary Rings

Our WPRF candidate can be naturally generalized to work over an arbitrary ring R, by using
the same sparse distributions where the ones are replaced by random nonzero ring elements:
given parameters par = (w,D,N = 2D), we let Rw,i(R) be the distribution of random w-regular
vectors over Rw·2i , Hipar(R) denote the distribution over n× (w · 2i) matrices over R where each
row is sampled independently from Rw,i(R), and Hpar(R) denote the distribution over RN×2N

obtained by sampling Hi
$← Hipar(R) for i = 1 to D and outputting H = H1|| · · · ||HD. Finally,

we denote by Npar(R) the noise distribution obtained by sampling ~eᵀi
$← Rw,i(R) and outputting

~e← (~e1// · · · //~eD) ∈ R2N .

Definition 6.4 (R-rVDLPN(w,D,N)) The regular variable-density learning parity with noise
assumption over a ring R with sparsity w, D blocks, and number of samples N , denoted by
R-rVDLPN(w,D,N), states that

{(H,~b) | H $← Hpar(R), ~e
$← Npar(R),~b← H · ~e} ≈ {(H,~b) | H $← Hpar(R),~b

$← RN}.

This assumption leads to a candidate WPRF over R via the same construction. The candi-
date can be written as follows: it receives as input a w ·D(D − 1)/2-bit string ~x together with
w ·D ring elements ~y, and a PRF key has the same form (a w ·D(D−1)/2-bit string K together
with w · D ring elements L). An element of {0, 1} is interpreted naturally as an element of R

31



in the formula below (0 is the neutral for addition and 1 the neutral for multiplication). The
generalized candidate is defined as

FK,L(~x, ~y) =

D∑
i=1

w∑
j=1

(yi,j · Li,j) ·
i∏

k=1

(xi,j,k ⊕Ki,j,k).

Part of our security analysis, most notably the proof of resistance against linear attacks and their
natural generalizations, extend to this arithmetic generalization of our candidate if we choose
w sufficiently large (in particular, w > D + log |R|). Plugging this generalized WPRF into the
VOLE construction of Figure 8 leads to a PCF for VOLE over an arbitrary ring R (see Section
6.4 for more details). We conjecture that this generalization is secure for an arbitrary choice of
the ring R, with parameters that only depend on log |R|.

6.4 FSS-Friendliness of our WPRF

Recall that as established in Section 5, we have to show that our weak PRF is FSS-friendly,
meaning that there exists a light-weight FSS scheme allowing to share the PRF keys between
the parties. In the following we will show that our PRF can indeed be viewed as a sum of point
functions, which build a function class that is very FSS-friendly, even admitting constructions
that only make black-box use of a pseudorandom generator, as elaborated in the following.

Point functions. Let G be an additive group, α ∈ {0, 1}n(λ) and β ∈ G. Let fα,β be the point
function where fα,β(x) is zero whenever x 6= α, and fα,β(x) = β if x = α. If G = ({0, 1},⊕), we
simply write fα to denote fα,1.

Distributed point functions. An FSS scheme for the class of point functions

{fα,β : {0, 1}n(λ) → G | α, β ∈ {0, 1}n(λ)}

is called a distributed point function (DPF) [GI14]. In the following, we will consider distributed
point functions with variable input space. More precisely, such a DPF consists of a tuple of
algorithms (DPF.Gen,DPF.Eval), where DPF.Gen additionally takes a parameter n = n(λ) spec-
ifying the input length. Given a PRG G : {0, 1}λ → {0, 1}2λ+2, we can construct a distributed
point function with the following complexities [BGI16b]: Let m(λ) = d log|G|

λ+2 e, then

• the size of each party’s key is at most n(λ) · (λ+ 2) + λ+ dlog |G|e bits,

• the key generation algorithm Gen invokes G at most 2(n(λ) +m(λ)) times,

• the evaluation algorithm Eval invokes G at most n(λ) +m(λ) times.

Note that the DPF of [BGI16b] has pseudorandom outputs; in fact, this holds generally for every
DPF [BGI15].

FSS-friendliness of our construction. Recall that our construction is of the form

FK,L(x, y) =

D∑
i=1

w∑
j=1

(yi,j · Li,j) ·
i∏

k=1

(xi,j,k ⊕Ki,j,k)

over general ring R. For the following for all i ∈ [w], j ∈ [D] let xi,j = xi,j,1 . . . xi,j,i ∈ {0, 1}i
(and for Ki,j accordingly). Then, for all i ∈ [w], j ∈ [D] we have

∏i
k=1(xi,j,k ⊕Ki,j,k) = 1 for

the single point xi,j ∈ {0, 1}i, for which xi,j = Ki,j . We can thus rewrite our candidate as

FK,L(x) =

D∑
i=1

w∑
j=1

yi,j · fKi,j ,Li,j (xi,j),

32



PCF for VOLE from regular VDLPN

Let DPF = (DPF.Gen,DPF.Eval) be an FSS scheme for point functions with variable
input length. Recall that fK,L : {0, 1}i → R is the point function with fK,L(x) = L if
and only if x = K.

PCF.Gen(1λ): On input 1λ:

1. Sample a← R.

2. For all j ∈ [w] and i ∈ [D]:

• Sample a key Ki,j ← {0, 1}i.
• Sample payloads Li,j ← R.
• Sample a pair of FSS keys (K fss

0,i,j ,K
fss
1,i,j)← DPF.Gen(1λ, i, a ·fKi,j ,Li,j ).

3. Set K := {Ki,j}j∈[w],i∈[D].

4. Output the keys k0 = ({K fss
0,i,j}j∈[w],i∈[D], a) and k1 = ({K fss

1,i,j}j∈[w],i∈[D],K).

PCF.Eval(σ, kσ, (x, y)): On input a random x ∈ {0, 1}w·D(D+1)/2, y ∈ Rw·B:
Parse x as xi,j ∈ {0, 1}i, for j ∈ [w], i ∈ [D], and y as yi,j ∈ F, for j ∈ [w], i ∈ [D].

• If σ = 0:

1. For all j ∈ [w] and i ∈ [D]: Let c0,i,j ← DPF.Eval(0,K fss
0,i,j , xi,j).

2. Compute c0 =
∑D

i=1

∑w
j=1 yi,j · c0,i,j .

3. Output (a, c0).

• If σ = 1:

1. For all j ∈ [w] and i ∈ [D]: Let c1,i,j ← DPF.Eval(1,K fss
1,i,j , xi,j).

2. Compute c1 =
∑D

i=1

∑w
j=1 yi,j · c1,i,j .

3. Let b = FK(x).
4. Output (b, c1).

Figure 8: PCF for vector oblivious linear evaluation over a ring R based on our weak PRF FK from rVDLPN
over R and distributed point function DPF.

where fKi,j ,Li,j is the point function with fKi,j ,Li,j (xi,j) = Li,j if and only if Ki,j = xi,j . Now,
we can share FK,L(x) as the sum of w ·D distributed point functions, where fKi,j ,Li,j has input
space {0, 1}i. Let κ = w · D(D + 1)/2. Note that any scalar multiple of a point function is a
point function again, and thus DPFs are, in particular, an FSS for {a · FK,L}a∈R,K∈{0,1}κ,L∈R
and {FK,L}K∈{0,1}κ,L∈R∪{0}. Therefore, by the results of Section 5, they are sufficient to obtain
a PCF for VOLE, OT and as we show now, even a universal PCF for general constant-degree
correlations.

In the following, by negl(λ) we always refer to a negligible function, that is a function that
decreases faster than any inverse polynomial: negl(λ) ≤ 1/p(λ) for all polynomials p and all
large enough λ ∈ N.

Theorem 6.5 (PCF for VOLE from rVDLPN) If DPF = (DPF.Gen,DPF.Eval) is instan-
tiated with the distributed point function from [GI14], then, assuming rVDLPN(w,D, 2D) over
ring R, PCF = (PCF.Gen,PCF.Eval) as defined in Figure 8 is a (2D, negl(λ))-secure PCF for
VOLE over R with the following complexities:

33



PCF for OT from regular VDLPN

Let from DPF = (DPF.Gen,DPF.Eval) an FSS scheme for point functions with variable
input length. Recall that fK,s : {0, 1}i → {0, 1}λ is the point function with fK,s(x) = s
if and only if x = K.

PCF.Gen(1λ): On input 1λ:

1. Sample s← {0, 1}λ.
2. For all j ∈ [w] and i ∈ [D]:

• Sample a key Ki,j ← {0, 1}i.
• Sample a pair of FSS keys (K fss

0,i,j ,K
fss
1,i,j)← DPF.Gen(1λ, i, fKi,j ,s).

3. Set K := {Ki,j}j∈[w],i∈[D].

4. Output k0 = ({K fss
0,i,j}j∈[w],i∈[D], s) and k1 = ({K fss

1,i,j}j∈[w],i∈[D],K).

PCF.Eval(σ, kσ, x): On input a random x ∈ {0, 1}w·D(D+1)/2:
Let x′ be the first λ bits of x. Parse x as xi,j ∈ {0, 1}i, for j ∈ [w], i ∈ [D].

• If σ = 0:

1. For all j ∈ [w], i ∈ [D]: Let qi,j ← DPF.Eval(0,K fss
0,i,j , xi,j).

2. For all k ∈ [λ]: Compute q =
⊕D

i=1

⊕w
j=1 qi,j .

3. Compute y0 = H(x′ ⊕ q), y1 = H(x′ ⊕ q ⊕ s).
4. Output (y0, y1).

• If σ = 1:

1. Let c = FK(x).
2. For all j ∈ [w], i ∈ [D]: Let ti,j ← DPF.Eval(1,K fss

1,i,j , xi,j).

3. Compute t =
⊕D

i=1

⊕w
j=1 ti,j .

4. Compute z = H(x′ ⊕ t).
5. Output (c, z).

Figure 9: PCF for oblivious transfer based on our weak PRF FK from rVDLPN and distributed point function
DPF.

• Each party’s key is of size O(w ·D2 · λ+ w ·D · log |R|) bits,

• the cost of PCF.Gen and PCF.Eval is dominated by each O(w · D2 + w · D · log |R|/λ)
invocations of a pseudorandom generator.

Note that in the following, unlike the generic construction for OT from Section 5, we use
the optimization mentioned in Remark 5.6, where the DPFs have output in {0, 1}λ (but the
construction is still based on the regular VDLPN assumption over F2). For w(λ) ∈ O(λ) this
gives us the following:

Theorem 6.6 (PCF for OT from rVDLPN) If DPF = (DPF.Gen,DPF.Eval) is instanti-
ated with the distributed point function from [GI14] and H is a correlation-robust hash func-
tion, then, assuming that rVDLPN(O(λ), D, 2D) holds, PCF = (PCF.Gen,PCF.Eval) as defined
in Figure 9 is a (2D, negl(λ))-secure PCF for OT with the following complexities:

• Each party’s key is of size O(λ2 ·D2) bits,

34



• the cost of PCF.Gen and PCF.Eval is dominated by each O(λ ·D2) invocations of a pseu-
dorandom generator.

For our final construction, a PCF for general degree-2 correlations, first note that we have:

FK(x) · FK(y) =

D⊕
i,i′=1

w⊕
j,j′=1

fKi,j (xi,j) ∧ fKi′,j′ (yi′,j′),

where fKi,j (xi,j) ∧ fKi′,j′ (yi′,j′) if and only if Ki,j = xi,j and Ki′,j′ = yi′,j′ . We can thus rewrite
the above as

FK(x) · FK(y) =
D⊕

i,i′=1

w⊕
j,j′=1

fKi,j⊗Ki′,j′ (xi,j ⊗ yi′,j′).

Based on this observations, in Figure 10 we give a PCF for an arbitrary degree-2 correlation.
More precisely, after a one-time setup, this universal PCF allows the parties to compute an
arbitrary number degree-2 correlations of the form ((X0, Y0), (X1, Y1)), where X = X0 ⊕X1 ∈
{0, 1}m and Y0 + Y1 = p(X) for an arbitrary m-variate polynomial p. Note that the same
one-time setup can be used to evaluate many different polynomials. This construction can be
generalized to arbitrary degree-d correlation for arbitrary constant d, yielding the following:

Theorem 6.7 (Universal PCF for degree-d correlations from rVDLPN) If DPF is in-
stantiated with the distributed point function from [GI14] and assuming rVDLPN(w,D, 2D) holds,
then PCF = (PCF.Gen,PCF.Eval) as given in Fig. 10 is a universal (2D, negl(λ))-secure PCF for
degree-d correlations over F2 with the following complexities:

• Each party’s key is of size O(λd+1 ·D2d) bits,

• the cost of PCF.Gen is dominated by O(λd ·D2d) invocations of a pseudorandom generator,

• the cost of eval PCF.Eval of evaluating a degree-d polynomial m-variate polynomial consist-
ing of at most k terms is dominated by O((m+k) ·λd ·D2d) invocations of a pseudorandom
generator.

6.5 Application: XOR-RKA Secure PRGs and Weak PRFs

Our WPRF candidates give rise to simple PRG and WPRF constructions that are naturally
secure against related key attacks for XOR relations. Related key attacks [BK03] are a powerful
class of attack, where the adversary is given access to outputs of the cryptographic primitive
under several keys which are related, according to some relation known to the adversary. In the
model of XOR-RKA security, the adversary is given samples under a key K, as well as under
several related keys K⊕∆(1),K⊕∆(2), . . . , where ∆(i) are public offsets. This naturally models
bit flips that may occur in hardware due to, for instance, fault attacks.

Correlation robust hash function. Recall the notion of a correlation robust hash function
(Definition 5.4), a function H such that the distribution of H(K⊕∆(1)), . . . ,H(K⊕∆(N)), where
∆(i) are random strings, is computationally indistinguishable from the uniform distribution,
even when given the ∆(i)’s. Note that this can also be seen as a form of XOR-RKA secure
pseudorandom generator [AHI11].

As seen in Section 6.2, our WPRF candidate can be written as

FK(x) = F (K ⊕ x)

for some public function F . Assuming that FK is a secure WPRF for N samples, we immediately
get that F is a correlation robust function. As shown in [AHI11], this also implies the existence of

35



Universal PCF for degree-2 polynomials

Let DPF = (DPF.Gen,DPF.Eval) be an FSS scheme for point functions with variable
input length. Recall that fK : {0, 1}i → {0, 1} is the point function with fK(x) = 1
if and only if x = K. Note that the following gives a PCF for an arbitary m-variate
degree-2 polynomial p(X1, . . . , Xm) = c⊕

⊕m
α=1 `αXα⊕

⊕m
α,β=1 qα,βXαXβ (which does

not have to be fixed at the time of key generation).

PCF.Gen(1λ): On input 1λ:

1. For all j ∈ [w] and i ∈ [D]:

• Sample a key Ki,j ← {0, 1}i.
• Sample a pair of FSS keys (K fss

0,i,j ,K
fss
1,i,j)← DPF.Gen(1λ, i, fKi,j ).

2. For all j, j′ ∈ [w] and i, i′ ∈ [D]:

• Sample a pair of FSS keys (K fss
0,i,j,i′,j′ ,K

fss
1,i,j,i′,j′) ← DPF.Gen(1λ, i ·

j, fKi,j⊗Ki′,j′ ).

3. Set K1
σ := {K fss

σ,i,j}j∈[w],i∈[D] and K2
σ := {K fss

σ,i,j,i′,j′}j,j′∈[w],i,i′∈[D].

4. Output the keys k0 = (K1
0 ,K

2
0 ) and k1 = (K1

1 ,K
2
1 ).

PCF.Eval(σ, kσ, p, x1, . . . , xm): On input a random x1, . . . , xm ∈ {0, 1}w·D(D+1)/2:
Parse xα as xα,i,j ∈ {0, 1}i, for j ∈ [w], i ∈ [D] and each α ∈ [m].

• If σ = 0:

1. For all α ∈ [m]:
– For all j ∈ [w] and i ∈ [D]: Let Xα,0,i,j ← DPF.Eval(0,K fss

0,i,j , xα,i,j).

– Compute Xα,0 =
⊕D

i=1

⊕w
j=1Xα,0,i,j .

2. For all α, β ∈ [m] with qα,β 6= 0:
– For all j, j′ ∈ [w] and i, i′ ∈ [D]:

Let Xα,β,0,i,j,i′,j′ ← DPF.Eval(0,K fss
0,i,j,i′,j′ , xα,i,j ⊗ xβ,i′,j′)

– Compute Xα,β,0 =
⊕D

i,i′=1

⊕w
j,j′=1Xα,β,0,i,j,i′,j′ .

3. Compute Y0 =
∑m

α=1 `αXα,0 ⊕
∑m

α,β=1 qα,βXα,β,0.
4. Output ({Xα,0}α∈[m], Y0).

• If σ = 1:

1. For all α ∈ [m]:
– For all j ∈ [w] and i ∈ [D]: Let Xα,1,i,j ← DPF.Eval(1,Kfss

1,i,j , xα,i,j).

– Compute Xα,1 =
⊕D

i=1

⊕w
j=1Xα,1,i,j .

2. For all α, β ∈ [m] with qα,β 6= 0:
– For all j, j′ ∈ [w] and i, i′ ∈ [D]:

Let Xα,β,1,i,j,i′,j′ ← DPF.Eval(1,K fss
1,i,j,i′,j′ , xα,i,j ⊗ xβ,i′,j′)

– Compute Xα,β,1 =
⊕D

i,i′=1

⊕w
j,j′=1Xα,β,1,i,j,i′,j′ .

3. Compute Y1 =
∑m

α=1 `αXα,1 ⊕
∑m

α,β=1 qα,βXα,β,1.
4. Output ({Xα,1}α∈[m], Y1).

Figure 10: Universal PCF for degree-2 polynomials over F2 based on our weak PRF FK from rVDLPN and
distributed point function DPF.

36



Exprka-wprf
A (λ) :

K
$← {0, 1}λ

b
$← {0, 1}

b? ← AO
rka
K,b(·)(1λ)

if b = b?

return 1
else return 0

Orka
K,b(∆) :

x
$← {0, 1}n(λ)

if b = 0
y

$← {0, 1}λ
else
y ← FK⊕∆(x)

return (x, y)

Figure 11: XOR-RKA security experiment for a weak PRF

RKA-secure one-time symmetric encryption and RKA-secure deterministic encryption schemes
with optimal ciphertext sizes, for XOR relations. Previously, such constructions were only known
to exist for less natural, additive relations over Zp under a power-DDH assumption [AHI11]
or the learning with rounding assumption [AW14], or for XOR relations based on multilinear
maps [ABP19].

RKA-Secure WPRF. As well as giving an RKA-secure PRG, our construction is in fact
an XOR-RKA secure WPRF. We consider the definition of RKA-secure WPRF by Bellare et
al. [BCM11] given below, adapted to the XOR relation. This allows the adversary to choose an
arbitrary ∆ for each query, which is added to the fixed key K in the real experiment where the
adversary learns PRF evaluations.

Definition 6.8 Let {FK : {0, 1}n → {0, 1}λ}K∈{0,1}λ be a family of efficiently computable func-
tions. We say that F is an N -XOR-RKA-secure weak PRF if for every p.p.t. adversary A
making at most N(λ) queries to the oracle Orka

K,b(·), it holds that∣∣∣∣Pr[Exprka-wprf
A (λ) = 1]− 1

2

∣∣∣∣ ≤ negl(λ)

where Exprka-wprf
A (λ) is as defined in Figure 11.

Note that since each query samples a fresh random x, allowing the adversary to choose
an arbitrary ∆ induces exactly the same output distribution as with no offset. Therefore, we
immediately obtain the following.

Theorem 6.9 Suppose the rVDLPN(w,D,N) assumption holds for some w(λ), D(λ), N(λ).
Then, there is an XOR-RKA-secure weak PRF for N(λ) queries.

7 Security Analysis

In this section, we provide a thorough analysis of our candidate weak PRF family against various
classes of attacks.

7.1 Resistance Against Linear Tests – Theorem and Corollaries

Our first and main result shows that our candidate weak PRF fools all linear tests. Recall the
notations of bias from Definition 3.1 and Hpar,Opar from Section 6.1. More precisely, we prove:

Theorem 7.1 (Low-Bias) There exist constants (β, µ, ν) such that for any large enough w,
any D ≤ β · w, n← 2D, par← (w,D,N), it holds that

Pr
H

$←Hpar

[bias(Opar(H)) > µw] ≤ νw.

37



In the language of weak PRFs, the above theorem states that, with overwhelming probability
(at least 1 − νw) over the choice of at most N = 2D random inputs (x(1), · · · , x(N)), any
distinguisher that computes a linear function of the entire output string ~y = (FK(x(1)), · · · ,
FK(x(N))) has advantage at most µw. Note that the choice of the linear function can depend
arbitrarily on (x(1), · · · , x(N)). We formalize this by putting forth the notion of (ε, δ,N)-biased
weak PRF family:

Definition 7.2 ((ε, δ,N)-biased weak PRF family) A function family

{FK : Fn(λ)
2 7→ F2}K∈Fκ(λ)2

is (ε, δ,N)-biased if for every large enough λ ∈ N, it holds that

Pr
x(1),··· ,x(N(λ)) $←Fn(λ)2

[bias(Dλ,N (~x)) > ε(λ)] < δ(λ),

where Dλ,N (~x)) denotes the distribution which samplesK $← Fκ(λ)
2 and outputs ~y = (FK(x(1)), · · · ,

FK(x(N))).

The task of building low-complexity primitives which provably fool all linear tests is a very
active area of research, especially in the context of building low-complexity pseudorandom gen-
erators with superlinear stretch [MST03, Shp09]. Pseudorandom generators that fool all linear
tests are called ε-biased pseudorandom generators, and their complexity is well understood: they
exist in a complexity class as low as NC0

5, the class of constant-depth fan-in-2 boolean circuits
where each output depends on at most 5 input bits, and cannot exist in NC0

4 [MST03]. Regarding
the complexity of building low-bias strong PRFs, we are only aware of two results [GV04,Hea08]
which show that negligible-bias strong PRFs exist in AC0[⊕]. The construction is obtained
by relatively involved constructions in AC0[⊕] of the various components required in the ε-
biased sample space construction of Naor and Naor [NN90]; although it achieves exponentially
small bias, it cannot be a candidate exponentially strong PRF, since no such PRF can exist in
AC0[⊕] [RR97,CIKK16]. We obtain an incomparable result of independent interest, by showing
that a weaker object (an unconditional weak PRF with exponentially small bias) exists in a
much smaller complexity class, the class XOR ◦ AND, a subclass of depth-2 AC0[⊕].

Corollary 7.3 There exist constants (β, µ, ν) such that for any large enough w(λ), any D(λ) ≤
β ·w, there exists a (µw, νw, 2D)-biased weak PRF family in the class XOR ◦AND of polynomial-
size depth-2 circuits with a layer of AND gates at the bottom, and a single XOR gate at the
top.

Resistance Against Standard Attacks. Our candidate weak PRF relies on a variant of
the LPN assumption. A large number of attacks against the LPN assumption have been in-
troduced. The main categories of attacks include Gaussian elimination attacks and its vari-
ants [EKM17], statistical decoding attacks [AJ01,Ove06,FKI06,DAT17,Zic17], information set
decoding attacks [Pra62,Ste88,FS09,BLP11,MMT11,BJMM12,MO15], and BKW and its vari-
ants [BKW00, Lyu05]. Yet another attack against PRF candidates based on LPN-style as-
sumption can be mounted whenever the candidate PRF family satisfies some correlation with a
sufficiently low-degree polynomial [ABG+14,BR17].

We will not provide the details of these many attacks in this section. Rather, we confine our-
selves to observing that all the above attacks can be formulated as linear tests in our framework.
Therefore, Theorem 7.1 implies that an adversary running in time poly(λ) and performing any
of the above attacks can succeed at distinguishing our candidate’s output from random with
advantage at most poly(λ) ·max(µw(λ), νw(λ)).

Note that this is not a contradiction to the BKW attack [BKW00, Lyu05] of complexity
2O(N/ logN) on Learning Parity with Noise, as the N in the BKW attack corresponds to the size
of the secret, which in our case is always at least quadratic in the security parameter.

38



Resistance Against Polynomial Tests. Recall that our candidate weak PRF, with param-
eters par = (w,D,N), is of the form

FK(x) =
D⊕
i=1

w⊕
j=1

i∧
k=1

(xi,j,k ⊕Ki,j,k),

with input size and key size n = κ = w · D(D − 1)/2. For any divisor d of w, this can be
rewritten as

FK(x) =
D⊕
i=1

d⊕
`=1

w/d−1⊕
j=0

i∧
k=1

(x
(`)
i,j,k ⊕K

(`)
i,j,k) where x(`)

i,j,k ← xi,jd+`,k,K
(`)
i,j,k ← Ki,jd+`,k

=
d⊕
`=1

FK(`)(x(`))

where each K(`), x(`) belongs to {0, 1}n/d = {0, 1}κ/d. That is, our candidate weak PRF with
parameters (w,D,N) can be rewritten as the XOR of d independent instances (on independent
keys and inputs) with parameters (w/d,D,N). By a result of Viola [Vio09], the XOR of d
low-bias weak PRFs over F2 fools all degree-d multivariate polynomial tests over F2, hence we
can show that our candidate further resists all low-degree polynomial tests. We formalize this
observation below.

We say that a distribution D over {0, 1}N has degree-d polynomial bias at most ε, and write
polybiasd(D) ≤ ε, if for every degree-d multivariate polynomial P : FN2 7→ F2, it holds that∣∣∣∣ED [(−1)P (D)

]
− E
UN

[
(−1)P (UN )

]∣∣∣∣ ≤ ε,
where UN is the uniform distribution over {0, 1}N . Combining our above observation with the
result of Viola, we get the following corollary:

Corollary 7.4 (Resistance to Polynomial Tests) For any c > 1, there exist constants (β, µ, ν)
(the same as in Theorem 7.1) such that for any large enough w, any divisor d of w, any
D ≤ β · w/d, it holds that

Pr
H

$←Hpar

[
polybiasd(Opar(H)) > 16 · µw/2d−1

]
≤ d · νw/d.

We further note that this result can be directly plugged into the result of [BDVY13]: pseudo-
randomness against degree-d polynomials implies pseudorandomness against branching programs
of width-2 and polynomial length that read d bits of input at a time. Hence, our weak PRF
candidate also fools all tests from this class (with probability 16 ·t ·µw/2d−1 for width-2 branching
programs of length t reading d inputs at a time); this captures any degree-d polynomial, but
also space-bounded computation with one bit of memory, or d-DNF formula.

7.2 Proof of Resistance Against Linear Tests

In this section, we prove Theorem 7.1. We first set up a few notations: for any i ≤ D, it follows
from the definition of Hipar (Section 6.1) that a matrix Hi sampled from Hipar can be written
as Hi = Hi,1|| · · · ||Hi,w, with Hi,j ∈ FN×2i

2 , where each row of each matrix Hi,j for j ≤ w is
sampled independently from S1,2i (resulting in rows of regular weight w). We letMi

par denote
the distribution of each Hi,j (hence, a sample Hi from Hipar is a concatenation of w independent
samples fromMi

par).

39



Definition 7.5 Given a matrix M ∈ FN×2i

2 , we say that M is bad with respect to a vector
~v ∈ FN2 if

HW (~vᵀ ·M) /∈
[

2i

5
,
2i+2

5

]
.

Furthermore, given w matrices (M1, · · · ,Mw) in FN×2i

2 , we let N~v(M1, · · · ,Mw) denote the
number of matrices which are bad against ~v among M1 · · ·Mw.

Equipped with the above definition, we can state the lemma which is at the core of the proof
of Theorem 7.1:

Lemma 7.6 There is a constant C such that for any 1 ≤ i ≤ D, and for any vector ~v ∈ FN2
such that HW(~v) ∈ [2i−1, 2i], it holds that

Pr
M1,··· ,Mw

$←Mi
par

[
N~v(M1, · · · ,Mw) ≥ w

2

]
≤ 2−C·2

i·w.

Proof. The proof of Lemma 7.6 relies on the bounded difference inequality (Lemma 3.5). Fix a
vector ~v of weight HW(~v) = ` ∈ [2i−1, 2i]. It will be helpful to reformulate the event “a sample
M from Mi

par is bad” as a balls and bins problem. Consider a sample M from Mi
par. Recall

that by definition of Mi
par, the rows of M are sampled independently from S1,2i . We can cast

the problem as a balls and bins problem as follows: we start with 2i empty bins, correspondings
to the columns of M . Sampling a row of M from S1,2i can be viewed as throwing a ball in one
of the 2i bins, picked uniformly at random. Then, for any fixed ~v of weight `, the event

HW (~vᵀ ·M) /∈ Ii ←
[

2i

5
,
2i+2

5

]
is equivalent to the following event: after throwing exactly ` balls at random in 2i bins, the
numbers T of bins containing an odd number of balls satisfies T /∈ Ii. The full experiment can
therefore be reformulated as follows: there are 2i bins, and ` ·w balls are thrown randomly (and
sequentially) in these bins, divided into w consecutive phases (` balls are thrown during each
phase). Each time ` balls have been thrown, we check whether the fraction of bins containing an
odd number of balls is between 1/5 and 4/5, and empty the bins. At the end of the experiment,
we output “failure” if at least w/2 of the w checks failed.

We now bound the probability that the experiment fails. For j = 1 to ` and k = 1 to w, let
Xj,k be the random variable corresponding to the bin in which the k-th ball of the j-th phase
landed (note that the Xj,k are independent). In order to apply McDiarmid’s bounded difference
inequality, we need to consider a carefully chosen function of the Xj,k:

Φ(X1,1, · · · , X`,w) =
w∑
k=1

2i−1 −

∣∣∣∣∣∣HW
⊕̀
j=1

Xj,k

− 2i−1

∣∣∣∣∣∣
 .

Claim 7.7

Pr
M1,··· ,Mw

$←Mi
par

[
N~v(M1, · · · ,Mw) ≥ w

2

]
≤ Pr

[
Φ(X1,1, · · · , X`,w) <

w · 2i

10

]
.

Proof. Fix a vector ~v of weight `. Note that sampling a matrix M ← Mi
par and com-

puting HW(~vᵀ ·M) is identical to sampling ` random unit vectors X1 · · ·X` and computing
HW(

⊕`
j=1Xj). Now, suppose that the event Φ(X1,1, · · · , X`,w) < w · 2i/10 happened. This

means that there must exist a subset K ⊆ [w] such that

40



• For every k ∈ K, Yk ← 2i−1 −
∣∣∣HW (⊕`

j=1Xj,k

)
− 2i−1

∣∣∣ < 2i

5 , and

• |K| ≥ w
2 .

Indeed, if this was not the case then at least w − w/2 = w/2 of the k ∈ [w] would satisfy
Yk ≥ 2i/5, which would imply Φ(X1,1, · · · , X`,w) ≥ (w/2) · (2i/5), contradicting the hypothesis.
The condition Yk < 2i/5 rewrites to∣∣∣∣∣∣HW

⊕̀
j=1

Xj,k

− 2i−1

∣∣∣∣∣∣ > 3 · 2i−1

5

⇐⇒ HW

⊕̀
j=1

Xj,k

 /∈
[

2i

5
,
2i+2

5

]
.

Therefore, the event Φ(X1,1, · · · , X`,w) < w · 2i/10 implies in particular that at least w/2 of the
k ≤ w satisfyHW

(⊕`
j=1Xj,k

)
/∈
[
2i/5, 2i+2/5

]
, which is identical to the eventN~v(M1, · · · ,Mw) ≥

w/2 happening when sampling M1 · · ·Mw fromMi
par. This concludes the proof of the claim. �

Claim 7.8 The function Φ is 2-Lipschitz.

Proof. Consider changing a single input Xj,k to Φ. This corresponds to moving a single ball to a
different bin during one of the phases. But doing so can only change the number of bins with an
odd number of balls at the end of this phase by at most 2, hence the value HW(

⊕`
j=1Xj,k) can

change by at most 2. Propagating the change, this implies that the value of Φ(X1,1, · · · , X`,w)
changes by at most 2. �

Since Φ is 2-Lipschitz, we can apply the bounded difference inequality (Lemma 3.5): for any
t, we have

Pr[Φ(X1,1, · · · , X`,w) < E[Φ(X1,1, · · · , X`,w)]− t] ≤ exp

(
− t2

2`w

)
.

It remains to bound E[Φ(X1,1, · · · , X`,w)].

Claim 7.9

E [Φ (X1,1, · · · , X`,w)] ≥ w · 2i

5
.

Proof. First, we prove that for any 1 ≤ k ≤ w (i.e., for each phase of ` balls thrown),

E

HW
⊕̀
j=1

Xj,k

 ∈ [2i

5
,
2i

2

]
.

Let R2i,` ← HW
(⊕`

j=1Xj,k

)
. We compute the expected value E[R2i,`] of R2i,`, by induction

over `. Clearly, E[R2i,0] = 0. Furthermore, by linearity of the expectation,

E[R2i,`+1] = (E[R2i,`]− 1) ·
E[R2i,`]

2i
+ (E[R2i,`] + 1) ·

(
1−

E[R2i,`]

2i

)
,

since adding a ball in a bin which contains initially an odd number of balls reduces the number
of bins with an odd number of balls by 1, while adding a ball in a bin with an even number of
balls increases the number by 1. Solving the recursive formula gives

41



E[R2i,`] =
2i

2
·

(
1−

(
1− 2

2i

)`)
∈
[

2i

5
,
2i

2

]
for any ` ≥ 2i−1,

where the inclusion uses the following standard inequality:(
1− 2

2i

)`
≤ exp

(
−2`

2i

)
<

2

5
for any ` ≥ 2i−1.

From there, we get

E

∣∣∣∣∣∣HW
⊕̀
j=1

Xj,k

− 2i−1

∣∣∣∣∣∣
 ≤ 3

10
· 2i

=⇒ E [Φ (X1,1, · · · , X`,w)] ≥ w · 2i

5
.

�
Summing up, we obtain that for any t,

Pr

[
Φ(X1,1, · · · , X`,w) <

w · 2i

5
− t
]
≤ exp

(
− t2

2`w

)
≤ exp

(
− t2

2i+1w

)
,

where the second inequality uses the fact that ` ≤ 2i. Plugging in t = w · 2i/10, this gives

Pr

[
Φ(X1,1, · · · , X`,w) <

w · 2i

10

]
≤ exp

(
−w · 2

i

200

)
= 2−C·w·2

i

for some appropriate constant C; this concludes the proof of Lemma 7.6. �
Equipped with Lemma 7.6, we complete the proof of Theorem 7.1. Observe that the number

of vectors ~v ∈ FN2 satisfying HW(~v) ∈ [2i−1, 2i] can be bounded by

2i∑
`=2i−1

(
N

`

)
≤

2i∑
`=2i−1

N `

`!
≤ (2i − 2i−1) · N2i

(2i−1)!
≤ 2D·2

i
.

Hence, setting β ← C/2, if w is such that D ≤ β · w, we obtain by a straightforward union
bound over all vectors ~v of weight in [2i−1, 2i], denoting Si,N the set of vectors ~v over FN2 with
HW(~v) ∈ [2i−1, 2i],

Pr
M1,··· ,Mw

$←Mi
par

[
∃~v ∈ Si,N , N~v(M1, · · · ,Mw) ≥ w

2

]
≤ 2D·2

i · 2−C·w·2i ≤ 2−α·w (4)

for some constant α = β = C/2. Note that our bounds are quite loose – in particular, the
optimal choice of parameters depends on i, while we chose to settle for a worst-case choice of
the same parameters for all i. Now, recall that the distribution Hipar is exactly the distribution
that samples Hi,1, · · · , Hi,w independently fromMi

par and output Hi ← Hi,1|| · · · ||Hi,w. We are
now almost ready to conclude: recall that a sample from Opar(H) with H = H1|| · · · ||HD is of
the form H · ~e =

⊕D
i=1Hi · ~ei =

⊕D
i=1

⊕w
j=1Hi,j · ~ei,j where each ~ei is a random sample from

Rw,i (transposed), hence each ~ei,j is a random sample from S1,2i . Now, for any vector ~v ∈ FN2 ,

~vᵀ · (H · ~e) =

D⊕
i=1

w⊕
j=1

(~vᵀ ·Hi,j) · ~ei,j .

42



Returning ~vᵀ·Hi,j ·~ei,j for a vector ~ei,j sampled from S1,2i is equivalent to sampling a uniformly
random entry of the vector vᵀ ·Hi,j . Let Di,j be the distribution which returns Hi,j · ~ei,j for a
random ~ei,j

$← S1,2i . Observe that the condition N~v(Hi,1, · · · , Hi,w) < w/2 can be restated as
follows: for at least half of the values j ∈ [1, w], it holds that

bias~v(Di,j) ≤
1

2
− 1

5
=

3

10
.

Now, a sample of the form Hi ·~ei for a random ~ei from Rw,i is the XOR of independent random
samples from each of the Di,j . Therefore, by Lemma 3.2, whenever N~v(Hi,1, · · · , Hi,w) < w/2,
the bias of Di with respect to ~v decrease exponentially with w:

bias~v(Di) ≤
1

2
·
(

3

5

)w/2
.

Plugging this into Equation 4 gives

Pr
Hi

$←Hipar

[
∃~v ∈ Si,N , bias~v(Di) >

1

2
·
(

3

5

)w/2]
≤ 2−α·w. (5)

Therefore, by a union bound again,

Pr
H

$←Hpar

[
∃i ∈ [0, D − 1],∃~v ∈ Si,N , bias~v(Di) >

1

2
·
(

3

5

)w/2]
≤ D · 2−αw.

By the rightmost inequality of Lemma 3.2, for any vector ~v, the bias of Opar with respect to
~v is at most the smallest bias of any of the Di with respect to ~v (since a sample from Opar is
the exclusive OR of independent samples from each of the Di). Now, since the Si,N for i = 0 to
D − 1 cover all of FN2 (as N = 2D), we get:

Pr
H

$←Hpar

[
∃~v ∈ FN2 , bias~v(Opar(H)) >

1

2
·
(

3

5

)w/2]
≤ D · 2−αw,

which concludes the proof.

Generalization to the Arithmetic Setting. The notion of low-bias weak PRF can be gen-
eralized from F2 to arbitrary groups, in the same way that the notion of low-bias pseudorandom
generator extends to arbitrary groups: an ε-biased space over a group G is a distribution D such
that for any nontrivial character χ : G 7→ C, it holds that |E[χ(D)]| ≤ ε, see e.g. [LRTV09]. For
the special case of FN for a general field F, the characters coincide (are in one-to-one correspon-
dance with) linear functions L : FN 7→ F. Therefore, the natural generalization of the notion
of ε-bias of a distribution DN over FN states that for every nonzero vector ~v, the distribution
induced by sampling ~y $← DN and outputting 〈~v, ~y〉 is ε-close to the uniform distribution over
F.

Most of the proof of resistance against linear test is oblivious to the choice of the underlying
field and extends naturally to the arithmetic generalization of our candidate, given in Section 6.3.
We sketch here how to adapt the proof to the general case: as before, we will reduce the problem
to a balls and bins problem, but where each ball now corresponds to a uniformly random nonzero
field element. Notably, remember that we count the number of bins containing exactly an odd
number of balls; in our proof, each bin corresponds to a column ~mj of a matrix M , and a bin
contains an odd number of balls when ~v and ~mj have an odd number of nonzero coordinates at
the same position – hence in particular, at least one nonzero coordinate at the same position.

43



Conditioned on this being the case, since the nonzero entries of ~mj are uniformly random nonzero
elements of F, the scalar product 〈~v, ~mj〉 is a uniformly random nonzero element of F. Then, the
rest of the proof proceeds identically. Note that over a large field F, the bound on the number of
vectors ~v grows as 2(log |F|+D)·2i , hence the condition to be satisfied is that D+ log |F| ≤ β ·w for
some appropriate constant β. Eventually, concluding the proof requires a standard argument
to show that a random size-O(w) subset-sum of public random field elements is close to the
uniform distribution over F, when w is large enough.

7.3 Resistance Against Algebraic Attacks

While linear attacks capture many attacks from the literature, there is an important and widely
studied class of attacks which does not fit into the linear test framework: algebraic attacks.
Algebraic attacks have been introduced in [Pat95] and were later extended and abstracted
in [Cou01, CM03, Cou03]. More recently, [AL18] formalized the notion of algebraic attacks in
the study of random local functions.

Algebraic attacks start with input/ output pairs (x(1), Fk(x
(1))), . . . , (x(N), Fk(x

(N))) and
use these to initialize system of — ideally linear — multivariate equations in the input vari-
ables, which can then potentially be solved via Gaussian elimination or by using Gröbner ba-
sis [CKPS00,Fau99,Fau02,Cou04].

In its most basic form, an algebraic attack proceeds as follows: given a function FK :
{0, 1}n 7→ {0, 1} to be inverted (or distinguished from random), it seeks to find low degree
multivariate polynomials (g, h) such that

FK · g = h.

If polynomials (g, h) of degree at most d are found, then the function FK can be inverted given
nÕ(d) random samples (x, FK(x)), by solving a linear system in the coefficients of (g, h) given
by the equations FK(x(i)) · g(x(i)) = h(x(i)). Note that while the attack proceeds by solving a
linear system of equations, the coefficients of this system depend not only on the x(i), but also
on the samples FK(x(i)), which prevents the attack from being a linear attack according to our
definition (where the coefficients are only allowed to depend on the x(i)).

We note that while algebraic attacks are an important and well-studied class of attacks, they
had been missed in the security analysis of the candidate weak PRF of Akavia et al [ABG+14].9

It turned out that their candidate can be broken (in quasipolynomial time) using exactly the
basic algebraic attack of [CM03] described above (this was observed in [BR17]). The authors
of [BIP+18] conjectured their weak PRF candidate to be secure against this algebraic attack,
but could not prove it. Below, we formally prove that our candidate weak PRF cannot be broken
by the above attack:

Theorem 7.10 Fix parameters (w,D,N = 2D). Let n = κ← w ·D(D−1)/2, and let FK be the
candidate weak PRF family of Section 6.2. For any K ∈ {0, 1}κ, the algebraic attack of [CM03]
requires a time and number of samples lower bounded by nO(D) = 2O(D log(D+w)).

Below, we prove Theorem 7.10 by showing that our candidate weak PRF has high algebraic
degree.

Algebraic Immunity. The algebraic immunity of a boolean function F is defined as the
following quantity:

AI(F ) = min
g 6=0
{deg(g) | Fg = 0 ∨ (F ⊕ 1)g = 0}.

9The analysis of [ABG+14] is also more restricted than ours in that it considers only resistance against a very
specific form of linear attacks (correlation with a low degree polynomial), while we prove security against all
possible linear attacks.

44



It is relatively easy to see that the smallest d such that there exist polynomials (g, h) of degree at
most d satisfying FK · g = h necessarily satisfies d ≥ AI(FK). Therefore, the algebraic immunity
of FK gives a lower bound on the efficiency of the above algebraic attack: attacking a weak PRF
family {FK}K with the above attack requires at least minK

{
nO(AI(Fk))

}
samples. We now prove

that our candidate weak PRF family has high algebraic immunity, hence cannot be broken by
the above algebraic attack (implying Theorem 7.10).

Lemma 7.11 (Algebraic Immunity of rVDLPN) Fix parameters (w,D,N = 2D). Let n =
κ = w · D(D − 1)/2, and let FK be the candidate weak PRF family of Section 6.2. For any
K ∈ {0, 1}κ, it holds that

AI(FK) ≥ D.

Proof. The proof is largely taken from [MJSC16]. First, recall that our weak PRF candidate
is given by

FK(x) = F (K ⊕ x)

where the function F is defined as

F (x) =
D⊕
i=1

w⊕
j=1

i∧
k=1

xi,j,k.

Now, it is easy to see that for any K, the algebraic immunity of FK is that of F : for any g
such that FK · g = 0 (resp. (1⊕ FK) · g = 0), the function gK : x→ g(K ⊕ x) trivially satisfies
F ·gK = 0 (resp. (1⊕F ) ·gK = 0), since x→ K⊕x defines a permutation over the input domain
(which is its own inverse). The same holds trivially in the reverse direction as well, hence

∀K ∈ {0, 1}κ : AI(FK) = AI(F ).

It remains to bound the algebraic immunity of F . Observe that F is a direct sum of w indepen-
dent triangular functions of degree D, each evaluated on distinct portions of the input, where
the triangular function of degree D is defined as

TD(x1, · · · , xD(D−1)/2) = x1 ⊕ x2x3 ⊕ x4x5x6 ⊕ · · · ⊕
D(D−1)/2∧

`=D(D−1)/2−D

x`.

By Lemma 3 of [MJSC16], the algebraic immunity of a direct sum of functions (evaluated on
independent inputs) is at least the largest algebraic immunity of each of its components, hence

AI(F ) ≥ AI(TD).

Now, by Lemma 6 of [MJSC16], the algebraic immunity of the degree-D triangular function is
exactly D (the proof is a simple proof by induction, see Appendix C.2 of [MJSC16]). Therefore,
we get

∀K ∈ {0, 1}κ : AI(FK) ≥ D,
which concludes the proof. �

Fast Algebraic Immunity. An improved variant of the above algebraic attack, called fast
algebraic attack, was introduced by Courtois in [Cou03]. It was shown in [ACG+06] that it
suffices, for a candidate FK to withstand this attack, that FK has high fast algebraic immunity
(denote FAI(FK)), which is defined as

FAI(F ) = min

{
2AI(F ), min

1≤deg g≤AI(F )
{max{deg(g) + deg(Fg), 3 deg g}}

}
.

Then, it is shown in [ACG+06] that the fast algebraic attacks takes time at least nO(FAI(F )) to
attack a function F with input size n. By [Car20], the fast algebraic immunity of a function F
is lower bounded by AI + 1. This yields the following Lemma.

45



Lemma 7.12 (Fast Algebraic Immunity of rVDLPN) Fix parameters (w,D, 2D). Let n =
κ = w · D(D − 1)/2, and let FK be the candidate weak PRF family of Section 6.2. For any
K ∈ {0, 1}κ, it holds that

FAI(FK) ≥ D + 1.

7.4 Resistance Against Statistical Query Algorithms

Another important approach to ruling out candidate PRFs in low complexity classes is to pro-
vide a learning algorithm for the class. This is for example the basis of the approach of Linial,
Mansour, and Nisan in [LMN89] which showed that all functions in the class AC0 can be learned
in quasipolynomial time given access to uniformly random samples (hence, there are no weak
PRFs with better than quasipolynomial security in AC0), by showing than any AC0 function
is noticeably correlated with a linear function of polylogarithmically many variables. This at-
tack can be generalized to a class of attacks, called “LMN-style attacks” in [ABG+14], which
distinguishes a weak PRF candidate from random by detecting some large enough correlation
between FK and a function Φ belonging to a family Φ of functions, where Φ has relatively small
size. To resist such LMN-style attacks, any candidate PRF must therefore at least not have high
correlation with members of any fixed function family of small size.

An even more general class of attacks are those captured by the statistical query model
of [Kea98], where random input-output pairs (x, FK(x)) are used to estimate some statistics
EΦ = Ex[Φ(x, FK(x))] for various functions Φ. A function family {FK} is (ε, δ)-pseudorandom
against statistical query algorithms from a class of functions Φ if

Pr
K

[∣∣∣∣Ex [Φ(x, FK(x))]− E
x,R

[Φ(x,R(x))]

∣∣∣∣ ≤ ε] ≥ 1− δ.

Many known algorithms for learning from random samples operate in this manner. In spite
of this generality, the work of [BR17, Section 7.7] proves that to achieve (ε, δ)-pseudorandomness
against statistical query algorithms from a class of functions Φ, it suffices to have low correlation
with a fixed family of functions, of size 2|Φ|. Hence, proving resistance against the seemingly
less-general LMN-style attacks actually suffices to prove resistance against all statistical query
algorithms. More precisely, given the class Φ, let Φ′ denote the class of functions Φ(·, b), for
Φ ∈ Φ and b ∈ {0, 1} (of size 2|Φ|).

Lemma 7.13 (Implicit in [BR17]) For any function family {FK}K such that

Pr
K

$←{0,1}κ

[
∃Φ ∈ Φ′,Pr

x
[FK(x) = Φ(x)] >

1

2
+ ε

]
≤ δ,

then the function family {FK} is (ε, δ)-pseudorandom against statistical query algorithms from
the class of functions Φ.

Below, we prove that our candidate resists all statistical query algorithms. More precisely, we
show that for any fixed function familyΦ of size at most s, with probability at least 1−s/(2w+2ε2)
over the choice of the PRF key K, the correlation between FK and any function from Φ is at
most ε:

Lemma 7.14 Fix parameters (w,D,N = 2D). Let n = κ = w ·D(D − 1)/2, and let FK be the
candidate weak PRF family of Section 6.2. Let Φ = {Φ : {0, 1}n 7→ {0, 1}} be a collection of
functions of size s. Then for any ε,

Pr
K

$←{0,1}κ

[
∃Φ ∈ Φ,Pr

x
[FK(x) = Φ(x)] >

1

2
+ ε

]
≤ s

2w+2ε2
.

46



By Lemma 7.13, this suffices to guarantee (ε, s
2w+2ε2

)-pseudorandomness against statistical query
algorithms from any class of function of size s.
Proof. The proof follows closely the strategy of [ABG+14,BR17], but is slightly more involved
because our function family is not pairwise independent. Fix a function Φ : {0, 1}n 7→ {0, 1}.
Define the random variable

Z(K) = Pr
x

[FK(x) = Φ(x)] = E
x
[1(FK(x), Φ(x))],

where 1(u, v) = 1 if u = v, and 0 otherwise. Then,

E
K

[Z(K)] = E
K

[E
x
[1(FK(x), Φ(x))]]

= E
x
[E
K

[1(F (K ⊕ x), Φ(x))]]

= E
x
[E
y
[1(F (y), Φ(x))]]

= E
x
[Pr
y

(F (y) = Φ(x))]

= 1/2,

where the last equality follows from the fact that for any b ∈ {0, 1}, Pry[F (y) = b] = 1/2. The
latter is immediate, as F can be written as F (x) = x0⊕F ′(x′) where x = x0||x′; in other words,
F (x) involves a XOR with with one of its variables that never appear in any other monomial.
Now, we bound the variance σ2 of Z(K):

E
K

[Z(K)2] = E
K

[E
x
[1(FK(x), Φ(x))]2]

= E
K

[E
x
[1(F (K ⊕ x), Φ(x))] · E

y
[1(F (K ⊕ y), Φ(y))]]

= E
x,y

[E
K

[1(F (K ⊕ x), Φ(x)) · 1(F (K ⊕ y), Φ(y))]]

=
∑

x,y∈{0,1}n
Pr
K

[(F (K ⊕ x) = Φ(x)) ∧ (F (K ⊕ y) = Φ(y))] · 2−2n.

From there, the standard approach to conclude [ABG+14,BR17,BIP+18] is to rely on the
pairwise independence of FK to bound EK [1(FK(x), Φ(x)) ·1(FK(y), Φ(y))]. This does not work
immediately in our setting, since our candidate weak PRF family is easily seen to not be pairwise
independent. Instead, we follow a different approach. Recall that our candidate weak PRF is of
the form

FK(x) =
D⊕
i=1

w⊕
j=1

i∧
k=1

(xi,j,k ⊕Ki,j,k).

The idea of the proof will be to look at the degree-2 component only. Whenever two inputs
disagree in the part influencing the degree-2 component, the corresponding key component
will show up in exactly one of those, allowing to argue independence. As this is the case for
“most” inputs, this will be sufficient to prove the lemma. We isolate the degree-two component⊕w

j=1(x2,j,1 ⊕ K2,j,1) ∧ (x2,j,2 ⊕ K2,j,2) from the rest of the above function, and write x2,k =
(x2,j,k)j∈[w] ∈ {0, 1}w and K2,k = (K2,j,k)j∈[w] ∈ {0, 1}w for k ∈ {1, 2}, and denote by xR,KR

the remaining bits of x and K (i.e. all xi,j,k, Ki,j,k for i 6= 2), respectively. Hence, FK can be
rewritten as

FK(x) = 〈x2,1 ⊕K2,1, x2,2 ⊕K2,2〉 ⊕ F ′(KR, xR),

where F ′ is the function that computes the missing monomials. Now, fix an arbitrary pair
of inputs (x, y), decomposed as ((x2,1, x2,2, xR), (y2,1, y2,2, yR)), such that x2,2 6= y2,2, and fix

47



arbitrary K2,2,KR. Observe that

Pr
K2,1

[(F (K ⊕ x) = Φ(x)) ∧ (F (K ⊕ y) = Φ(y))]

= Pr
K2,1

[
(
〈x2,1 ⊕K2,1, x2,2 ⊕K2,2〉 = Φ(x)⊕ F ′(KR, xR)

)
∧
(
〈y2,1 ⊕K2,1, y2,2 ⊕K2,2〉 = Φ(y)⊕ F ′(KR, yR)

)
].

Now, since x2,2 6= y2,2, there is at least one position j such that the jth bits of x2,2 ⊕K2,2 and
of y2,2 ⊕K2,2 differ; let us fix such a j and assume without loss of generality that the jth bit of
x2,2 ⊕K2,2 is 1. For any bistring s, let us denote s6=j the string s without its jth bit. Then, we
have

〈x2,1 ⊕K2,1, x2,2 ⊕K2,2〉 = (K2,1)j ⊕ (x2,1)j ⊕ 〈(x2,1 ⊕K2,1)6=j , (x2,2 ⊕K2,2)6=j〉

while
〈y2,1 ⊕K2,1, y2,2 ⊕K2,2〉 = 〈(y2,1 ⊕K2,1) 6=j , (y2,2 ⊕K2,2)6=j〉.

Therefore, the events F (K ⊕ x) = Φ(x) and F (K ⊕ y) = Φ(y) are truly independent:

Pr
K2,1

[(F (K ⊕ x) = Φ(x)) ∧ (F (K ⊕ y) = Φ(y))]

= Pr
(K2,1)j

[〈x2,1 ⊕K2,1, x2,2 ⊕K2,2〉 = Φ(x)⊕ F ′(KR, xR)]

· Pr
(K2,1)6=j

[〈y2,1 ⊕K2,1, y2,2 ⊕K2,2〉 = Φ(y)⊕ F ′(KR, yR)]

=
1

2
· 1

2
=

1

4
.

Furthermore, when x2,2 = y2,2, it still holds that

Pr
K

[(F (K ⊕ x) = Φ(x)) ∧ (F (K ⊕ y) = Φ(y))] ≤ Pr
K

[(F (K ⊕ x) = Φ(x))] =
1

2
.

Let us partition {0, 1}n × {0, 1}n in two disjoint sets, S and S̄ = {0, 1}n × {0, 1}n \ S, where
S contains all pairs (x, y) which satisfy, when decomposed as ((x2,1, x2,2, xR), (y2,1, y2,2, yR)),
x2,2 6= y2,2. Then, the above imply

E
K

[Z(K)2,2] =
∑
x,y∈S

Pr
K

[(F (K ⊕ x) = Φ(x)) ∧ (F (K ⊕ y) = Φ(y))] · 2−2n

+
∑
x,y∈S̄

Pr
K

[(F (K ⊕ x) = Φ(x)) ∧ (F (K ⊕ y) = Φ(y))] · 2−2n

≤ |S| · 1

4
· 2−2n + |S̄| · 1

2
· 2−2n.

By construction, |S̄| = 22n−w since |x2,2| = |y2,2| = w, and |S| = 22n − 22n−w. Therefore,

E
K

[Z(K)2,2] ≤ (22n − 22n−w) · 1

4
· 2−2n + 22n−w · 1

2
· 2−2n

= (1− 2−w) · 1

4
+ 2−w · 1

2

=
1

4
· (1 + 2−w).

Now, by the definition of variance,

σ2,2 = E
K

[Z(K)2,2]− E
K

[Z(K)]2,2

≤ 1

4
· (1 + 2−w)− 1

4

=
1

2w+2
.

48



To finish the proof, it remains to apply the Bienaymé-Chebyshev inequality (Lemma 3.3), which
immediately gives

Pr
K

$←{0,1}κ

[
∃Φ ∈ Φ,Pr

x
[FK(x) = Φ(x)] >

1

2
+ ε

]
≤ 1

2w+2ε2
,

from which the result directly follows by a union bound.
�

7.5 Resistance Against AC0 Tests

Fix parameters (w,D,N = 2D). Let n = κ = w · D(D − 1)/2, and let FK be the candidate
weak PRF family of Section 6.2. For any input x ∈ {0, 1}n, let Rx denote the random variable
distributed as FK(x) for a random K from {0, 1}κ.

Theorem 7.15 ((w/D)-Wise Independent)

Pr
x(i)

$←{0,1}n
[(Rx(1) , · · · , Rx(n)) are (w/D)-wise independent ] ≥ 1− 1

(w/D)!
.

Proof. As in the proof of Lemma 7.14, we rely on the fact that for any input x, FK(x) can be
rewritten as

FK(x) = 〈x2,1 ⊕K2,1, x2,2 ⊕K2,2〉 ⊕ F ′(KR, xR),

where (x2,1, x2,2, xR) and (K2,1,K2,2,KR) form appropriate partitions of x and K. Hence,
to prove that the FK(x(i)) for i = 1 to N are (w/D)-wise independent, it suffices to fix an
arbitrary KR and prove that the random variables R′

x(i)
induced by 〈x(i)

2,1 ⊕ K2,1, x
(i)
2,2 ⊕ K2,2〉

for random (K2,1,K2,2) are (w/D)-wise independent (with high probability over the choice of
x(1), · · · , x(N)). Furthermore, if the random variable R′′

x(i)
induced by 〈K2,1, x

(i)
2,2〉 for a

random K2,1 are (w/D)-wise independent (with high probability over the choice of the x(i)),
then the R′

x(i)
are (w/D)-wise independent.

Now, it is a well-known results (see for example [NN90]) thatN random variables (〈K2,1, z
(i)〉)i≤N

will be (w/D)-wise independent if any size-(w/D) subset of the z(i), seen as length-n vectors over
F2, are linearly independent over F2. Hence, to prove that the R′′

x(i)
are (w/D)-wise independent

with high probability over the choice of the x(i), it suffices to prove that any size-(w/D) subset
of the vectors (x

(i)
2,2)i≤N is linearly independent over F2.

We now bound the probability, over the random choice of x(1)
2,2, · · · , x

(N)
2,2

$← Fw2 , that all

(w/D)-tuples of vectors x(i)
2,2 are linearly independent over F2. First, let us compute the prob-

ability that (w/D) random vectors sampled from Fw2 are linearly independent: the probability
that the first vector is linearly dependent is 1/2w (this is the probability that it is the all-zero
vector); the probability that the second vector linearly depends on the first one is 1/2w−1, and
by induction, the probability that the j-th vector linearly depends on the (j− 1)-th first vectors
is 1− 1/2w−j+1. Hence, the overall probability that a random (w/D)-tuple of vector is linearly
independent is

w/D−1∏
j=0

(
1− 1

2w−j

)
≥

w/D−1∏
j=0

(
1− 1

2w−w/D+1

)
=

(
1− 1

2w−w/D+1

)w/D
≥
(

1− 1

2w(1−1/D)

)
.

49



Hence, by a straightforward union bound, the probability that there exist any r-tuple of
vectors in (x

(1)
2,2, · · · , x

(N)
2,2 ) which are linearly dependent is upper bounded by

(
N

w/D

)
· 1

2w(1−1/D)
≤ 2(w/D)·D−w

(w/D)!

=
1

(w/D)!
,

which concludes the proof. �
Plugging the result of Braverman [Bra08] into Theorem 7.15, we get:

Corollary 7.16 Our candidate weak PRF ε-fools depth-d AC0 circuits of size m, with probability
at least 1/(w/D)! over the random choice of N = 2D inputs, for any ε such that

w/D =
(

log
m

ε

)O(d2)
.

This implies, for example, that our candidate 2−w/O(d2)-fools AC0 circuits of size up to 2w/O(d2)

by setting D ← wt for any constant t < 1. We note that bounded independence also implies
security against other classes of circuits beyond AC0, such as halfspaces [DGJ+09] and degree-2
threshold functions [DKN10].

7.6 Linear Cryptanalysis

Among the standard attacks against PRF, we did not yet investigate linear cryptanalysis [Mat94]
and differential cryptanalysis. Both types of attacks have been formalized in [MV11]. Linear
cryptanalysis exploits the correlation of FK with respect to some parity ~v of its input x (seen
as a vector over Fn2 ). Following the formalism of [MV11], we define the correlation of FK with
respect to a vector ~v as

Corr~v(FK) = 2 · Pr
x

[~vᵀ · x = FK(x)]− 1.

Then, the attack succeeds given a number of samples proportional to(
max
~v 6=~0

{
E
K

[Corr~v(FK)2]

})−1

.

We now bound this quantity. First, observe that

E
K

[Corr~v(FK)2] = E
K

[(2 · E
x
[1(~vᵀ · x, FK(x))]− 1)2]

= 4 ·
(
E
K

[E
x
[1(~vᵀ · x, FK(x))]2]− E

K
[E
x
[1(~vᵀ · x, FK(x))]]

)
+ 1

However, we have already shown in Section 7.4 that for any function Φ (hence in particular for
the function Φ : x 7→ ~vᵀ · x), it holds that

E
K

[E
x
[1(FK(x), Φ(x))]] =

1

2
, and

E
K

[E
x
[1(FK(x), Φ(x))]2] ≤ 1

4
· (1 + 2−w).

Therefore,

E
K

[Corr~v(FK)2] ≤ 4 · 1

4
· (1 + 2−w)− 4 · 1

2
+ 1 = 2−w.

50



Hence, we get that (
max
~v 6=~0

{
E
K

[Corr~v(FK)2]

})−1

≥ 2w,

showing that linear cryptanalysis requires exponentially many samples to succeed against our
candidate. Differential cryptanalysis, on the other hand, does not apply to weak PRFs, since it
requires “programming” inputs to exploit the existence of values ∆,∆′ such that Prx,K [FK(x)⊕
FK(∆ ⊕ x) = ∆′] is high. Hence, differential cryptanalysis attacks are only allowed against
strong PRFs, where the adversary is allowed to choose the inputs to the PRF. Actually, it is
not hard to see our candidate is completely broken by differential cryptanalysis: any ∆ prefixed
with sufficiently many zeroes satisfy Prx,K [FK(x)⊕FK(∆⊕x) = 0] with very high probability.

8 Other Candidate FSS-Friendly WPRFs

In this section, we describe variants of our main candidate weak PRF. These variants are achieved
by progressively simplifying our main candidate, and analyzing whether the resulting candidate
still resists known attacks. In the discussions of this section, we let w denote a security parameter,
and fix parameters D(w) = O(w), and N(w) = 2D. Observe that with these parameters, our
main candidate has input size O(w3), and key size O(w3). Below, we provide two variants of our
main construction which achieve smaller input size and/or key size, and discuss their security.

8.1 First Variant: Reusing Portions of the Input

Our first variant reduces the input length from w ·D(D− 1)/2 to w ·D. Recall that FK(x) is of
the form F (K ⊕ x), where F is a direct sum of w triangular functions TD, which are evaluated
on disjoint subsets of D(D − 1)/2 bits of the input. The triangular function TD is defined as

TD(x) =
D⊕
i=1

i∧
j=1

xj+
∑i
k=1 k

.

In our first variant, the fan-in-i AND terms in the above triangular function are evaluated on
length-i prefixes of a single D-bit string x, instead of being evaluated on independent length-
i strings (x1, · · · , xD). That is, we replace the triangular function by the following simpler
function T ′D : {0, 1}D 7→ {0, 1}:

T ′D(x) =
D⊕
i=1

i∧
j=1

xj .

Hence, the new candidate weak PRF is given by

FK(x) =
D⊕
i=1

w⊕
j=1

i∧
k=1

(xj,k ⊕Ki,j,k).

Security. Our first variant has the exact same security guarantees as our main candidate
against linear attacks; that is, there exists constant (β, µ, ν) such that for any w,D(w) ≤ β ·w,
the first variant is a (µw, νw, 2D)-biased weak PRF family. Indeed, the exact same security
analysis applies: the proof never relies on the independence between the blocks Hi, but only on
the fact that the ~ei are sampled independently (which is needed to apply Lemma 3.2).

In our main candidate, the use of triangular functions suffices to guarantee resistance against
algebraic attack, since the degree-D triangular function has algebraic immunity D. However, it

51



is easy to see that this does not hold anymore for the simpler function T ′D: we have

T ′D(x) =

D⊕
i=1

i∧
j=1

xj+
∑i
k=1 k

= x1 ·

 D⊕
i=1

i∧
j=2

xj+
∑i
k=1 k

 ,

hence the degree-1 function f : x 7→ 1 + x1 is an annihilator of T ′D (i.e., f · T ′D = 0), meaning
that T ′D has algebraic immunity 1. Yet, we conjecture that the direct sum of w such functions
has algebraic immunity min(w,D). We note that we got confirmation, through personal com-
munication with Pierrick Méaux, that this function indeed has the claimed algebraic immunity;
however, this result is not yet published to our knowledge.

Immunizing against other attacks with simple tweaks. We note that simple tweaks
to the above function actually suffice to get provable resistance against the other attacks we
considered, without changing the asymptotic input length. For example, for algebraic attacks,
consider the following tweak of the function:

FK,Ky(x, y) =
D⊕
i=1

w⊕
j=1

i∧
k=1

(xj,k ⊕Ki,j,k)⊕ TD(y ⊕Ky).

That is, we XOR the first variant with a term TD(y ⊕ Ky). This variant still has input size
O(w2). By Lemma 3.2 (the bias of a direct sum is at least the smallest bias) and Lemma 3
of [MJSC16] (the algebraic immunity of a direct sum is at least the largest algebraic immunity
of each of its components), the above variant inherit both the resistance of the first variant to
linear attacks, and the high algebraic immunity of triangular functions. This gives us a candidate
weak PRF in the class XOR ◦AND, with input size O(w2), which provably resists linear attacks
and algebraic attacks running in time 2O(w).

The same holds for statistical query algorithms or AC0 attacks: all these variants can easily
be enhanced to resist these attacks as well, by XORing them with appropriate functions in
XOR ◦AND which provably resist these attacks (e.g. XORing with the linear input size function
fK(x) = 〈x,K〉 suffices to resists statistical query algorithms, since this function is pairwise
independent). We conjecture that these tweaks are actually not needed (that is, that this
variant can be proven to resist all attacks we considered) and only help simplifying the analysis.

Optimality. A crucial feature of this variant is that it actually achieves optimal (conjectured)
security as a function of its input size: it has input size n = O(w2) (using D = O(w) and
resistance at least 2O(w) against linear attacks. As we will show in the next section, there
actually exists linear attacks which break this candidate (and the first one) in time 2Õ(

√
n),

which is exactly 2Õ(w) here. Hence, This candidate has the smallest input size possible to
achieve Õ(w) bits of security.

8.2 Second Variant – Reducing the Key Size

Eventually, we put forth the security of the following candidate as an entirely open question:

“smallest” rVDLPN:

FK(x) =
D⊕
i=1

w⊕
j=1

i∧
k=1

(xj,k ⊕Kjk),

where x ∈ {0, 1}w·D and K ∈ {0, 1}w·D.
This candidate retains the optimal input size of our previous candidate, but reduces the

key size by a factor (D + 1)/2. This is particularly interesting for our PCF application, as the

52



decision tree construction of [BGI16b] gives the FSS for all prefix functions (and therefore all
products for a fixed j) at only a factor 2 overhead compared to FSS for a single point function.
Therefore, we can save a factor of D/2 in the FSS key size building on our third candidate
assumption.

While this modification makes our proof of resistance against linear attacks break down (since
the independence between samples from the various distributions we consider is not guaranteed
anymore), we could not find any attack on this candidate, and put forth its conjectured security
as an interesting challenge to investigate. We summarize the candidates discussed in this section
in Table 2.

Resistance against attacks

FK(x) input size FSS key size Linear Algebraic Correlation AC0

⊕D
i=1

⊕w
j=1

∧i
k=1(xi,j,k ⊕Ki,j,k) O(w ·D2) O(w2 ·D2) 3 3 3 3⊕D

i=1

⊕w
j=1

∧i
k=1(xj,k ⊕Ki,j,k) O(w ·D) O(w2 ·D2) 3 3 3 3⊕D

i=1

⊕w
j=1

∧i
k=1(xj,k ⊕Kj,k) O(w ·D) O(w2 ·D) ? ? ? ?

Table 2: List of candidate weak PRF families, with N(w) = 2D(w). One can choose D(w) = polylog(w), if one
aims at (quasi)exponential security up to N = wpolylogw samples, or D(w) = w for subexponential security up to
2O(w) samples. For the second row, the provable resistance actually holds w.r.t. minor tweaks of the function
which do not change its input and key size in the case of algebraic attacks, statistical query algorithms, and AC0

attacks.

9 Concrete Attacks on our WPRF Candidates

In this section, we complement the asymptotic analysis of our candidate’s resistance against
families of attacks (see Section 7) by analyzing how our candidates behave against concrete
attacks, and putting forth conjectures regarding the exact security of our candidates against
families of attacks.

9.1 Concrete Linear Attacks

Most attacks from the LPN literature are linear attacks. To our knowledge, all state-of-the-
art attacks (in terms of concrete efficiency) are linear attacks, either from the information set
decoding family (for LPN with a linear number of samples) or BKW-style attacks (for LPN
with a larger number of samples). In our context, the VDLPN problems with parameters
(w,D,N = 2D) correspond to an LPN-style problem with dimension (w − 1) · 2D, and w · 2D
samples. Hence, the dimension is extremely close to the number of samples, and BKW-style
attacks seem less likely to be particulary powerful, even using the sample-reduction technique
of Lyubashevsky [Lyu05].

A Concrete Conjecture on Security Against Linear Attacks. The proof of resistance
against linear attacks from Section 7 is very loose. However, we conjecture that much tighter
bounds actually hold. Here, we put forth a simple combinatorial conjecture, which is a strong
strenghtening of the loose bound which we prove in Section 7, and which can potentially be
experimentally validated through simulated balls-and-bins experiments.

We recall some notation: We fix the number of samples to N = 2D. For 1 ≤ i ≤ D, Mi
par

samples a random matrix in FN×2i

2 with row-weight 1. For any vector ~v and fixed i, we say that

53



a matrix M is very good against ~v if HW(~vᵀ ·M) ∈ [2i/3, 2i+1/3]. Then, we conjecture that the
following holds:

Conjecture 9.1 Fix 1 ≤ i ≤ D, N = 2D, a large enough w, and any vector ~v ∈ FN2 with
hamming weight between 2i−1 and 2i. The probability, over the sampling of M1, · · · ,Mw from
Mi

par, that less than w/2 of the Mj’s are very good against ~v is at most 2−w·2
i−1.

The above can be formulated as a balls and bins experiment: consider an experiment where
one throws t balls into 2i bins at random, and declares “success” if the fraction of bins with
an odd number of balls at the end of the experiment is between 1/3 and 2/3. Then, the
above conjecture states that when t ∈ [2i−1, 2i], if one repeats this experiment w times, the
probability that less than w/2 of them are successful is at most 2−w·2

i−1 . We view experimentally
validating or disproving this conjecture as an important direction toward understanding the
concrete resistance of VDLPN against linear attacks.

Furthermore, if the above conjecture holds, then it implies in particular (by plugging this into
the proof of resistance against linear attacks) that with probability at least 2−w/2+logw−2 over
the sampling of a random VDLPN matrix H with parameters (w,w/4, 2w/4), the distribution
of samples has bias at most (1/2) · (2/3)w/2. Hence, the computational cost of a linear attack
against VDLPN parameters, if the conjecture is true, is expected to require about (N/2)·(2/3)w/2

boolean operations.
As a concrete example of a choice of parameters according to the above analysis, we suggest

the following as a natural target for cryptanalysis: set w = 120 and D = 30. Is it possible to
break VDLPN, with N = 230, using less than 280 boolean operations?

A Restriction-Based Linear Attack. Any learning algorithms for the class of sparse poly-
nomials over F2 with random samples break the security of the proposed WPRF candidates.
For example, our first candidate can be viewed as a wD-sparse polynomial over the variables
zi,j,h = xi,j,h⊕ki,j,h, and a learning algorithm with random samples clearly distinguishes between
our candidate and a random function. Both Bshouty [Bsh20] and Hellerstein and Servidio [HS07]
proposed such algorithms. The first algorithm [Bsh20] works for uniformly chosen samples, and
directly learns the polynomial labeling the samples. Since it hasn’t been published we provide
a description below. The second algorithm [HS07] is a PAC-learning algorithm, i.e. works over
any distribution of the samples, and learns the polynomial via intermediate representations of
the function as a generalized decision tree and a generalized decision list.

Both algorithms learn sparse polynomials with Õ(2
√
n) samples and running time and can

be viewed in our context as linear attacks. These algorithms show that our second candidate
achieves optimal security against linear attacks in an asymptotic sense.

For the restriction algorithm in [Bsh20] use the following notation. Let P be a multivariate
polynomial over F2 with n variables x = (x1, . . . , xn) and k monomials, and let σ = log2 kn.
View P as a sum P (x) = Q(x) +R(x), such that Q(x) includes all monomials of degree at most√
n and R(x) all the other monomials.
The algorithm begins by choosing a random subset i1, . . . , iσ√n ∈ {1, . . . , n}, and then

analyzing O(22σ
√
n) samples (y, P (y), where y = (y1, . . . , yn) is an assignment to x. Let Y

include all the samples that satisfy yij = 0 for all j = 1, . . . , σ
√
n. With high probability, there

are O(2σ
√
n) such samples.

Let M be some monomial in R. Partition the σ
√
n indices into σ sequences I1, . . . , Iσ of

√
n

indices each. Then, the probability that none of the variables in M has an index in Ij is at most
(1− 1/

√
n)
√
n ≤ e−1. Therefore, the probability that M does not have an index in {I1, . . . , Ij}

is at most e−σ implying thatM(y) 6= 0 with probability at most e−σ for any y ∈ Y . Since R has
at most k monomials it follows by union bound that Pr[R(y) 6= 0] ≤ elog kn which is negligible.

Except with negligible probability, P (y) = Q(y) for all y ∈ Y . Since Q is of degree
√
n it

can be completely learned via linearization given O(
(
n√
n

)
) samples. Since with high probability

54



Y has O(2σ
√
n) samples and 2σ

√
n ≥

(
n√
n

)
, the linearization step can be carried out on samples

in Y and Q(x) learned.
We complete the description of the algorithm by noting that since P is sparse, Q is a good

approximation for P . That is, Pr[M(y) 6= 0] ≤ 2−
√
n for a monomial M in R and a uniformly

chosen sample y. Therefore, Pr[R(y) 6= 0] ≤ k
2
√
n for a random y and P (x) = Q(x) except with

k
2
√
n probability.

9.2 Concrete Security Against Other Attacks

To complement the above, we briefly discuss the concrete security of our candidate against other
attacks. Regarding algebraic attacks, the natural attack proceeds by using the fact that our
candidates are degree-D multivariate polynomials. Therefore, one needs at least nD samples to
linearize the system of equations and distinguish the samples from random (the expected number
of samples needed is of the order of nD log(nD)). In the first candidate, n = w · D(D − 1)/2;
in the second candidate, n = w ·D. Therefore, the provable resistance against algebraic attacks
(which is proven in the case of the first candidate, and can be proven for a simple modification of
the second candidate, see the dicussion in Section 8.1) is actually tight, since it matches exactly
what is achieved by the straightforward linearization attack.

Regarding statistical query algorithms, fix some ε. Observe that having (1/2+ε)-correlation
with a function from a family of size s with probability s/(2w+2ε2) implies an attack which
requires about 2w+2 function evaluations, and succeeds with some constant advantage: simply
set s to 2w+2ε2 and go through all functions from the family. For each function Φ, estimate
whether Prx[FK(x) = Φ(x)] by sampling about (1/ε)2 independent x and counting the number
of times that FK(x) = Φ(x). Since the function family contains a function correlated with
FK , and this correlation is detected with constant probability using 1/ε2 samples, this attack
succeeds with constant probability, and requires of the order of 2w function evaluations.

In particular, in the case of our second candidate where n = w ·D (and D < w), this implies
that every statistical query algorithm also requires at least 2

√
n function evaluations, which is

the optimal security one can hope for anyway in light of the restriction attack described above.

9.3 Concrete Efficiency Estimations for PCF for VOLE

In light of the above discussions, instantiating the parameters with w ≈ 1.5 · λ, D = w/4, and
N = 2D, both our main candidate and the two variants can plausibly achieve λ bits of security.
We note that these are very preliminary estimates, which could be off by a large margin and be
either too optimistic or too conservative. Further, we note that our arguments and discussions
only support the security claims regarding our main candidate and the first variant; for the
second variant, we could not provide any proof of resistance against families of attacks. At the
same time, however, we could not find any attack that performs significantly better against the
second variant compared to the main candidate and the first variant.

Plugging our second variant (modified to work over rings as in Section 6.3) into the construc-
tion of PCF for VOLE of Section 6.4, and using the fact that distributed point functions for all
prefixes of a point can be generated “all at once” at only a factor-2 cost compared to generating
a single DPF (using the decision tree construction of [BGI16b]), leads to a PCF for VOLE over
a ring R with N = 2D samples using key size

≈ 2w · (D · κ+ log2 |R|)

bits, where κ denotes a seed size for a PRG. Using the more conservative variants of our PCF
construction (either the main candidate or the first variant), the above size grows by a factor
D/2. With λ = 80 and log2 |R| = 64, setting κ to 128 (as in an AES-based implementation),
this gives the numbers of 120kB and 2MB mentioned in the introduction, for the second variant

55



Protocol ΠYcorr∗

Initialization. On input 1λ proceed as follows:

• The parties call FPCF.Gen, where FPCF.Gen is the ideal functionality which samples
keys (k0, k1)

$← PCF.Gen(1λ) and returns kσ to Pσ.

Invocation. On input x ∈ {0, 1}n(λ) proceed as follows:

• Pσ outputs yσ ← PCF.Eval(σ, kσ, x).

Figure 12: Protocol for producing correlated randomness based on a strong PCF (PCF.Gen,PCF.Eval).

and main candidate, respectively. Based on the performance of AES on a single core of a
modern CPU, we expect the computational efficiency of the second variant of the PCF can be
as high as 10–20 thousand evaluations per second, and this easily scales with multiple cores. We
can also obtain a PCF for OT with roughly the same costs, using the binary form of the WPRF
and the optimized PCF from Remark 5.6.

10 Applications

In this section we motivate the PCF primitive and our constructions by discussing a number of
cryptographic applications. At a high level, the power of PCF stems from enabling two parties
— at the cost of a one-time distributed setup — to locally generate an effectively unbounded
amount of correlated randomness. Correlated randomness is a valuable resource, as in many
contexts it gives rise to information-theoretic security and attractive efficiency features. While
the information-theoretic security feature is lost when applying a PCF, the efficiency features
remain. We discuss several concrete use-cases below.

10.1 Secure Multiparty Computation with Fully Reusable Preprocessing

We first turn our attention to secure multiparty computation (MPC), where two or more parties
want to securely evaluate a public function on their private inputs, such that the parties learn the
function output and nothing beyond this output. Security is typically defined by considering
an external adversary who may corrupt a strict subset of the parties. MPC with no honest
majority, where the adversary can corrupt any number of parties, is impossible to realize in
general with information-theoretic security. This applies in particular to the two-party case.
However, MPC with no honest majority can be realized with information-theoretic security given
suitable sources of secret correlated randomness, with good concrete efficiency. The most basic
notion of correlated randomness in the setting of secure computation are OT correlations, which
in fact are sufficient for the secure computation of general functionalities [GMW87,Kil88,IPS08].

In the following we extend the result of [BCG+19b] to PCFs, showing that PCFs can be
used as a plug-in replacement to the pre-processing phase in protocols consuming correlated
randomness that allow corrupted parties to influence their share of the correlated randomness.
This includes most MPC protocols from the literature, and in concretely efficient protocols such
as [BDOZ11,DPSZ12,NNOB12,WRK17a,WRK17b]. We first show the applicability of PCFs
in the two-party setting, and then consider applications in multi-party setting in Section 10.5.

More formally, a PCF can be used used (as depicted in protocol ΠYcorr∗, Figure 12) to securely
realize a corruptible functionality FYcorr∗ (see Figure 13) for the ideal generation of correlated
randomness.

56



Functionality FYcorr∗

Initialization. On input 1λ, the functionality does as follows:

• Set Q = ∅.

• If the correlation requires setup: Sample mk← Setup(1λ).

Invocation. On input x ∈ {0, 1}n(λ) proceed as follows:

• Check if (x, y0, y1) ∈ Q.

• Else, if no parties are corrupt, sample (y0, y1)← Y(1λ,mk).

• Else, if Pσ is corrupt, wait to receive yσ ∈ {0, 1}`σ from A. Then, sample
y1−σ ← RSample(1λ,mk, σ, yσ).

• Set Q = Q∪ {(x, y0, y1)} and output yσ to Pσ.

Figure 13: Corruptible correlated randomness functionality for reverse-sampleable correlation sampled by Y (with
setup algorihm Setup, if required).

Theorem 10.1 Let PCF = (PCF.Gen,PCF.Eval) be a strong PCF for the reverse-sampleable
correlation sampled by Y (with setup). Then the protocol ΠYcorr∗ securely realizes the FYcorr∗
functionality for two parties against a static, malicious adversary (even if the adversary is given
full adaptive control over the choice inputs x ∈ {0, 1}n(λ)).

Proof. Let A be a static adversary against the protocol ΠYcorr∗. We construct a simulator Sim,
which interacts with A and FYcorr∗ to produce a view for A that is indistinguishable from a real
execution of the protocol. When both parties are corrupted, the simulator just runs A internally
and security is straightforward. Similarly, when both parties are honest, simulation is trivial and
indistinguishability follows as PCF satisfies pseudorandomness of outputs with adaptive queries
(i.e. indistinguishability even holds if the adversary is given full adaptive control over x). Now
suppose that only Pσ is corrupted, for σ ∈ {0, 1}. On receiving the input 1λ, Sim samples a
pair of seeds (k0, k1) ← PCF.Gen(1λ) and sends kσ to A as its output of FPCF.Gen. On input
xi, the simulator computes yi,σ ← PCF.Eval(σ, kσ, xi) and sends this to FFcorr∗. Let N be the
number of inputs to FFcorr∗. Notice that in the ideal execution, the view of the distinguisher
consists of the seed kσ and the honest party’s output (yi,1−σ)i∈[N ], which is computed by FYcorr∗
as yi,1−σ ← RSample(1λ,mk, σ, yi,σ). The only difference in the real execution, is that there the
i-th honest party’s output is computed as yi,1−σ ← PCF.Eval(1 − σ, k1−σ, xi). These two views
are computationally indistinguishable, due to the strong security of PCF (even if the adversary
has full control over the choice of inputs x ∈ {0, 1}n(λ) after seeing its key kσ). �

Note that in order to establish PCFs as a source for correlated randomness, the parties need
to securely distribute the PCF keys, which we will briefly elaborate on in the following. But —
different to previous approaches for correlated randomness that were either inherently limited to
a one-time use or only allowed limited reusability — once the parties share a PCF key pair, they
can engage in arbitrarily many protocol invocations consuming correlated randomness, without
the need to perform any further interactive preprocessing.

Realizing distributed key generation. Recall that the ideal key generation FPCF.Gen re-
ceives as input 1λ, sets up a pair of keys (k0, k1)← PCF.Gen(1λ) and returns kσ to Pσ.

When restricting the input domain to be polynomially bounded, as for previous constructions

57



of pseudorandom correlation generators, one could implement FPCF.Gen with the protocol for
distributed setup of point functions by Doerner and shelat [Ds17] (for semi-honest security).
For our PCF for OT with bounded input domain, one could further rely on the optimized
protocol of Boyle et al. [BCG+19a] yielding a 2-round setup. They also give a setup protocol
with malicious security, but at the cost of a slightly stronger assumption — translated to our
setting, this requires to assume that VD-LPN holds even if the adversary is given small leakage
on the key (which we expect to be the case when adapting the parameters accordingly).

As the focus of the work is full reusability and therefore an exponential input domain, we
have to resort to an “off-the-shelf” protocol for setting up the keys, such as [KRRW18]. Note
though that this only corresponds to a one-time cost, after which the parties can locally produce
correlated randomness for all future computations.

Alternatively, if one is willing to settle for security against one corruption, as remarked
in [BGI19], this cost can be avoided completely by letting a third party set up the correlated
randomness. Note that this is similar to the 3-party framework from [MR18], but in our setting
the third party does not have to take part in the actual computation.

10.2 Black-box Two-Round MPC with Fully Reusable Preprocessing

Although the feasibility of MPC protocols has been established more than thirty years ago, there
is still a large gap in efficiency between the insecure approach (i.e. each party distributing its
private inputs) and the most efficient secure realization. One important measure of complexity
is the number of communication rounds between the parties required for the protocol. While
the insecure approach gets by with one round, it is easy to see that any secure realization
requires at least two rounds. But — even though possible — the construction of secure 2-
round protocols for secure computation turns out to be much more challenging than protocols
for secure computation with arbitrary round complexity. The first proposal of a two-round
secure MPC protocol [GGHR14] was published only in 2014 and still relied on assuming the
existence of indistinguishability obfuscation. Since then rapid progress in this area has seen a
number of proposed protocols based on seemingly weaker assumptions, such as Learning with
Errors [MR17,BP16,PS16] and bilinear maps [GS17,BF01,Jou04], and was ultimately based on
the minimal assumption that a 2-round oblivious transfer (OT) protocol exists [BL18,GS18].

However, even latter OT-based protocols are still far from being concretely efficient, which
can be explained by their inherent non-black box use of the underlying OT protocol [ABG+20].
Garg et al. [GIS18] showed that this black-box impossibility can be circumvented by giving each
pair of parties access to random OT correlations. Given this setup, they presented a 2-round
protocol making only a black-box use of a pseudorandom generator, and achieving security
against a malicious adversary corrupting an arbitrary number of parties. Plugging in our PCF
for setting up the correlated randomness results — at a one-time setup cost — in a black-box
protocol for two-round MPC with fully reusable preprocessing.

10.3 NIZKs with Fully Reusable Preprocessing

Zero-knowledge proofs allow a prover to convince a verifier of a statement without revealing
anything beyond this statement. Zero-knowledge proofs, in some sense, can be viewed as a
special case of secure computation, where only the prover has a secret input (that is, the witness
for the statement being true), and the verifier wants to receive the output (i.e. 1 if the statement
is true). While non-interactive zero-knowledge (NIZK) proofs turn out to be impossible to realize
in the plain model, they exist when given a common reference string, generated by a trusted third
party. There has been great effort in realizing the notion of non-interactive zero knowledge proofs
for general NP languages. Remarkably, Peikert and Shiehian [PS19] — following the line of work
of [CCRR18,HL18,CCH+19] — gave a construction of NIZKs from plain Learning with Errors.
Brakerski et al. [BKM20] recently showed that NIZKs can be constructed based on the hardness

58



of both the learning parity with noise (LPN) assumption and the existence of trapdoor hash
functions. However, we still lack instantiations from Learning Parity with Noise assumption
(or any flavors thereof) alone. Further, the results in the recent line of work — instantiating
the Fiat–Shamir transform with a suitable correlation intractable hash function family — have
a strong non-black-box flavor and are far from being concretely efficient. In order to overcome
these limitations and enable further diversification of assumptions several relaxations of NIZKs
have been introduced, such as designated verifier NIZKs (DV-NIZKs), where a trusted third
party additionally gives a secret verification key to the verifier, or preprocessing NIZKs (PP-
NIZKs), in which the trusted party generates — in addition to to the verification key — a secret
proving key for the prover.

NIZKs from PCF for OT. Information-theoretic constructions of NIZK are known in the
OT-hybrid model [KMO90,PsV06,IKOS07,GIK+15], i.e. given access to OT correlations, where
— similar to secure computation — the number of OT correlations to be used scales with the
size (and the number) of the theorems to be proven. Building on this line of work, Boyle et
al. [BCG+19b] showed that from a PCG for OT, one can build a PP-NIZK supporting a form of
bounded reusability, where the setup can be used to prove an arbitrary polynomial but a-priori
bounded number of theorems. Replacing PCGs by PCFs gives rise to a construction of PP-NIZKs
with fully reusable preprocessing, where after a one-time setup the parties can prove and verify
an arbitrary number of statements. The downside of this approach is that in order to compute
a NIZK for an NP-relation represented by a Boolean circuit of size s, the online phase has a
computational cost that scales superlinear with s, typically multiplied by a statistical security
parameter.

NIZKs from PCFs for VOLE or OLE over large fields. It turns out that by replacing
OT correlation with OLE or even VOLE over F, one can obtain much more efficient NIZK proto-
cols that apply directly to arithmetic circuits over F [BCGI18,CDI+19,WYKW20]. The recent
VOLE-based protocol from [WYKW20] has competitive concrete efficiency not only for arith-
metic circuits but also for Boolean circuits. From an asymptotic point of view, the distinctive
feature of this approach to NIZK is that the statement-dependent online phase of generating
and verifying a proof has constant computational overhead in the arithmetic computation model,
compared to evaluating the verification circuit in the clear. That is, the protocol achieves sound-
ness error of O(1/F) while only requiring a small constant number of field operations for each
arithmetic gate of the computation being verified. This should be contrasted with zk-SNARGs,
which have sublinear communication and verifier computation, but on the other hand are much
heavier in terms of prover computation.

Related work. Recently, Lombardi et al. [LQR+19] showed how to construct reusable DV-
NIZKs, i.e. where the verifier can reuse the verification key across many verifications, and the
stronger notion of malicious DV-NIZKs, based on the generic assumption of public-key encryp-
tion together with a weak form of key-dependent secure secret-key encryption. These compo-
nents can in particular be instantiated from low-noise Learning Parity with Noise. Their result
is somewhat orthogonal to ours: While they obtain the stronger notion of reusable DV -NIZKs
from a — technically incomparable but “morally” — weaker assumption, the main advantage of
constructing PP-NIZKs via the VOLE-hybrid model is that its online phase is very lightweight
and does not involve public key cryptography. As discussed above, when evaluating the PCF in
a statement-independent offline phase, computing and verifying each VOLE-based proof requires
only a small constant-factor overhead compared to evaluating the circuit in the clear.

59



10.4 Homomorphic Secret Sharing for Constant-Degree Polynomials

Homomorphic secret sharing (HSS) [BGI16a] is the dual notion to function secret sharing, allow-
ing two (or more) parties to locally evaluate a public function on secret-shared inputs. HSS has
many applications, including succinct secure computation in which communication complexity
is smaller than the circuit size. It was observed in [BCG+19b] that a PCG for constant-degree
correlations yields a homomorphic secret sharing scheme to evaluate arbitrary constant-degree
polynomials. We extend their result as follows:

• The homomorphic secret sharing scheme can build on reusable setup, thereby significantly
reducing the cost for sharing an input value.

• The computation time for every evaluation scales in the number of variables and number
of terms of the polynomial only (instead of scaling with the number of all possible degree-d
terms).

Consider two parties who wish to compute shares of p(x) for some public multivariate poly-
nomial p(X1, . . . , Xm) over some ring R, given shares of x = (x1, . . . , xm) ∈ Rm. Given a
wPRF-based universal PCF for degree-d correlations (as given in Section 6.4 for the case of
R = F2), we construct a public-key homomorphic secret sharing scheme with reusable setup
HSS = (HSS.Gen,HSS.Share,HSS.Eval) for arbitrary degree-d polynomials as follows.

• HSS.Setup(1λ): Generate PCF keys (k0, k1) ← PCF.Gen(1λ) and let K the corresponding
weak PRF key.

• HSS.Share(σ,K, x): Choose a value ρ $← R and output (ρ, FK(ρ) + x).

• HSS.Eval(σ, kσ, sσ, p): On input party index σ ∈ {0, 1}, m-tuple of shares (ρi, yi)i∈[m], and
a degree-d multivariate polynomial p, compute a share p′σ of the polynomial p′ satisfying
p′(X) = p(X − R), where R = (FK(ρ1), . . . , FK(ρm)). Note that the coefficients of p′

are public degree ≤ d polynomials in R, hence shares of the coefficients can be locally
computed via the PCF evaluation algorithm. Output p′σ(y) = ρσ(x).

Correctness and security follow from the properties of the underlying PCF.

10.5 Programmable PCFs with Applications to MPC with M ≥ 3 parties

In order for a broader range of applications — that is, for example using PCFs to achieve
secure computation in the multi-user setting with online communication linear in the number of
users — we require the PCF to additionally satisfy programmability, which basically allows the
parties to reuse their inputs across different PCF instantiations (compare [BCG+19b]). Note
that similar to the basic construction of PCG for OT in [BCG+19b], our standard PCF for OT
does not support reusability of inputs, because the sender message pairs are implicitly defined
by the receiver’s choice bits. But, building on the universal PCF for degree-2 correlations (see
Figure 10), we will present a programmable PCF for OT in this section.

In order to define the notion of programmability formally, we first recall the definition of a
simple bilinear correlation. For this we consider G1,G2,GT groups and e : G1 ×G2 → GT be a
bilinear map. Note that the size of the groups will for some applications depend on the security
parameters, which will be implicit in the following.

Note that any bilinear correlation is reverse sampleable. This includes most of the commonly
used correlations such as OT and OLE. For example, OT can be obtained with G1 = G2 = GT =
({0, 1},⊕) and e(x, y) = x ·y Also, note that two independent bilinear correlations can be locally
converted to produce an additively secret-shared instance of the correlation — for example, two
OLEs can be locally converted to one multiplication triple.

60



Definition 10.2 (Simple bilinear correlation) Let G1,G2,GT be Abelian groups and e : G1×
G2 → GT be a bilinear map. We define Ye as the algorithm that samples the simple bilinear
correlation defined by e. More formally, let Ye be the algorithm, that on input 1λ samples from
the following distribution over (G1 ×GT )× (G2 ×GT ):

{((r0, s0), (r1, s1)) | r0 ← G1, r1 ← G2, s0 ← GT , s1 = e(r0, r1)− s0} .

(Recall that the groups here may depend on λ.)

Definition 10.3 (Simple Bilinear Correlation: M-party) Given Ye specified by e : G1 ×
G2 → GT , we define YM,e as the corresponding M -party correlation YM,e, obtained by sampling
from: (ai, bi, ci)i∈[M ]

∣∣∣∣∣∣∣
ai

$← G1, bi
$← G2 ∀i ∈ [M ], ci

$← GT ∀i ∈ [M − 1],

cM = e
(∑M

i=1 ai,
∑M

i=1 bi

)
−
∑M−1

i=1 ci


Programmability for a PCF means basically, that a party can reuse its input (e.g. the

receiver choice bit or the sender messages) across many instances. This is captured in the
following definition.

Definition 10.4 (Programmability) A PCF PCF = (PCF.Gen,PCF.Eval) for Ye (specified by
e : G1 × G2 → GT ) supports reusable inputs if there exists an algorithm PCF.Genp that takes
additional random inputs ρ0, ρ1 ∈ {0, 1}? such that:

• Indistinguishability. The distributions{
(k0, k1) | (k0, k1)← PCF.Gen(1λ)

}
and{

(k0, k1) | (ρ0, ρ1)← $, (k0, k1)← PCF.Genp(1λ; ρ0, ρ1)
}

are computationally indistinguishable.

• Programmability. There exist public efficiently computable functions f0, f1 for which

Pr


ρ0, ρ1 ← $, (k0, k1)← PCF.Genp(1λ; ρ0, ρ1)

(a, c)← PCF.Eval(0, k0, x),

(b, d)← PCF.Eval(1, k1, x)

:
a = f0(ρ0, x)

b = f1(ρ1, x)

 ≥ 1− negl(λ).

• Security. For any σ ∈ {0, 1}, the distributions{
(kσ, (ρ0, ρ1)) | (ρ0, ρ1)← $, (k0, k1)← PCF.Genp(1λ; ρ0, ρ1)

}
and{

(kσ, (ρσ, ρ̃)) | (ρ0, ρ1, ρ̃)← $, (k0, k1)← PCF.Genp(1λ; ρ0, ρ1),

}
are computationally indistinguishable.

To simplify notation, in the following we will write PCF.Gen when referring to PCF.Genp.

Theorem 10.5 (Programmable PCF for OT) If DPF is instantiated with the DPF from [GI14],
then, assuming that rVDLPN(O(λ), D, 2D) holds, PCF = (PCF.Gen,PCF.Eval) as defined in Fig-
ure 14 is an programmable (2D, negl)-secure PCF for OT with the following complexities:

61



Programmable PCF for OT based on regular VD-LPN

Let DPF = (DPF.Gen,DPF.Eval) be an FSS scheme for point functions with variable
input length. Recall that fKi,j : {0, 1}i → {0, 1} is the point function with fKi,j (x) = 1
if and only if x = Ki,j .

PCF.Gen(1λ; ρ0, ρ1): On input 1λ and ρ0, ρ1 ∈ {0, 1}w·D(D+1)/2:

1. Set K = ρ0 and K ′ = ρ1.

2. Parse K as Ki,j ∈ {0, 1}i, for j ∈ [w], i ∈ [D] (and accordingly for K ′).

3. For all j, j′ ∈ [w] and i, i′ ∈ [D]:

• Sample FSS keys K fss
0,i,j,i′,j′ ,K

fss
1,i,j,i′,j′ ← DPF.Gen(1λ, i · j, fKi,j⊗K′i′,j′ ).

4. For σ ∈ {0, 1} set K fss
σ := {K fss

σ,i,j,i′,j′}j,j′∈[w],i,i′∈[D].

5. Output the keys k0 = (K,K fss
0 ) and k1 = (K ′,K fss

1 ).

PCF.Eval(σ, kσ, x): On input a random x ∈ {0, 1}w·D(D+1)/2:
Parse x as xi,j ∈ {0, 1}i, for j ∈ [w], i ∈ [D].

• If σ = 0:

1. Compute a← FK(x).
2. For j, j′ ∈ [w], i, i′ ∈ [D]: ci,j,i′,j′ ← DPF.Eval(0,K fss

0,i,j,i′,j′ , xi,j ⊗ xi′,j′)
3. Compute c =

⊕w
j,j′=1

⊕D
i,i′=1 ci,j,i′,j′ .

4. Output (a, c).

• If σ = 1:

1. Compute b← FK′(x).
2. For j, j′ ∈ [w], i, i′ ∈ [D]: di,j,i′,j′ ← DPF.Eval(1,K fss

1,i,j,i′,j′ , xi,j ⊗ xi′,j′)
3. Compute d =

⊕w
j,j′=1

⊕D
i,i′=1 di,j,i′,j′ .

4. Output (b, d).

Figure 14: Programmable PCF for OT based on regular VD-LPN.

• Each party’s key is of size O(λ3 ·D4) bits,

• the cost of PCF.Gen and PCF.Eval is each dominated by O(λ2 ·D4) invocations of a pseu-
dorandom generator.

Proof. [Sketch] First, note that the output of PCF.Eval can be transformed into an OT-
correlation by setting s0 = c, s1 = c ⊕ a, z = b and sz = d, as then have (s0 ⊕ s1) · z =
a · b = c ⊕ d = s0 ⊕ sz as required (by correctness of DPF). Programmibility follows with
fσ(ρσ, x) = Fρσ(x). Finally, security follows from the security of DPF, similar to the proofs of
Theorem 5.3.

�
For a generic construction of a programmable PCF for VOLE from a weak PRF together

with a suitable FSS, we refer to Appendix C.

Secure Multi-Party Computation with Linear Communication. Now, we are ready
to give a general transformation from any programmable PCF for a simple bilinear correlation

62



Multi-Party PCF for simple bilinear correlation

• PCFM .Gen(1λ) :

1. Sample random ρ0,1, . . . , ρ0,M
$← {0, 1}λ, ρ′1,1, . . . , ρ1,M

$← {0, 1}λ as specified by
programmability property.

2. For every i 6= j ∈ [M ]: Run kij0 , k
ij
1 ← PCF.Gen(1λ, ρ0,i, ρ1,j) and sample PRG

keys Kij $← {0, 1}λ

3. For each i ∈ [M ], output ki =
(
{Kij}j 6=i, {kij0 }j 6=i, {k

ji
1 }j 6=i

)
• PCFM .Eval(i, ki, x) :

1. For every j 6= i, compute

rij ← PRFKij (x),

(aij , cij)← PCF.Eval(0, kij0 , x), (bji, dji)← PCF.Eval(1, kji1 , x)

2. Output Ai = aij , Bi = bji (same for all j) and
Ci = −

∑
j 6=i cij +

∑
j 6=i dji +

∑
j 6=i(−1)[i<j]rij + e(Ai, Bi),

where [i < j] = 1 if i < j and 0 if j < i.

Figure 15: Multi-party PCF for simple bilinear correlation.

to an M -party PCFs for the corresponding M -party correlation. This has implications to the
secure computation in the multi-user setting, as it allows to obtain secureM -party computation
protocols with total communication complexity O(Ms+M2 · costPCF.Gen), where s is the circuit
size and costPCF.Gen the cost for setting up the seeds of the two-party PCF, which is independent
of the circuit size s. In contrast, OT-based MPC protocols have total online communication
complexity O(M2s) [GMW87,HOSS18].

Our approach closely follows [BCG+19b], who gave a similar transformation for the context
of PCGs. But, due to the fact that PCGs are inherently limited to polynomial stretch, in their
case the communication complexity of setup scaled in O(M2sε) for a constant ε. In particular,
for their approach an upper bound on the circuit size had to be known at the time of setup.
PCFs, on the other hand, allow secure computation with linear communication after a fully-
reusable one-time setup. Note that traditional approaches with linear online communication
complexity even require an offline communication of O(M2s) [FH96,CDN01,DPSZ12].

In the following we present a generic transformation from any programmable PCF for a
simple bilinear correlation to a M -party PCF for the corresponding multi-party correlation. For
a formal definition of multi-party PCFs, we refer to Appendix D. We omit the proof as it is
straightforward.

Theorem 10.6 (Multi-party simple bilinear PCF) Let PCF = (PCF.Gen,PCF.Eval) be a
PCF with reusable inputs for Ye (specified by e : G1 ×G2 → GT ) with key sizes s0(λ), s1(λ) and
let PRF be a weak PRF. Then the PCFM = (PCFM .Gen,PCFM .Eval) as defined in Figure 15 is
a PCF for the corresponding M -party correlation YM,e with the following properties.

• PCFM .Gen(1λ) runs M(M − 1) executions of PCF.Gen; each output key ki, i ∈ [M ], has
size (M − 1)(s0(λ) + s1(λ) + λ) bits.

• PCFM .Eval(i, ki, x) runs 2(M − 1) executions of PCF.Eval and makes (M − 1) evaluations
of PRF.

63



11 Acknowledgements

We would like to thank Nader Bshouty, Rocco Servedio, Jean-Pierre Tillich, Nicolas Sendrier,
and Thomas Debris for useful discussions and pointers, and the anonymous FOCS reviewers for
helpful suggestions.

E. Boyle, N. Gilboa, and Y. Ishai supported by ERC Project NTSC (742754). E. Boyle ad-
ditionally supported by ISF grant 1861/16, AFOSR Award FA9550-17-1-0069, and ERC Project
HSS (852952). G. Couteau supported by ERC Project PREP-CRYPTO (724307). N. Gilboa
additionally supported by ISF grant 2951/20, ERC grant 876110, and a grant by the BGU Cyber
Center. Y. Ishai additionally supported by NSF-BSF grant 2015782, BSF grant 2018393, ISF
grant 2774/20, and a grant from the Ministry of Science and Technology, Israel and Depart-
ment of Science and Technology, Government of India. L. Kohl is funded by NWO Gravitation
project QSC. Most research of L. Kohl was done while at Technion, supported by ERC Project
NTSC (742754). Research of L. Kohl was done in part while at Karlsruhe Institute of Tech-
nology, supported by ERC Project PREP-CRYPTO (724307) and DFG grant HO 4534/2-2. P.
Scholl supported by the Danish Independent Research Council under Grant-ID DFF-6108-00169
(FoCC) and an Aarhus University Research Foundation starting grant.

References

[AAB15] B. Applebaum, J. Avron, and C. Brzuska. Arithmetic cryptography: Extended
abstract. In ITCS 2015, pages 143–151. ACM, 2015.

[ABG+14] A. Akavia, A. Bogdanov, S. Guo, A. Kamath, and A. Rosen. Candidate weak
pseudorandom functions in AC0 o MOD2. In ITCS 2014, pages 251–260. ACM,
2014.

[ABG+20] B. Applebaum, Z. Brakerski, S. Garg, Y. Ishai, and A. Srinivasan. Separating
two-round secure computation from oblivious transfer. pages 71:1–71:18, 2020.

[ABP19] M. Abdalla, F. Benhamouda, and A. Passelègue. Algebraic XOR-RKA-secure pseu-
dorandom functions from post-zeroizing multilinear maps. LNCS, pages 386–412.
Springer, December 2019.

[ACG+06] F. Armknecht, C. Carlet, P. Gaborit, S. Künzli, W. Meier, and O. Ruatta. Efficient
computation of algebraic immunity for algebraic and fast algebraic attacks. In
EUROCRYPT 2006, LNCS 4004, pages 147–164. Springer, May / June 2006.

[ADI+17] B. Applebaum, I. Damgård, Y. Ishai, M. Nielsen, and L. Zichron. Secure arith-
metic computation with constant computational overhead. LNCS, pages 223–254.
Springer, 2017.

[AFS03] D. Augot, M. Finiasz, and N. Sendrier. A fast provably secure cryptographic hash
function. Cryptology ePrint Archive, Report 2003/230, 2003. http://eprint.
iacr.org/2003/230.

[AHI11] B. Applebaum, D. Harnik, and Y. Ishai. Semantic security under related-key attacks
and applications. In ICS 2011, pages 45–60. Tsinghua University Press, January
2011.

[AIK04] B. Applebaum, Y. Ishai, and E. Kushilevitz. Cryptography in NC0. In 45th FOCS,
pages 166–175. IEEE Computer Society Press, October 2004.

[AJ01] A. Al Jabri. A statistical decoding algorithm for general linear block codes. In IMA
International Conference on Cryptography and Coding, pages 1–8. Springer, 2001.

64

http://eprint.iacr.org/2003/230
http://eprint.iacr.org/2003/230


[AK19] B. Applebaum and E. Kachlon. Sampling graphs without forbidden subgraphs and
unbalanced expanders with negligible error. In FOCS 2019, pages 171–179, 2019.

[AKPW13] J. Alwen, S. Krenn, K. Pietrzak, and D. Wichs. Learning with rounding, revisited -
new reduction, properties and applications. In CRYPTO 2013, Part I, LNCS 8042,
pages 57–74. Springer, August 2013.

[AL18] B. Applebaum and S. Lovett. Algebraic attacks against random local functions and
their countermeasures. SIAM Journal on Computing, 47(1):52–79, 2018.

[AR16] B. Applebaum and P. Raykov. Fast pseudorandom functions based on expander
graphs. LNCS, pages 27–56. Springer, 2016.

[ARS+15] M. R. Albrecht, C. Rechberger, T. Schneider, T. Tiessen, and M. Zohner. Ciphers
for MPC and FHE. LNCS, pages 430–454. Springer, 2015.

[AW14] B. Applebaum and E. Widder. Related-key secure pseudorandom functions: The
case of additive attacks. Cryptology ePrint Archive, Report 2014/478, 2014. http:
//eprint.iacr.org/2014/478.

[Azu67] K. Azuma. Weighted sums of certain dependent random variables. Tohoku Math-
ematical Journal, Second Series, 19(3):357–367, 1967.

[BCG+17] E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, and M. Orrù. Homomorphic secret
sharing: Optimizations and applications. In ACM CCS 17, pages 2105–2122. ACM
Press, 2017.

[BCG+19a] E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, L. Kohl, P. Rindal, and P. Scholl.
Efficient two-round OT extension and silent non-interactive secure computation.
In ACM CCS 19, pages 291–308. ACM Press, 2019.

[BCG+19b] E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, L. Kohl, and P. Scholl. Efficient pseu-
dorandom correlation generators: Silent OT extension and more. LNCS, pages
489–518. Springer, 2019.

[BCG+20] E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, L. Kohl, and P. Scholl. Efficient pseu-
dorandom correlation generators from ring-lpn. 2020. To appear on eprint.

[BCGI18] E. Boyle, G. Couteau, N. Gilboa, and Y. Ishai. Compressing vector OLE. In ACM
CCS 18, pages 896–912. ACM Press, 2018.

[BCM11] M. Bellare, D. Cash, and R. Miller. Cryptography secure against related-key at-
tacks and tampering. In ASIACRYPT 2011, LNCS 7073, pages 486–503. Springer,
December 2011.

[BDOZ11] R. Bendlin, I. Damgård, C. Orlandi, and S. Zakarias. Semi-homomorphic encryption
and multiparty computation. In EUROCRYPT 2011, LNCS 6632, pages 169–188.
Springer, May 2011.

[BDVY13] A. Bogdanov, Z. Dvir, E. Verbin, and A. Yehudayoff. Pseudorandomness for width-
2 branching programs. Theory of Computing, 9(1):283–293, 2013.

[Bea91] D. Beaver. Efficient multiparty protocols using circuit randomization. In CRYPTO
’91, pages 420–432, 1991.

[Bea95] D. Beaver. Precomputing oblivious transfer. In CRYPTO’95, LNCS 963, pages
97–109. Springer, August 1995.

65

http://eprint.iacr.org/2014/478
http://eprint.iacr.org/2014/478


[BF01] D. Boneh and M. K. Franklin. Identity-based encryption from the Weil pairing. In
CRYPTO 2001, LNCS 2139, pages 213–229. Springer, August 2001.

[BFKL94] A. Blum, M. L. Furst, M. J. Kearns, and R. J. Lipton. Cryptographic primitives
based on hard learning problems. In CRYPTO’93, LNCS 773, pages 278–291.
Springer, August 1994.

[BGI14] E. Boyle, S. Goldwasser, and I. Ivan. Functional signatures and pseudorandom
functions. In PKC 2014, LNCS, pages 501–519. Springer, 2014.

[BGI15] E. Boyle, N. Gilboa, and Y. Ishai. Function secret sharing. LNCS, pages 337–367.
Springer, 2015.

[BGI16a] E. Boyle, N. Gilboa, and Y. Ishai. Breaking the circuit size barrier for secure com-
putation under DDH. In CRYPTO 2016, Part I, LNCS, pages 509–539. Springer,
August 2016.

[BGI16b] E. Boyle, N. Gilboa, and Y. Ishai. Function secret sharing: Improvements and
extensions. In ACM CCS 16, pages 1292–1303. ACM Press, 2016.

[BGI+18] E. Boyle, N. Gilboa, Y. Ishai, H. Lin, and S. Tessaro. Foundations of homomorphic
secret sharing. pages 21:1–21:21, 2018.

[BGI19] E. Boyle, N. Gilboa, and Y. Ishai. Secure computation with preprocessing via
function secret sharing. LNCS, pages 341–371. Springer, 2019.

[BGMM20] J. Bartusek, S. Garg, D. Masny, and P. Mukherjee. Reusable two-round MPC from
DDH, 2020. https://eprint.iacr.org/2020/170.

[BIP+18] D. Boneh, Y. Ishai, A. Passelègue, A. Sahai, and D. J. Wu. Exploring crypto dark
matter: New simple PRF candidates and their applications. LNCS, pages 699–729.
Springer, 2018.

[BJMM12] A. Becker, A. Joux, A. May, and A. Meurer. Decoding random binary linear codes
in 2n/20: How 1 + 1 = 0 improves information set decoding. In EUROCRYPT 2012,
LNCS 7237, pages 520–536. Springer, April 2012.

[BK03] M. Bellare and T. Kohno. A theoretical treatment of related-key attacks: RKA-
PRPs, RKA-PRFs, and applications. In EUROCRYPT 2003, LNCS 2656, pages
491–506. Springer, May 2003.

[BKM20] Z. Brakerski, V. Koppula, and T. Mour. NIZK from LPN and trapdoor hash
via correlation intractability for approximable relations. LNCS, pages 738–767.
Springer, 2020.

[BKW00] A. Blum, A. Kalai, and H. Wasserman. Noise-tolerant learning, the parity problem,
and the statistical query model. In 32nd ACM STOC, pages 435–440. ACM Press,
May 2000.

[BL18] F. Benhamouda and H. Lin. k-round multiparty computation from k-round oblivi-
ous transfer via garbled interactive circuits. LNCS, pages 500–532. Springer, 2018.

[BLP11] D. J. Bernstein, T. Lange, and C. Peters. Smaller decoding exponents: Ball-collision
decoding. In CRYPTO 2011, LNCS 6841, pages 743–760. Springer, August 2011.

[BLVW19] Z. Brakerski, V. Lyubashevsky, V. Vaikuntanathan, and D. Wichs. Worst-case
hardness for LPN and cryptographic hashing via code smoothing. LNCS, pages
619–635. Springer, 2019.

66

https://eprint.iacr.org/2020/170


[BP16] Z. Brakerski and R. Perlman. Lattice-based fully dynamic multi-key FHE with
short ciphertexts. In CRYPTO 2016, Part I, LNCS, pages 190–213. Springer,
August 2016.

[BPR12] A. Banerjee, C. Peikert, and A. Rosen. Pseudorandom functions and lattices. In
EUROCRYPT 2012, LNCS 7237, pages 719–737. Springer, April 2012.

[BR17] A. Bogdanov and A. Rosen. Pseudorandom functions: Three decades later. Cryptol-
ogy ePrint Archive, Report 2017/652, 2017. http://eprint.iacr.org/2017/652.

[Bra08] M. Braverman. Polylogarithmic independence fools AC0 circuits. Journal of the
ACM (JACM), 57(5):1–10, 2008.

[Bsh97] N. H. Bshouty. On learning multivariate polynomials under the uniform distribu-
tion. Inf. Process. Lett., 61(6):303–309, 1997.

[Bsh20] N. H. Bshouty. Pac learning sparse polynomials. Private communication, 2020.

[BW13] D. Boneh and B. Waters. Constrained pseudorandom functions and their appli-
cations. In ASIACRYPT 2013, Part II, LNCS 8270, pages 280–300. Springer,
December 2013.

[Car20] C. Carlet. Boolean Functions for Cryptography and Coding Theory. Cambridge
University Press, 2020.

[CCF+16] A. Canteaut, S. Carpov, C. Fontaine, T. Lepoint, M. Naya-Plasencia, P. Paillier,
and R. Sirdey. Stream ciphers: A practical solution for efficient homomorphic-
ciphertext compression. In FSE 2016, LNCS, pages 313–333. Springer, 2016.

[CCH+19] R. Canetti, Y. Chen, J. Holmgren, A. Lombardi, G. N. Rothblum, R. D. Rothblum,
and D. Wichs. Fiat-Shamir: from practice to theory. In 51st ACM STOC, pages
1082–1090. ACM Press, 2019.

[CCRR18] R. Canetti, Y. Chen, L. Reyzin, and R. D. Rothblum. Fiat-Shamir and correlation
intractability from strong KDM-secure encryption. LNCS, pages 91–122. Springer,
2018.

[CDI+19] M. Chase, Y. Dodis, Y. Ishai, D. Kraschewski, T. Liu, R. Ostrovsky, and V. Vaikun-
tanathan. Reusable non-interactive secure computation. LNCS, pages 462–488.
Springer, 2019.

[CDN01] R. Cramer, I. Damgård, and J. B. Nielsen. Multiparty computation from threshold
homomorphic encryption. In Advances in Cryptology - EUROCRYPT 2001, Inter-
national Conference on the Theory and Application of Cryptographic Techniques,
Innsbruck, Austria, May 6-10, 2001, Proceeding, pages 280–299, 2001.

[CIKK16] M. L. Carmosino, R. Impagliazzo, V. Kabanets, and A. Kolokolova. Learning
algorithms from natural proofs. In CCC 2016, pages 10:1–10:24, 2016.

[CKPS00] N. Courtois, A. Klimov, J. Patarin, and A. Shamir. Efficient algorithms for solving
overdefined systems of multivariate polynomial equations. In International Confer-
ence on the Theory and Applications of Cryptographic Techniques, pages 392–407.
Springer, 2000.

[CM03] N. T. Courtois and W. Meier. Algebraic attacks on stream ciphers with linear feed-
back. In International Conference on the Theory and Applications of Cryptographic
Techniques, pages 345–359. Springer, 2003.

67

http://eprint.iacr.org/2017/652


[Cou01] N. T. Courtois. The security of hidden field equations (hfe). In Cryptographers’
Track at the RSA Conference, pages 266–281. Springer, 2001.

[Cou03] N. T. Courtois. Fast algebraic attacks on stream ciphers with linear feedback. In
Annual International Cryptology Conference, pages 176–194. Springer, 2003.

[Cou04] N. T. Courtois. General principles of algebraic attacks and new design criteria for
cipher components. In International Conference on Advanced Encryption Standard,
pages 67–83. Springer, 2004.

[DAT17] T. Debris-Alazard and J.-P. Tillich. Statistical decoding. In 2017 IEEE Interna-
tional Symposium on Information Theory (ISIT), pages 1798–1802. IEEE, 2017.

[DGJ+09] I. Diakonikolas, P. Gopalan, R. Jaiswal, R. A. Servedio, and E. Viola. Bounded
independence fools halfspaces. In 50th FOCS, pages 171–180. IEEE Computer
Society Press, October 2009.

[DHRW16] Y. Dodis, S. Halevi, R. D. Rothblum, and D. Wichs. Spooky encryption and its
applications. LNCS, pages 93–122. Springer, August 2016.

[DKN10] I. Diakonikolas, D. M. Kane, and J. Nelson. Bounded independence fools degree-2
threshold functions. In 51st FOCS, pages 11–20. IEEE Computer Society Press,
October 2010.

[DPSZ12] I. Damgård, V. Pastro, N. P. Smart, and S. Zakarias. Multiparty computation
from somewhat homomorphic encryption. In CRYPTO 2012, LNCS 7417, pages
643–662. Springer, August 2012.

[Ds17] J. Doerner and a. shelat. Scaling ORAM for secure computation. In ACM CCS
17, pages 523–535. ACM Press, 2017.

[EKM17] A. Esser, R. Kübler, and A. May. LPN decoded. LNCS, pages 486–514. Springer,
2017.

[Fau99] J.-C. Faugere. A new efficient algorithm for computing gröbner bases (f4). Journal
of pure and applied algebra, 139(1-3):61–88, 1999.

[Fau02] J. C. Faugère. A new efficient algorithm for computing gröbner bases without
reduction to zero (f 5). In Proceedings of the 2002 international symposium on
Symbolic and algebraic computation, pages 75–83, 2002.

[FH96] M. K. Franklin and S. Haber. Joint encryption and message-efficient secure com-
putation. J. Cryptology, 9(4):217–232, 1996.

[FKI06] M. P. Fossorier, K. Kobara, and H. Imai. Modeling bit flipping decoding based on
nonorthogonal check sums with application to iterative decoding attack of mceliece
cryptosystem. IEEE Transactions on Information Theory, 53(1):402–411, 2006.

[FS09] M. Finiasz and N. Sendrier. Security bounds for the design of code-based cryp-
tosystems. In ASIACRYPT 2009, LNCS 5912, pages 88–105. Springer, December
2009.

[GGHR14] S. Garg, C. Gentry, S. Halevi, and M. Raykova. Two-round secure MPC from
indistinguishability obfuscation. In TCC 2014, LNCS 8349, pages 74–94. Springer,
February 2014.

68



[GGM84] O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions
(extended abstract). In 25th FOCS, pages 464–479. IEEE Computer Society Press,
October 1984.

[GGM86] O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions.
J. ACM, 33(4):792–807, 1986.

[GHS12] C. Gentry, S. Halevi, and N. P. Smart. Fully homomorphic encryption with polylog
overhead. In EUROCRYPT 2012, LNCS 7237, pages 465–482. Springer, April 2012.

[GI14] N. Gilboa and Y. Ishai. Distributed point functions and their applications. In
EUROCRYPT 2014, LNCS, pages 640–658. Springer, 2014.

[GIK+15] S. Garg, Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. Cryptography
with one-way communication. In CRYPTO 2015, Part II, LNCS, pages 191–208.
Springer, August 2015.

[GIS18] S. Garg, Y. Ishai, and A. Srinivasan. Two-round MPC: Information-theoretic and
black-box. LNCS, pages 123–151. Springer, 2018.

[GLM+04] R. Gennaro, A. Lysyanskaya, T. Malkin, S. Micali, and T. Rabin. Algorithmic
tamper-proof (ATP) security: Theoretical foundations for security against hard-
ware tampering. In TCC 2004, LNCS 2951, pages 258–277. Springer, February
2004.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or A
completeness theorem for protocols with honest majority. In 19th ACM STOC,
pages 218–229. ACM Press, May 1987.

[Gol04] O. Goldreich. Foundations of Cryptography: Volume 2, Basic Applications. Cam-
bridge University Press, New York, NY, USA, 2004.

[GS17] S. Garg and A. Srinivasan. Garbled protocols and two-round MPC from bilinear
maps. In 58th FOCS, pages 588–599. IEEE Computer Society Press, 2017.

[GS18] S. Garg and A. Srinivasan. Two-round multiparty secure computation from minimal
assumptions. LNCS, pages 468–499. Springer, 2018.

[GV04] D. Gutfreund and E. Viola. Fooling parity tests with parity gates. In Approxima-
tion, Randomization, and Combinatorial Optimization. Algorithms and Techniques,
pages 381–392. Springer, 2004.

[Hea08] A. D. Healy. Randomness-efficient sampling within nc. Computational Complexity,
17(1):3–37, 2008.

[HKL+12] S. Heyse, E. Kiltz, V. Lyubashevsky, C. Paar, and K. Pietrzak. Lapin: An efficient
authentication protocol based on ring-LPN. In FSE 2012, LNCS 7549, pages 346–
365. Springer, March 2012.

[HL18] J. Holmgren and A. Lombardi. Cryptographic hashing from strong one-way func-
tions (or: One-way product functions and their applications). In 59th FOCS, pages
850–858. IEEE Computer Society Press, 2018.

[HOSS18] C. Hazay, E. Orsini, P. Scholl, and E. Soria-Vazquez. TinyKeys: A new approach
to efficient multi-party computation. LNCS, pages 3–33. Springer, 2018.

[HS07] L. Hellerstein and R. A. Servedio. On PAC learning algorithms for rich boolean
function classes. Theor. Comput. Sci., 384(1):66–76, 2007.

69



[IKNP03] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank. Extending oblivious transfers effi-
ciently. In CRYPTO 2003, LNCS 2729, pages 145–161. Springer, August 2003.

[IKOS07] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. Zero-knowledge from secure
multiparty computation. In 39th ACM STOC, pages 21–30. ACM Press, June 2007.

[IKOS08] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. Cryptography with constant
computational overhead. In 40th ACM STOC, pages 433–442. ACM Press, May
2008.

[IPS08] Y. Ishai, M. Prabhakaran, and A. Sahai. Founding cryptography on oblivious
transfer - efficiently. In CRYPTO 2008, LNCS 5157, pages 572–591. Springer,
August 2008.

[Jou04] A. Joux. A one round protocol for tripartite Diffie-Hellman. Journal of Cryptology,
17(4):263–276, September 2004.

[Kea98] M. Kearns. Efficient noise-tolerant learning from statistical queries. Journal of the
ACM (JACM), 45(6):983–1006, 1998.

[Kha93] M. Kharitonov. Cryptographic hardness of distribution-specific learning. In 25th
ACM STOC, pages 372–381. ACM Press, May 1993.

[Kil88] J. Kilian. Founding cryptography on oblivious transfer. In 20th ACM STOC, pages
20–31. ACM Press, May 1988.

[KMO89] J. Kilian, S. Micali, and R. Ostrovsky. Minimum resource zero-knowledge proofs
(extended abstract). In 30th FOCS, pages 474–479. IEEE Computer Society Press,
October / November 1989.

[KMO90] J. Kilian, S. Micali, and R. Ostrovsky. Minimum resource zero-knowledge proofs
(extended abstract). In CRYPTO’89, LNCS 435, pages 545–546. Springer, August
1990.

[KPTZ13] A. Kiayias, S. Papadopoulos, N. Triandopoulos, and T. Zacharias. Delegatable
pseudorandom functions and applications. In ACM CCS 13, pages 669–684. ACM
Press, November 2013.

[KRRW18] J. Katz, S. Ranellucci, M. Rosulek, and X. Wang. Optimizing authenticated gar-
bling for faster secure two-party computation. LNCS, pages 365–391. Springer,
2018.

[LMN89] N. Linial, Y. Mansour, and N. Nisan. Constant depth circuits, Fourier transform,
and learnability. In 30th FOCS, pages 574–579. IEEE Computer Society Press,
October / November 1989.

[LQR+19] A. Lombardi, W. Quach, R. D. Rothblum, D. Wichs, and D. J. Wu. New con-
structions of reusable designated-verifier NIZKs. LNCS, pages 670–700. Springer,
2019.

[LRTV09] S. Lovett, O. Reingold, L. Trevisan, and S. Vadhan. Pseudorandom bit generators
that fool modular sums. In Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques, pages 615–630. Springer, 2009.

[LT17] H. Lin and S. Tessaro. Indistinguishability obfuscation from trilinear maps and
block-wise local PRGs. LNCS, pages 630–660. Springer, 2017.

70



[LV17] C. H. Lee and E. Viola. Some limitations of the sum of small-bias distributions.
Theory of Computing, 13(1):1–23, 2017.

[Lyu05] V. Lyubashevsky. The parity problem in the presence of noise, decoding random
linear codes, and the subset sum problem. In Approximation, randomization and
combinatorial optimization. Algorithms and techniques, pages 378–389. Springer,
2005.

[Mat94] M. Matsui. Linear cryptanalysis method for DES cipher. In EUROCRYPT’93,
LNCS 765, pages 386–397. Springer, May 1994.

[MBD+18] C. A. Melchor, O. Blazy, J. Deneuville, P. Gaborit, and G. Zémor. Efficient encryp-
tion from random quasi-cyclic codes. IEEE Trans. Information Theory, 64(5):3927–
3943, 2018.

[McD89] C. McDiarmid. On the method of bounded differences, in “survey in combina-
torics,”(j. simons, ed.) london mathematical society lecture notes, vol. 141, 1989.

[MJSC16] P. Méaux, A. Journault, F.-X. Standaert, and C. Carlet. Towards stream ciphers
for efficient FHE with low-noise ciphertexts. LNCS, pages 311–343. Springer, 2016.

[MMT11] A. May, A. Meurer, and E. Thomae. Decoding random linear codes in Õ(20.054n).
In ASIACRYPT 2011, LNCS 7073, pages 107–124. Springer, December 2011.

[MO15] A. May and I. Ozerov. On computing nearest neighbors with applications to de-
coding of binary linear codes. LNCS, pages 203–228. Springer, 2015.

[MR17] P. Mohassel and M. Rosulek. Non-interactive secure 2PC in the offline/online and
batch settings. LNCS, pages 425–455. Springer, 2017.

[MR18] P. Mohassel and P. Rindal. ABY3: A mixed protocol framework for machine
learning. In ACM CCS 18, pages 35–52. ACM Press, 2018.

[MRRR14] R. Meka, O. Reingold, G. N. Rothblum, and R. D. Rothblum. Fast pseudoran-
domness for independence and load balancing. In International Colloquium on
Automata, Languages, and Programming, pages 859–870. Springer, 2014.

[MST03] E. Mossel, A. Shpilka, and L. Trevisan. On e-biased generators in NC0. In 44th
FOCS, pages 136–145. IEEE Computer Society Press, October 2003.

[MTSB13] R. Misoczki, J. Tillich, N. Sendrier, and P. S. L. M. Barreto. Mdpc-mceliece:
New mceliece variants from moderate density parity-check codes. In 2013 IEEE
International Symposium on Information Theory, pages 2069–2073, 2013.

[MV11] E. Miles and E. Viola. On the complexity of non-adaptively increasing the stretch
of pseudorandom generators. In TCC 2011, LNCS 6597, pages 522–539. Springer,
March 2011.

[MV12] E. Miles and E. Viola. Substitution-permutation networks, pseudorandom func-
tions, and natural proofs. In CRYPTO 2012, LNCS 7417, pages 68–85. Springer,
August 2012.

[NN90] J. Naor and M. Naor. Small-bias probability spaces: Efficient constructions and
applications. In 22nd ACM STOC, pages 213–223. ACM Press, May 1990.

[NNOB12] J. B. Nielsen, P. S. Nordholt, C. Orlandi, and S. S. Burra. A new approach to
practical active-secure two-party computation. In CRYPTO 2012, LNCS 7417,
pages 681–700. Springer, August 2012.

71



[NR95] M. Naor and O. Reingold. Synthesizers and their application to the parallel con-
struction of pseudo-random functions. In 36th FOCS, pages 170–181. IEEE Com-
puter Society Press, October 1995.

[NR97] M. Naor and O. Reingold. Number-theoretic constructions of efficient pseudo-
random functions. In 38th FOCS, pages 458–467. IEEE Computer Society Press,
October 1997.

[NR04] M. Naor and O. Reingold. Number-theoretic constructions of efficient pseudo-
random functions. Journal of the ACM, 51(2):231–262, 2004.

[NRR00] M. Naor, O. Reingold, and A. Rosen. Pseudo-random functions and factoring
(extended abstract). In 32nd ACM STOC, pages 11–20. ACM Press, May 2000.

[Ove06] R. Overbeck. Statistical decoding revisited. In ACISP 06, LNCS 4058, pages
283–294. Springer, July 2006.

[Pat95] J. Patarin. Cryptanalysis of the matsumoto and imai public key scheme of euro-
crypt’88. In Annual International Cryptology Conference, pages 248–261. Springer,
1995.

[Pie12] K. Pietrzak. Cryptography from learning parity with noise. In International Con-
ference on Current Trends in Theory and Practice of Computer Science, pages
99–114. Springer, 2012.

[Pra62] E. Prange. The use of information sets in decoding cyclic codes. IRE Transactions
on Information Theory, 8(5):5–9, 1962.

[PS16] C. Peikert and S. Shiehian. Multi-key FHE from LWE, revisited. LNCS, pages
217–238. Springer, 2016.

[PS19] C. Peikert and S. Shiehian. Noninteractive zero knowledge for NP from (plain)
learning with errors. LNCS, pages 89–114. Springer, 2019.

[PsV06] R. Pass, a. shelat, and V. Vaikuntanathan. Construction of a non-malleable en-
cryption scheme from any semantically secure one. In CRYPTO 2006, LNCS 4117,
pages 271–289. Springer, August 2006.

[Reg05] O. Regev. On lattices, learning with errors, random linear codes, and cryptography.
In 37th ACM STOC, pages 84–93. ACM Press, May 2005.

[RR97] A. A. Razborov and S. Rudich. Natural proofs. J. Comput. Syst. Sci., 55(1):24–35,
1997.

[Sch18] P. Scholl. Extending oblivious transfer with low communication via key-
homomorphic PRFs. LNCS, pages 554–583. Springer, 2018.

[SGRR19] P. Schoppmann, A. Gascón, L. Reichert, and M. Raykova. Distributed vector-OLE:
Improved constructions and implementation. In ACM CCS 19, pages 1055–1072.
ACM Press, 2019.

[Shp09] A. Shpilka. Constructions of low-degree and error-correcting ε-biased generators.
computational complexity, 18(4):495, 2009.

[SS96] R. E. Schapire and L. Sellie. Learning sparse multivariate polynomials over a field
with queries and counterexamples. J. Comput. Syst. Sci., 52(2):201–213, 1996.

72



[Ste88] J. Stern. A method for finding codewords of small weight. In International Collo-
quium on Coding Theory and Applications, pages 106–113. Springer, 1988.

[Vio09] E. Viola. The sum of d small-bias generators fools polynomials of degree d. Com-
putational Complexity, 18(2):209–217, 2009.

[Vio10] E. Viola. The complexity of distributions. In 51st FOCS, pages 202–211. IEEE
Computer Society Press, October 2010.

[Vio13] E. Viola. The communication complexity of addition. In 24th SODA, pages 632–
651. ACM-SIAM, January 2013.

[WRK17a] X. Wang, S. Ranellucci, and J. Katz. Authenticated garbling and efficient mali-
ciously secure two-party computation. In ACM CCS 17, pages 21–37. ACM Press,
2017.

[WRK17b] X. Wang, S. Ranellucci, and J. Katz. Global-scale secure multiparty computation.
In ACM CCS 17, pages 39–56. ACM Press, 2017.

[WYKW20] C. Weng, K. Yang, J. Katz, and X. Wang. Fast, scalable, and communication-
efficient zero-knowledge proofs for boolean and arithmetic circuits. IACR Cryptol.
ePrint Arch., 2020:925, 2020.

[YS16] Y. Yu and J. P. Steinberger. Pseudorandom functions in almost constant depth
from low-noise LPN. LNCS, pages 154–183. Springer, 2016.

[YZW+19] Y. Yu, J. Zhang, J. Weng, C. Guo, and X. Li. Collision resistant hashing from
sub-exponential learning parity with noise. LNCS, pages 3–24. Springer, December
2019.

[Zic17] L. Zichron. Locally computable arithmetic pseudorandom generators. Master’s
thesis, School of Electrical Engineering, Tel Aviv University, 2017.

73



Appendix

A Pseudorandom Correlation Generators

In the following we recall the definition of a pseudorandom correlation generator from [BCG+19b].

Definition A.1 (Correlation generator) A PPT algorithm C is called a correlation genera-
tor, if C on input 1λ outputs a pair of elements in {0, 1}N(λ)×{0, 1}N(λ), where N(λ) ≤ poly(λ).

Definition A.2 (Reverse-sampleable correlation generator) Let C be a correlation gen-
erator. We say C is reverse sampleable if there exists a PPT algorithm RSample that on input
1λ, σ ∈ {0, 1} and Rσ ∈ {0, 1}N(λ) outputs R1−σ ∈ {0, 1}N(λ) such that for σ ∈ {0, 1} the
correlation obtained via:

{(R′0, R′1) |(R0, R1)← C(1λ), R′σ := Rσ, R
′
1−σ ← RSample(1λ, σ, Rσ)}

is computationally indistinguishable from C(1λ).

Definition A.3 (Pseudorandom correlation generator (PCG)) Let C be a reverse-sampleable
correlation generator. A pseudorandom correlation generator (PCG) for C is a pair of algorithms
(PCG.Gen,PCG.Expand) with the following syntax:

• PCG.Gen(1λ) is a PPT algorithm that given a security parameter λ, outputs a pair of seeds
(k0, k1);

• PCG.Expand(σ, kσ) is a polynomial-time algorithm that on input σ ∈ {0, 1} and a seed kσ,
outputs a bit string Rσ ∈ {0, 1}N(λ).

The algorithms (PCG.Gen,PCG.Expand) should satisfy the following:

• Correctness. The correlation obtained via:

{(R0, R1) |(k0, k1)← PCG.Gen(1λ), Rσ ← PCG.Expand(σ, kσ) for σ ∈ {0, 1}}

is computationally indistinguishable from C(1λ).

• Security. For any σ ∈ {0, 1}, the following two distributions are computationally indis-
tinguishable:

{(kσ, R1−σ) | (k0, k1)← PCG.Gen(1λ), R1−σ ← PCG.Expand(1− σ, k1−σ)} and
{(kσ, R1−σ) | (k0, k1)← PCG.Gen(1λ), Rσ ← PCG.Expand(σ, kσ),

R1−σ ← RSample(1λ, σ, Rσ)}

where RSample is the reverse sampling algorithm for correlation C.

74



ExpprA,N,0(λ) :

mk← Setup(1λ)

for i = 1 to N(λ):
x(i) $← {0, 1}n(λ)

(y
(i)
0 , y

(i)
1 )← Y(1λ,mk)

b← A(1λ, (x(i), y
(i)
0 , y

(i)
1 )i∈[N(λ)])

return b

ExpprA,N,1(λ) :

(k0, k1)← PCF.Gen(1λ)
for i = 1 to N(λ):
x(i) $← {0, 1}n(λ)

for σ ∈ {0, 1}: y(i)
σ ← PCF.Eval(σ, kσ, x

(i))

b← A(1λ, (x(i), y
(i)
0 , y

(i)
1 )i∈[N(λ)])

return b

Figure 16: Pseudorandom Y-correlated outputs of a PCF.

B Full PCF Definition

In this section we give the full definition of pseudorandom corelation functions for a correlation
with setup. Further, we define a non-adaptive PCF, where the adversary is only allowed non-
adaptive queries. This definition turns out to be useful, as it is easier to instantiate than a PCF
with strong security, but still sufficient for most applications.

Definition B.1 (Reverse-sampleable correlation with setup) Let `0(λ), `1(λ) ≤ poly(λ)
be output length functions. Let (Setup,Y) be a tuple of probabilistic algorithms, such that Setup
on input 1λ returns a master key mk and Y on input 1λ and mk returns a pair of outputs
(y0, y1) ∈ {0, 1}`0(λ) × {0, 1}`1(λ).

We say that the tuple (Setup,Y) defines a reverse sampleable correlation with setup, if there
exists a probabilistic polynomial time algorithm RSample that takes as input 1λ, mk, σ ∈ {0, 1}
and yσ ∈ {0, 1}`σ(λ), and outputs y1−σ ∈ {0, 1}`1−σ(λ), such that for all mk,mk′ in the image of
Setup and all σ ∈ {0, 1} the following distributions are statistically close:

{(y0, y1) | (y0, y1)
$← Y(1λ,mk)}

{(y0, y1) | (y′0, y′1)
$← Y(1λ,mk′), yσ ← y′σ, y1−σ ← RSample(1λ,mk, σ, yσ)}

Definition B.2 (Pseudorandom correlation function (PCF)) Let (Setup,Y) fix a reverse-
sampleable correlation with setup which has output length functions `0(λ), `1(λ), and let λ ≤
n(λ) ≤ poly(λ) be an input length function. Let (PCF.Gen,PCF.Eval) be a pair of algorithms
with the following syntax:

• PCF.Gen(1λ) is a probabilistic polynomial time algorithm that on input 1λ, outputs a pair
of keys (k0, k1);

• PCF.Eval(σ, kσ, x) is a deterministic polynomial-time algorithm that on input σ ∈ {0, 1},
key kσ and input value x ∈ {0, 1}n(λ), outputs a value yσ ∈ {0, 1}`σ(λ).

We say (PCF.Gen,PCF.Eval) is a (weak) (N,B, ε)-secure pseudorandom correlation function
(PCF) for Y, if the following conditions hold:

• Pseudorandom Y-correlated outputs. For every σ ∈ {0, 1} and non-uniform adversary
A of size B(λ), it holds∣∣∣Pr[ExpprA,N,0(λ) = 1]− Pr[ExpprA,N,1(λ) = 1]

∣∣∣ ≤ ε(λ)

for all sufficiently large λ, where ExpprA,N,b(λ) for b ∈ {0, 1} is as defined in Figure 16. (In
particular, where the adversary is given access to N(λ) samples.)

75



ExpsecA,N,σ,0(λ) :

(k0, k1)← PCF.Gen(1λ)
for i = 1 to N(λ):
x(i) $← {0, 1}n(λ)

y
(i)
1−σ ← PCF.Eval(1− σ, k1−σ, x

(i))

b← A(1λ, σ, kσ, (x
(i), y

(i)
1−σ)i∈[N(λ)])

return b

ExpsecA,N,σ,1(λ) :

(k0, k1)← PCF.Gen(1λ)

mk
$← Setup(1λ)

for i = 1 to N(λ):
x(i) $← {0, 1}n(λ)

y
(i)
σ ← PCF.Eval(σ, kσ, x

(i))

y
(i)
1−σ ← RSample(1λ,mk, σ, y

(i)
σ )

b← A(1λ, σ, kσ, (x
(i), y

(i)
1−σ)i∈[N(λ)])

return b

Figure 17: Security of a PCF. Here, RSample is the algorithm for reverse sampling Y as in Definition D.1.

Exps-prA (λ) :

mk← Setup(1λ)

(k0, k1)
$← PCF.Gen(1λ)

Q = ∅
b

$← {0, 1}
b? ← AOb(·)(1λ)
if b = b? return 1
else return 0

O0(x) :
if (x, y0, y1) ∈ Q:
return (y0, y1)

else:
(y0, y1)← Y(1λ,mk)

Q = Q∪ {(x, y0, y1)}
return (y0, y1)

O1(x) :
for σ ∈ {0, 1}:
yσ ← PCF.Eval(1λ, σ, kσ, x)

return (y0, y1)

Figure 18: Strong pseudorandom Y-correlated outputs of a PCF.

• Security. For each σ ∈ {0, 1} and non-uniform adversary A of size B(λ), it holds∣∣Pr[ExpsecA,N,σ,0(λ) = 1]− Pr[ExpsecA,N,σ,1(λ) = 1]
∣∣ ≤ ε(λ)

for all sufficiently large λ, where ExpsecA,N,σ,b(λ) for b ∈ {0, 1} is as defined in Figure 17
(again, with N(λ) samples).

Definition B.3 (Strong pseudorandom correlation function (sPCF)) Let Y and (PCF.Gen,
PCF.Eval) be as in Definition B.2. We say that (PCF.Gen,PCF.Eval) is a strong (N,B, ε)-secure
PCF (sPCF) for Y if the following conditions hold:

• Strong pseudorandom Y-correlated outputs. For every non-uniform adversary A of
size B(λ) asking at most N(λ) queries to the oracle Ob(·), it holds∣∣∣∣Pr[Exps-prA (λ) = 1]− 1

2

∣∣∣∣ ≤ ε(λ)

for all sufficiently large λ, where Exps-prA (λ) is as defined in Figure 18.

• Strong security. For all σ ∈ {0, 1} and non-uniform adversaries A of size B(λ) asking
at most N(λ) queries to the oracle Ob(·), it holds∣∣∣∣Pr[Exps-secA,σ (λ) = 1]− 1

2

∣∣∣∣ ≤ ε(λ)

for all sufficiently large λ, where Exps-secA,σ (λ) for b ∈ {0, 1} is as defined in Figure 19.

Definition B.4 (Non-adaptive pseudorandom correlation function (naPCF)) Let Y and
(PCF.Gen,PCF.Eval) be as in Definition B.2. We say that (PCF.Gen,PCF.Eval) is a non-adaptive
(N,B, ε)-secure PCF for Y if the following conditions hold:

76



Exps-secA,σ (λ) :

mk← Setup(1λ)

(k0, k1)
$← PCF.Gen(1λ)

b
$← {0, 1}

b? ← AOb(·)(1λ, σ, kσ)
if b = b? return 1
else return 0

O0(x) :

y1−σ ← PCF.Eval(1− σ, k1−σ, x)
return y1−σ

O1(x) :

yσ ← PCF.Eval(σ, kσ, x)
y1−σ ← RSample(mk, σ, yσ)
return y1−σ

Figure 19: Strong security of a PCF. Here, RSample is the algorithm for reverse sampling Y according to
Definition D.1.

Expna-prA,N,0(λ) :

mk← Setup(1λ)

((x(i))i∈[N(λ)], state)← A0(1λ)

for i = 1 to N(λ):

(y
(i)
0 , y

(i)
1 )← Y

b← A1(state, (y
(i)
0 , y

(i)
1 )i∈[N(λ)])

return b

Expna-prA,N,1(λ) :

((x(i))i∈[N(λ)], state)← A0(1λ)

(k0, k1)← PCF.Gen(1λ)
for i = 1 to N(λ):

for σ ∈ {0, 1}: y(i)
σ ← PCF.Eval(σ, kσ, x

(i))

b← A1(state, (y
(i)
0 , y

(i)
1 )i∈[N(λ)])

return b

Figure 20: Pseudorandom Y-correlated outputs of a non-adaptive PCF.

• Pseudorandom correlated outputs with non-adaptive queries. For σ ∈ {0, 1} and
non-uniform adversary A = (A0,A1) of size B(λ), it holds∣∣∣Pr[Expna-prA=(A0,A1),N,0(λ) = 1]− Pr[Expna-prA=(A0,A1),N,1(λ) = 1]

∣∣∣ ≤ ε(λ)

for all sufficiently large λ, where Exps-prA,N,b(λ) for b ∈ {0, 1} is as defined in Figure 20.

• Non-adaptive security. For σ ∈ {0, 1} and non-uniform adversary A = (A0,A1) of
size B(λ), it holds∣∣∣Pr[Expna-secA=(A0,A1),N,σ,0(λ) = 1]− Pr[Expna-secA=(A0,A1),N,σ,1(λ) = 1]

∣∣∣ ≤ ε(λ)

for all sufficiently large λ, where Expna-secA,N,σ,b(λ) for b ∈ {0, 1} is as defined in Figure 21.

C Programmable PCF for VOLE from WPRF and FSS

Lemma C.1 The PCF construction for VOLE from Figure 22 supports reusable inputs.

Proof. [Sketch] Indistinguishability is immediate. Programmibility follows with f0(ρ0, x) = ρ0

and f1(ρ1, x) = Fρ1(x). Finally, security follows from the security of FSS, similar to the proof
of Theorem 5.3.

�

D Multi-Party PCFs

Definition D.1 (Reverse-sampleable multi-user correlation with setup) Let `1(λ), . . . ,
`M (λ) ≤ poly(λ) be output length functions. Let (Setup,Y) be a tuple of probabilistic algorithms,

77



Expna-secA,N,σ,0(λ) :

(k0, k1)← PCF.Gen(1λ)

((x(i))i∈[N(λ)], state)← A0(1λ, σ, kσ)

for i = 1 to N(λ):

y
(i)
1−σ ← PCF.Eval(1− σ, k1−σ, x

(i))

b← A(state, (y
(i)
1−σ)i∈[N(λ)])

return b

Expna-secA,N,σ,1(λ) :

mk← Setup(1λ)
(k0, k1)← PCF.Gen(1λ)

((x(i))i∈[N(λ)], state)← A0(1λ, σ, kσ)

for i = 1 to N(λ):

y
(i)
σ ← PCF.Eval(σ, kσ, x

(i))

y
(i)
1−σ ← RSample(1λ,mk, σ, y

(i)
σ )

b← A1(state, (y
(i)
1−σ)i∈[N(λ)])

return b

Figure 21: Security of a non-adaptive PCF. Here, RSample is the algorithm for reverse sampling Y as in Definition
D.1.

such that Setup on input 1λ returns a master key mk and Y on input 1λ and mk returns outputs
(y1, . . . , yM ) ∈ {0, 1}`1(λ) × · · · × {0, 1}`M (λ).

We say that the tuple (Setup,Y) defines a reverse sampleable M -user correlation with setup,
if there exists a probabilistic polynomial time algorithm RSample that takes as input 1λ, mk,
T ⊂ {1, . . . ,M} and (yi)i∈T , and outputs (yj)j /∈T , such that for all mk,mk′ in the image of
Setup and all σ ∈ {0, 1} the following distributions are statistically close:

{(y1, . . . , yM ) |(y1, . . . , yM )
$← Y(1λ,mk)}

{(y1, . . . , yM ) |(y′1, . . . , y′M )
$← Y(1λ,mk), yj ← y′j for all j ∈ T,

(yj)j /∈T ← RSample(1λ,mk, T, (yj)j∈T )}

Definition D.2 (M-Party pseudorandom correlation function (PCF)) Let (Setup,Y) fix
a reverse-sampleable M -party correlation with setup which has output length functions `1(λ), . . . ,
`M (λ), and let λ ≤ n(λ) ≤ poly(λ) be an input length function. Let (PCF.Gen,PCF.Eval) be a
pair of algorithms with the following syntax:

• PCF.Gen(1λ) is a probabilistic polynomial time algorithm that on input 1λ, outputs a pair
of keys (k1, . . . , kM );

• PCF.Eval(i, ki, x) is a deterministic polynomial-time algorithm that on input i ∈ [M ], key
ki and input value x ∈ {0, 1}n(λ), outputs a value yi ∈ {0, 1}`i(λ).

We say (PCF.Gen,PCF.Eval) is a (weak) (N,B, ε)-secureM -party pseudorandom correlation
function (PCF) for Y, if the following conditions hold:

• Pseudorandom Y-correlated outputs. For every σ ∈ {0, 1} and non-uniform adversary
A of size B(λ), it holds∣∣∣Pr[ExpM-pr

A,N,0(λ) = 1]− Pr[ExpM-pr
A,N,1(λ) = 1]

∣∣∣ ≤ ε(λ)

for all sufficiently large λ, where ExpM-pr
A,N,b(λ) for b ∈ {0, 1} is as defined in Figure 23. (In

particular, where the adversary is given access to N(λ) samples.)

• Security. For each σ ∈ {0, 1}, T ⊂ [M ] and non-uniform adversary A of size B(λ), it
holds ∣∣∣Pr[ExpM-sec

A,N,σ,0,T (λ) = 1]− Pr[ExpM-sec
A,N,σ,1,T (λ) = 1]

∣∣∣ ≤ ε(λ)

for all sufficiently large λ, where ExpM-sec
A,N,σ,b,T (λ) for b ∈ {0, 1} is as defined in Figure 24

(again, with N(λ) samples).

78



Programmable PCF for VOLE

Let F = {Fk : {0, 1}n → R}k∈{0,1}λ be a weak PRF, and FSS = (FSS.Gen,FSS.Eval)
an FSS scheme for {cFk}c∈R,k∈{0,1}λ with weak pseudorandom outputs. Let further
ρ0

$← {0, 1}λ, ρ1
$← R.

PCF.Gen(1λ; ρ0, ρ1):

1. Set the weak-PRF key k ← ρ0 and a← ρ1.

2. Sample a pair of FSS keys K fss
0 ,K fss

1 ← FSS.Gen(1λ, aFk).

3. Output the keys k0 = (K fss
0 , a) and k1 = (K fss

1 , k).

PCF.Eval(σ, kσ, x): On input a random x:

• If σ = 0:

1. Let c0 = −FSS.Eval(0,K fss
0 , x).

2. Output (a, c0).

• If σ = 1:

1. Let c1 = FSS.Eval(1,K fss
1 , x).

2. Let b = Fk(x).
3. Output (b, c1).

Figure 22: Programmable PCF for VOLE over the ring R based on FSS for scalar multiples of a weak PRF.

ExpM-pr
A,N,0(λ) :

mk← Setup(1λ)
for i = 1 to N(λ):
x(i) $← {0, 1}n(λ)

(y
(i)
1 , . . . , y

(i)
M )← Y(1λ,mk)

b← A(1λ, (x(i), y
(i)
1 , . . . , y

(i)
M )i∈[N(λ)])

return b

ExpM-pr
A,N,1(λ) :

(k1, . . . , kM )← PCF.Gen(1λ)
for i = 1 to N(λ):
x(i) $← {0, 1}n(λ)

∀j ∈ [M ]: y(i)
j ← PCF.Eval(j, kj , x

(i))

b← A(1λ, (x(i), y
(i)
1 , . . . , y

(i)
M )i∈[N(λ)])

return b

Figure 23: Pseudorandom Y-correlated outputs of a PCF.

ExpM-sec
A,N,σ,0,T (λ) :

(k1, . . . , kM )← PCF.Gen(1λ)
for i = 1 to N(λ):
x(i) $← {0, 1}n(λ)

∀j /∈ T : y
(i)
j ← PCF.Eval(j, kj , x

(i))

b← A(1λ, T, (kj)j∈T , (x
(i), (y

(i)
j )j /∈T )i∈[N ])

return b

ExpM-sec
A,N,σ,1,T (λ) :

(k1, . . . , kM )← PCF.Gen(1λ)

mk
$← Setup(1λ)

for i = 1 to N(λ):
x(i) $← {0, 1}n(λ)

∀j ∈ T : y
(i)
j ← PCF.Eval(j, kj , x

(i))

(y
(i)
j )j /∈T ← RSample(mk, T, (y

(i)
j )j∈T )

b← A(1λ, T, (kj)j∈T , (x
(i), (y

(i)
j )j /∈T )i∈[N(λ)])

return b

Figure 24: Security of a PCF. Here, RSample is the algorithm for reverse sampling Y as in Definition D.1.

79


	Introduction
	Overview of Contributions
	Our Low-Complexity WPRF Candidate
	Variable-Density LPN
	Application to XOR-RKA Security
	From FSS-friendly WPRF to PCF
	Applications of PCFs
	Advantages of the VDLPN-Based PCF Construction
	Related Work

	Technical Overview of our WPRF Candidates
	Our Approach – the LPN Viewpoint
	Our Approach – the Low-Bias Function Viewpoint
	On the Security of Our WPRF Candidates
	Organization

	Preliminaries
	Notation
	Preliminaries on Bias
	Concentration Bounds
	Weak Pseudorandom functions

	Defining Pseudorandom Correlation Functions
	From Weak to Strong PCFs

	PCFs from Function Secret Sharing for a Weak PRF
	PCF for Vector Oblivious Linear Evaluation
	PCF for Oblivious Transfer
	PCF for Multiplication Triples

	A Candidate FSS-Friendly WPRF
	Variable-Density Learning Parity with Noise
	A Candidate WPRF in Depth-2 AC0[] from rVDLPN
	Generalization to Arbitrary Rings
	FSS-Friendliness of our WPRF
	Application: XOR-RKA Secure PRGs and Weak PRFs

	Security Analysis
	Resistance Against Linear Tests – Theorem and Corollaries
	Proof of Resistance Against Linear Tests
	Resistance Against Algebraic Attacks
	Resistance Against Statistical Query Algorithms
	Resistance Against AC0 Tests
	Linear Cryptanalysis

	Other Candidate FSS-Friendly WPRFs
	First Variant: Reusing Portions of the Input
	Second Variant – Reducing the Key Size

	Concrete Attacks on our WPRF Candidates
	Concrete Linear Attacks
	Concrete Security Against Other Attacks
	Concrete Efficiency Estimations for PCF for VOLE

	Applications
	Secure Multiparty Computation with Fully Reusable Preprocessing
	Black-box Two-Round MPC with Fully Reusable Preprocessing
	NIZKs with Fully Reusable Preprocessing
	Homomorphic Secret Sharing for Constant-Degree Polynomials
	Programmable PCFs with Applications to MPC with M3 parties

	Acknowledgements
	Pseudorandom Correlation Generators
	Full PCF Definition
	Programmable PCF for VOLE from WPRF and FSS
	Multi-Party PCFs

