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GAGLIARDO-NIRENBERG-SOBOLEV INEQUALITIES ON

PLANAR GRAPHS

MARIA J. ESTEBAN

Abstract. In this paper we study a family of interpolation Gagliardo-
Nirenberg-Sololev inequalities on planar graphs. We are interested in
knowing when the best constants in the inequalities are achieved. We
also analyse the set of solutions of the corresponding Euler-Lagrange
equations.

In the past years many works have been devoted to the study of func-
tional inequalities, their best constants, the existence of extremal functions
and their qualitative properties. There are examples for compact and not
compact manifolds, in the flat Eucledian space in various dimensions, on
the line, etc. Among these inequalities, the so-called Gagliardo-Nirenberg-
Sobolev inequalities: if D is an open domain of Rd, a very simple class of
inequalities has the form(ˆ

D
|v|p
)2/p

≤ C
ˆ
D
|∇v|2 + λ|v|2 , for all v ∈ H1

0 (D) , (1)

with λ ∈ R+, p ∈ (2, 2∗], 2∗ = 2d/(d− 2) if d ≥ 3, 2∗ = +∞ if d = 1, 2.
These inequalities have been studied throughly and much is known about

their best contacts, or their extremal functions, for a large family of domains
D. In the case D = Sd, d ≥ 1, p > 2, these inequalities, in their optimal
form, are usually attributed to W. Beckner [4] but can also be found in [6,
Corollary 6.1]. However an earlier version corresponding to the range p ∈
[1, 2)∩(2, 2#) was established in the context of continuous Markov processes
and linear diffusion operators by D. Bakry and M. Emery in [1, 2], using the
carré du champ method, where 2# is the Bakry-Emery exponent defined as

2# = 2 d2+1
(d−1)2 , for any d ≥ 2. See also [9]. For the case of general compact

manifolds, see [14, 15, 3, 12, 11]. In the case of the line R, see [10]. For the
case of the whole domain Rd, there are many references. See for instance
Appendix B in [9] and references therein for details about the best constants
and optimizers.

Variations of these inequalities corresponding to the inclusion of exter-
nal magnetic fields, and thus replacing the gradient operator by the mag-
netic gradient operator, also have been dealt with, with less success for the
characterization of the best constants or the extremals. To our knowledge,
very little has been done in this direction concerning graphs. Some results
about inequalities on graphs can be found in [8]. The goal of this paper
is to analyze the above inequalities when D is a metric planar graph. The
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2 M.J. ESTEBAN

same results can be extended to d-dimensional graphs, with d ≥ 3, almost
straightforwardly, since the nature of the graphs is 1-dimensional.

In this paper we will deal only with locally finite graphs, that is, graphs
for which there is no accumulation of edges at any vertex of the graph.

Assume that G is a graph consisting of vertices {Vi} and edges {ej} con-
necting the vertices, their endpoints. We will denote E the set of edges of
the graph G. Of course, each bounded edge e can be identified as a pair of
vertices {V`, Vk}, and an unbounded edge will be defined by one endpoint
and a direction (a vector). In Rd endowed with the usual Lebesgue measure,
such a graph is a metric graph, because to each edge we can assign a given
length `, which is the distance between its endpoints, and this distance can
be infinite if the edge is unbounded. As it can be seen for instance in [13],
one can define Lp and Sobolev spaces on such graphs. For instance, for
p ≥ 1, the space Lp(G) can be defined as the set of measurable functions f
satisfying:

‖f‖2Lp(G) =
∑
e∈E
‖f‖2Lp(e) < +∞ ,

while the Sobolev space H1(G) consists of all continuous functions f on G
belonging to H1(e) for each edge e, and such that

‖f‖2H1(G) =
∑
e∈E
‖f‖2H1(e) < +∞ .

A metric graph G will be called a quantum graph if associated to G there
is a Hamiltonian H that acts as a second order operator on the edges, and
that is accompanied by “appropriate” vertex conditions. In this paper we
will consider the Hamiltonian associated to the sesquilinear form

h[f, g] :=
∑
e∈E

ˆ
e
(f ′ g′ + f g) dx

on H1
0 (G), which is associated to the Hamiltonian −v′′+v endowed with the

so-called Kirkhoff conditions at the internal vertices of G: for each vertex
V , if {ek1 , ek2 , . . . , ekL} are all the edges sharing V as an endpoint, then,

L∑
j=1

f ′j(V+) = 0 ,

where f ′j(V+) denotes the derivative of f at V in the outward direction
towards the edge ekj at V . Here we will work with this Hamiltonian on
metric locally finite graphs in the Dirichlet case, that is, in the case where
in the outer vertices of the graph, those belonging only to one edge, the
functions f satisfy the boundary condition f(v) = 0.

In this paper we will analyze the functional inequalities(ˆ
G
|v|p dx

)2/p

≤ Cp(G)

ˆ
G

(|v′|2+|v|2) dx , for all functions f ∈ H1
0 (G) ,

(2)
with p ∈ (2,+∞), where Cp(G) denotes the best constant in the above
inequality. The same can be done for other Hamiltonians of the same kind.
Our choice of Hamiltonian is done in order to be able to provide a set of
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results providing precise information about the value of the best constants
and the extremal functions in the inequalities. The more complicated the
Hamiltonian, the more difficult this task will be.

Note that the best constant Cp(G) can also be defined by

1

Cp(G)
= inf

v∈H1(G)

´
G(|v′|2 + |v|2) dx(´

G |v|p dx
)2/p , (3)

and a function v is a minimizer for (3) if and only if it is a extremal function
for (2). Moreover, since in any given open domain D, for all functions
v ∈ H1(D),

´
D ||v|

′|2 dx ≤
´
D |v

′|2 dx, it is trivial to see that there is always
a non-negative minimizer for the above problem. Moreover, because of the
regularity of solutions of the ODE on any interval, there is no minimizer
which changes sign in the middle of one of the edges. But there could be
minimizers which are positive on some edges and negative on others; in that
case they must be equal to 0 in the vertices separating them, of course. In
the sequel we will then consider only non-negative extremal functions.

For simplicity of notation, let us define the functional FG,p(f) involved in
the above minimization problem by

FG,p(f) =

´
G(|v′|2 + |v|2) dx(´

G |v|p dx
)2/p .

Proposition 1. Note that up to multiplication by a constant, a minimizer
for (3) satisfies the set of ODEs

− v′′ + v = |v|p−2v in e, ∀ e ∈ E . (4)

together with the boundary condition v = 0 at the outer vertices of G and the
Kirkhoff conditions at all inner vertices of G. Moreover, if v is an extremal
function for (2), i.e., a solution to (3), we have

1

Cp(G)
= ‖v‖p−2Lp(G) . (5)

Definition. We will say that a function v ∈ H1
0 (G) satisfying (4) and the

Kirkhoff conditions at all inner vertices of G is a solution to the Kirkhoff-
ODE system in G.

In this paper we analyse the value of the constants Cp(G), and in partic-
ular whether they are achieved or not, that is, whether there exist solutions
to the minimization problem (3) or not. In parallel, we will investigate the
existence and multiplicity of solutions to the Kirkhoff-ODE system in G.
We will prove some general results, and analyse a set of examples for which
we can make these results more precise.

In some cases, depending of the structure of the graph, we will be able
to prove the existence of solutions to (3). In some other cases, the non-
existence of solutions to the Kirkhoff-ODE system in G will automatically
imply the non-existence of minimizers for (3). In other cases we will only
prove that the existence of solutions to (3), that is, of extremal functions
for (2), depends on a strict inequality between the infima of two related
energy functionals, but assessing that strict inequality will not be easy in
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most cases. Although the problem studied in this paper is very simple, a
large variety of possible situations and results can arise.

In Section 1 we will analyse the easiest cases, when G is the line R or
the half-line R+. Section 2 contains a number of general results about the
attainability of the best constants Cp(G) in (2), that is, the existence of
minimizers for (3). In Section 3 we will describe in detail several classes of
bounded and unbounded graphs, for which we explore not only the attain-
ability of the best constants Cp(G), but also the existence and multiplicity
of solutions to the Kirkhoff-ODE system in G.

1. The phase plane, the line and the half-line

In order to understand well the results that will be stated and proved
in this paper, let us first discuss the phase plane of the dynamical system
associated to the ODE equation (4) in R. In that phase plane there are
two centers, the points (±1, 0); an instable point, the origin; two hetero-
clinic orbits, one corrresponding to a positive solution and the other one,
to a negative solution; periodic orbits corresponding to either positive or
negative functions, which turn around the two centers; and finally other
periodic orbits corresponding to sign changing solutions which turn around
the origin. For more information about the periodic solutions see [19, 5] and
references therein. See also Section 5.2 in [7] for a similar phase plane anal-
ysis. Concerning the explicit heteroclinic orbits, see [18, 10] for instance.
See Figure 1 for a graphical representation of the phase plane.

-2 -1 1 2
v

-1.0

-0.5

0.5

1.0

u

Figure 1. Phase plane for the dynamical system v′ =
u, −u′ + v = |v|p−2v in R, with p = 3

Below we discuss the cases of the line and the half-line, while in the next
sections we will examine the cases of star-graphs, that is, sets of half-lines
joining at the origin and other more complicated graphs.

The case of the line R is well-known, and corresponds to one of the hete-
roclinic orbits in the above figure, see [18, 10].

Proposition 2. Let p > 2. Then, the unique non-negative solution of the
equation

− v′′ + v = |v|p−2v in R (6)

is

v̄(s) :=
(p

2

) 1
p−2

(
cosh

(
(p− 2) s

2

))− 2
p−2

(7)
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and

1

Cp(R)
= Ip,0 :=

´
R |v̄
′|2 + |v̄|2 ds(´

R |v̄|p ds
)2/p =

(ˆ
R
|v̄|p
) p−2

p

=
(p

2

) 2
p

√π Γ
(

2 + 2
p−2

)
Γ
(
1
2 + p

p−2

)


p−2
p

.

The fonction −v̄ is the unique non-positive solution to (6). Moreover, ±v̄
are the unique solutions to (6) in the space H1

0 (R).

The above phase plane shows what happens in the case of the half-line:
all solutions of (4) satisfying v(0) = 0, v′(0) > 0 are periodic in R, and
therefore cannot tend to 0 at infinity. This means the following.

Lemma 3. Let p > 2. There is no non-negative solution of the equation

−v′′ + v = |v|p−2v in R+ = (0,+∞)

belonging to the space H1
0 (R+). Therefore, the constant Cp(R+) is never

achieved.

A different, direct, proof of this result is given below.

2. Existence and non-existence of extremal functions for (2)
or, equivalently, of minimizers for (3)

Concerning the existence of minimizers for the minimization problem (3)
for general graphs G, there are two very distinct cases depending on the
properties of G: either the graph is bounded, and in this case the answer is
quite direct and positive. Or the graph is unbounded and in this case the
situation can be more complicated depending on the graph’s structure. The
bounded case is very simple, as it can be seen below.

Proposition 4. Let p > 2. Assume that the graph G is locally finite and
bounded. There always exists at least one solution of the minimisation prob-
lem (3), and therefore the constant Cp(G) is always achieved in (2).

Proof. Let {vn}n a minimizing sequence for (3) that we normalize to satisfy´
G |vn|

p dx = 1 (without loss of generality). Trivially, the sequence {vn}n is

bounded in H1
0 (G) and since this space is compactly embedded in Lp(G),

up to subsequences, {vn}n is compact in Lp(G) and converges, weakly in
H1

0 (G) and strongly in Lp(G), to some v ∈ H1
0 (G) satisfyingˆ

G
|v|p dx = 1 .

By the lower semicontinuity of the H1
0 (G) norm, v is a minimizer for (3). �

Let us next give some definitions that will be useful in the sequel of the
paper.

To deal with the case of locally finite unbounded graphs, let us first define
a chain C as a sequence of edges {ei}i=1,...,N , N ≥ 1 and possibly N = ∞,

of lengths `i and vertices V ±i such that if ei = [V −i , V
+
i ] and for all i ≥ 1,

V +
i = V −i+1. Note that if the extremal edges of the chain are unbounded,

then, V −1 and V +
N could find themselves at infinity, and the corresponding

lengths would be equal to +∞.
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If the chain is bounded, a function v ∈ H1
0 (C) can be identified with a

function wx in H1
0 (x, x+

∑
i `i) for any x ∈ R and there is equality for the Lq

and H1
0 norms of v and wx. If the chain is semi-bounded (resp. unbounded

in the two directions), then the identification can be done with R+ (resp.
R). This means that the angles between the edges of a chain do not play any
role in the computation of those norms. In the above cases we will speak of
equivalence of the chain C with the interval (x, x+

∑
i `i), R+ or R.

A consequence of the above is that if a chain C is semi-bounded, then,
Cp(C) = Cp(R+), while if it is unbounded on both sides, then, Cp(C) =
Cp(R).

In the case of unbounded graphs, the most general result that we can
prove about (3) is the following.

Theorem 5. Let p > 2. Assume that G is a locally finite unbounded graph.
Then, except in the trivial case when G is a chain “equivalent” to R, all
minimizing sequences for the minimization problem (3) are either relatively
compact in H1

0 (G) or there is a function v ∈ H1
0 (G) and a sequence {xn}n ∈

G such that
|xn| −→n +∞ ,

for all ε > 0 there exists R > 0 such thatˆ
BR(xn)∩G

|v(x)|p dx ≥ 1− ε ,

and
‖vn − v‖H1

0 (G) −→n 0 .

Proof. We will not prove this theorem in detail, since its proof is based on
very well-known concentration-compactness arguments that can be found,
for very similar problems, in [16, 17]. Section I.2 in [17] treats a minimization
problem very similar to (3).

Let {vn}n a minimization sequence for (3). By concentration-compactness,
if we consider the sequence of L1(G) functions ρn := |vn|p, it is easy to see
that this sequence cannot “vanish”, in the sense that it cannot verify that
for all R > 0,

lim
n→+∞

sup
x∈G

ˆ
BR(x)∩G

ρn dx = 0 .

Indeed, this follows from an easy application of Lemma I.1 in [17]. Next, the
so-called “dichotomy” defined in [16] cannot hold either, as this is forbidden
by the homogeneity properties of the functional FG,p which defines the prob-
lem (3). Finally, since in dimension 1 any exponent 2 < p <∞ is subcritical
(that is, H1

0 (G) embeds locally compactly into Lp(G)), up to subsequences,
there exists a sequence of points in G, {xn}n and a function v ∈ H1

0 (G) such
that in the norm of H1

0 (G), the functions vn are very close to the function
v restricted to a bounded neighborhood of xn, the Lp norm of v on those
bounded neighborhoods of xn being as close to 1 as desired. �

Remark 6. Interesting locally finite unbounded graphs are those which are
periodic in the direction in which they are unbounded. Consider for instance
the graph G which is the union of R and a fixed set of bounded edges attached
to the points (n, 0) on R. For this kind of graphs there is always existence
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of a solution to (3) because we can just apply the above theorem and by
periodicity, we can always consider that up to translation, any minimizing
sequence is close to a function in H1

0 (G) translated by a bounded sequence
of points {(yn, 0)}n. Indeed, it is enough to define (yn, 0) := xn − (knn, 0)
with kn ∈ Z and |yn| ≤ 2.

Let us next study some other particular cases regarding the existence of
minimizers for the minimization problem (3).

Lemma 7. For all p > 2 and for any locally finite graph containing an
unbounded edge, we have

Cp(G) ≥ Cp(R) .

Proof. If G is not equivalent to R, let us consider a semi-bounded edge in
G, e0 equivalent to R+. Rotate G such that e0 coincides with R+. For all
n ∈ N, let Pn ∈ e0 be such such that |Pn| → +∞. Let us define un as the
product of the function v̄(x−Pn) restricted to e0 and a function η ∈ C1(R+)
which satisfies η(0) = 0, η(x) = 1 for all |x| ≥ 1, with v̄ as in (7). Define
un ≡ 0 on the other edges of G. The function un belongs to H1

0 (e0)∩H1
0 (G)

and is supported in e0. Moreover,

FG,p(un) −→n FR,p(v̄) =
1

Cp(R)
.

Since 1
Cp(G) ≤ FG,p(un) for all n, Cp(G) ≥ Cp(R). �

An easy application of concentration-compactness, and in particular, of
Theorem 5, allows to prove the following result.

Theorem 8. Let p > 2. Assume that G is a locally finite unbounded graph
that is unbounded only along half-lines or chains equivalent to half-lines.
Then, all minimizing sequences for (3) are relatively compact in H1

0 (G) if
and only if

Cp(G) > Cp(R) . (8)

and when the above strict inequality holds true, there is at least one solution
to (3).

Remark 9. Note that some unbounded graphs excluded from the above the-
orem are those for which one can “escape” to infinity by following chains
through edges which are not equivalent to half-lines. For instance, infinite
regular trees, that is, trees for which all vertices with equal distance to the
root of the tree have same branching number (number of edges joining at
that vertex) and for which the edges emanating from those vertices are more
than 1 and have same length.

The following result is an easy corollary of the above theorem, Proposition
1 and Lemmata 3 and 7.

Corollary 10. If a graph G is a half-line or a chain equivalent to it,

Cp(G) = Cp(R) .

Proof of Theorem 8 With p > 2, let {vn}n be a minimizing sequence for
(3) that we normalize so that for all n,

´
G |vn|

p dx = 1. By Theorem 5, either
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the sequence {vn}n is relatively compact, or the sequence {xn} appearing in
the proof of this theorem is unbounded. In that case, the function v, duly
cut to be supported on an unbounded edge, should be a good test function
for the problem of minimization in R, since the graphs we are looking at
are equivalent to R at infinity. But if Cp(G) > Cp(R), this cannot happen,
because FG,p(vn) would be close to FR,p(v) as n increases, which is forbidden
by our assumption, since FG,p(vn) approaches 1/Cp(G) as n goes to +∞,
while FR,p(v) is larger than 1/Cp(R). So, the sequence {xn}n is bounded
and {vn}n is relatively compact. Finally, if the strict inequality (8) is not
satisfied, that is, if Cp(G) = Cp(R), then, by taking almost-minimizers of
the problem (3) in R, we can construct minimizing sequences for (3) on G so
that they are not relatively compact, since their “essential supports” escape
to infinity. �

Next, let us give examples of cases where the graphs are unbounded only
along half-lines, but for which the strict inequality Cp(G) > Cp(R) is not
satisfied.

Theorem 11. Let p > 2. Assume that the graph G is a half-line e0 plus
a finite number of bounded or unbounded edges attached to e0 at a unique
inner vertex P (the finite vertex of e0). Then, there is no solution to (3)
and

Cp(G) = Cp(R) . (9)

Proof. Without loss of generality, by a simple translation and rotation, we
may assume that e0 = R+. Let v ∈ H1

0 (G) be a minimizer for (3). Then
it satisfies the Kirkhoff-ODE system in G. Let us then find a chain in G,
C, such that v ∈ H1

0 (C) and the sum of the outward derivatives of v at
the inner vertex of C is non-negative. Assume that there are N edges ei
attached to e0 at the inner edge, P , and call di, i = 1, . . . , N the outward
derivatives of v at P . By the Kirchoff conditions, we have

N∑
i=0

di = 0 (10)

If N = 1, C = e0 ∪ e1, d0 + d1 = 0. Assume that N > 1 and that for
all j ≥ 1, d0 + dj < 0. Then Nd0 +

∑N
i=1 di < 0, but Nd0 +

∑N
i=1 di =

(N − 1)d0 +
∑N

i=0 di, and therefore, by (10), d0 < 0. Moreover, v satisfies
v = 0 at the outer vertex of ei for all i = 1, . . . , N . Looking at (1), it appears
clearly that for all i ≥ 1, |di| > |d0|, since the point (v(P ), d0) lies on the
“positive” heteroclinic orbit, and for i ≥ 1, all the points (v(P ), di) lie on
the outer periodic orbits around the heteroclinic ones. Hence necessarily,
there is i0 ≥ 1 such that d0 + di0 ≥ 0, and then, we will choose C = e0 ∪ ei0 .

Let us now end the proof of the theorem. By the properties of C,

1

Cp(C)
≤ FC,p(v) =

´
C

(
|v′|2 + |v|2

)
dx(´

C |v|p dx
)2/p =

(´
e0

+
´
ei0

) (
|v′|2 + |v|2

)
dx((´

e0
+
´
ei0

)
|v|p dx

)2/p .

By using Proposition 1, the way C was chosen and integration by parts, we
find
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1

Cp(C)
≤

(´
e0

+
´
ei0

)
|v|p dx− (d0 + di0)(´

e0
+
´
ei0
|vj |p dx

)2/p ≤
´
C |v|

p dx(´
C |v|p dx

)2/p = ‖v‖p−2Lp(C)

By Lemma 7 and Proposition 1,

1

Cp(R)
≥ 1

Cp(G)
= ‖v‖p−2Lp(G) ≥ ‖v‖

p−2
Lp(C) ,

and the last inequality above is strict if G 6= C. Hence, by Lemma 7

1

Cp(C)
≤ ‖v‖p−2Lp(C) <

1

Cp(G)
≤ 1

Cp(R)
.

But since C by itself is equivalent to a half-line, by Corollary 10,

1

Cp(C)
=

1

Cp(R)
,

a contradiction with the above strict inequality. Therefore there is no so-
lution to the Kirkhoff-ODE system in G. Finally, if (9) were not true, by
Theorem 8 and Lemma 7, there would be a solution to (3), and therefore,
by Proposition 1, also a solution to the Kirkhoff-ODE system in G. Again
a contradiction. �

3. Analysis of the solutions to the Kirkhoff-ODE system for
various families of locally finite graphs.

In this section we will explore either the case of star-graphs or the case of
graphs with one, two or three edges. Of course, interesting cases arise also
for a larger number of edges, but we will not explore those in detail in this
article.

We will analyze both the existence of minimizers for (3) and the existence
of solutions for the Kirkhoff-ODE system. Indeed, as already explained
above, the existence of minimizers for (3) implies the existence of solutions
for the Kirkhoff-ODE system. Consequently, the non-existence of solutions
for the Kirkhoff-ODE system automatically implies the non-existence of min-
imizers for (3).

In the case when the graph has an unbounded edge, we have proved in
Theorem 11 that there is no solution to (3). But in the next sections we will
see that there are cases of graphs containing semi-bounded edges for which
there are solutions to the Kirkhoff-ODE system, and others for which no
solution to the Kirkhoff-ODE system exists.

3.1. Star graphs. A star-graph is a graph which is composed of N half lines
meeting at some point, for instance the origin. Let us prove next that the
only star-graph for which there are solutions to the minimization problem
(3) are those with N = 2.

Theorem 12. Let p > 2. Assume that G is a star-graph with N infinite
edges and a single vertex at the origin. If N is even there is an infinity of
non-negative (actually positive) solutions to the equation

−v′′ + v = |v|p−2v in G
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but none of them is minimizing for (3) (or extremal for (2)) unless N =
2. When N = 2 all the non-negative solutions to the above equation are
extremals for (2) and minimizers for (3).

If N = 1, no solution to (4) exists as Lemma 3 shows. If N is odd and
larger than 1, the unique non-negative solution to the Kirkhoff-ODE system
in G is such that v(0) = v̄(0) and all the outward derivatives at the origin,
in the direction of all the edges of the graph, are equal to 0. But this solution
is not a solution to the minimization problem (3), which has no solution.

Proof. The case N = 1 is dealt with by Lemma 3. Assume further that
N > 1. Let v be a solution of the Kirkhoff-ODE system in G. Since for all
x ∈ G, the pair (v(x), v′(x)) restricted to any of the edges lies on the positive
heteroclinic orbit, the maximum of v on G has to be less than or equal to the
maximum of v̄, that is, v̄(0). The Kirkhoff conditions at the origin imply that

either v(0) = v̄(0) =
(p
2

) 1
p−2 or N is necessarily even. Indeed, if N is odd and

v(0) < v̄(0), by Proposition 2, there are two possible values for the outward
derivatives at the origin following the edges of the graph, one positive, d,
and one negative, −d. For any integer q less than N , the sum of the outward
derivatives at the origin is equal to qd − (N − q)d = (2q − N)d 6= 0, thus
violating Kirkhoff conditions. So, the only possibility for N > 1 odd is that
v(0) = v̄(0) and the outward derivatives at the origin in the direction of all
the edges are all equal to 0. In this case, since N ≥ 3,

FG,p(v) =

(
N

2

)1− 2
p

Ip,0 >
1

Cp(R)
≥ 1

Cp(G)
,

by Lemma 7. Therefore, v is the unique solution to the Kirkhoff-ODE system
in G, but not a solution to (3).

If N is even, v(0) can take any value in the interval (0, v̄(0)] and with
x ∈ R defined by v(0) = v̄(x), the outward derivatives at the origin along
the N edges have to be equal to d = v̄′(x) or to −d = −v̄′(x). So, we can
match the edges two by two, so that two by two they sustain a function
which is equivalent to v̄. If N > 2 then

FG,p(v) =

(
N

2

)1− 2
p

Ip,0 >
1

Cp(R)
≥ 1

Cp(G)
,

by Lemma 7. In the above two cases, the non-existence of solutions to (3)
shows that Cp(R) = Cp(G), by Theorem 8. On the contrary, if N = 2, for
any value of v(0) in the interval (0, v̄(0)], v will satisfy

FG,p(v) = Ip,0 =
1

Cp(R)
.

and therefore v will be a minimizer for (3). In this case again by Lemma 7

1

Cp(R)
=

1

Cp(G)
, that is, Cp(R) = Cp(G)

and v will be equivalent to v̄ and a solution to (3).
�
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3.2. One infinity edge and two bounded ones. Consider a graph con-
sisting of three edges, one equivalent to a half-line, e0 and two others, e1, e2,
bounded, attached to e0 on its finite endpoint. In this case we can encounter
very different situations.

Without loss of generality, we can assume that e0 = R+ and denote
by `1, `2 the lengths of the bounded edges. Let us now consider functions
vi, i = 0, 1, 2 satisfying the equation the Kirkhoff-ODE system in G in their
respective edges and such that vi(0) = v0(0) for i = 1, 2. If `1 is small
enough, consider the case where v = v1 is monotone along e1. Then, the
outward derivative at 0 along e1 has to be negative and large enough in
absolute value, so that v reaches 0 at the outer end of the edge. Also, |v′1|
will have to be large at the outer end of the edge e1. If `2 is large enough,
we can find a function v2 which is not monotone on e2 and such that the
outward derivative at the origin is positive and not larger than 2 maxs[v̄

′(s)|,
with v̄ defined by (7). Hence by taking `1 small enough and `2 large enough,
we see that the sum of the outward derivatives at the origin of these three
functions will be negative.

Now, keeping `1 and `2 fixed, and varying continuously the values of v′1
and v′2 at the outer ends of their respective edges, or equivalently, the value
of the functions vi at the origin, we can find new functions v0, v1, v2 such
that the sum of the outward derivatives at the origin will be equal to 0. And
this can be done in two different ways: either keeping v0 monotone or not.
Indeed, if we fix vi(0) = ε small and we choose v0 and v1 to be monotone,
we see that the sum of the outward derivatives at the origin will be positive.
Indeed, the outward derivatives of v0 and v1 will be negative and very small
in absolute value. On the contrary v2 will not be monotone, and at the end
of e2 the outward derivative at the origin along e2 will be close in absolute
value to the value of v′2 at the outer end of e2. Hence, as ε goes to 0, v2 gets
very close to the function ṽ solution to

−ṽ′′ + ṽ = ṽp−1 in (0, `2), ṽ > 0 in (0, `2), ṽ(0) = ṽ(`2) = 0 .

As ε goes to 0 the sum of the three outward derivatives at the origin will be
equal to −v0′(`2), a positive number. Hence, by continuity, in the middle
there must be functions v0, v1, v2 such that at the origin they satisfy the
Kirkhoff conditions and such that v1 and v0 are monotone in their respective
edges, while v2 is not.

The same reasoning can be done when now we consider v1 monotone, but
v0 and v2 non monotone. Thus, we have found a different solution to the
Kirkhoff-ODE system in G.

Therefore, by a careful consideration of the phase plane in Figure 1, and
by playing with the lengths of the edges e1 and e2, we have proved the
following.

Proposition 13. Let p > 2. Assume that G is a graph with three edges
which meet at the origin, one of them being a half-line and the two others
having lengths `1, `2 ∈ R+. If `1 is small enough and `2 is large enough,
there are at least two different non-negative solutions to the Kirkhoff-ODE
system in G.
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We see a numerical example of the above result in the following figure
obtained for `1 = 1 and `2 = 5 (see Figure 3.2).

0.5 1.0 1.5
v

-0.5

0.5

1.0

u

0.5 1.0 1.5
v

-0.5

0.5

u

Figure 2. Solution of the Kirkhoff-ODE system for p = 3,
and edges of lengths 1, 5 and +∞. The dotted curves corre-
spond to the functions v1, the dot-dashed to v2 and the full
line to v0. The dots in the graphics correspond in the phase
plane to the values of v0, v1 and v2 at the origin: the abscis-
sas of the three dots coincide and the sum of the outward
derivatives, corresponding to − the sum of the ordinates of
the dots, is equal to 0.

Let us now see a case of non-existence of solutions to the Kirkhoff-ODE
system, and therefore neither to (3).

Assume now that `1 is small enough and fixed. For simplicity consider e1
as a copy of the interval (0, `1). Let v any monotone non-negative solution
of

−v′′ + v = |v|p−2v in (0, `1) , v(0) = 0 ,

such that v(`1) ≤ v0(0). Call M1 the maximum of |v′(`1)| for all those
functions v. And call M0 the maximum of v̄′(s) for all s ∈ R, with v̄ defined
by (7). Assume that there is a solution of the Kirkhoff-ODE system for
this graph. Necessarily v(0) ≤ v0(0). For any value of v(0), the sum of the
outward derivatives along the edges e0 and e1 will be negative and less than
M0+M1 in absolute value. Therefore the function v2 must be non-monotone
and its outward derivative must be positive in order to comply with the
Kirkhoff conditions. Now, if `2 is small enough, the outward derivative at
the origin of any function v2 such that at the origin v2 is not larger than
v0(0) will be larger than M1 +M0. A contradiction.

Since for any given value of v(0), |v′1(0)| and |v′1(0)| must be larger than
|v′0(0)|, if v1 were not monotone, then we could inverse the roles of v1 and
v2 to reach the same contradiction. We have thus proved the following.

Proposition 14. Let p > 2. Assume that G is a graph with three edges
which meet at the origin, one of them being a half-line and the two others
having lengths `1, `2 ∈ R+. If both `1 and `2 are small enough, there is no
solution of the Kirkhoff-ODE system in G.
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Remark 15. That under the assumptions of the above proposition, there
is no solution of (3) was already proved in Theorem 11. But it is also a
corollary of the above proposition.

3.3. Three bounded edges. This is a very easy case, because it is a direct
consequence of Theorem 4. Indeed, all bounded locally finite graphs are
compact sets. Therefore, we have the following.

Corollary 16. For a three bounded edges’ graph with a single inner vertex,
there exists a non-negative solution of the minimization problem (3), that is,
a extremal function for the inequality (2). That implies in particular, that
there exists at least one solution of the equation the Kirkhoff-ODE system,
but there could be more than one. See below examples of the two situations.

In the first case for which we have computed explicit solutions, we take
the lengths of the three edges to be equal to 1, 2 and 5. In this case we find
numerically a solution to the Kirkhoff-ODE system. See Figure 3.3 below.

0.5 1.0 1.5

-0.5

0.5

Figure 3. Solution of the Kirkhoff-ODE system for p = 3,
and edges of lengths 1, 2 and 5. The dotted curve corresponds
to v1 (`1 = 1), the dot-dashed one to v3 (`3 = 5) and the full
line to v2 (`2 = 2). We observe that this solution is near the
solution to the 1, 5,+∞ problem on the right of Figure 3.2.
On the contrary, it is difficult to imagine a solution near the
one on the left of Figure 3.2 for `2 = 2. Indeed, if `2 were
larger, we would be able to find one such solution, making
the number of solutions larger than or equal to 2. We see
this in the next figure, where `2 = 4

When we instead increase the length of the second edge, that is, we take
the lengths of the three edges to be equal, for instance, to 1, 4 and 5, we are
able to find numerically two different solutions to the Kirkhoff-ODE system.
See Figure 3.3.
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