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Theoretical analysis of beamforming steering vector formulations for acoustic source
localization

Gilles Chardon

Université Paris-Saclay, CNRS, CentraleSupélec, Laboratoire des signaux et systèmes, 91190, Gif-sur-Yvette, France

Abstract

In three-dimensional acoustic source localization, setting the steering vector is an important choice. Four steering vector formu-
lations are frequently used. In the noiseless case, two of them yield a correct estimation of the position, the two others yielding
correct estimation of the amplitude of the source, assuming its position is known. Here, noisy measurements are considered, and
the steering vector formulations are compared in terms of bias and variance of the estimated position and amplitude, allowing a
more informative assessment of their performances. An approximated value of the position bias of the biased formulations is given.
Maximum likelihood estimation of the parameters of the source is derived, showing that it involves the combination of two steering
vector formulations, for position estimation, followed by amplitude estimation. This analysis does not rely on the specific form of
the Green function, and remains relevant for general propagation media.

Keywords: beamforming, source localization, maximum likelihood

1. Introduction

The beamforming method for acoustical sources localization
and quantification of their power is one of the most popular
acoustical imaging methods[1]. Based on the focusing of an ar-
ray towards a direction of interest by delaying received signals
(or, in the frequency domain, applying phase terms to the com-
plex amplitudes of the signals), this method is simple and yields
accurate results in settings where sources are well-separated. In
particular, beamforming does not necessitate to tune parame-
ters such as the number of expected sources or a regularization
parameter, as in more complex methods such as subspace meth-
ods (MUSIC [2], ESPRIT [3], etc.) or sparsity based methods
(Orthogonal Matching Pursuit [4], `1-norm based methods [5],
etc.).

In addition to its use as an imaging method, beamforming
can also be used as a component of more sophisticated imag-
ing methods aiming at better estimation of the parameters of
the sources, in particular at lower frequencies. In Orthogonal
Beamforming [6], beamforming is applied on the singular vec-
tors of the spatial covariance matrix of the data. Iterative meth-
ods (e.g. CLEAN and CLEAN-SC [7]) can use beamforming
as a selection step to add a new source to a set of identified
sources. Also, deconvolution can be used to improve the res-
olution of beamforming maps, with the DAMAS algorithm [8]
being one of the most famous examples of such methods (note
however that the DAMAS algorithm was shown to solve the
Covariance Matrix Fitting problem [9], which does not involve
beamforming, and can be solved using more efficient numerical
algorithms [10]).

Email address: gilles.chardon@centralesupelec.fr (Gilles
Chardon)

We will consider here the case of frequency domain mea-
surements, with one source. This simple case will allow to
derive theoretical results. Two models can be used [11]: the
conditional and unconditional models. The conditional model
is used when sources emit sinusoidal signals. The parameters
to be estimated are here the position and the complex ampli-
tude of the source. The measurements are modeled as a random
vector, with mean function of the parameters, and covariance
depending on the power of the noise. Beamforming is applied
by computing the scalar product |〈m,h(x)〉|2 between the mea-
sured data m and the steering vector h(x) for a set of positions
x where the source is potentially located. In the unconditional
model, the amplitude of the source is modeled by a random
variable. Multiple snapshots are collected, and the spatial co-
variance matrix of the measurements is estimated by the sample
covariance matrix Σ̂. Then, the beamforming map is obtained
by computing h(x)HΣ̂h(x), in order to estimate the position and
the power of the source. Measurement noise can be accounted
for by subtracting the covariance matrix of the noise (usually
assumed to be proportional to the identity matrix), or by diag-
onal removal. Here, we will assume that the covariance matrix
of the noise is known, and use the former method.

Performances of source localization methods can be mea-
sured in multiple ways [12]. In the case of a unique source,
performances can be assessed by considering the bias and vari-
ance of the estimation of the position of the source and of its
amplitude in the conditional model, or its power in the uncon-
ditional model (in the rest of the text, ”amplitude” will refer
to amplitude or power, when relevant). For a scalar parame-
ter θ to be estimated, the bias of an estimator θ̂ is defined as
b(θ̂) = E(θ̂) − θ, (where E(·) denotes the mathematical expecta-
tion), the difference between its expectation and the actual value
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of the parameter, and its variance as Var(θ̂) = E
(
|θ̂ − E(θ̂)|2

)
.

The mean squared error (MSE) of the estimator can be decom-
posed as MSE(θ̂) = E

(
|θ̂ − θ|2

)
= b(θ̂)2 + Var(θ̂).

For far-field sources, setting the steering vector is straightfor-
ward. However, in settings where the positions of the sources
(and not only a direction of arrival) are to be estimated, and
the field generated by a source cannot be modeled as a plane
wave, the choice of the steering vector is not as obvious. Four
different formulations of the steering vector were evaluated in
[13]. It was found that formulations II and III were unbiased
for the estimation of the power the source, and formulations I
and IV were unbiased for the estimation of its position, with no
formulation being unbiased for power and position estimation.
However, measurement noise and variance of the estimations
where not considered, preventing complete characterization of
the performances of the steering vector formulations.

In this paper, a numerical and theoretical analysis of these
four beamforming steering vectors is given. Measurement noise
is considered, and bias and variance of the position and ampli-
tude estimation are analyzed, allowing a more complete com-
parison of the steering vector formulations. In addition, the
maximum likelihood estimator for the position and amplitude
estimation is shown to involve two of the steering vector for-
mulations (III and IV), allowing unbiased and efficient estima-
tion of both position and amplitude. The code reproducing the
figures is available online [14].

The article is structured as follows. Beamforming and the
four steering vectors are recalled in section 2. Power and am-
plitude estimation with known source position is considered in
section 3. Then, numerical results on position estimation errors
are given in section 4. Position bias of formulations II and III is
analyzed in section 5, and interpretation of the combination of
formulations IV and III as the maximum likelihood estimator,
and formulation I as a misspecified maximum likelihood esti-
mator, of the parameters of the source is considered in section
6. Numerical results on amplitude estimation with unknown
position are given in section 7. Some remarks on beamform-
ing with non-Gaussian models are given in section 8. Section 9
concludes the paper.

1.1. Some notations

The complex conjugate of a complex number z is denoted z̄.
The conjugate transpose of a column vector u is indicated by
uH . The scalar product of two complex vectors u and v of CN

is denoted

〈u, v〉 =

N∑
n=1

unv̄n. (1)

Univariate and multivariate complex normal variables are all
assumed to have a relation matrix equal to zero [15]. We recall
that the complex normal vector of dimension N with mean µ
and covariance matrix Σ, denoted CN(µ,Σ), has the density

f (x) =
1

πN det Σ
exp

(
−(x − µ)HΣ−1(x − µ)

)
. (2)

2. Beamforming and steering vectors

We begin this section by recalling the beamforming method
for far-field measurements. Here, the acoustical field p(x) gen-
erated by a source and measured at a point x is assumed to be a
plane wave

p(x) = Aeik(α)·x (3)

where k(α) is a vector pointing from the direction α of the
source, with length the wavenumber k = 2π f /c ( f being the
frequency and c the wave velocity) and A is the complex ampli-
tude of the source. Acoustical data are collected on an array of
N microphones. An array manifold a(α) models the array ge-
ometry and wave propagation: its coefficients are the complex
amplitudes of the acoustical field generated by a source of unit
amplitude with direction of arrival α:

an(α) = eik(α)·xn (4)

where xn is the coordinate of the n-th microphone. Complex
amplitudes of the noiseless soundfield collected on a micro-
phone array can be arranged in a vector p = Aa(α).

In the conditional model, the amplitude A is assumed to be
deterministic, and the measurements m are assumed to follow
the distribution CN(p, σ2I), modeling a white Gaussian noise
of variance σ2. Equivalently, the measurements can be decom-
posed as

m = Aa(α) + n (5)

where the noise n is a centered complex normal vector of co-
variance matrix σ2I.

In this model, beamforming estimates the direction of arrival
α0 by computing the scalar product between the measurements
m and the steering vector h(α) = a(α)/N

BC(α) = |〈m,h(α)〉|2 (6)

=
1

N2

∣∣∣∣∣∣∣
N∑

n=1

e−ik·xn mn

∣∣∣∣∣∣∣
2

(7)

and selecting α̂ = argmax BC(α). As ‖h(α)‖2 is constant, the
Cauchy-Schwarz inequality guarantees that for noiseless mea-
surements, BC(α) is maximal when p and h(α) are colinear, that
is, α = α0. The amplitude is estimated by

Â = 〈m,h(α̂)〉 . (8)

In the unconditional model, the amplitude A is assumed to be
random, distributed according a complex centered normal dis-
tribution of variance ρ the power of the source, assumed to be
independent with respect to the noise. Here, the measurements
are distributed according to a centered complex normal distri-
bution, with covariance matrix Σ = ρa(α)a(α)H + σ2I. In this
model, S snapshots ms are collected (in practice, the measured
signals are analyzed by a short time Fourier transform), and the
covariance matrix of the data is estimated using the sample co-
variance matrix

Σ̂ =
1
S

S∑
s=1

msmH
s (9)
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I [16] [17] [18] [19]
II [8] [16] [20] [4] [19]
III [12] [7] [6] [21] [22] [23]
IV [24] [25] [26] [27]

Table 1: A sampling of the recent beamforming literature, classified according
to the steering vector formulation(s) considered in the article.

and estimation of the direction of arrival is achieved by consid-
ering

BU(α) = h(α)HΣ̂h(α). (10)

As above, when the theoretical covariance matrix is used in
(10), BU(α) is maximal at the actual position of the source. In
noiseless cases, the power of the source can be estimated by
ρ̂ = BU(α̂). In the case of noisy measurements, power can be
estimated by

ρ̂ = h(α̂)H(Σ̂ − σ2I)h(α̂) (11)

when the power of the noise is known (which will be the case in
this paper), or by diagonal removal for unknown noise power.

Estimation of the position of a source in a region close to
a sensor array is less straightforward, as the soundfield cannot
be considered planar anymore. Following [13] and assuming
free-field propagation, a reference point x0 is fixed, and the co-
efficients of the source vector a(x) take the form

an(x) =
r0

rn
e−ik(rn−r0) (12)

where r0 = ‖x−x0‖2 and rn = ‖x−xi‖2 (dependency of r0 and rn

on x is left implicit in the notation for the sake of clarity). A is
the amplitude at the reference point x0. Amplitude of the source
at a fixed distance r? (e.g. 1m) is given by A? = (r0/r?)A. This
amplitude does not depend on the choice of the reference point,
and is intrinsic to the source.

Compared to the far-field formulation (4), this source vec-
tor raises two challenges: the `2 norm of a(x) is not constant
with respect to the source position x, and for a given position,
absolute values of the coefficients an(x) are not equal.

2.1. Four steering vector formulations

Several steering vectors have been proposed to account for
this more complex model. We recall here the four steering vec-
tor formulations considered in [13]. As the references collected
in Table 1 show, all four formulations are used in the recent
literature of acoustical source localization.

Formulation I. When expressed in the frequency domain, delay
and sum beamforming is achieved by compensating the phase
of the coefficients of a, with:

hI
n(x) =

1
N

an(x)
|an(x)|

. (13)

This steering vector is similar to the farfield steering vector,
accounting for the non-planar wavefront.

Formulation II. Here, in addition to compensating the phases
as above, amplitudes are also compensated:

hII
n (x) =

1
N

an(x)
|an(x)|2

. (14)

Formulation III. In this formulation, the steering vector is ob-
tained by dividing the source vector by its squared `2 norm:

hIII(x) =
a(x)
‖a(x)‖22

. (15)

Formulation IV. Finally, formulation IV considers normalized
steering vectors:

hIV(x) =
1
√

N

a(x)
‖a(x)‖2

. (16)

3. Amplitude and power estimation with known position

Assuming that the position of the source xs is known, analy-
sis of the estimated amplitude and power is straightforward, as
the model is linear.

According to (8) and (5), in the conditional model the esti-
mated amplitude at the reference point x0 is given by

Â = A 〈a(xs),h(xs)〉 + 〈n,h(xs)〉 , (17)

where h is chosen from the four steering vectors introduced
above.

Theorem 1. In the conditional model with known position, the
estimated amplitude Â follows the distribution

Â ∼ CN
(
A 〈a(xs),h(xs)〉 , σ2‖h(xs)‖22

)
. (18)

Proof. This is a direct consequence of Eq. (17).

Values of 〈a(xs),h(xs)〉 and ‖h(xs)‖22 are given in Table 2
for the four formulations. As was remarked in [13], formula-
tions II and III yield unbiased amplitude estimations. How-
ever, the variance of formulation II is higher. Indeed, as∣∣∣∣〈hII(xs),hIII(xs)

〉∣∣∣∣ = 1/‖a(xs)‖22 = ‖hIII(xs)‖22, and by Cauchy-
Schwarz inequality,

‖hIII(xs)‖2 =

∣∣∣∣〈hII(xs),hIII(xs)
〉∣∣∣∣

‖hIII(xs)‖2
(19)

≤ ‖hII(xs)‖2. (20)

In the unconditional model, the estimated power p̂ is ob-
tained using eq. (11).

Theorem 2. In the unconditional model with known position,
the estimated power p̂ has the following mean and variance:

E( p̂) = |〈a(xs),h(xs)〉|2 p (21)

Var( p̂) =
1
S

(
|〈a(xs),h(xs)〉|2 p + ‖h(xs)‖22σ

2
)2
. (22)

Proof. See Appendix A.
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〈a(xs),h(xs)〉 ‖h(xs)‖22
I 1

N
∑N

n=1
r0
rn

1
N

II 1 1
N2

∑N
n=1

r2
n

r2
0

III 1 1∑N
n=1 r2

0/r
2
n

IV

√
1
N

∑N
n=1

r2
0

r2
n

1
N

Table 2: Values of 〈a(xs),h(xs)〉 and ‖h(xs)‖22 for the four formulations.

Conclusions similar to the conditional model are reached
here, with unbiased estimation for formulations II and III, and
smaller variance for formulation III compared to formulation II.

As the bias of formulations I and IV is known, it is suggested
in [13] to correct the estimation by dividing the estimated am-
plitude or power by 〈a(xs),h(xs)〉 or | 〈a(xs),h(xs)〉 |2, for the
conditional and unconditional models respectively. For formu-
lation IV, this is equivalent to using formulation III. Indeed,

hIV(x)〈
a(x),hIV(x)

〉 = hIII(x). (23)

For formulation I, the new steering vector hI′ is given by

hI′
n =

1∑N
n=1

r0
rn

an(x)
|an(x)|

, (24)

for which

‖hI′‖22 =
N(∑N

n=1
r0
rn

)2 (25)

Applying the Cauchy-Schwarz inequality to the vectors
(1/
√

N, . . . , 1/
√

N) and (r0/r1, . . . , r0/rn, . . . , r0/rN), we obtain
that ‖hI′(x0)‖22 ≥ ‖h

III(x0)‖22, implying that the bias corrected
formulation I has a larger variance than formulation III.

As a conclusion of this section, formulation III offers the best
performances for amplitude and power estimation in the case of
known source position.

4. Position estimation: numerical simulations

We now consider the estimation of the position of the source.
In this section, simulations are used to highlight the behavior
of the four formulations in particular settings in the conditional
model. Bias and variance of the estimated positions are con-
sidered. First results are obtained by simulating a planar uni-
form rectangular array of 9 × 9 microphones of dimensions
1m×1m located in the plane z = 0m (when unspecified, co-
ordinates are given in meters). A source of amplitude A = 1 Pa
is placed at coordinates xs = (0, 0.5, 1.5), and two references
points are considered: the center of the array x0 = (0, 0, 0),
and the position of a microphone x′0 = (0,−0.375, 0). The
source is searched in the domain with coordinates bounded by
−0.5 ≤ x ≤ 0.5, 0 ≤ y ≤ 1 and 0.5 ≤ z ≤ 2.5. Geometry of the
problem is plotted in Figure 1.

0 0.5 1 1.5 2 2.5

z (m)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y
 (

m
)

microphones

x
0

x
0

'

Source

Figure 1: Geometry of the problem. Region of interest for Figure 2 indicated
by the grey rectangle. The line on which the source is search in Figure 3 is
indicated.

Bias. Beamforming maps are given on figure 2 for noiseless
measurements at k = 15m−1, with a discretization step of 5mm,
in the plane x = 0. As was shown in [13], formulations I and IV
yield accurate positions, as the beamforming criterion is maxi-
mal at xs. For the reference point x0, formulations II and III ex-
hibit estimated positions biased towards the array. Conversely,
for reference point x′0 (results denoted as II’ and III’), estimated
positions are biased away from the array. Formulations I and
IV are unaffected by the choice of the reference point, as their
definitions (13) and (16) ensure that hI and hIV remain invariant
when the reference point changes (up to a phase term constant
for all coefficients).

We note that formulations II and III are biased even when the
coordinate z is known. The criteria are plotted on figure 3 in
function of the coordinate y, at z = 1.5m and k = 5m−1, for
reference points x0 and x′0. While the maxima of formulations
I and IV are located at the actual y coordinate of the source,
the estimated position is biased for formulations II and III, with
bias depending on the choice of the reference point.

Variance and MSE. To complete the analysis, we consider now
noisy measurements with SNR = 10dB. Squared norm of the
bias, variance and MSE are plotted on Fig. 4 in function of the
frequency by averaging over 1000 realizations. The frequency
axis is graduated using the Helmholtz number

He =
f d
c

(26)

with f the frequency, d the aperture of the array, and c the wave
velocity. The beamforming criteria are maximized by gradient
ascent, initialized by a grid search, and constrained to the region
of interest.

Variances of all formulations are of the same order (for lower
frequencies, estimated positions with formulations II and III are
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Figure 2: Value of the beamforming criterion for the four formulations (linear
scale) in a planar region. For formulations II and III, results for reference points
x0 (II and III) and x′0 (II’ and III’) are given. Position of the source indicated
by a circle, maximum value of the criterion by a disk.

Figure 3: Value of the beamforming criterion for the four formulations (linear
scale) on a line parallel to the array. (a) Formulations I and IV, (b) Formulations
II and III, reference point x0, (c) Formulations II and III, reference point x′0.
Maximal values are indicated by disks (actual coordinate of the source ys =

0.5m)

located on the boundary of the domain, which implies a lower
variance). However, higher bias for formulations II and III im-
ply higher MSE, for both reference points. Best performances
are given by formulations I and IV which have here similar per-
formances.

For a more precise comparison of formulations I and IV, a
3D array is considered, with 26 microphones placed at the ver-
tices, edge midpoints and face centers of a cube of edge length
1m, centered at the origin. The source is placed at coordinate
(0.1, 0.3, 0.4), and MSE on Fig. 5 is plotted in function of the
wavenumber k. The domain of interest is here the interior of the
cube, and the reference point x0 is set at its center. Formulation
IV appears to yield better performances than formulation I, with
MSE halved at lower frequencies. The better performances of
formulation IV are explained by the fact that it is capable of us-
ing the information contained in the relative amplitudes of the
signals in addition to their phases.

As a conclusion, results of this section show that the estima-
tion bias for the position of the source in formulations II and III
depends on the position of the reference point, and that this bias
also exists for two-dimensional problems. It is also shown that
formulation IV has a smaller MSE compared to formulation I,
in cases where the amplitudes of the signals yield information
about the source position. The next two sections provide theo-
retical arguments supporting these observations.

5. Approximation of the bias of Formulations II and III

In this section, an approximate expression for the bias of for-
mulations II and III is given, when the source to be localized is
known to lie on a line. Measurements are here assumed noise-
less. With xs the position of the source and u a direction vector
of the line where the source is searched, we define

BII(s) =
∣∣∣∣〈a(xs),hII(xs + su)

〉∣∣∣∣2 (27)

BIII(s) =
∣∣∣∣〈a(xs),hIII(xs + su)

〉∣∣∣∣2 (28)

the value of the beamforming criterion on the line passing
through xs, in function of the local coordinate s. When rele-
vant, B will be used to refer to both BII and BIII. As was re-
marked in [13], in general, the derivative of B is nonzero at the
actual position of the source, shifting the maximal value of the
beamforming criterion away from the source.

In the neighborhood of the actual position of the source, B(s)
can be approximated by a quadratic Taylor polynomial

B(s) ≈ B(0) + B′(0)s +
1
2

B′′(0)s2 (29)

and an approximated value of the local coordinate s? maximiz-
ing B(s) is given by

s? ≈ −
B′(0)
B′′(0)

. (30)

This can be interpreted as a step of the Newton optimization
method [28].
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Figure 4: (a) MSE, (b) variance and (c) squared norm of the bias of the estima-
tion of the position, in function of He.

2 3 4 5 6 7 8 9 10

wavenumber k (m
-1

)

10 -4

10 -3

10 -2

10 -1

10 0

M
S

E
 (

m
2
)

I

II

III

IV

Figure 5: MSE of the position for a cubic antenna, in function of the frequency.

Values of the derivatives of B are given in Appendix B. At
high frequencies, lower order terms in the wavenumber k in
the second derivative can be neglected. The following theorem
gives an approximate expression of the position bias (here we
define rn(s) = ‖xn − (xs + su)‖2 for s = 0 for 0 ≤ n ≤ N).

Theorem 3. At high frequencies, the approximate positions of
the maximum x? = xs + s?u of the quadratic approximations of
BII and BIII are given by

s?II ≈
1
k2

∑N
n=1

(
r′n
rn
−

r′0
r0

)
(
∑N

n=1 r′n)2/N −
∑N

n=1 r′2n

(31)

s?III ≈
1
k2

∑N
n=1

1
r2

n

(
r′n
rn
−

r′0
r0

)
(∑N

n=1
r′n
r2

n

)2
/N −

∑N
n=1

(
r′n
r2

n

)2 . (32)

where rn and r′n are evaluated at s = 0, for 0 ≤ n ≤ N.

Proof. See Appendix B.

The approximated bias depends on the position of the source,
the position of the reference point and the geometry of the array.
Comparison of the approximated value of the bias of the estima-
tion of the z coordinate and values obtained through numerical
experiments are given for the case of the geometry described
in Fig. 6 for formulation II, with an array of 25 microphones,
and reference point at the origin. Microphones are uniformly
spaced in the xy plane, with coordinates z designed so that the
approximation bias for a source at z = 4m is zero (see Appendix
B for details).

Values of the approximated and numerically obtained posi-
tion bias for different positions of the source are plotted in fig-
ure 7, showing good accordance at high frequencies. As pre-
dicted, the estimation bias of the source at 4m is zero. Estimated
ranges when the source is placed closer to the array are biased
towards the array. Conversely estimated range of the source
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Figure 6: Geometry of the array ensuring unbiased range estimation of the
source at z = 4m. Microphones in the plane x = 0 indicated by disks, sources
positions used in figure 7 by crosses.

Figure 7: Position bias along coordinate z in function of the frequency for for-
mulation II. Thin lines: approximation (31), thick lines: numerical estimation.

when placed further from the array are positively biased. As
remarked in [13], estimation bias decreases with increasing fre-
quencies. Eqs. (31) and (32) show that this decay is quadratic
with respect to the frequency.

The results of this section extend the observation of section 4
that the bias depends on the reference point. The bias also de-
pends on the shape of the array and the position of the source.
We remark that these results cannot be used for array design:
unbiased range estimation for the source at 4m was obtained
with prior information on the position of the source, and in gen-
eral does not guarantee unbiased estimation of the other coor-
dinates.

6. Maximum likelihood estimation

Position estimation by formulations IV and I can be analyzed
by interpreting them as a maximum likelihood estimator (MLE)
[29], and a misspecified MLE (MMLE) [30] respectively.

The MLE is one of the most simple statistical estimators.
Given measurements m following the probability distribution
with density fθ, and θ the parameters to be estimated (here,
θ contains the position xs and amplitude A or power p of the

source), the MLE estimate θ̂MLE is given by

θ̂MLE = argmax
θ

lm(θ) (33)

where l is the likelihood, defined by lm(θ) = fθ(m). The MLE
has several desirable properties. Indeed, it is asymptotically
unbiased, in the sense that its bias vanishes when SNR (for the
conditional model [31]) or number of snapshots (for the uncon-
ditional model [11]) increase. Moreover, the MLE is asymptoti-
cally efficient, its variance reaches the Cramér-Rao lower bound
under increasing SNR and number of snapshots, respectively.

Consequently, the MLE is often a good estimator.

Theorem 4. The MLE for the position and amplitude of a
source in the conditional model is obtained in two steps, first
by estimating the position (assumed to lie in a domain of inter-
est Ω) with

x̂ = argmax
x∈Ω

∣∣∣∣∣∣
〈
m,

a(x)
‖a(x)‖2

〉∣∣∣∣∣∣2 (34)

= argmax
x∈Ω

∣∣∣∣〈m,hIV(x)
〉∣∣∣∣2 , (35)

followed by estimation of the amplitude using

Â =

〈
m,

a(x̂)
‖a(x̂)‖22

〉
(36)

=
〈
m,hIII(x̂)

〉
. (37)

Proof. See Appendix C.1.

We recognize, in these two steps, formulation IV for the po-
sition, and formulation III for the amplitude. As a consequence,
formulation IV yields an asymptotically unbiased and efficient
estimation of the source position. Combined with formulation
III, an asymptotically unbiased and efficient estimation of the
amplitude of the source is obtained.

In the unconditional model, the position of the source xs and
its power p are estimated.

Theorem 5. With

B(x) =
a(x)HΣ̂a(x)
‖a(x)‖22

(38)

= hIV(x)HΣ̂hIV(x), (39)

the MLE for the position of the source and its power in the
unconditional model are given by

x̂ = argmax
x∈Ω

B(x)
σ2 − log B(x) (40)

p̂ =
1

‖a(x̂)‖22

(
B(x̂) − σ̂2

)
(41)

= hIII(x̂)H
(
Σ̂ − σ2I

)
hIII(x̂) (42)

Proof. See Appendix C.2
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MLE for the unconditional model also involves formulation
IV for the estimation of the position, and formulation III for
the estimation of the power. We note that (40) is not equivalent
to maximizing B(x), as the function t → t/σ2 − log t is not
increasing for all positive t. However, as the expectation of Σ̂ is
Σ = ρa(xs)a(xs)H + σ2I, values of B(x) are likely to be larger
than σ2, for which the function is increasing.

We note that the estimators obtained here do not rely on the
specific source vector (12), and are valid for any type of source
vector (e.g. computed or experimentally measured).

6.1. Misspecified MLE
Frequently, the model used for the estimation does not match

the actual physics of the problem exactly. This is the case for
formulation I, which neglects the geometrical decay of radiat-
ing soundwaves. In the conditional model, by modeling the
measurements as random variables following the distribution
CN(Bb(x), σ2I), where bn(x) = an(x)/|an(x)| and B is the com-
plex amplitude, one shows that the parameters x̂ and B maxi-
mizing the misspecified likelihood are given by using (35) and
(37), replacing hIV and hIII with hI.

Likewise, in the unconditional model, measurements are as-
sumed to follow the distribution CN(0, qb(x)b(x)H +σ2I), with
q the power, and estimation is obtained by using (39) and (42)
with the same modifications as in the conditional case.

In general, the MMLE is not guaranteed to be unbiased. Nev-
ertheless, the asymptotic mean of the MMLE is known, as it
is the parameters minimizing the Kullback-Leibler divergence
(KLD) [32] between the true distribution of the data and the
misspecified model[30]. We recall that the KLD between two
distributions with density functions f and g defined on R is
given by

DKL( f ‖g) =

∫
R

f (x) log
f (x)
g(x)

dx. (43)

Here, the distributions of the data and of the assumed model are
complex normal, and the KLD between two complex normal
distributions of dimension N is given by

DKL(CN(µ1,Σ1)‖CN(µ2,Σ2)) (44)

= tr(Σ−1
2 Σ1) + (µ2 − µ1)HΣ−1

2 (µ2 − µ1) − N + log
det Σ2

det Σ1
(45)

This expression is similar to the real normal case [32], and de-
rived in a similar way using the probability density function (2).

In the conditional model, the covariance matrices of the two
complex normal distribution are equal, and the KLD between
the data and the model simplifies to

DKL =
1
σ2 ‖Aa(xs) − Bb(x)‖22. (46)

Minimization of the KLD is similar to the optimization problem
encountered when deriving the MLE for the conditional model.
The KLD attains its minimum when

x = argmax
x∈Ω

∣∣∣∣∣ 〈a(xs),b(x)〉
‖b(x)‖2

∣∣∣∣∣2 (47)

= argmax
x∈Ω

Re
N∑

n=1

an(xs)
ān(x)
|an(x)|

, (48)

that is when an(xs) and an(x) have the same angle for all n,
yielding x = xs and showing that estimation of the position
with formulation I is asymptotically unbiased. The amplitude
B minimizing the Kullback-Leibler divergence is given by

B =
〈Aa(xs),b(xs)〉
‖b(xs)‖22

(49)

=

 1
N

N∑
n=1

r0

rn

 A, (50)

confirming the bias of the amplitude estimation found in section
3, now in a case where position and amplitude are estimated
jointly. Similar conclusions are reached for the unconditional
model.

7. Amplitude and power estimation for unknown position

We now consider amplitude estimation when the source po-
sition is unknown. Using the same settings as in section 4, bias,
variance, and MSE of the absolute value of the estimated ampli-
tude at the reference point and at a fixed distance of the source
are plotted using numerical simulations. In addition to the four
formulations, performances for the MLE, combining formula-
tions IV for localization and III for amplitude estimation, are
given. Results for the estimation of the amplitude at the refer-
ence point x0 are given on Fig. 8. The MLE is unbiased and has
the lowest MSE. Although formulations II and III are unbiased
in the known position case, they are here slightly biased towards
higher amplitudes. Indeed, as visible on Fig. 3, the estimated
amplitude at the actual position being unbiased, the estimated
amplitude at the maximum of the criterion of formulation II and
III is necessarily positively biased.

Performances for the estimation of the amplitude at a fixed
arbitrary distance to the source (here, r? = 1m) are given on
Fig. 9. This estimated amplitude Â? is obtained by

Â? =
‖x0 − x̂s‖2

r?
Â (51)

and involves both the estimated amplitude Â at the reference
point x0, and the estimated position x̂s. For clarity, formula-
tions I and IV, which are known to be biased even for known
source position, are not considered. Compared to the previous
case, variances of the estimations (in particular for the MLE)
decrease with the frequency. This decay is expected, as the esti-
mated amplitude is here also affected by errors in the estimated
position (see Eq. (49)), which are decaying with increasing fre-
quency, as is visible on figure 4. Formulations II and III are
here biased towards lower amplitudes for reference point x0, as
the estimated position is biased towards the array. Conversely,
amplitudes are overestimated for reference point x′0. As ex-
pected, MLE estimation of the amplitude (combination of for-
mulations IV and III, where estimation of the position is unbi-
ased and does not depend the reference point) offers the best
performances, with unbiased estimation and minimal MSE.
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Figure 8: (a) MSE, (b) variance and (c) bias of the estimated amplitude at the
reference point x0
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8. Non-Gaussian source and noise

The previous results were obtained under the assumption that
the source and the noise followed a Gaussian model. While
this model is common, it cannot be considered to hold in all
circumstances. In that case, one has to find the MLE for the
specific model considered, unlikely to be identical to the MLE
for Gaussian models, i.e. beamforming.

Nevertheless, some of the above results can be extended to
beamforming applied to non-Gaussian models, assuming that
the measurements are affected by an additive centered noise n
with covariance matrix σ2I.

Elementary computations show that in the conditional model
with known position, the mean and variance found in Theo-
rem 1 still hold: the estimated amplitude Â has mean E(Â) =

A 〈a(xs),h(xs)〉 and variance Var(Â) = σ2‖h(xs)‖22 (however,
the probability distribution of Â is in in general not Gaussian).
In the conditional model, the mean of the estimated power is
E( p̂) = |〈a(xs),h(xs)〉|2, as in Eq. (21). (the variance given in
Eq. (22) is in general not valid).

Estimation of the position and amplitude of a source using
formulations III and IV is in general asymptotically unbiased,
for the conditional and unconditional models. This is shown
by interpreting beamforming as a mismatched MLE, where the
model is assumed to be Gaussian. Indeed, the KLD between a
fixed arbitrary probability distribution with mean µ and covari-
ance matrix Σ and a multivariate normal distribution CN(z,S)
is minimized when z = µ and S = Σ. For the conditional model,
with a non-Gaussian model of mean Aa(xs), the Gaussian dis-
tribution minimizing the KLD has identical mean, and therefore
the asymptotic mean of the estimated position and amplitude by
beamforming is xs and A respectively. Likewise for the uncon-
ditional model, where the Gaussian distribution minimizing the
KLD has Σ = ρa(xs)a(xs)H + σ2I as covariance matrix.

9. Conclusion

Four beamforming steering vectors formulations were con-
sidered, extending the results of Ref. [13]. Bias and variance
of position and power estimation were analyzed in the case of
noisy measurements. In contrast to the far-field case, no steer-
ing vector formulation offers unbiased position and amplitude
or power estimation. However, far-field source localization is a
particular case where the coefficients of the source vector a(α)
have constant amplitudes, and the four formulations coincide.
As this is not the case for nearfield localization, it is no surprise
that accurate estimation of the position and amplitude or power
necessitates more complex methods.

Formulations I and II are to be avoided. While formulation I
was shown to be asymptotically unbiased for the estimation of
the position, its MSE was shown to be larger than formulation
IV, also unbiased, as it does not take into account the amplitude
of the measured signals. Likewise, assuming that the position
of the source is known, formulation II is unbiased for amplitude
and power estimation. However, the unbiased formulation III
was shown to have a lower variance.

Estimation of the position with formulations II and III was
already known to be biased. In addition, it was shown that this
bias depends on the shape of the array, the reference point, and
the position of the source. Moreover, this position bias implies
a corresponding bias in the estimation of the amplitude of the
source in the case where the position is to be estimated.

Accurate estimation of both position and amplitude of an
acoustical source necessitates the combination of formulations
IV and III, for the estimation of the position and of the am-
plitude respectively. As it is the MLE, it is guaranteed to be
asymptotically unbiased and efficient, as the SNR or number of
snapshots increase. A similar procedure was used in [19], how-
ever using the less efficient formulations I and II. As it does not
depend on the specific shape of the Green function, this anal-
ysis remains relevant for more general cases (e.g. inhomoge-
neous medium, reflections, etc., with computed or experimental
source vectors). The gain in performances were even more evi-
dent for the estimation of the amplitude at an arbitrary distance
to the source, necessary to predict the effect of a source at an
arbitrary point in space.

This issue of the diagonal of the covariance matrix Σ was here
avoided, as the covariance matrix of the noise was assumed to
be perfectly known. This issue will be considered for further
research on this topic. Consequences of these results on the
localization of multiple sources will also be explored.

Appendix A. Bias and variance of power estimation

In the unconditional model, the power of the source at xs is
estimated by

p̂ = h(xs)H(Σ̂ − σ2I)h(xs) (A.1)

= h(xs)HΣ̂h(xs) − σ2‖h(xs)‖22 (A.2)

=
1
S

S∑
s=1

|h(xs)Hms|
2 − σ2‖h(xs)‖22, (A.3)

using the definition of Σ̂ (9). As the ms are complex normal
with covariance matrix Σ, the h(xs)Hms are independent and
identically distributed complex centered normal variables of
variance ρ = h(xs)HΣh(xs) = p|h(xs)Ha(xs)|2 +σ2‖h(xs)‖22, and
2
ρ

∑S
s=1 |h(xs)Hms|

2 follows the χ2(2S ) distribution, with mean
2S and variance 4S (it can be seen as the sum of squares of
the real and imaginary part of the h(xs)Hms, i.e. 2S indepen-
dent and identically distributed real centered normal variables
of variance ρ/2). The first term of (A.3) has mean ρ and vari-
ance ρ2/S , and the second term is deterministic, yielding (21)
and (22).

Appendix B. Position bias of formulations II and III

For a source at xs, we define bII(s) =
〈
a(xs),hII(xs + su)

〉
.

Then,

BII(s) = |bII(s)|2 (B.1)
B′II(s) = 2Re(b̄II(s)b′II(s)) (B.2)

B′′II(s) = 2Re(b̄II(s)b′′II(s) + |b′II(s)|2) (B.3)
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From the definition of hII,

bII(s) =
1
N

N∑
n=1

rn(s)r0(0)
r0(s)rn(0)

eik(rn(s)−r0(s))e−ik(rn(0)−r0(0)). (B.4)

Routine computations yield

bII(0) = 1 (B.5)

b′II(0) =
1
N

N∑
n=1

(
r′n
rn
−

r′0
r0

+ ik(r′n − r′0)
)

(B.6)

b′′II(0) =
1
N

N∑
n=1

(−k2)(r′n − r′0)2 + 2ik
((

r′n − r′0
) ( r′n

rn
−

r′0
r0

)
+

(
r′′n − r′′0

))
(B.7)

+ 2
r′0
r0

(
r′0
r0
−

r′n
rn

)
+

r′′n
rn
−

r′′0
r0

(B.8)

where r0, rn, and their derivatives are evaluated at s = 0. Ne-
glecting lower order terms in the wavenumber k, we get

B′II(0) =
2
N

N∑
n=1

(
r′n
rn
−

r′0
r0

)
(B.9)

B′′II(0) ≈
2
N

 N∑
n=1

(−k2)(r′n − r′0)2 +
k2

N

 N∑
n=1

(r′n − r′0)

2 (B.10)

= −
2k2

N

 N∑
n=1

(r′n)2 −
1
N

 N∑
n=1

r′n

2 (B.11)

yielding (31).
Bias in null when B′II(0) = 0. This is obtained in the partic-

ular case where the source is located at (0, 0,Z), searched on
the z axis, and the microphones and reference point are placed
on the sphere of center (0, 0,Z/2) and diameter Z/2. Indeed,
in this case, r0(s) = Z + s, and for a microphone at position n,
rn(s) =

√
x2

n + y2
n + (s + Z − zn)2. Then,

r′n(0)
rn(0)

=
Z − zn

x2
n + y2

n + (Z − zn)2 (B.12)

and combined with the equation of the sphere x2 + y2 + (z −
Z/2)2 = Z2/4, r′n(0)

rn(0) = 1/Z. As the reference point is also on the

sphere, r′0(0)
r0(0) = 1/Z, and B′II(0) = 0.

For formulation III, similar computations yield

bIII(0) =1 (B.13)

b′III(0) =
1∑N

n=1
1
r2

n

N∑
n=1

1
r2

n

(
r′n
rn
−

r′0
r0

+ ikr′n − ikr′0

)
(B.14)

b′′III(0) ≈ − k2 1∑N
n=1

1
r2

n

N∑
n=1

1
r2

n
(r′n − r′0)2. (B.15)

Compared to formulation II, the terms of the sums are weighted
by 1/r2

n.

Appendix C. Maximum likelihood estimators

Appendix C.1. Conditional model

As m is assumed to follow the distribution CN(Aa(x), σ2I)
parameterized by the position x and the amplitude A, its proba-
bility density is given by

f(x,A)(m) =
1

πNσ2N exp
−‖m − Aa(x)‖22

σ2

 (C.1)

Given the data m, the parameters x and A are estimated by
maximizing the likelihood lm(x, A) = f(x,A)(m), or, equivalently,
solving the minimization problem

(x̂, Â) = argmin
x∈Ω,A∈C

‖m − Aa(x)‖22. (C.2)

By first solving the problem for A with fixed position x, and
then solving for x, solution of this optimization problem is
given by

x̂ = argmax
x∈Ω

∣∣∣∣∣∣
〈
m,

a(x)
‖a(x)‖2

〉∣∣∣∣∣∣2 (C.3)

Â =

〈
m,

a(x)
‖a(x)‖22

〉
. (C.4)

Appendix C.2. Unconditional model

In the unconditional model, several snapshots ms are col-
lected. They are assumed to be independent, and to follow the
distribution CN(0,Σp,x), with Σp,x = pa(x)a(x)H + σ2I, and
joint density

fx,p(m1, . . . ,mS ) =

S∏
s=1

1
πN det(Σp,x)

exp
(
−msΣ

−1
p,xms

)
(C.5)

The log-likelihood is given by

L(x, p) = log fx,p(m1, . . . ,mS ) (C.6)

= −

S∑
s=1

msΣ
−1
p,xms − S log det(Σp,x) − NS log π (C.7)

= −S tr(Σ−1
p,xΣ̂) − S log det(Σp,x) − NS log π (C.8)

using the definition (9) of Σ̂ and the properties of the trace.
Maximizing the likelihood is thus equivalent to solving the op-
timization problem

(x̂, p̂) = argmin
x∈Ω,p∈R+

tr(Σ−1
p,xΣ̂) + log det(Σp,x) (C.9)

By the matrix determinant lemma and the Sherman-Morrison
formula,

det(Σp,x) = σ2(N−1)(σ2 + p‖a(x)‖2) (C.10)

Σ−1
p,x =

1
σ2

(
I −

pa(x)a(x)H

σ2 + p‖a(x)‖2

)
(C.11)
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and

(x̂, p̂) = argmin
x∈Ω,p∈R+

tr Σ̂

σ2 −
pa(x)HΣ̂a(x)

σ2(σ2 + p‖a(x)‖2)
+ log(σ2 + p‖a(x)‖2)

(C.12)
For fixed x, the optimal value of p is given by

p?(x) =
1

‖a(x)‖2

(
a(x)HΣ̂a(x)
‖a(x)‖2

− σ2
)
. (C.13)

Injecting in (C.12) and removing constant terms with respect to
x, the position is found by solving

x̂ = argmax
x∈Ω

1
σ2

a(x)HΣ̂a(x)
‖a(x)‖2

− log
a(x)HΣ̂a(x)
‖a(x)‖2

, (C.14)

and the estimated power p̂ is finally given by p?(x̂).

Appendix C.3. Non-Gaussian models
We show here that with p a probability density with mean µ

and covariance matrix Σ, the complex Gaussian distribution q
minimizing the KLD DKL(p‖q) is CN(µ,Σ).

The KLD between p and q is

DKL(p‖q) =

∫
CN

p(x) log
p(x)
q(x)

dx (C.15)

=

∫
CN

p(x) log p(x) − p(x) log q(x)dx. (C.16)

The first term is the differential entropy of p, constant with re-
spect to the mean and covariance of q. With z and S the mean
and covariance of q, using Eq. (2), the second term writes

−

∫
CN

p(x) log q(x)dx (C.17)

= −

∫
CN

p(x)
(
−Nπ − log det S − (x − z)HS−1(x − z)

)
dx

(C.18)

= Nπ + log det S + tr
(
S−1

∫
CN

p(x)(x − z)(x − z)Hdx
)
(C.19)

= Nπ + log det S + tr
(
S−1

(
Σ + (µ − z)(µ − z)H

))
(C.20)

= Nπ + log det S + tr(S−1Σ) + (µ − z)HS−1(µ − z). (C.21)

With fixed S, the KLD is minimized when z = µ. Then, mini-
mizing log det S + tr(S−1Σ) yields S = Σ.
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