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Abstract—The increasing number of devices together with
uncoordinated transmissions result in a major challenge of
scalability in the Internet of things. This paper deals with signal
detection in the uplink of a LoRa network through a deep
learning-based approach. Two strategies are proposed: regression
for bit detection based on a deep feedforward neural network
and classification for symbol detection based on a convolutional
neural network. These receivers can decode a selected user’s
signals when multiple users simultaneously transmit over the
same frequency band with the same spreading factor. Simulation
results show that both receivers outperform the classical LoRa
one in the presence of interference. The results show that the
introduced approach is relevant to deal with the scalability issue.

Index Terms—LoRa, IoT, deep learning, neural networks,
capture effect.

I. INTRODUCTION

In the next few years, the number of connected Internet of
Things (IoT) devices is expected to grow exponentially, which
requires technology that can handle large-scale connectivity.
In recent years, Low-Power Wide Area Network (LPWAN)
technologies, such as LoRa and SigFox in the license-free
frequency band, have been introduced to deal with this issue.
LoRa uses a Chirp-Spread Spectrum Modulation scheme.
Different spreading factors (SF) and bandwidth settings can
be used to achieve quasi-orthogonal transmissions. However,
when two or more devices simultaneously transmit with the
same SF on the same frequency band, collisions occur at
the receiver [1], generally resulting in packet loss. In fact,
sometimes, one packet can be correctly decoded despite the
collision. This is the capture effect. This can be achieved when
the desired signal is sufficiently stronger than the interfering
one. Such results have been presented in LoRa communica-
tions in [2]. However, an interleaved chirp spreading (ICS)
modulation scheme is used, and this is not directly backward
compatible with the LoRaWAN standard. This principle is
also used in serial interference cancellation schemes. In [3],
the strongest user can be decoded, then suppressed, and the
second strongest can, in turn, be decoded. The capture effect is
also used in [4], where two superposed signals, synchronized
or slightly desynchronized, can be decoded using timing
information. However, ensuring synchronization is not realistic
in the uplink of wide-area networks considered in this paper.

Nevertheless, the capture effect requires a sufficient power
gap between the desired and the interfering signal. In this pa-
per, we propose two signal detection schemes for the uplink in
LoRa-like networks based on deep learning that significantly

improve the receiver’s ability to accurately retrieve a signal,
even when interfering users are present.

In the literature, some works employ the deep learning
approach for IoT networks [5], [6], but not for detection.
To our knowledge, there are no works yet that investigate
detection in that context using deep learning.

The contribution of this paper is three-fold: (i) Designing
two new receivers based on deep learning for detection in
LoRa networks. The first one deals with bit detection with a
regression approach, as in [7] for the OFDM context, and the
second one deals with symbol detection with a classification
approach. These receivers can cope with interference coming
from other LoRa users, and both strongly improve the capture
effect compared to the classical LoRa receiver; (ii) It is
shown that, once they have information on the power levels,
the designed receivers are further efficient, mainly if the
interfering users are stronger than the user to be decoded;
and (iii) The outstanding performance of the new receivers is
achieved while maintaining an efficient complexity order.

The rest of the paper is organized as follows. Section II
describes the system model. Section III presents the proposed
deep learning-based receivers. Section IV shows simulation
results and discussions. Conclusions are drawn in Section V.

II. SYSTEM MODEL

In LoRa, each symbol carries SF bits, representing M = 2SF

possible values. The signal bandwidth is denoted by B, and
the symbol duration is Ts = MT , where T = 1/B. The SF
ranges from 7 to 12. Each LoRa symbol, also called chirp,
consists of a linear frequency shift over Ts. It is built from a
raw chirp c(t). The raw chirp has the instantaneous frequency
B
Ts
t, yielding the base-band expression [8]:

c(t) = exp

(
2ıπ

B

2Ts
t2
)

t ∈
[
− Ts

2
,
Ts
2

]
. (1)

Let Q be the number of transmitted LoRa symbols in a
packet. The transmitted symbol of the jth user at time qTs
(q = 0, · · · , Q − 1) is m(q)

j ∈ {0, ...,M − 1}. This symbol
is carried by performing a cyclic shift of the raw chirp by
δ
(q)
j = m

(q)
j T , as illustrated in Fig. 1. Hence, the coded chirp
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The transmitted signal of user j, sj(t), is then sj(t) =∑Q−1
q=0 s

(q)
j (t− qTs). The transmitted LoRa packet is obtained

by adding a preamble composed of raw chirps.
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Fig. 1: (a) Raw chirp (b) Coded chirp associated with m(q)
j .

A circle of radius rmax with one gateway located at the
center is considered, including a user free guard-zone around
the gateway with radius rmin. We assume Ni interfering users
having the same SF. Ni is randomly drawn from a Poisson
distribution with parameter λ. The 2D coordinates of the Ni
interfering users are uniformly distributed while considering
only positions within the disc defined by rmax and rmin.
Since different devices operate autonomously, the transmission
between nodes is asynchronous.

The synchronization is carried out as follows: a corre-
lation is first performed between the received signal and
the preamble. Then the highest peak of the correlation is
selected, and the received signal is synchronized on it. The user
corresponding to this peak is the desired user to be decoded,
indexed by j here. The received signal associated with symbol
q of user j sampled at t = nT , n = −M2 , · · · ,

M
2 − 1 is:

r(q)[n] = hj s
(q)
j [n] +

∑
i∈I

hi s
interf,(q)
j,i [n] + w(q][n], (3)

where s
(q)
j [n] = s

(q)
j (nT ), I is the set of interfering users

(|I| = Ni) and wq[n] ∼ CN (0, σ2) is a circularly symmetrical
complex Gaussian noise. hj and hi are the channel coefficients
for users j and i, respectively.

The collision between the qth symbol of the selected user
j and two consecutive symbols of an interfering user i is
illustrated in Fig. 2. The interfering part of user i is denoted
by sinterf,(q)

j,i . The delay between user j and user i (accounting
for asynchronous transmissions between the nodes) is τj,i.

To demodulate, the classical LoRa receiver first multiplies
the samples of the received signal by the conjugate of the raw
chirp, yielding y(q)[n] = r(q)[n]c∗[n], where c∗[n] = c∗(nT ).
Then, a Fast Fourier Transform (FFT) is applied:

Y (q)[k] =

M/2∑
n=−M/2

y(q)[n] e−2ıπ
nk
M , k = 0, . . . ,M − 1. (4)
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Fig. 2: Collision between a symbol of desired user and two consec-
utive symbols of the interfering user.

In the classical LoRa receiver, the symbol m(q)
j is estimated

by searching for the frequency index where the modulus of (4)
is maximum. However, collisions occur when multiple users
transmit simultaneously using the same SF, yielding possible
detection errors.

III. PROPOSED DEEP LEARNING-BASED RECEIVER

This section proposes two receivers: the first is based on
Deep Feedforward Neural Network (DFNN), and the second
on Convolutional Neural Network (CNN).

A. Deep Feedforward Neural Network-based receiver

As indicated in Fig. 3, the detector relies on a DFNN
architecture with four hidden layers. The number of nodes
in each hidden layer is 8M , 4M , 2M , and M . The input
is the modulus of the de-chirped received samples after the
FFT (4), yielding M input nodes. The output is the bits of
the transmitted symbol, yielding SF output nodes. The ReLU
function is used as the activation function in the hidden layers.
The sigmoid function is applied to map the outputs to the
interval [0, 1] in the output layer. Batch normalization (BN) is
embedded in the hidden layers to prevent overfitting.

sigmoid

FC1 + BNInput Layer Hidden Layers Output Layer

FC: Fully Connected
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pu
t
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FC3 + BN

FC4 + BN

BN: Batch Normalization

O
ut
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t

Fig. 3: Deep Feedforward Neural Network architecture.

The DFNN is trained so that the error between the outputs
and the transmitted bits is minimized. The error is evaluated
through the L2 mean squared error function. Then, the detected
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Fig. 4: Convolutional Neural Network architecture.

bits are obtained by thresholding the outputs. For the sigmoid
function, the corresponding threshold is 0.5.

B. Convolutional Neural Network-based receiver

Differently from the common feedforward architecture,
CNN relies mainly on convolution operations within the so-
called convolutional layers. For this architecture, the input is
presented as an M ×M binary image containing the modulus
plots of (4), as illustrated in Fig. 5. The M nodes at the
output layer correspond to the M symbols to be detected.
Here, we use a structure that includes two convolutional layers
and two fully connected layers (cf. Fig. 4). We set M/4 and

0 20 40 60 80 100 120

0.5

1

1.5

2

2.5
10

-6

Fig. 5: Plot of |Y (q)[k]| (k = 0, · · · ,M−1) for a symbol of m(q) =
20 with SNR = −10 dB and SF = 7.

M/2 kernels for the first and second convolutional layers,
respectively. The kernel size is set to 4× 4 for both layers. A
pooling layer follows convolution steps to reduce the feature
map’s dimension while keeping the most relevant information.
The filter used for the average pooling layer is of size 2× 2,
and the stride is 2. The output of the second pooling layer

is flattened to be the input of the fully connected layer. The
first fully connected layer has 4M nodes and the second one
has 2M nodes. Similarly to the DFNN, the ReLU function
is used as the activation function, and batch normalization is
performed. For the output classification layer, we employ the
softmax function. The CNN is trained to minimize the cross-
entropy loss between the output and the transmitted symbols.

IV. SIMULATION RESULTS

In this section, we provide simulation results to evaluate
the proposed DFNN and CNN-based receivers’ performance.
All the parameters of the neural network are set through a
hyperparameter tuning process. Training is done singly offline
using training data generated from simulation for each SNR
value. For the LoRa modulation, the bandwidth B = 250 kHz
is considered, with SF = 7, yielding M = 128. rmax and
rmin are set to 1 km and 200 m, respectively. In LoRa, the
devices are usually located far from the gateway since LoRa
is designed for long range communications. The proposed
detectors are compared with the classical LoRa detector in
terms of symbol error rate (SER).

In the following, first, we present results where Ni is a ran-
dom variable. Then, in order to investigate the capture effect,
the number of interfering users is forced to one (Ni = 1).
Capture effect is the receiver’s ability to decode one out of
two (or more) colliding users correctly, usually the strongest
one but not necessarily with the proposed receiver.

A. Results for Ni ∼ P(λ)
As described in section II, the total number of interfering

users Ni, in the time interval of interest, is drawn from a
Poisson distribution, i.e., Ni ∼ P(λ), with the following
values for λ = 0.25, 0.5, 0.7, and 1. Training and test are
done for each (SNR, λ) couple. Note that LoRa receivers can
estimate the SNR. Results are presented in Fig. 6. As a lower
bound, the case when there is no interfering user, i.e., λ = 0, is
considered (dashed line curves). It is shown that the proposed
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Fig. 6: Symbol error rate as a function of the SNR for different detection approaches: classical decoder [O], DFNN-based [∗], and CNN-based
[◦]. For all figures, two scenarios are considered: no interference (plots in dashed line [ ]) and when interference can happen (plots in
solid line [ ]). The plot inside show the probability mass function (pmf) related to the number of interfering users.

receivers outperform the classical LoRa one for λ 6= 0. For
λ = 0, the SER of the CNN is close to that of the classical
LoRa receiver, the optimal in that case, whereas the DFNN
is not as efficient with a 2 dB penalty for a target SER of
10−4. For the lowest number of interfering users (λ = 0.25
and 0.5), the SER of the two proposed receivers is in the
order of 10−3 for SNR = −7.5 dB (cf. Figs. 6a and 6b).
For the same SNR value, in the case of the higher number
of interfering users (λ = 0.7), the SER of the CNN-based
receiver remains in the order of 10−3 whereas the SER of
the other receivers degrades (cf. Fig. 6c and 6d). Besides, as
the number of interfering users increases, the classical LoRa
receiver endures higher performance loss than the CNN-based
receiver.

B. Capture Effect – Ni = 1

The goal is now to analyze the impact of one interfering user
with different levels of signal-to-interference ratio (SIR). This
is done by generating a new test set for which Ni is forced
to one and testing the previously trained networks with this
specific test set. The one that was trained for the (λ = 0.25,
SNR = −6 dB) couple is considered. Fig. 7 plots the obtained
SER as a function of the SIR (solid line).

Additionally, as a perspective, we also investigate what
would happen if the SIR could be estimated at the receiver. To
do so, we do a new training of the networks for the different
(SIR, SNR = −6 dB) couples with Ni = 1, and we use
the appropriate network for the test. Clearly, in this context,
the deep learning-based approaches outperform the classical
receiver for SIR ≤ 4 dB.

When SIR > 0 dB, that is, the selected user’s signal is the
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Fig. 7: SER as a function of the SIR for the classical detector [O], the
DFNN-based [∗], and the CNN-based [◦]. The SNR for the selected
user is set to −6 dB. Two different cases are considered: plots in
solid line [ ] networks trained for λ = 0.25, plots in dashed line
[ ] networks trained for each SIR value.

strongest, the capture effect happens for all receivers while
being improved for the CNN-based receiver when the SIR is
under 6 dB. However, when SIR < 0 dB, i.e., the interfering
user is the strongest, performance can be further improved if
we have information on the SIR, i.e., learning is performed
given the SIR value. In fact, when the SIR is known, the
deep learning-based approach makes it possible to distinguish
between the two users based on their power level, unless there
is ambiguity, i.e., SIR = 0 dB.

C. Computational Complexity

The computational complexity of the classical LoRa re-
ceiver is of O(M log(M)) [9]. For the DFNN-based receiver,
the complexity results in O(M2). Based on [10], where the
complexity order for the convolutional layers is derived, the
overall complexity of the CNN-based receiver is also of
O(M2). Even though the proposed receivers and the classical
LoRa receiver have different complexity orders, the proposed
schemes’ running time remains polynomial. According to [11],
one of the definitions for computational efficiency is the
following: “an algorithm is efficient if it has a polynomial
running time”. Besides, considering that this work focuses on
the uplink case, where the gateway is plugged into a power
source, issues of battery life and autonomy that may result
from high complexity are not of concern.

V. CONCLUSION

This article investigated a deep learning-based approach
for LoRa-like networks to decode a selected user’s signals
while considering interfering users that transmit simultane-
ously over the same frequency channel with the same SF.
From the simulation results, we observed that in terms of
SER, the two proposed receivers, the DFNN-based and the
CNN-based, outperform the classical LoRa decoder in the

presence of interference. In the absence of interference, the
CNN-based receiver performs closely to the classical LoRa
receiver, which is the optimal receiver for the interference-
free case. However, the DFNN-based receiver has endured
a slight loss in performance, e.g., a 2 dB penalty in SNR
for a target SER of 10−4. The good performance shown by
the proposed schemes is achieved while keeping an efficient
complexity order, i.e., a polynomial running time of order two.

For the future, the deep learning-based approach seems to
be a promising candidate to tackle the issue of interference in
LoRa networks due to the exponential growth of connected
devices. In addition to improving the capture effect, i.e.,
decoding the useful user when its power is higher than that of
the interference, we have shown that the deep-learning-based
approach makes it possible to decode the useful user when it
is weaker than the interference. This requires information on
the SIR. As a perspective, an SIR estimation technique could
be combined with the deep learning-based decoder to improve
the receiver’s performance further.
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[3] A. A. Tesfay, E. P. Simon, G. Ferré, and L. Clavier, “Serial interference
cancellation for improving uplink in LoRa-like networks,” in 2020 IEEE
31st Annual International Symposium on PIMRC, London, UK, 2020.

[4] N. E. Rachkidy, A. Guitton, and M. Kaneko, “Decoding superposed
LoRa signals,” in 2018 IEEE 43rd Conference on Local Computer
Networks (LCN), 2018, pp. 184–190.

[5] P. Zhang, X. Kang, D. Wu, and R. Wang, “High-Accuracy Entity State
Prediction Method Based on Deep Belief Network Toward IoT Search,”
IEEE Wireless Communications Letters, vol. 8, no. 2, pp. 492–495, 2019.

[6] J. Zhou, Y. Wang, K. Ota, and M. Dong, “AAIoT: Accelerating Artificial
Intelligence in IoT Systems,” IEEE Wireless Communications Letters,
vol. 8, no. 3, pp. 825–828, 2019.

[7] H. Ye, G. Y. Li, and B.-H. Juang, “Power of deep learning for
channel estimation and signal detection in ofdm systems,” IEEE Wireless
Communications Letters, vol. 7, no. 1, pp. 114–117, 2017.

[8] B. Reynders and S. Pollin, “Chirp spread spectrum as a modulation
technique for long range communication,” in 2016 Symposium on
Communications and Vehicular Technologies (SCVT), 2016, pp. 1–5.

[9] A. A. Tesfay, E. P. Simon, I. Nevat, and L. Clavier, “Multiuser detection
for downlink communication in LoRa- Like networks,” IEEE Access,
vol. 8, pp. 199 001–199 015, 2020.

[10] K. He and J. Sun, “Convolutional Neural Networks at constrained
time cost,” in 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2015, pp. 5353–5360.
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