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ABSTRACT

Deep convolutional image classifiers progressively transform the spatial variabil-
ity into a smaller number of channels, which linearly separates all classes. A
fundamental challenge is to understand the role of rectifiers together with convo-
lutional filters in this transformation. Rectifiers with biases are often interpreted
as thresholding operators which improve sparsity and discrimination. This paper
demonstrates that it is a different phase collapse mechanism which explains the
ability to progressively eliminate spatial variability, while improving linear class
separation. This is explained and shown numerically by defining a simplified
complex-valued convolutional network architecture. It implements spatial convolu-
tions with wavelet filters and uses a complex modulus to collapse phase variables.
This phase collapse network reaches the classification accuracy of ResNets of
similar depths, whereas its performance is considerably degraded when replacing
the phase collapse with thresholding operators. This is justified by explaining
how iterated phase collapses progressively improve separation of class means, as
opposed to thresholding non-linearities.

1 INTRODUCTION

CNN image classifiers progressively eliminate spatial variables through iterated filterings and sub-
samplings, while linear classification accuracy improves as depth increases (Oyallon, 2017). It
has also been observed numerically that CNNs concentrate training samples of each class in small
separated regions of a progressively lower-dimensional space. It can ultimately produce a “neural
collapse” (Papyan et al., 2020), where all training samples of each class are mapped to a single point.
In this case, the elimination of spatial variables comes with a collapse of within-class variability
and perfect linear separability. Increases in linear classification accuracy are obtained by iterating
linear convolutional operators and ReLUs with biases. A difficulty in understanding the underlying
mathematics comes from the flexibility of ReLUs. Any non-linearity can indeed be approximated by a
linear combination of biased ReLUs. Many papers interpret iterations on ReLUs and linear operators
as sparse code computations (Sun et al., 2018; Sulam et al., 2018; 2019; Mahdizadehaghdam et al.,
2019; Zarka et al., 2020; 2021). We show that these classification improvements by eliminating spatial
variabilities rather come from a phase collapse, which eliminates the phase of network coefficients.
This is demonstrated by introducing a structured convolutional neural network, with wavelet filters
and no bias.

Images are defined over a grid whose topology is generated by a translation operator. Translations are
diagonalized in the Fourier basis, where they become a complex phase shift. This is why complex-
valued representations reveal the mathematics of spatial variability. Invariants are computed with a
modulus which collapses all phases. Section 2 explains how this phase collapse can improve linear
classification with complex-valued filters. A CNN with complex-valued filters is just a particular
instance of a real-valued CNN, whose channels are paired together to define complex numbers. A
phase collapse can as well be calculated with ReLUs on real network coefficients.
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To demonstrate the role of phase collapse in classifiers, as opposed to thresholding or more general
amplitude reduction operators, Section 3 introduces a Phase Collapse Scattering network. It applies a
learned 1× 1 convolutional complex operator Pj on each layer xj , followed by a complex wavelet
filtering operator W , which outputs coefficients whose phases are eliminated by a modulus:

xj+1 = |WPjxj |. (1)

It thus involves no bias. By incorporating a skip-connection, we show that this phase collapse network
reaches ResNet accuracy on ImageNet and CIFAR-10. This network architecture is illustrated in
Figure 1. We show that replacing the phase collapse modulus by a soft-thresholding or more general
amplitude reduction non-linearities considerably decreases the classification accuracy.

Section 4 explains the performance of iterated phase collapses by showing that it progressively
improves linear discriminability. On the opposite, iterating soft-thresholdings with optimized linear
operators can only marginally improve sparsity and classification.

Figure 1: Architecture of a Phase Collapse Scattering network. Orange denotes channel operators
while blue denotes spatial operators. The network consists of J elementary computational blocks,
with J = 11 for ImageNet and J = 8 for CIFAR-10. Each block is composed sequentially of: a
learned 1× 1 convolutional operator Pj , a convolutional wavelet filtering operator W , and a complex
modulus |·| which eliminates complex phases. A skip-connection concatenates the outputs of WPj
and

∣∣WPj
∣∣. A subsampling by 2 is applied after W every other block. A final 1× 1 PJ reduces the

dimension before a linear classifier.

The main contribution of this paper is a demonstration that the classification accuracy of deep neural
networks mostly relies on phase collapses, which are both necessary and sufficient to linearly separate
the different class means on complex image databases. This is captured by the Phase Collapse
Scattering architecture which reaches ResNet-18 accuracy on ImageNet and CIFAR-10. The code to
reproduce the experiments in the paper is available in the supplementary material.

2 PHASE COLLAPSE VERSUS THRESHOLDINGS AND RELUS

A CNN classifier performs a non-linear transformation of an image spatial variability into a smaller
number of channels, which linearly separates the different classes. A linear projector can arbitrarily
reduce dimensionality, but does not improve linear separability. Linear separability can however be
improved by non-linear operators. We show that a phase collapse is necessary to separate classes
that are locally invariant to translations. We also analyze the effect of other non-linearities such as
soft-thresholdings and ReLUs.

Translations and phase shifts Translations capture the spatial topology of the grid on which the
image is defined. Translations are represented by phase shifts in a Fourier transform, and we prove
that it remains approximately valid for images convolved with appropriate complex filters.

Let x be an image indexed by u ∈ Z2. We write xτ (u) = x(u− τ) the translation of x by τ . It is
diagonalized by the Fourier transform x̂(ω) =

∑
u x(u) e−iu·ω , which creates a phase shift:

x̂τ (ω) = e−iτ ·ωx̂(ω). (2)

This diagonalization explains the need to introduce complex numbers to analyze the mathematical
properties of spatial image variabilities, although computations can be carried with real numbers.

2



A Fourier transform is computed by filtering x with complex exponentials eiω·u. One may re-
place these exponentials by localized complex filters ψ. The following theorem proves that small
translations can still be approximated by a phase shift in this case.

Theorem 1. Let ψ : Z2 → C be a filter with ‖ψ‖2 = 1, whose center frequency ξ and bandwidth σ
are defined by:

ξ =
1

(2π)2

∫
[−π,π]

2
ω |ψ̂(ω)|2 dω and σ2 =

1

(2π)2

∫
[−π,π]

2
|ω − ξ|2|ψ̂(ω)|2 dω.

Then, for any τ ∈ Z2,

‖xτ ∗ ψ − e
−iξ·τ (x ∗ ψ)‖∞ ≤ σ |τ | ‖x‖2. (3)

The proof is in Appendix A. This theorem proves that if |τ | � 1/σ, then xτ ∗ ψ ≈ e
−iξ·τx ∗ ψ. The

translation by τ then produces a phase shift of ξ · τ .

Phase collapse and stationarity A phase collapse eliminates the phase of a complex number with
a modulus. Over Fourier coefficients, it defines translation-invariant coefficients: |x̂τ | = |x̂|. We
show that phase collapses improve linear classification of translation-invariant or locally translation-
invariant classes.

Each class indexed by y may be represented by a random vector Xy , whose realizations are the class
samples. These classes are linearly separable if their expected values E

[
Xy

]
are all different, and

if each E
[
Xy

]
is sufficiently well-estimated by a linear operator applied to a realization x of Xy

(Hastie et al., 2009). If the classes are locally or globally invariant to translations, then all Xy are
locally or globally stationary.

A stationary process has a probability distribution which is invariant to translations. Equation (2)
implies that the phase of its Fourier coefficients has a probability distribution uniformly distributed
in [0, 2π]. If all Xy are stationary, then E[X̂y(ω)] = 0 for ω 6= 0, so these Fourier coefficients do
not provide any discriminative information for classification. A phase collapse is then necessary
to create non-zero means from these Fourier coefficients. It improves linear discriminability of
stationary classes, because E[|X̂y(ω)|] are typically different for different y. However, a linear
estimation of E[|X̂y(ω)|] from a single realization x of Xy has a large variance. It explains the
limited performances of a Fourier transform modulus for linear classification.

Fourier modulus descriptors can be improved by using localized filters ψ. If
∑
u ψ(u) = 0, then one

can verify that E[Xy ∗ ψ] = 0 if Xy is stationary. Theorem 1 shows that the phase of Xy ∗ ψ is again
uniformly distributed in [0, 2π]. It results that x ∗ ψ still provides no linear classification information.
This remains true if Xy is only locally stationary (Priestley, 1965) over a domain larger than the
support of ψ. This means that its probability distribution is nearly invariant over translations smaller
than the support of ψ. A phase collapse then improves linear classification by creating non-zero
means E[|Xy ∗ ψ|]. It can improve over Fourier descriptors because the variance of linear estimators
of E[|Xy ∗ ψ|] from a single realization of Xy is reduced when ψ has a small support.

Complex versus real in CNNs: phases and ReLUs The use of complex numbers is a mathemati-
cal abstraction which allows introducing a phase variable, and thereby diagonalizing translations. It
provides a mathematical interpretation of filtering operations performed on real numbers. We show
that a complex network is equivalent to a structured real network.

In the first layer of a CNN, one can observe that filters are usually localized oscillatory patterns
(Krizhevsky et al., 2012), where some filters have nearly the same orientations and frequency but
have a phase shifted by some α. This means that such filters can be written ψα = Re(e−iαψ) for
a single complex filter ψ and different α. Grouping such channels specifies the complex filter ψ.
A CNN with complex filters is thus a structured real-valued CNN, whose channels correspond to
phase shifts of these complex filters. This structure simplifies the mathematical interpretation of
non-linearities by explicitly defining the phase, which is otherwise a hidden variable relating multiple
filter outputs within each layer.
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A phase collapse is computed with a modulus. It can be computed by real-valued CNNs by applying
ReLUs without biases over filters having different phases: ψα = Re(e−iαψ). One can verify that:

|x ∗ ψ| = 1

2

∫ 2π

0

ReLU(x ∗ ψα)dα. (4)

This integral is already well approximated by a sum over 4 phases, allowing to compute complex
moduli with ReLUs without biases over real-valued CNN filters.

Thresholding and sparsity versus phase collapse The action of a ReLU can be linearly decom-
posed into an elimination of sign and a soft-thresholding, which attenuates the amplitude. An
important issue is to understand which property is important for classification.

If z ∈ R and b ≥ 0, then the even part of ReLU(z−b) is ReLU(z−b)+ReLU(−z−b), which is an
absolute value with a dead-zone [−b, b]. It becomes |z| for b = 0. The odd part is a soft-thresholding
ρb(z) = ReLU(z − b)− ReLU(−z − b). A soft-thresholding operator over a complex z = |z| eiϕ
reduces the amplitude by b while preserving the phase:

ρb(z) = max(|z| − b, 0) eiϕ. (5)

Soft-thresholdings and phase collapses have opposite properties, since soft-thresholdings preserve
the phase while attenuating the amplitude, whereas phase collapses preserve the amplitude while
eliminating the phase.

If E
[
Xy ∗ ψ

]
= 0, then E

[
ρb(Xy ∗ ψ)

]
is usually close to 0, because a soft-thresholding is odd.

A soft-thresholding thus does not improve much the separability of class means. However, if
E
[
Xy ∗ ψ

]
6= 0 and Xy ∗ ψ is sparse, then a soft-thresholding of Xy ∗ ψ may reduce the variance

of class mean estimators (Donoho and Johnstone, 1994). It can thus improve linear classification.
Coefficients below the threshold may be assimilated to unnecessary “clutter” which is set to 0. To
improve classification, convolutional filters must produce high-amplitude coefficients corresponding
to discriminative “features”, whereas small-amplitude clutter coefficients are eliminated (Zarka et al.,
2021). The dimensionality of sparse representations can also be reduced with random filters which
implement a form of compressed sensing (Donoho, 2006; Candes et al., 2006). The interpretation of
CNNs as compressed sensing machines with random filters has been studied (Giryes et al., 2015), but
it never led to classification results close to the state of the art. On the contrary, we shall see that the
use of phase collapse alone reaches this state of the art.

3 PHASE COLLAPSE SCATTERING NETWORK

This section introduces a learned scattering transform, which reaches ResNet accuracy on the
ImageNet (Russakovsky et al., 2015) and CIFAR-10 (Krizhevsky, 2009) datasets. It is a highly
structured CNN architecture computed with wavelet filters and phase collapse moduli. We describe
this architecture and then compare the performance of phase collapse and thresholding non-linearities.

Scattering transform Theorem 1 proves that a phase collapse applied to the output of a complex
filter produces a locally invariant descriptor that can then be subsampled, depending upon the filter’s
bandwidth. A scattering transform (Mallat, 2012; Bruna and Mallat, 2013) iterates such convolutions
with wavelet filters and moduli.

A scattering transform over J scales is implemented with a network of depth J , whose filters are
specified by the choice of wavelet. Let x0 = x. For 0 ≤ j < J , a layer xj+1 is computed by applying
a wavelet filtering operator W and a modulus on xj :

xj+1 =
∣∣Wxj

∣∣. (6)

The operator W is defined with Morlet filters (Bruna and Mallat, 2013). It has one low-pass filter g0,
and L zero-mean complex band-pass filters g`, having an angular direction `π/L for 0 < ` ≤ L. It
thus transforms an input image x(u) into L+ 1 sub-band images which are subsampled by 2:

Wx(u, `) = x ∗ g`(2u). (7)
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Cascading j low-pass filters g0 with a final band-pass filter g`, each followed by a subsampling,
computes wavelet coefficients at each scale 2j . One can also modify the wavelet filtering W to
compute intermediate scales 2j/2, as explained in Appendix D. The spatial subsampling is then only
implemented every other layer, and the depth of the network becomes twice larger. The number of
consecutive moduli can be limited to 2 (Bruna and Mallat, 2013). Applying a linear classifier on
such a scattering transform classifier gives good results on simple classification problems such as
MNIST (LeCun et al., 2010). However, results are well below ResNet performances on CIFAR-10
and ImageNet, as shown in Table 1.

Phase Collapse Scattering Zarka et al. (2021) showed that a scattering transform can reach ResNet
performances by alternating wavelet transform filters with two learned 1× 1 convolutional operators.
The first is preceded by a ReLU with no bias, and the second is followed by a soft-thresholding non-
linearity. Such separable architectures had previously been studied in the context of basis expansion
(Qiu et al., 2018; Ulicny et al., 2019) or to filter scattering channels (Cotter and Kingsbury, 2019).
However, this learned scattering architecture is difficult to interpret in the context of phase collapses
versus thresholdings, because it mixes both. In line with several papers on the use of sparsity for
classification (Sun et al., 2018; Sulam et al., 2018; 2019; Mahdizadehaghdam et al., 2019; Zarka et al.,
2020), Zarka et al. (2021) made the hypothesis that sparsifying neural responses with thresholdings is
a major mechanism for improving classification accuracy. The following Phase Collapse Scattering
shows that it is in fact not necessary to use any bias nor thresholding. For image classification, it
demonstrates that high classification performance mostly results from iterated phase collapses which
separate class means.

A Phase Collapse Scattering network applies a complex 1 × 1 convolutional operator Pj which
reduces the channel dimensionality of each xj , and then applies wavelet filters. The phase of each
wavelet coefficient is eliminated by a modulus:

xj+1 =
∣∣WPjxj

∣∣. (8)

Each Pj computes discriminative channels whose spatial variability is eliminated by the phase
collapse of complex wavelet coefficients. Table 1 gives the accuracy of a linear classifier applied to
the last layer of a Phase Collapse Scattering. It provides an important improvement over a scattering
transform, but it does not yet reach the accuracy of ResNet-18.

The final linear classifier is factorized with a 1 × 1 convolutional operator PJ which reduces the
dimension, before linearly combining all channels and positions. The coefficients of xj are standard-
ized with a zero mean and unit variance along channels before applying the 1× 1 convolution Pj .
The number of channels of Pjxj is the same as in a standard ResNet architecture (He et al., 2016) and
remains below 512. The norm across channels of Pjxj for each fixed spatial position is normalized
to 1 before applying the wavelet transform W . The architecture uses a total number of layers J = 11

for ImageNet and J = 8 for CIFAR, by introducing intermediate scales 2j/2. Details of this Phase
Collapse Scattering architecture are provided in Appendix D.

Skip-connections across moduli The architecture of eq. (8) imposes that all phases are collapsed
at each layer, after computing a wavelet transform. More flexibility is provided by adding a skip-
connection which concatenates WPjxj with its modulus:

xj+1 =
[∣∣WPjxj

∣∣ , WPjxj

]
. (9)

The skip-connection produces a cascade of linear filters W without modulus. The resulting linear
decomposition WW · · ·W is a “wavelet packet” transform which generalizes the wavelet transform
(Coifman and Wickerhauser, 1992; Mallat, 2008). Wavelet packets are obtained as the cascade of
low-pass and band-pass filters (gl)l, each followed by a subsampling. Besides wavelets, wavelet
packets include filters having a larger spatial support than wavelets and a narrower Fourier transform.
A wavelet packet transform is then similar to a local Fourier transform. Applying a modulus on such
wavelet packet coefficients defines local spatial invariants over wider domains.

Image classes are usually not globally invariant to translations. For instance, subjects are generally
centered, and some background elements, e.g. the sky, remain at the same spatial position. However,
the classes are often locally invariant to translation, up to an unknown maximum scale. Section 2
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Table 1: Error of linear classifiers applied to several scattering representations, on CIFAR-10 and
ImageNet. The last column gives the single-crop error of ResNet-20 for CIFAR-10 and ResNet-18
for ImageNet, taken from https://pytorch.org/vision/stable/models.html.

Scat PCScat PCScat + skip ResNet

CIFAR-10 Top-1 error (%) 27.7 11.7 7.7 8.8

ImageNet Top-5 error (%) 54.1 15.2 11.0 10.9
Top-1 error (%) 73.0 35.9 30.1 30.2

Table 2: Top-1 error (in %) on CIFAR-10 with a linear classifier applied to: a Scattering network
(Scat), with Phase Collapse (PCScat), with Amplitude Thresholding (ATScat), with Amplitude
Sigmoid (ASScat), and with Amplitude Collapse (ACScat), with or without skip-connections.

Scat PCScat ATScat ASScat ACScat

Without skip 27.7 11.7 36.7 51.8 56.2
With skip - 7.7 22.5 28.7 34.1

explains that a phase collapse improves discriminability for image classes that are locally translation-
invariant over the filter’s support. Indeed, their phases are then uniformly distributed over [0, 2π],
which yields zero-mean coefficients. At a scale where there is no local translation-invariance, these
phases are no longer uniformly distributed, and they encode information about the spatial localization
of features. Introducing a skip-connection provides the flexibility to choose whether to eliminate
phases at different scales or to propagate them up to the last layer, which adds some localization
information. This localization information appears to be important for classification.

Table 1 shows that the skip-connection improves classification accuracy. Applying a linear classifier
on this Phase Collapse Scattering reaches ResNet-18 accuracy on CIFAR-10 and ImageNet. It
demonstrates that collapsing appropriate phases is sufficient to obtain state-of-the-art accuracy, for a
given depth, on large-scale classification problems. Learning is reduced to 1 × 1 filters Pj across
channels.

Phase collapse versus amplitude reduction A Phase Collapse Scattering preserves the amplitudes
of wavelet coefficients and eliminates their phases. Section 2 explains that it improves separation of
class means. On the opposite, one may use a non-linearity which preserves the phases of wavelet
coefficients but attenuates their amplitudes. Among such non-linearities is the soft-thresholding,
which can improve classification by reducing the variance of class mean estimators, within a sparse
representation. The use of sparse representations is usually considered important for image classifi-
cation (Sun et al., 2018; Sulam et al., 2018; 2019; Mahdizadehaghdam et al., 2019). The following
results show that it is not the case for images. Several amplitude reduction non-linearities are used,
including soft-thresholdings, sigmoids, and an amplitude collapse. We show that it considerably
degrades the accuracy compared to a phase collapse, to the point that the classification error becomes
larger than with a scattering without learning.

An Amplitude Reduction Scattering applies a non-linearity ρ(z) on each wavelet coefficient z =

|z|eiϕ and preserves the phase: ρ(z) = eiϕ ρ(|z|). Without skip-connections, each layer xj+1 is
computed from xj by:

xj+1 = ρ(WPjxj), (10)

and with skip-connections:

xj+1 =
[
ρ(WPjxj) , WPjxj

]
. (11)

A soft-thresholding is defined by ρ(|z|) = ReLU(|z| − b) for some threshold b. For an amplitude
sigmoid we have ρ(|z|) = (1 + e−a|z|−b)−1, and an amplitude collapse is ρ(|z|) = 1. The soft-
thresholding and sigmoid parameters a and b are learned for each layer and each channel during the
optimization of Pj .

6
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The classification performance of an Amplitude Reduction Scattering is evaluated on CIFAR-10, by
applying a linear classifier on the last layer. Classification results are given in Table 2 for different
amplitude reductions, with or without skip-connections. Amplitude Reduction Scatterings yield much
larger errors than Phase Collapse Scatterings, and these errors are even above a scattering transform
without learned 1× 1 convolutional projections Pj . It demonstrates that high accuracies result from
phase collapses without bias, as opposed to amplitude reduction operators including thresholdings,
which learn bias parameters.

ReLUs with biases Most CNNs, including ResNet, use ReLUs with biases. As explained in
Section 2, a ReLU with bias simultaneously affects the sign and the amplitude of a real coefficient.
When decomposing it into its even and odd part, we separate the effects on sign and on amplitude.
Over complex numbers, it amounts to transforming the phase or the amplitude. These numerical
experiments show that accuracy improvements result from phase collapse as opposed to amplitude
reductions, which is a surprising new result.

Several CNN architectures have demonstrated a good classification accuracy with iterated thresh-
olding algorithms, which increase sparsity. However, all these architecture also modified the sign of
coefficients by computing non-negative sparse-codes (Sun et al., 2018; Sulam et al., 2018; Mahdizade-
haghdam et al., 2019) or with additional ReLU or modulus layers (Zarka et al., 2020; 2021). It seems
that it is the sign or phase collapse of these non-linearities which is responsible for good classification
accuracies, as opposed to the calculation of sparse codes through iterated amplitude reductions.

4 ITERATING PHASE COLLAPSES AND AMPLITUDE REDUCTIONS

We now provide a theoretical justification to the above numerical results in simplified mathematical
frameworks. This section studies the behavior of phase collapses and amplitude reductions when
they are iterated over several layers. It shows that there is no significant gain in performance when
iterating amplitude reductions, whereas phase collapses benefit from iterations over multiple layers.

4.1 ITERATED PHASE COLLAPSE

We explain the importance of phase collapses to improve linear classification, as well as the role
of iterated phase collapses with multiple filters at each layer, together with learned projectors Pj .
For this purpose, we consider the classification of ergodic stationary processes Xy corresponding to
different image textures indexed by y. Given a realization x of Xy, and because of ergodicity, the
optimal linear classifier is calculated from the empirical mean 1/d

∑
u x(u). It computes an optimal

linear estimation of E
[
Xy(u)

]
= µy. If all textures have the same mean µy = µ, then all linear

estimators fail. More precisely, the textures can be linearly separated only if the distance between
different means ‖µy − µy′‖

2 is greater than the average estimation error of the empirical means.

If Xy is stationary, then |Xy ∗ ψk| remains stationary for any ψk. If
∑
u ψk(u) = 0, then

E
[
Xy ∗ ψk

]
= 0 but E

[
|Xy ∗ ψk|

]
6= 0. An optimal linear classifier applied to |x ∗ ψk(u)| is

obtained by a linear combination of all empirical means 1/d
∑
u |x ∗ ψk(u)|. They are proportional

to the `1 norm ‖x ∗ ψk‖1, which is a measure of sparsity of x ∗ ψk.

If linear classification on |x ∗ ψk(u)| fails, it reveals that the means E
[
|Xy ∗ ψk(u)|

]
= µy,k are not

sufficiently different for different classes y. These differences can be improved by considering the
statistical variations of |Xy ∗ ψk(u)| for different y. These variations can be revealed by a new set of
filters ψk′ having a zero mean, such as a new set of wavelet filters. Since E

[
|Xy ∗ ψk| ∗ ψk′

]
= 0,

we must again cancel the phase and compute E
[
||Xy ∗ ψk| ∗ ψk′ |

]
. This phase collapse iteration is

the principle used by scattering transforms to discriminate textures (Bruna and Mallat, 2013; Sifre
and Mallat, 2013). However, this may still not be sufficiently accurate. More discriminant statistical
properties may be obtained by linearly combining |Xy ∗ ψk| across k before applying a new filter
ψk′ .

In a learned Phase Collapse Scattering, the x ∗ ψk are combined with a linear projector P1 across
the channel indices k, before computing a convolution with the next filter ψk′ . The 1 × 1 filter
P1 is optimized to improve the linear classification accuracy. It amounts to computing weights wk
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such that E[
∣∣∑

k wk
∣∣Xy ∗ ψk

∣∣ ∗ ψk′ ∣∣] is as different as possible for different y. It means that the
images

∑
k wk|x ∗ ψk| ∗ψk′ have different sparsity levels depending upon the class y of x. The filter

weights of P1 can thus be interpreted as features along channels providing different sparsifications
for different classes. A Phase Collapse Scattering computes such Pj at each scale j.

4.2 ITERATED AMPLITUDE REDUCTIONS

Sparse representations and amplitude reduction algorithms may improve linear classification by
reducing the variance of class mean estimations, which can be interpreted as a clutter removal. Such
approaches are studied in Zarka et al. (2021) by modeling the clutter as an additive white noise.
Although a thresholding algorithm may improve linear classification, we show that iterating filterings
and thresholdings does not improve the classification accuracy, if no phase cancellations are inserted.

To understand these properties, we consider the discrimination of classes represented by non-stationary
random processes Xy(u). We suppose that they are linearly separable and hence that all E(Xy) = µy
are different for different y. If there exists y′ such that ‖µy−µy′‖ is small, then the class y can still be
discriminated if we can estimate E(Xy) sufficiently accurately from a single realization x ofXy . This
is a mean estimation problem. Suppose that Xy = µy +N (0, σ2) is a Gaussian white noise of mean
µy , where the noise models some clutter. Suppose also that there exists a linear orthogonal operator
D such that Dµy is sparse, and hence has its energy concentrated in few non-zero coefficients. Such
a D may be computed by minimizing the expected `1 norm

∑
y E
[
‖DXy‖1

]
. The estimation of µy

can be improved with a soft-thresholding estimator (Donoho and Johnstone, 1994), which sets to
zero all coefficients below a threshold b proportional to σ. It amounts to computing ρb(Dx), with
ρb(x) = ReLU(x− b)− ReLU(−x− b).

However, we explain why this approach cannot be further iterated without inserting phase collapses.
The reason is that sparsity and entropy of phases are linked, in the sense that a sparse representation
concentrates its entropy in the phases of the coefficients, rather than their amplitude. Reciprocally, if
the entropy is concentrated in the phases, then the process cannot be further sparsified. The entropy
of the phases then needs to be reduced before the next sparsification. This entails that a model of
intra-class variability relying on sparsity and amplitude reduction cannot be the sole mechanism
behind the performance of deep networks. Iterating sparsity may however be useful if it is alternated
with another non-linearity which partly or fully collapses phases. As mentioned in Section 3, this
is the case for previous work which used iterated sparsification operators (Sun et al., 2018; Sulam
et al., 2018; Mahdizadehaghdam et al., 2019). Indeed, these networks compute non-negative sparse
codes where sparsity is enforced with a ReLU, which acts both on phases and amplitudes. Our results
shows that the benefit of iterating non-negative sparse coding comes from the sign collapse due to the
non-negativity constraint.

We now qualitatively demonstrate the two directions of this link with two theorems.

First, we show that finding the sparsest representation of a random process (i.e., minimizing its `1

norm) is the same as maximizing a lower bound on the entropy of its phases.

Theorem 2. Let X denote a random vector in Cd with a probability density p. Let H(X) be the
entropy of X with respect to the Lebesgue measure:

H(X) = −
∫
p(x) log p(x) dx.

Let D ∈ U(d) be a unitary operator. Then we have:

H
(
ϕ(DX)

∣∣∣ |DX|) ≥ H(X)− d− 2d log

(
1

d
E[‖DX‖1]

)
.

The proof is in Appendix B. This theorem lower-bounds the conditional entropy of the phases of DX
by a function of the expected `1 norm of DX . Minimizing over D this expected `1 norm amounts
to maximizing the lower bound on H

(
ϕ(DX)

∣∣∣ |DX|). The extreme situation arises when this
entropy reaches its maximal value of d log(2π). ϕ(DX) has then the maximum-entropy distribution,
which is the uniform distribution on [0, 2π]d. ϕ(DX) is furthermore independent from |DX| in this
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extreme case, since its conditional distribution does not depend on |DX|. This statistical property has
previously been observed on wavelet coefficients of natural images (Rao et al., 2001), as the wavelet
transform is an optimal unitary dictionary for sparsity.

Second, we place ourselves in the above extreme case of a random process whose phases are
conditionally independent and uniform, and show that it cannot be significantly sparsified in any
change of basis.

Theorem 3. Let X be a random vector of Cd such that ϕ(X) is uniformly distributed on [0, 2π]d

and independent from |X|. Then there exists a constant Cd > 0 which depends on the dimension d,
such that for any D ∈ U(d),

E[‖DX‖1] ≥ CdE[‖X‖1].

The proof is in Appendix C. This theorem shows that random processes with conditionally in-
dependent and uniform phases have an `1 norm which cannot be significantly decreased by any
unitary transformation. Numerical evaluations suggest that the constant Cd may be chosen to be√
π/2 ≈ 0.886 independently of the dimension d. This constant is close to one and arises as the ratio

between the expected amplitude and standard deviation of a complex normal distribution.

These two theorems explain qualitatively that linear classification on ρb(Dx) cannot be improved by
another thresholding that would take advantage of another sparsification operator. Indeed, Theorem 2
shows that if Dx is sparse, then its phases have random fluctuations of high entropy. Theorem 3
indicates that such random phases prevent a further sparsification of ρb(Dx) with some linear operator.
Applying a second thresholding thus cannot significantly reduce the variance of class mean estimators.

5 CONCLUSION

This paper shows that the improvement of linear separability for image classification in deep convolu-
tional networks mostly relies on a phase collapse phenomenon. Eliminating the phase of zero-mean
filters improves the separation of class means. We introduced a Phase Collapse Scattering network
with wavelet filters and learned 1× 1 convolutional filters Pj , which reaches ResNet accuracy. The
learned filters Pj enhance discriminability by computing channels that have different levels of sparsity
for different classes.

When class means are different, thresholding non-linearities can improve classification by reducing
the variance of class mean estimators. However, numerical experiments show that they have a
negligible impact on classification accuracy. The iteration of thresholdings on sparsification operators
requires intermediary phase collapses. When used alone, the classification performance is poor over
complex datasets such as ImageNet or CIFAR-10, because class means are not sufficiently separated.

Our results show that phase collapse are both necessary and sufficient to eliminate spatial variables
while linearly separating classes on complex image datasets.
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A PROOF OF THEOREM 1

We have:
‖xτ ∗ ψ − e

−iξ·τ (x ∗ ψ)‖∞ = ‖x ∗ (ψτ − e
−iξ·τψ)‖∞ by covariance of convolution,

≤ ‖ψτ − e
−iξ·τψ‖2‖x‖2 by Young’s inequality,

and then:

‖ψτ − e
−iξ·τψ‖

2

2 =
1

(2π)2

∫
[−π,π]

2
|ψ̂τ (ω)− e−iξ·τ ψ̂(ω)|2dω by Plancherel,

=
1

(2π)2

∫
[−π,π]

2
|e−iω·τ ψ̂(ω)− e−iξ·τ ψ̂(ω)|2dω since ψτ (u) = ψ(u− τ),

=
1

(2π)2

∫
[−π,π]

2
|e−iω·τ − e−iξ·τ |2|ψ̂(ω)|2dω

≤ 1

(2π)2

∫
[−π,π]

2
|(ω − ξ) · τ |2|ψ̂(ω)|2dω since x ∈ R 7→ eix is 1-Lipschitz,

≤ 1

(2π)2

∫
[−π,π]

2
|ω − ξ|2|τ |2|ψ̂(ω)|2dω by Cauchy-Schwarz,

= σ2|τ |2,

which leads to the desired result of eq. (3):

‖xτ ∗ ψ − e
−iξ·τ (x ∗ ψ)‖∞ ≤ σ |τ | ‖x‖2.

B PROOF OF THEOREM 2

We first use the chain rule for the entropy:

H
(
ϕ(DX)

∣∣∣ |DX|) = H(|DX|, ϕ(DX))−H(|DX|).

The first term is rewritten with a change of variable:

H(|DX|, ϕ(DX)) = H(DX)−
d∑
k=1

E[log |(DX)k|]

= H(X)−
d∑
k=1

E[log |(DX)k|] as D is unitary and hence |det(D)| = 1,

≥ H(X)− dE
[
log

(
1

d
‖DX‖1

)]
by concavity,

≥ H(X)− d log

(
1

d
E[‖DX‖1]

)
by concavity.

The second term is bounded using the fact that the exponential distribution E(λ) is the maximum-
entropy distribution on R+ with mean 1

λ :

H(|DX|) ≤
d∑
k=1

H(|(DX)k|)

≤
d∑
k=1

log(eE[|(DX)k|])

≤ d log
( e
d
E[‖DX‖1]

)
by concavity.

Combining both inequalities and rearranging terms yield the stated bound:

H
(
ϕ(DX)

∣∣∣ |DX|) ≥ H(X)− d− 2d log

(
1

d
E[‖DX‖1]

)
.
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C PROOF OF THEOREM 3

We begin with the following lemma:

Lemma 1. Let (θ1, . . . , θd) be i.i.d. uniform random variables in [0, 2π]. Then there exists a constant
Cd > 0 such that for all (ρ1, . . . , ρd) ∈ Rd, then:

E

[
|
d∑
k=1

ρke
iθk |

]
≥ Cd

√√√√ d∑
k=1

ρ2
k.

This is proved by noticing that the left-hand side is a norm on Rd. One can indeed verify that it
is positive definite, homogeneous and satisfies the triangle inequality. Since all norms on Rd are
equivalent, there exists a constant Cd > 0 such that:

E

[
|
d∑
k=1

ρke
iθk |

]
≥ Cd

√√√√ d∑
k=1

ρ2
k.

for all (ρ1, . . . , ρd) ∈ Rd.

Going back to the proof of Theorem 3, we then have:

E
[
‖DX‖1

∣∣∣ |X|] =

d∑
m=1

E

[
|
d∑
k=1

Dm,kXk|

∣∣∣∣∣ |X|
]

≥ Cd
d∑

m=1

√√√√ d∑
k=1

∣∣Dm,k

∣∣2|Xk|
2 by the above lemma,

≥ Cd
d∑

m=1

d∑
k=1

∣∣Dm,k

∣∣2|Xk| by concavity, because
d∑
k=1

∣∣Dm,k

∣∣2 = 1,

= Cd‖X‖1 because
d∑

m=1

∣∣Dm,k

∣∣2 = 1.

Taking the expectation finishes the proof:

E[‖DX‖1] ≥ CdE[‖X‖1]. (12)

D EXPERIMENTAL DETAILS

Channel operators In all experiments we set P0 = Id, and factorize the classifier with an additional
complex 1 × 1 operator PJ . The architectures implemented are thus also written as

∏J
j=1 PjρW ,

where ρ is the non-linearity. Each operator (Pj)1≤j≤J is preceded by a standardization. It sets the
complex mean µ = E[z] of every channel to zero, and the real variance σ2 = E[|z|2] of every channel
to one. This is similar to a complex 2D batch-normalization layer (Ioffe and Szegedy, 2015), but
without learned affine parameters. Each operator (Pj)1≤j≤J is additionally followed by a spatial
divisive normalization (Rao et al., 2001), similarly to the local response normalization of Krizhevsky
et al. (2012). It sets the norm across channels of each spatial position to one. The sizes of the (Pj)j
are specified in Table 3. The total numbers of parameters for each architecture are specified in Table 4.

Spatial filters We use elongated Morlet filters for the L complex band-pass filters (g`)l which are
rotated versions of a mother wavelet g: g`(u) = g(r−π`/Lu), with rθ the rotation by angle θ. The
mother wavelet g is defined as:

g(u) =
σ2

2π/s2 (eiξ·u −K)e−u·Σu/2 with Σ =

(
σ2 0

0 σ2s2

)
, (13)
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Table 3: Number cj of complex output channels of Pj , 1 ≤ j ≤ J . The total number of layers is
J = 8 for CIFAR and J = 11 for ImageNet.

j 1 2 3 4 5 6 7 8 9 10 11

CIFAR-10 cj 64 128 256 512 512 512 512 512 - - -

ImageNet cj 32 64 64 128 256 512 512 512 512 512 256

Table 4: Number of real parameters (in millions) of Phase Collapse Scattering network architectures.
A complex parameter is counted as two real parameters.

PCScat PCScat + skip ResNet

CIFAR-10 41.6 83.1 0.27

ImageNet 36.0 62.8 11.7

Its center frequency is ξ = ((3π/4)/2γ , 0), its bandwidth σ = 1.25 × 2−γ , and its slant s = 0.5,
where 2γ designates the scale of the band-pass filter.

g is rotated along L = 8 angles for Imagenet and L = 4 angles for CIFAR: θ` = (π`/L)1≤`≤L. The
g` are then discretized for numerical computations, and K is adjusted so that they have a zero mean.

Finally, we use for the low frequency g0 a Gaussian window:

g0(u) =
σ2

2π
e−σ

2‖u‖22/2.

The filters are implemented with the Kymatio package (Andreux et al., 2020).

Intermediate scales 2j/2 are obtained by applying a subsampling by 2 after each block of 2 layers.
This introduces intermediate scales and generates a wavelet filterbank with 2 scales per octave: the
filters are designed so that when j low-pass filters and one band-pass filter are cascaded, with a
subsampling every 2 layers, the scale of the resulting wavelet is 2j/2.

Each block comprises in its first layer a low-frequency filter g1
0 with γ = −1/2 and band-pass filters

with γ = 0. In the second layer, we use the same low-frequency filter g2
0 = g1

0 with γ = −1/2. The
band-pass filters g2

` are obtained with parameters ξ′ = (π/
√

2, 0), σ′ = 1.25
√

2/3, and s′ =
√

0.2.

For CIFAR experiments, the J = 8 layers are grouped in 4 successive blocks of 2 layers. For
ImageNet experiments, the first layer consists of band-pass elongated Morlet filters g` and a low-pass
gaussian window g0 with γ = 0, followed by a subsampling of 2. The 10 following layers are
grouped in 5 successive blocks of 2 layers.

Optimization We use the optimizer SGD with an initial learning rate of 0.01, a momentum of
0.9, a weight decay of 0.0001, and a batch size of 128. The classifier is preceded by a 2D batch-
normalization layer. We use standard data augmentation: horizontal flips and random crops for
CIFAR, random resized crops of size 224 and horizontal flips for ImageNet. Classification error on
ImageNet validation set is computed on a single center crop of size 224. On CIFAR, training lasts
for 300 epochs and the learning rate is divided by 10 every 70 epochs. On ImageNet, training lasts
for 150 epochs and the learning rate is divided by 10 every 45 epochs. The experiments in the paper
required around 10k 32GB NVIDIA V100 GPU-hours.
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