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Abstract

According to Mostow’s celebrated rigidity theorem, the geometry of closed hyperbolic
3-manifolds is already determined by their topology. In particular, the volume of such
manifolds is a topological invariant and, as such, has been investigated for half a century.

Motivated by the algorithmic study of 3-manifolds, Maria and Purcell have recently
shown that every closed hyperbolic 3-manifold M with volume vol(M) admits a triangula-
tion with dual graph of treewidth at most C · vol(M), for some universal constant C.

Here we improve on this result by showing that the volume provides a linear upper bound
even on the pathwidth of the dual graph of some triangulation, which can potentially be
much larger than the treewidth. Our proof relies on a synthesis of tools from 3-manifold
theory: generalized Heegaard splittings, amalgamations, and the thick-thin decomposition
of hyperbolic 3-manifolds. We provide an illustrated exposition of this toolbox and also
discuss the algorithmic consequences of the result.

1 Introduction
Algorithms in computational 3-manifold topology typically take a triangulation as input and
return topological information about the underlying manifold. The difficulty of extracting the
desired information, however, might greatly depend on the choice of the input triangulation. In
recent years, several computationally hard problems about triangulated 3-manifolds were shown
to admit algorithmic solutions that are fixed-parameter tractable (FPT) in the treewidth1 of
the dual graph of the input triangulation [12, 13, 14, 15, 16].2 These algorithms still require
exponential time to terminate in the worst case. However, for triangulations with dual graph of
bounded treewidth they run in polynomial time.3,4

In the light of these algorithms, it is compelling to consider the treewidth tw(M) of a compact
3-manifold M, defined as the smallest treewidth of the dual graph of any triangulation thereof.
Over the last few years, the quantitative relationship between the treewidth and other properties

∗This paper is based on previously unpublished parts of the author’s PhD thesis [24].
†Supported by the French government through the 3IA Côte d’Azur Investments in the Future project managed

by the National Research Agency (ANR) under the reference number ANR-19-P3IA-0002.
1The treewidth is a structural graph parameter measuring the “tree-likeness” of a graph, cf. Section 3.
2For related work on FPT-algorithms in knot theory, see [10] and [35] and the references therein.
3The running times are measured in terms of the number of tetrahedra in the input triangulation.
4Some of these algorithms [14, 16] have been implemented in the topology software Regina [8, 11].
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of 3-manifolds has been studied in various settings.5 The author together with Spreer showed,
for instance, that the Heegaard genus always gives an upper bound on the treewidth (even on
the pathwidth) [25], and together with Wagner they established that, for certain families of 3-
manifolds the treewidth can be arbitrary large [26].6

Recently, Maria and Purcell have shown that, in the realm of hyperbolic 3-manifolds another
important invariant, the volume, yields an upper bound on the treewidth [36]. They proved the
existence of a universal constant C > 0, such that, for every closed hyperbolic 3-manifold M
with treewidth tw(M) and volume vol(M) the following inequality holds:

tw(M) ≤ C · vol(M). (1)

In this article we improve upon (1) by showing that the volume provides a linear upper bound
even on the pathwidth of a hyperbolic 3-manifold—a quantity closely related to, but potentially
much larger than the treewidth. More precisely, we prove the following theorem.

Theorem 1. There exists a universal constant C ′ > 0 such that, for any closed, orientable and
hyperbolic 3-manifold M with pathwidth pw(M) and volume vol(M), we have

pw(M) ≤ C ′ · vol(M). (2)

Outline of the proof. Our roadmap to establish Theorem 1 is similar to that in [36]. In
particular, our construction of a triangulation of M with dual graph of pathwidth bounded in
terms of vol(M) also starts with a thick-thin decomposition D of M. The two proofs, however,
diverge at this point. Maria and Purcell proceed by triangulating the thick part of D using the
work of Jørgensen–Thurston [60, §5.11] and Kobayashi–Rieck [33]. This partial triangulation is
then simplified [9, 28] and completed into the desired triangulation of M.

The novelty in our work is, that we proceed by first turning the decomposition D into a
generalized Heegaard splitting of M [52, 53], where we rely on the aforementioned results to
control the genera of the splitting surfaces. Next, we amalgamate this generalized Heegaard
splitting into a classical one [54]. Finally, we appeal to our earlier work [25] to turn this Heegaard
splitting into a triangulation of M with dual graph of pathwidth O(vol(M)).

The proof of Theorem 1 provides a template for an algorithm7 to triangulate any closed
hyperbolic 3-manifold M in such a way, that the dual graph of the resulting triangulation has
pathwidth O(vol(M)). Using such triangulations—that have a dual graph not only of small
treewidth, but also pathwidth—as input for FPT-algorithms may significantly reduce their run-
ning time. This is because such triangulations lend themselves to nice tree decompositions (the
data structure underlying many algorithms FPT in the treewidth) without join bags (those parts
of a nice tree decomposition that often account for the computational bottleneck, cf. [13]). The
upshot of Theorem 1 is that, in case of hyperbolic 3-manifolds with bounded volume working
with such triangulations is (in theory) always possible.

Structure of the paper. We start with an illustrated exposition of the various notions from
3-manifold theory we rely on (Section 2). Then, in Section 3, we discuss the treewidth and
pathwidth for graphs and 3-manifolds alike. In Section 4, we put all the pieces together to prove
Theorem 1. We conclude with a discussion and some open questions in Section 5.

5See [18] for related work in knot theory concerning a different notion of treewidth for knot diagrams.
6For the precise statements of these results cf. the inequalities (10) and (11) in Section 3. For further results

and a detailed discussion we refer to the author’s PhD thesis [24].
7We refer to the discussion in [36, Section 5.1] for the description of a possible computational model.
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2 A primer on 3-manifolds
The main objects of study in this paper are 3-dimensional manifolds, or 3-manifolds for short.
As we will also encounter 2-manifolds, also known as surfaces, we give the general definition. A
d-dimensional manifold with boundary is a topological space8 M such that each point x ∈ M
has a neighborhood which looks like (i.e., is homeomorphic to) the Euclidean d-space Rd or the
closed upper half-space {(x1, . . . , xd) ∈ Rd : xd ≥ 0}. The points of M that do not have a
neighborhood homeomorphic to Rd constitute the boundary ∂M of M. A compact manifold is
said to be closed if it has an empty boundary.

Two manifoldsM1 andM2 are considered equivalent if they are homeomorphic, i.e., if there
exists a continuous bijection f : M1 → M2 with f−1 being continuous as well. Properties of
manifolds that are preserved under homeomorphisms are called topological invariants. We refer
to [55] for an introduction to 3-manifolds (cf. [23, 27, 50, 59]).

All 3-manifolds in this paper are assumed to be compact and orientable.

2.1 Triangulations and handle decompositions
Triangulations. By a classical result of Moise [40] (cf. [4]) every compact 3-manifold admits a
triangulation. To build a triangulation, take a disjoint union ∆̃ = ∆1 ∪ . . .∪∆n of finitely many
tetrahedra with 4n triangular faces altogether. Let Φ = {ϕ1, . . . , ϕm} be a set of at most 2n
face gluings, each of which identifies a pair of these triangular faces in such a way that vertices
are mapped to vertices, edges to edges, and each face is identified with at most one other face,
see Figure 1(i). The resulting quotient space T = ∆̃/Φ is called a triangulation, and the pairs
of identified triangular faces are referred to as triangles of T . Note that these face gluings might
identify several tetrahedral edges (or vertices) of ∆̃ resulting in a single edge (or vertex) of T .

To obtain a triangulation T that is homeomorphic to a closed 3-manifold M, it is necessary
and sufficient that the boundary of a small neighborhood around each vertex is a sphere, and
no edge is identified with itself in reverse. If some of the vertices have small neighborhoods
with boundaries being disks, then T describes a 3-manifold with boundary. In a computational
setting, a 3-manifold is very often presented this way.

In the study of triangulations, their dual graphs play an instrumental role.9 Given a triangu-
lation T = ∆̃/Φ, its dual graph Γ(T ) = (V,E) is a multigraph10 where the nodes in V correspond
to the tetrahedra in ∆̃, and for each face gluing ϕ ∈ Φ identifying two triangular faces of ∆i

and ∆j , we add an arc between the corresponding nodes in V , cf. Figure 1(ii). (Note that i and
j could be equal.) By construction, every node of Γ(T ) has maximum degree ≤ 4. Moreover,
when T triangulates a closed 3-manifold, then Γ(T ) is 4-regular.

8More precisely, we only consider topological spaces which are second countable and Hausdorff.
9Following a convention adopted by several authors in the field of computational low-dimensional topology,

throughout this paper we use the terms edge and vertex to refer to an edge or vertex in a 3-manifold triangulation,
whereas the terms arc and node denote an edge or vertex in a graph, respectively.

10In a multigraph G = (V, E) the set E of arcs is a multiset, i.e., there might be multiple arcs running between
two given nodes. Moreover, an arc itself can also be a multiset in which case it is called a loop. Next, when
talking about graphs, we will always mean multigraphs, unless otherwise stated.
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Figure 1: (i) A triangulation T = ∆̃/Φ with two tetrahedra ∆̃ = {∆1, ∆2} and three face gluing maps
Φ = {ϕ1, ϕ2, ϕ3}. ϕ1 is specified to be ∆1(123)

ϕ1←→ ∆2(103). (ii) The dual graph Γ(T ) of T .

Handle decompositions. It follows from Morse theory (and also from the existence of trian-
gulations) that every compact 3-manifold can be built from finitely many solid building blocks
called 0-, 1-, 2-, and 3-handles. In such a handle decomposition all handles are homeomorphic
to 3-balls, and are only distinguished in how they are glued together. To construct a closed 3-
manifold from handles, we may start with a disjoint union of 3-balls, or 0-handles, where further
3-balls are glued to the boundary of the existing decomposition along pairs of 2-dimensional disks
(1-handles), or along annuli (2-handles). This process is iterated until the boundary consists of
a disjoint union of 2-spheres. These are then eliminated by gluing in one 3-ball per boundary
component, the 3-handles of the decomposition.

(ii)(i) (iii) (iv)

Figure 2: (i) A 0-handle, (ii) a 1-handle, (iii) a 2-handle, and (iv) a 3-handle. The attaching sites are
indicated with light blue. For a 1-handle, this is a disjoint union of two disks, for a 2-handle an annulus,
and for a 3-handle the entire 2-sphere boundary.

2.2 Handlebodies and compression bodies
A handlebody H is a connected 3-manifold with boundary that is built from (finitely many)
0-handles and 1-handles. It can also be seen as a thickened graph. Up to homeomorphism, a
handlebody H is determined by the genus g(∂H) of its boundary.

Let S be a compact, orientable (not necessarily connected) surface. A compression body is a
3-manifold C obtained from S × [0, 1] by (optionally) attaching some 1-handles to S × {1}, and
(optionally) filling in some of the 2-sphere components of S ×{0} with 3-balls. C has two sets of
boundary components: ∂−C = S × {0} \ {filled-in 2-sphere components} and ∂+C = ∂C \ ∂−C.
We call ∂+C the upper boundary, and ∂−C the lower boundary of C.

Dual to this construction, a compression body C can also be built by starting with a closed,
orientable surface F , thickening it to F × [0, 1], (optionally) attaching some 2-handles along
F × {0}, and (optionally) filling in some of the resulting 2-spheres with 3-balls. The upper and
lower boundary are given by ∂+C = F × {1} and ∂−C = ∂C \ ∂+C.

Note that every handlebody is also a compression body, where all 2-sphere components are
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eliminated in the last step.
See Figure 12 in Appendix A for an illustration of the primal and dual constructions.

2.3 Heegaard splittings
Introduced in [22], Heegaard splittings have been central to the study of 3-manifolds for over
a century. Given a closed, orientable 3-manifold M, a Heegaard splitting is a decomposition
M = H∪SH′ where H and H′ are homeomorphic handlebodies with H∪H′ =M and H∩H′ =
∂H = ∂H′ = S called the splitting surface. The Heegaard genus g (M) of M is the smallest
genus g(S) over all Heegaard splittings of M. See [51] for a comprehensive survey.

Example 2 (Heegaard splittings from triangulations, I). Given a triangulation T of a closed,
orientable 3-manifold M, let T (1) denote its 1-skeleton consisting of the vertices and edges of
T . Thickening up T (1), i.e., taking its regular neighborhood, in M yields a handlebody H1.
The closure H2 of the complement M \ H1 is also a handlebody homeomorphic to a regular
neighborhood of Γ(T ), and M = H1 ∪H2 is a Heegaard splitting of M.

Heegaard splittings of 3-manifolds with boundary. Using compression bodies, one can
generalize Heegaard splittings to 3-manifolds with nonempty boundary. Let M be a 3-manifold
and ∂1M ∪ ∂2M = ∂M be an arbitrary partition of its boundary components. There exist
compression bodies C1 and C2 with C1 ∪ C2 = M, ∂−C1 = ∂1M, ∂−C2 = ∂2M, and C1 ∩ C2 =
∂+C1 = ∂+C2. The decomposition M = C1 ∪S C2 is called a Heegaard splitting of M compatible
with the partition ∂1M∪ ∂2M. Its splitting surface is S = C1 ∩ C2. The Heegaard genus g (M)
is again the minimum genus g(S) over all such decompositions.

See Example 16 in Appendix B for an extension of Example 2 to this setting.

2.4 Generalized Heegaard splittings
The notion of a Heegaard splitting, where a 3-manifold is built by gluing two handlebodies to-
gether (or two compression bodies, in case of 3-manifolds with boundary), was refined by Scharle-
mann and Thompson in a seminal paper [53]. In a generalized Heegaard splitting a 3-manifold
is constructed from several pairs of compression bodies. This construction arises naturally, e.g.,
when a 3-manifold is assembled by first attaching only some of the 0- and 1-handles before
attaching any 2- and 3-handles.

Informally, a generalized Heegaard splitting of a 3-manifold M is a decomposition

D =
{
Mi : i ∈ I,

⋃
i∈IMi =M, and int(Mi) ∩ int(Mj) = ∅ for i 6= j

}
(3)

into finitely many 3-manifolds with pairwise disjoint interiors that intersect along surfaces, to-
gether with an “appropriate” Heegaard splitting for each Mi. We make this now precise.

Given a decomposition D as above, consider its dual graph,11 which is a multigraph Γ(D) =
(I, E) with nodes corresponding to theMi and arcs between i and j to the connected components
ofMi ∩Mj (Figure 3). Pick an ordering of I, i.e., a bijection ` : I → {1, . . . , |I|}. For any i ∈ I,
let ∂1Mi∪∂2Mi be a partition of the connected components of ∂Mi so that ∂1Mi (resp. ∂2Mi)
contains the components glued to those of any Mj with `(j) < `(i) (resp. `(j) > `(i)). Those
components of ∂Mi which contribute to the boundary of M are partitioned among ∂1Mi and
∂2Mi arbitrarily. For each i ∈ I, choose a Heegaard splittingMi = Ni ∪Si

Ki ofMi compatible
with the partition ∂1Mi ∪ ∂2Mi of the boundary components (cf. Example 16). We obtain a
generalized Heegaard splitting of M (Figure 4).

11Not to be confused with the dual graph of a triangulation.
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(i)

1 2

3 4
M

M1
M2

M3 M4

(ii) (iii)

Figure 3: (i) Schematic of a closed 3-manifold M with nontrivial first homology, (ii) a decomposition
D of M into four submanifolds, and (iii) the dual graph Γ(D) of D .

(i) (ii) (iii)

S2S1

S3 S4

S2S1

S4S3

S1 S2

S4S3

Figure 4: (i)–(ii) Schematics of two generalized Heegaard splittings of M stemming from the de-
composition shown on Figure 3. These splittings respectively correspond to the orderings `1(i) = i
(i ∈ I = {1, 2, 3, 4}), and `2(1) = 2, `2(2) = 4, `2(3) = 1, `2(4) = 3. (iii) A non-example.

When we only need to talk about the constituents of a decomposition or the pieces of a
generalized Heegaard splitting of a 3-manfiold M we use the shorthand notation

M =
⋃
i∈I
Mi or M =

⋃
i∈I

(Ni ∪Si Ki), where Ni ∪Si Ki =Mi. (4)

Fork complexes. When connectivity properties of the graph Γ(D) underlying a given splitting
are relevant, it may be more convenient to work with so-called fork complexes. Here we give a
brief overview of this language. For more details, see [52, Chapter 5].

A fork complex is essentially a decorated version of Γ(D). It is a labeled graph in which the
compression bodies of a given decomposition are modeled by forks. More precisely, an n-fork is
a tree F with n + 2 nodes V (F ) = {g, p, t1, . . . , tn} with p being of degree n + 1 and all other
nodes being leaves. The nodes g, p, and the ti are called the grip, the root, and the tines of F ,
respectively (Figure 5(i) shows a 0- and a 3-fork). We think of a fork F = FC as an abstraction of
a compression body C, such that the grip of F corresponds to ∂+C, whereas the tines correspond
to the connected components of ∂−C.

root
grip

tine

(i) (ii) (iii) (iv)

Figure 5: Fork complexes of a Heegaard splitting (ii) and of generalized Heegaard splittings (iii)–(iv).
Reproduced from [26, Figure 1].

Informally, a fork complex F (representing a given generalized Heegaard splitting of a 3-
manifoldM) is obtained by taking several forks (corresponding to the compression bodies which
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constitute M), and identifying grips with grips, and tines with tines (following the way the
boundaries of these compression bodies are glued together). The set of grips and tines which
remain unpaired is denoted by ∂F (as they correspond to surfaces which constitute the boundary
∂M). See Figure 5 for illustrations, and [52, Section 5.1] for further details.

(i) (ii)

S1 S2

S3 S4

S1 S2

S3 S4

Figure 6: Fork complexes representing the generalized Heegaard splittings shown on Figure 4.

Amalgamations. Introduced by Schultens in [54], amalgamation is a useful procedure that
turns a generalized Heegaard splitting into a classical one. There are several excellent references
where amalgamations are discussed in detail (cf. [3, Section 2], [19, Section 2.3], [52, Section
5.4]), therefore here we rely on a simple example to illustrate this operation.

Let M = (N1 ∪S1 K1) ∪R (N2 ∪S2 K2) be a generalized Heegaard splitting of M, which
we would like to amalgamate to form a classical Heegaard splitting M = N ∪S K, see Figure
7. Recall that every compression body C can be obtained by first taking the thickened version
∂−C× [0, 1] of its lower boundary ∂−C and then attaching some 1-handles to ∂−C×{1} (see steps
P1 and P2 in Figure 12). In our example ∂−K1 = R = ∂−N2, so K1 can be built from R× [−1, 0]
by attaching two 1-handles h(1)

1 and h(1)
2 along R×{−1}. Similarly, N2 is constructed by taking

R× [0, 1] and attaching the 1-handles h(2)
1 and h

(2)
2 to R× {1}.

The amalgamation process consists of two steps: 1. Collapse R× [−1, 1] to R×{0}, such that
the attaching sites of the 1-handles h(1)

1 , h(1)
2 , h(2)

1 and h
(2)
2 remain pairwise disjoint. (This can

be achieved by slightly deforming the attaching maps, if necessary.) 2. Set N = N1 ∪ h(2)
1 ∪ h

(2)
2

and K = K2 ∪ h(1)
1 ∪ h

(1)
2 , see Figure 7(ii).

N1 N2K1 K2S1 S2R N KS

 

(ii)(i)
R× [−1, 1]

h
(1)
1

h
(1)
2

h
(2)
1

h
(2)
2

Figure 7: Amalgamating a generalized Heegaard splitting into a Heegaard splitting.

If R is connected, then for the genus of the amalgamated Heegaard surface S we have

g(S) = g(S1) + g(S2)− g(R). (5)
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However, in case R has multiple connected components, then (5) does not hold anymore.
The procedure of amalgamation nevertheless works for arbitrary generalized Heegaard splittings
(cf. Remark 4), and the formula (5) can be adapted to the general setting as follows, by taking
into account the Euler characteristic of the dual graph of the decomposition.

Theorem 3 (Quantitative Amalgamation; cf. Theorems 2.8 and 2.9 in [3]).

1. Any generalized Heegaard splitting M =
⋃
i∈I(Ni ∪Si Ki) of a given 3-manifold M can be

amalgamated to a (classical) Heegaard splitting M = N ∪S K thereof.

2. Let D be the decomposition M =
⋃
i∈IMi underlying the generalized Heegaard splitting

above, and Γ(D) = (I, E) be its dual graph with Euler characteristic χ(Γ(D)). For any
e = {u, v} ∈ E, let Re be the connected component of Mu ∩Mv dual to e.12 Then the
genus g(S) of the amalgamated Heegaard surface S satisfies

g(S) =
∑
i∈I

g(Si)−
∑
e∈E

g(Re) + 1− χ(Γ(D)). (6)

Remark 4. In the definition of generalized Heegaard splittings, ordering the vertices of Γ(D)
and choosing the Heegaard splittings of theMi in a compatible way might seem to be an ad-hoc
requirement. However, this property arises naturally, when a generalized Heegaard splitting is
constructed from a sequence of handle attachments. It also ensures that a generalized Heegaard
splitting can always be amalgamated into a classical one. This feature lies at the heart of many
applications, including the main result of [3] according to which the problem of computing the
Heegaard genus is NP-hard. We also make great use of the amalgamation procedure in Section
4 to establish Theorem 1.

2.5 Hyperbolic 3-manifolds
Hyperbolic geometry has been playing a role in the study of 3-manifolds for over a century [39],
but it rose into particular prominence after Thurston formulated the geometrization conjecture
[58], famously resolved by Perelman twenty years later [42, 43] (cf. [44]). Hyperbolic 3-manifolds
constitute the richest family among geometric 3-manifolds, and, to this date, they remain the
least understood. We refer to [38] for an introduction to this area.

A 3-manifold M is hyperbolic, if its interior can be obtained as a quotient of the hyperbolic
3-space H3 by a discrete group of isometries acting freely on H3. Equivalently, if the interior of
M admits a complete Riemannian metric of constant sectional curvature −1. Throughout this
section, M is assumed to be an orientable Riemannian 3-manifold. After fixing an orientation
on M, its metric tensor induces a “volume form” ω. This in turn leads to the notion of volume
defined via the integral

vol(D) =
∫
D
ω

for any open set D ⊆M. Also, any submanifold of M admits a Riemannian metric induced by
the metric tensor of M. Thus we may measure lengths of paths and areas of surfaces in M as
well. We refer to [38, Section 1.2] for details.

If M is compact, then vol(M) is finite. The next striking result has been of paramount im-
portance in geometric topology, as it says that “geometric properties” of finite-volume hyperbolic
3-manifolds are actually topological invariants.

12Note that there might be multiple arcs between the nodes u and v in Γ(D). We account for all.
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Theorem 5 (Mostow Rigidity Theorem [41], cf. [2, Theorem 1.7.1], [38, Chapter 13]). Let M
and N be finite-volume hyperbolic 3-manifolds. Every isomorphism π1(M)→ π1(N ) between the
fundamental groups of M and N is induced by a unique isometry M→N .

Corollary 6. If two hyperbolic 3-manifolds have different volume, then they cannot be homotopy
equivalent, hence they cannot be homeomorphic.

Thick-thin decompositions. As mentioned in the Introduction, a key ingredient in the proof
of Theorem 1 is the the thick-thin decomposition theorem, a fundamentally important structural
result for hyperbolic manifolds of any dimension. In order to formulate it, we need to introduce
the injectivity radius of a Riemannian manifold.

Definition 7 (injectivity radius). LetM be a Riemannian manifold and x ∈M. The injectivity
radius of M at x, denoted injx(M), is the supremal value r > 0 such that the metric ball of
radius r around x is embedded inM. The injectivity radius of M is defined as the infimal value
of injx(M), i.e., inj(M) = inf{injx(M) : x ∈M}.

After fixing some threshold ε > 0, a Riemannian manifold M naturally decomposes into an
ε-thick and an ε-thin part based on the injectivity radius of its points:

M[ε,∞) = {x ∈M : injx(M) ≥ ε/2} and M(0,ε] = {x ∈M : injx(M) ≤ ε/2}. (7)

We are now in the position to state the thick-thin decomposition theorem, according to which,
for a sufficiently small constant ε > 0 only depending on the dimension d, the ε-thin part of any
orientable hyperbolic d-manifold has a well-understood structure.13

Theorem 8 (Thick-Thin Decomposition; cf. [38, Chapter 4], [45, Section 5.3]). There exists a
universal constant εd > 0, depending only on the dimension d, such that for any ε ∈ (0, εd], the
ε-thin part of any orientable hyperbolic d-manifold M consists of tubes around short geodesics
diffeomorphic to S1 × Dd−1, or cusps.14

M[ε,∞)

M(0,ε]

cusp tube

Figure 8: Thick-thin decomposition of a non-compact hyperbolic surface.

Remark 9. We conclude with some remarks about the thick-thin decomposition.

1. In case of compact 3-manifolds, there are no cusps in the thick-thin decomposition, but
only tubes. In dimension three, they are homeomorphic to solid tori. This is important,
as Theorem 11 is concerned with closed (hence compact) 3-manifolds.

13The manifolds in consideration are also required to be complete (as metric spaces). However, the way we
define hyperbolic d-manifolds (i.e., quotients of Hd under discrete groups of isometries acting freely) automatically
ensures their completeness.

14A d-dimensional cusp is a d-manifold with boundary that is diffeomorphic to N × [0,∞), where N is a
(d− 1)-dimensional flat, i.e., Euclidean, manifold. See [38, Section 4.1] for a precise definition.
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2. The supremum of all εd for which the conclusion of Theorem 8 holds is called the d-
dimensional Margulis constant. As of now, the precise value of εd remains unknown. For
d = 3, it is known that 0.104 ≤ ε3 ≤ 0.616, cf. [45, p. 92].

3. Theorem 8 is a corollary of a more general result about discrete subgroups of Lie groups,
called the Margulis Lemma, appeared in [30], cf. [38, Section 4.2] and [45, Theorem 5.22].

3 Combinatorial width parameters for 3-manifolds
Two important topological invariants we have already discussed are the Heegaard genus and
the volume. Here we introduce a simple scheme that can be used to turn any non-negative
graph parameter into a topological invariant for compact 3-manifolds: Given a graph parameter
p : G → N, defined on the set G of finite (multi)graphs, simply put

p(M) = min{p(Γ(T )) : T is a triangulation of M}. (8)

We call any 3-manifold invariant p obtained this way a combinatorial width parameter. For
reasons explained in the Introduction, in what follows, we apply this scheme on two notable
graph parameters that have been playing a central role in the development of parameterized
algorithms [17, 20, 21] and in structural graph theory [5, 7, 31, 34].

Treewidth and pathwidth of a graph. Introduced by Robertson and Seymour [47, 48], the
treewidth and pathwidth informally measure how tree-like or path-like a graph is. To precisely
define them, we first need to talk about a tree decomposition of a graph G = (V,E): it is a pair
T = ({Bi : i ∈ I}, T = (I, F )) with bags Bi ⊆ V and a tree T = (I, F ), such that

1.
⋃
i∈I Bi = V ,

2. for every arc {u, v} ∈ E, there exists i ∈ I with {u, v} ⊆ Bi, and

3. for every node v ∈ V , Tv = {i ∈ I : v ∈ Bi} spans a connected subtree of T .

See Figure 9 for an illustration. The width of a tree decomposition equals maxi∈I |Bi| − 1 and
the treewidth tw(G) is the smallest width of any tree decomposition of G, cf. Figure 10.

A path decomposition of a graph G is merely a tree decomposition for which the tree T is
required to be a path. Similarly, the pathwidth pw(G) of a graph G is the minimum width of
any path decomposition of G. From the definitions, tw(G) ≤ pw(G).

Treewidth and pathwidth of a 3-manifold. Having defined the treewidth and the path-
width of a graph, based on (8) it is immediate to extend these notions to 3-manifolds as

tw(M) = min{tw(Γ(T )) : T is a triangulation of M}, and
pw(M) = min{pw(Γ(T )) : T is a triangulation of M}.

(9)

As tw(G) ≤ pw(G) for any graph G, we also have tw(M) ≤ pw(M) for any 3-manifold M.
Recently, the quantitative relationship between these (and related) parameters and other

topological invariants has become the subject of intense research. In [26, Theorem 4] it was shown
that, for any closed, irreducible, non-Haken 3-manifold M, the treewidth tw(M) is bounded
below in terms of the Heegaard genus g (M) by means of the following inequality:

g (M) ≤ 18(tw(M) + 1). (10)
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Figure 9: (i) A graph G and a tree decomposition thereof, modeled on a tree T , of width 2. This tree
decomposition also happens to be a path decomposition as T is a path. (ii) Illustration of properties 1
and 2 from the definition of a tree decomposition: The union of all bags equals V , and for every arc in
E there is a bag containing that arc. (iii) Illustration of property 3: The bags containing a given node
(in this case c) span a connected subtree of T .

(i) tw(tree) = 1 (ii) tw(G) = 2 (iii) tw(k × k-grid) = k (iv) tw(Kn) = n − 1

G

Figure 10: (i) Graphs of treewidth one are precisely the trees (possibly with loops or multiarcs). (ii) A
graph of treewidth two. (iii) The k× k-grid (above k = 5) has treewidth and pathwidth equal to k, thus
planar graphs can have arbitrary large treewidth. (iv) The complete graph Kn has treewidth n− 1.

The proof of (10) relies on the theory of generalized Heegaard splittings (see [26, Section 6]
for details) and, in combination with work of Agol [1], implies the existence of 3-manifolds with
arbitrary large treewidth.15 In subsequent work [25] it was proven (based on the theory of layered
triangulations [29]) that a reverse inequality holds for all closed 3-manifolds.

Theorem 10. For every closed 3-manifold M with treewidth tw(M), pathwidth pw(M), and
Heegaard genus g (M) we have

tw(M) ≤ pw(M) ≤ 4g (M)− 2. (11)

Here the first inequality follows from the definitions of pathwidth and treewidth (see above);
for details about the second one, we refer to [24, Theorems 1.6 and 2.4] and [24, Chapter 5],
where further refinements of these results are discussed along with related work by others.

15A similar result was obtained in [18]. Here the treewidth of a knot diagram was related to the sphere number
of the underlying knot, giving the first examples of knots where any diagram has high treewidth.
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4 The proof of Theorem 1
In this section we put together the ingredients discussed before, in order to prove that the volume
of a closed hyperbolic 3-manifold provides a linear upper bound on its pathwidth.

The proof of Theorem 1 rests on Theorem 11, a folklore result according to which the Heegaard
genus of a closed, orientable, hyperbolic 3-manifold can be upper-bounded in terms of its volume
(see, e.g., [56, p. 336–337] or [46]).

Theorem 11. There exists a universal constant C ′′ > 0 such that, for any closed, orientable,
hyperbolic 3-manifold M with Heegaard genus g (M) and volume vol(M), we have

g (M) ≤ C ′′ · vol(M). (12)

Proof of Theorem 1 assuming Theorem 11. By combining (12) with the second inequality in (11)
the statement of Theorem 1 is readily deduced.

We are left with proving Theorem 11. As we were unable to locate a proof of this result in
the literature, below we give a proof ourselves.

Proof of Theorem 11. First, we describe the general strategy. Given a closed, orientable, hyper-
bolic 3-manifold M, we start by taking a thick-thin decomposition of M. By a theorem that
goes back to Jørgensen and Thurston, the thick part can always be triangulated using O(vol(M))
tetrahedra. Next, we show that such a triangulation of the thick part lends itself to a generalized
Heegaard splitting ofM, where the sum of genera of the Heegaard surfaces is O(vol(M)). In the
final step, we amalgamate this generalized Heegaard splitting into a classical Heegaard splitting
of M, and show that its genus is O(vol(M)).

We now elaborate on the details. First, we invoke the aforementioned theorem by Jørgensen–
Thurston, carefully proved by Kobayashi–Rieck. To precisely state this result, let us define the
(closed) δ-neighborhood Nδ (X ) of a subset X of a Riemannian 3-manifold M to be the set of
those points in M that have distance at most δ from some point in X .

Theorem 12 (Jørgensen–Thurston [60, §5.11], Kobayashi–Rieck [33]). Let ε ∈ (0, ε3], where ε3
is the Margulis constant in dimension three (cf. Remark 9/2).

1. For any δ > 0, there exists a constant K > 0, depending on ε and δ, so that for any
finite-volume hyperbolic 3-manifold M, the δ-neighborhood Nδ

(
M[ε,∞)

)
⊂M of the thick

part M[ε,∞) admits a triangulation with at most K · vol(M) tetrahedra.

2. Moreover, Nδ
(
M[ε,∞)

)
is obtained fromM by removing open tubular neighborhoods around

short geodesics, and truncating cusps [33, Proposition 1.2].

Now we fix an ε ∈ (0, ε3] and some δ > 0. Let M be a closed hyperbolic 3-manifold. In
the work of Maria–Purcell [36], Theorem 12 plays a crucial role in ensuring the treewidth of
Nδ
(
M[ε,∞)

)
to be upper-bounded by a linear function of vol(M), and that ∂Nδ

(
M[ε,∞)

)
can

be filled with solid tori. For proving Theorem 11, we utilize Theorem 12 differently:

Proposition 13. Let Y = Nδ
(
M[ε,∞)

)
as defined above. The following are true.

(a) For the Heegaard genus of Y we have g (Y) = O(vol(M)).
(b) Y has O(vol(M)) boundary components, each of which are tori.

12



Proof of Proposition 13. To establish (a), first consider a triangulation T of Y with O(vol(M))
tetrahedra. Such a triangulation is guaranteed to exist by Theorem 12/1. Fix an arbitrary
partition P = {∂1Y, ∂2Y} of the boundary components of Y (the trivial partition, i.e., ∂1Y = ∅,
∂2Y = ∂Y, is also allowed). Follow a procedure similar to [52, Theorem 2.1.11] to obtain a
Heegaard splitting of Y compatible with P. (For more details, see Example 16 in Appendix
B.) By construction, the genus of this splitting is O(vol(M)), hence, for the Heegaard genus of
Y, we have g (Y) = O(vol(M)). For the first part of (b), observe that, by passing to a first
barycentric subdivision, we may assume a tetrahedron can contribute triangles to at most one
boundary component. The second part of (b) follows from Theorem 12/2. C

As discussed in Section 2.4, any decomposition M =
⋃
i∈IMi of a 3-manifold M into codi-

mension zero submanifolds with pairwise disjoint interiors gives rise to generalized Heegaard
splittings ofM. BecauseM is hyperbolic, this is also true for every thick-thin decomposition of
M. So let us proceed by taking a thick-thin decomposition

D = {Mi : i ∈ [m],
⋃m
i=1Mi =M, and int(Mi) ∩ int(Mj) = ∅ for i 6= j} (13)

of M, where M1 = Y = Nδ
(
M[ε,∞)

)
is the thick part and M2 . . . ,Mm are the thin ones.

Note that, by Theorem 12/2, eachMi (2 ≤ i ≤ m) is homeomorphic to a solid torus S1×D2,
and m = O(vol(M)) by Proposition 13/(b). Let us label the nodes of Γ(D) via the identity map.
For each i ∈ [m], we choose a Heegaard splitting Mi = Ni ∪Si

Ki of minimal genus compatible
with this labeling. This gives a generalized Heegaard splitting M =

⋃
i∈I(Ni ∪Si Ki) of the

hyperbolic 3-manifold M. See Figure 11 for an illustration.

(i) D (iii) F(ii) Γ(D)

M2

M3

M4M5

M6

S1
S4

S3

S2
S6

S5

R5

N1

K1

K5

N5

M1 = Y
1

2

3

45

6

Figure 11: (i) Schematic example of a thick-thin decomposition D of a hyperbolic 3-manifold M. (ii)
The dual graph Γ(D) of D with its nodes labeled via the identity map. (iii) The fork complex F of a
generalized Heegaard splitting associated with D and the given labeling of V (Γ(D))

Claim 14. From the construction it directly follows that the generalized Heegaard splitting
M =

⋃
i∈I(Ni ∪Si Ki) described above has the following properties:

1. All the Ni are handlebodies. For N1 we have g(∂N1) = g(S1) = O(vol(M)).

2. If 2 ≤ i ≤ m, then Ni is a solid torus, therefore g(∂Ni) = g(Si) = 1.

3. K1 is a compression body with ∂+K1 = S1 and ∂−K1 = “disjoint union of m tori.”

4. If 2 ≤ i ≤ m, then Ki is a trivial compression body homeomorphic to T2 × [0, 1]. For its
boundary components we have ∂+Ki = Si and ∂−Ki = Ri =Mi ∩M1.

5. For the sum of the genera of the surfaces Si we have
∑m
i=1 g(Si) = O(vol(M)). C
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By Theorem 3, we may amalgamate this to a classical Heegaard splitting M = N ∪S K.
Finally, by combining the data from Claim 14 with the formula (6) in Theorem 3, we get

g(S) =
∑
i∈I

g(Si)−
∑
e∈E

g(Re) + 1− χ(Γ(D)) (14)

= g(S1) +
m∑
i=2

(g(Si)− g(Ri)) + 1− χ(Γ(D)) (15)

= O(vol(M)) +
m∑
i=2

(1− 1) + 1− 1 = O(vol(M)). (16)

This concludes the proof of Theorem 11. �

5 Discussion
Pathwidth vs. treewidth vs. volume. The inequalities (1) and (2) respectively provide
information about the quantitative relationship between the treewidth and the volume, and the
pathwidth and the volume of hyperbolic 3-manifolds. It is natural to study the sharpness of
these inequalities both in absolute terms and also relative to each other.

In [36, Section 6] Maria and Purcell show that, by performing appropriate Dehn fillings
on hyperbolic 2-bridge knot exteriors, one can obtain an infinite family of closed hyperbolic
3-manifolds with bounded treewidth, but unbounded volume. The bound on the treewidth is
established through a construction of small-treewidth triangulations of these manifolds, based
on the work of Sakuma–Weeks [49] on triangulating 2-bridge knot exteriors. It is not difficult to
see that these triangulations have bounded pathwidth, too.

Regarding the comparison of (1) and (2), recall that, from the definitions of pathwidth and
treewidth (Section 3) if follows that tw(M) ≤ pw(M) for every 3-manifold M. However, while
there are examples for which both of these quantities are small [25] or arbitrary large [26], we do
not know whether their difference can be arbitrary large. Thus we ask:

Question 15. Can the difference pw(M)− tw(M) be arbitrary large?

Note that, in case of graphs, trees can have arbitrary large pathwidth, e.g., the complete binary
tree Th of height h satisfies pw(Th) = dh/2e, cf. [6, Theorem 67] or [57, Lemma 2.8].

Algorithmic aspects of small pathwidth. In the Introduction it was mentioned that in-
put triangulations with small-pathwidth dual graphs can speed up algorithms that are fixed-
parameter tractable (FPT) in the treewidth. Here we briefly elaborate on this.

A typical FPT-algorithm A exploits the small treewidth of the dual graph of its input
triangulation by using a data structure called a nice tree decomposition. This is a particular kind
of tree decomposition, whose bags can be grouped into three different types: forget, introduce,
and join bags. A triangulation T with n tetrahedra and tw(Γ(T )) = k always admits a nice tree
decomposition with at most 4n bags of width k, see [32, Section 13.1].

Upon taking such a triangulation T as input, the algorithm A would first construct a tree
decomposition T of Γ(T ) of small width, turn T into a nice tree decomposition Tnice (which is
still of small width, as noted above), then parse Tnice and perform its specific computation at
each bag thereof. Depending on the problem to be solved, processing a join bag can be orders of
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magnitudes slower than processing an introduce or forget bag (we refer to [26, Appendix C] for
more details, and to [13, Section 4(d)] for a real-life example).

Now, if the decomposition T happens to be a path decomposition (i.e., a tree decomposition
where the underlying tree is a path), then the procedure for constructing Tnice results in a nice
tree decomposition without join bags. Therefore, if the pathwidth pw(Γ(T )) is not “much” larger
than the treewidth tw(Γ(T )), constructing a path decomposition (instead of an arbitrary tree
decomposition) in the first step can potentially be very beneficial for the overall running time of
A , as the algorithm does not have to deal with join bags at all.

Topological parameters for FPT-algorithms. Algorithms that are FPT in the treewidth
have been very successful in 3-dimensional topology. They all come with a caveat though: their
fast execution presumes an input triangulation whose dual graph has small treewidth. However,
in case the triangulation at hand has high treewidth, finding another triangulation of the same
3-manifold that has smaller treewidth might be very difficult.

To address this challenge, recently there has been a growing interest in researching algorithms
that are FPT in topological parameters (e.g., the first Betti number [37]), that do not depend on
the particular input triangulation, but only on the underlying 3-manifold.

Together with [36], our work reinforces the potential of the volume of becoming a useful
topological parameter for FPT-algorithms in the realm of hyperbolic 3-manifolds.
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A The primal and dual construction of compression bodies
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Figure 12: The primal and dual ways of constructing a compression body C, cf. Section 2.2.
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B Heegaard splittings of 3-manifolds with boundary
Example 16 (Heegaard splittings from triangulations, II – based on [52, Theorem 2.1.11]). Let
T be a triangulation ofM with partition ∂1M∪∂2M of its boundary components. Suppose that
no simplex in T is incident to more than one component of ∂M.16 Take the first barycentric
subdivision sd1(T ) of T . Recall that T (1) and Γ(T ) denote the 1-skeleton and the dual graph of
T . Their first barycentric subdivisons T (1)

sd and Γ(T )sd are both naturally contained in sd1(T ).
Consider the subcomplex N(∂2M) ⊂ sd1(T ) consisting of all simplices incident to ∂2M. We
define two further subcomplexes of sd1(T ), namely

• Γ1 = ∂1M∪ {vertices and edges of T (1)
sd not incident to ∂2M}, and

• Γ2 = N(∂2M) ∪ Γ(T )sd.

Now pass to the second barycentric subdivision sd2(T ) and let (Γi)sd denote the image of Γi
under this operation (i = 1, 2). Let η(Γi) be the “thickening” of Γi, i.e., the subcomplex of
sd2(T ) formed by all simplices incident to (Γi)sd. One can readily verify that η(Γ1) and η(Γ2)
are compression bodies whose union is M, their upper boundaries satisfy ∂+η(Γ1) = ∂+η(Γ2) =
η(Γ1)∩η(Γ2), and for their lower boundaries ∂−η(Γ1) = ∂1M and ∂−η(Γ2) = ∂2M. Hence η(Γ1)
and η(Γ2) form a Heegaard splitting of M compatible with the given partition of its boundary
components. See Figure 13 for an illustration via “quadrangulations.”

BAAB
(i) M = T2 × [0, 1] (ii) A quadrangulation Q of M

with eight cubes
(iii) The first barycentric
subdivision sd1(Q) of Q

(iv) Γ1

Γ1 = ∂1M∪ {vertices & edges of
T (1)

sd avoiding N(∂2M)}

Γ2 = N(∂2M) ∪ Γ(T )sd

(v) Γ2

Figure 13: Building a Heegaard splitting of the thickened torus T2 × [0, 1] from a quadrangulation.

16This can be achieved, e.g., by passing to the first barycentric subdivision of T if necessary.
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