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Abstract 

In its natural habitat, C. elegans encounters a wide variety of microbes, including food, 
commensals and pathogens. To be able to survive long enough to reproduce, C. elegans has 
developed a complex array of responses to pathogens. These activities are coordinated on 
scales that range from individual organelles to the entire organism. Often, the response is 
triggered within cells, by detection of infection-induced damage, mainly in the intestine or 
epidermis. C. elegans has, however, a capacity for cell non-autonomous regulation of these 
responses. This frequently involves the nervous system, integrating pathogen recognition, 
altering host biology and governing avoidance behaviour. Although there are significant 
differences with the immune system of mammals, some mechanisms used to limit 
pathogenesis show remarkable phylogenetic conservation. The past twenty years have 
witnessed an explosion of host-pathogen interaction studies using C. elegans as a model. This 
review will discuss the broad themes that have emerged and highlight areas that remain to be 
fully explored. 

Natural environment and microbiota 

Caenorhabditis elegans is a small free-living nematode found worldwide, predominately in 
humid, temperate areas where it can feed on the bacteria that proliferate on decaying 
vegetation (Schulenburg and Félix, 2017). Its natural environment comprises a complex 
community of microbes, including bacteria, fungi and viruses, including many parasitic 
species. The effect of environmental microbes on worm fitness can be beneficial, detrimental 
or mixed (Khan et al., 2018). And as the same microorganism can sometime be either 
beneficial or detrimental depending on the environmental conditions or the genotype of the 
host (Gravato-Nobre et al., 2020; Zarate-Potes et al., 2020), we will use the terms of 
“pathogen” or “commensal” for a given microbe as a simplification. 

A broad range of microorganisms can infect nematodes in a variety of ways. Different fungi, 
for example, have independently acquired the capacity to infect worms using diverse 
strategies (Lebrigand et al., 2016). Some species capture their prey with adhesive structure 
such as Arthobotrys oligosora or elegant mechanical traps like the constricting rings of 



Drechslerella doedycoides (Hsueh et al., 2017; Jansson, 1982; Maguire et al., 2011). Others 
infect with their non-motile spores that are either swallowed like Candida albicans or 
Harposorium spp., or adhere to the cuticle, like Haptocilium spp. or Drechmeria coniospora 
(Labed and Pujol, 2011). Most known C. elegans bacterial pathogens including Pseudomonas 
aeruginosa, Bacillus thuringiensis and Serratia marcescens infect the intestinal tract (Kurz et 
al., 2003; Mahajan-Miklos et al., 1999; Marroquin et al., 2000). Others attach to the cuticle, 
like Microbacterium nematophilum after oral ingestion (Parsons and Cipollo, 2014) or the 
uterus (Muir and Tan, 2008). Other worm pathogens are obligate and intracellular, like 
microsporidia and viruses. Most infect intestinal cells, but some have a broader tissue tropism 
(Luallen et al., 2016). Recently, an oomycete of the genus Myzocytiopsis was found to infect 
epidermal tissues in nematodes (Osman et al., 2018). Although there is now a broad catalogue 
of pathogens known to infect C. elegans, this is likely to be a fraction of those that exist in 
nature. 

The microbiota of C. elegans has been defined as the community of bacteria found in the 
intestine and adhering to the animals’ surface. The microbiota includes Proteobacteria, 
Actinobacteria, Bacteroidetes, and Firmicutes (Berg et al., 2016; Dirksen et al., 2016; Samuel 
et al., 2016) and seems to be substantially simpler than the microbiota of wild-caught 
drosophilid flies (Broderick and Lemaitre, 2012; Douglas, 2018). Interestingly, it appears to be 
selectively assembled from the host’s environment and it is relatively similar in nematodes 
isolated from different origins, allowing a defined microbiota to be made available for future 
research (Dirksen et al., 2020). These studies have been reviewed recently (Kumar et al., 2020; 
Zhang et al., 2017) and will not be described in detail here. 

The microbiota is suggested to be beneficial to the worm by several means like boosting the 
host immune response, providing health-promoting metabolites, competing with pathogens 
for space and resources, or by directly producing secondary metabolites that limit the growth 
of other microbes (Kumar et al., 2020). Interestingly, the host genotype can influence 
potentially beneficial mechanism, as in the case of Pseudomonas isolates that provide 
protection from Bacillus thuringiensis infection (Kissoyan et al., 2019), even changing a 
beneficial interaction into a detrimental one in the case of certain Enterobacter isolates (Berg 
et al., 2019). It is clear that the complexity and the variety of these interactions remain to be 
fully documented (Zimmermann et al., 2020). 

Surveillance-Activated Host Defence in C. elegans 

Eukaryotic organisms can activate a variety of immune responses to limit the harmful effects 
of pathogen exposure. Constant expression of these defences, however, represents a 
metabolic cost and additionally can be damaging to the host. For this reason, most immune 
pathways are kept in an inactive, but primed state. They can be activated by microbe-
associated molecular patterns, or MAMPs, such as lipopolysaccharides, dsRNA, flagellin, and 
fungal polysaccharides (Tang et al., 2012). MAMPs are often detected by the Toll-Like 
Receptor (TLR) family of proteins or other families of pattern-recognition receptors (PRRs). 
Interestingly, C. elegans has only a single TLR protein, TOL-1/TLR, and it doesn't appear to have 
a role in direct MAMP recognition, although it is required to mediate the protection against 
Salmonella infection conferred by treatment with muramyl peptide (Rangan et al., 2016), and 
does play a role in pathogen aversion (Brandt and Ringstad, 2015; Pradel et al., 2007; Pujol et 



al., 2001). Apart from recognition of viral replication products by DRH-1/RIG-1 (Ashe et al., 
2013), see below, examples of direct microbial detection that lead to immune pathway 
activation remain elusive in C. elegans (Kim and Ewbank, 2018). 

Various molecules from the host, such as the protein HMGB1, formylated peptides, 
mitochondrial DNA, or uric acid, amongst many others, can also trigger innate immune activity 
(Tang et al., 2012). Matzinger and colleagues recognized that cells are agnostic with regard to 
the origin of the damage signals and will respond to them regardless of the preceding event, 
which led to the ‘damage-associated molecular pattern’ or DAMP hypothesis (Matzinger, 
2002; Seong and Matzinger, 2004). On this basis, the field of innate immunity widened to 
include recognition of both non-self and self molecules. 

Moreover, key cellular pathways and organelles are monitored, a process variously known as 
cellular surveillance-activated detoxification and defences (cSADDs) or surveillance immunity 
in C. elegans (Dunbar et al., 2012; McEwan et al., 2012; Melo and Ruvkun, 2012; Pukkila-
Worley, 2016) and broadly known as effector-triggered immunity in plants (Alhoraibi et al., 
2019). Interestingly, the pathways activated by these triggers exhibit substantial overlap with 
known innate immune functions. For example, many of the best known innate immune 
pathways in C. elegans, such as the PMK-1/p38 MAPK kinase cascade and those activating 
SKN-1/Nrf and DAF-16/FOXO transcription factors, have been well-documented to respond to 
both biological and abiotic threats due to their effects on cellular function. These findings have 
blurred the boundaries of ‘innate immune responses’, overlapping with canonical stress 
responses, as will be reviewed below. 

Cell-autonomous response 

Conceptually, cell-autonomous responses are simple to understand. Cells detect the presence 
of pathogens, virulence determinants, or damage caused by infection, either within or outside 
of the cell. Host cells will then activate various responses in the attempt to clear the infection 
and mitigate the damage. The development of cell-autonomous defences to restore 
homeostasis was likely adopted at the very earliest stages of eukaryotic cellular existence, and 
as such are well-conserved across most eukaryotes. 

The tissues most frequently involved in detecting cell autonomous damage are those exposed 
to the host’s environment: the epidermis and the intestine. Frequently cited examples of cell 
autonomous innate immune responses include the upregulation of PMK-1/p38 MAPK 
dependant effectors in the intestine of C. elegans upon bacterial infection or in the epidermis 
upon fungal infection (Figure 1). 

Epidermal responses  

In nematodes, the skin is composed of the cuticle and its intimately linked underlying syncytial 
epidermis. The cuticle has two main functions: it forms an impermeable protective layer and 
is an exoskeleton. Disruption of the cuticle through fungal infection, physical injury or defects 
in specific cuticular collagens triggers an innate immune response in the epidermis mainly 
controlled by the STA-2/STAT transcription factor (Taffoni and Pujol, 2015). Loss of the same 
cuticular collagens also triggers an osmotic response in the epidermis, which is controlled by 



the ELT-3/GATA transcription factor and a detoxification response controlled by the SKN-1/Nrf 
transcription factor. This led to the suggestion that a common sensor lies in the cuticle, 
activated by damage, and translating complementary cellular responses in the epidermis 
(Dodd et al., 2018) (Figure 2). This hypothetical sensor remains to be identified, but it is 
possible that it will be involved in sensing mechanical stresses in the cuticle. 

Antimicrobial peptides induction in the epidermis 

The responses to several skin pathogens have been studied in C. elegans. Infection by the 
fungus D. coniospora triggers the rapid induction of several antimicrobial peptides genes in 
the epidermis, including those from the nlp (for neuropeptide-like protein) and cnc (caenacin) 
families (Couillault et al., 2004; Engelmann et al., 2011; Pujol et al., 2008b). These genes 
encode evolutionary-related antimicrobial peptides (AMPs) (Pujol et al., 2012); their over-
expression can lead to an increased resistance to infection (Pujol et al., 2008b; Zugasti and 
Ewbank, 2009). Injury provokes a similar up-regulation of the nlp AMP genes, and triggers a 
cellular wound-healing and scarring mechanism (Pujol et al., 2008a; Xu and Chisholm, 2011), 
normally kept in check by nematode Death-associated protein kinase DAPK-1 (Tong et al., 
2009). Recently, it was shown that cytoskeleton reorganization linking microtubule plus ends 
and actin during wound closure is required for immune activation suggesting that tissue repair 
and immune responses in the epidermis are tightly coordinated (Taffoni et al., 2020). 

The highly conserved PMK-1/p38 MAPK signalling cascade is central to the activation of the 
induction of the nlp AMP genes (Figure 2) (Labed et al., 2012; Pujol et al., 2008a). It is activated 
upstream by a conserved protein kinase C and signals to a STAT transcription factor-like 
protein, STA-2 (Dierking et al., 2011; Ziegler et al., 2009). Interestingly, a sodium-
neurotransmitter symporter SNF-12, a member of the solute carrier family (SLC6) is key to the 
activation of STA-2. If it has been shown to be associated with the plasma membrane and to 
be recruited to the site of physical injury, its precise mode of action remains to be discovered 
(Taffoni et al., 2020). But this unorthodox mode of regulation for a STAT factor is one example 
of the molecular plasticity of innate immune signalling. SNF-12, STA-2, and the PMK-1 p38 
MAPK pathway all lie downstream of the Gα protein GPA-12 (Dierking et al., 2011; Ziegler et 
al., 2009) and the G-protein coupled receptor (GPCR), DCAR-1. The tyrosine derivative 4-
hydroxyphenyllactic acid (HPLA) was identified as an endogenous ligand for DCAR-1. HPLA 
thus acts as a host-derived ligand, a bona fide DAMP on its cognate receptor DCAR-1 to trigger 
the epidermal innate immune response in C. elegans (Zugasti et al., 2014), highlighting the 
conserved role of GPCRs in host defence (Reboul and Ewbank, 2016). 

Several chromatin-remodelling factors and the worm homolog of Akirin are also necessary for 
the induction of AMP gene expression after infection (Zugasti et al., 2016). In flies and 
vertebrates, Akirin couples NFκB signalling to SWI/SNF-dependent chromatin modification 
(Tartey et al., 2015). In C. elegans, Akirin acts rather with the NuRD chromatin-remodelling 
complex to modulate the action of a POU family transcription factor (Polanowska et al., 2018). 
Many questions remain open, such as whether pathogen recognition per se plays a role in the 
immune response to D. coniospora infection. This seems likely, given the fact that the 
transcriptional response to injury and infection do not fully overlap, and other skin pathogens, 
such as oomycetes provoke distinct defence reactions. 

Cuticle changes upon oomycetes infection 



Oomycetes are filamentous eukaryotes belonging to the phylum of heterokonts. 
Myzocytiopsis humicola, isolated from an environmental sample by M.A. Felix is a natural 
pathogen of C. elegans (Osman et al., 2018). Infection by M. humicola provokes a host 
response with limited similarity to that against other infections. One cnc and 4 nlp AMP genes 
were among the less than 10% of genes that are induced commonly by D. coniospora and M. 
humicola infection. On the other hand, a family of genes encoding protein containing 
ALS2CR12 domain (pals) proteins are induced, in common with the response to infection by 
microsporidian parasites, as discussed below. In addition, this new pathosystem revealed a 
specific component of the immune response, a large family of chitinase-like (chil) genes 
strongly induced by M. humicola. Overexpression of chil-27 decreased the susceptibility of C. 
elegans to oomycete infection. CHIL-27 seems to act through changes in the stiffness of the 
cuticle of C. elegans, without affecting pathogen avoidance or pathogen attachment. 

Swelling response in response to a rectal infection 

The Gram-positive bacterium M. nematophilum adheres to the rectal cuticle, induces changes 
in intestinal gene expression and provokes a specific protective swelling of the tail (Hodgkin 
et al., 2000; O'Rourke et al., 2006). Direct genetic screens for mutants in which this response 
was suppressed allowed the identification of the “bacterially un-swollen” genes. A subset of 
these bus genes affects the adhesion of the bacteria to the cuticle. They correspond to genes 
involved in the production of the carbohydrate-rich surface coat proteins of the cuticle 
(Gravato-Nobre et al., 2005; Yook and Hodgkin, 2007). Although mutations in these genes 
reduce the interaction with M. nematophilum and therefore confer resistance to infection, 
they provoke the opposite phenotype, of increased adhesion and susceptibility during 
infection, with another cuticle-adhering bacteria of the genus Leucobacter (Hodgkin et al., 
2013), or during infection with the fungus D. coniospora (Rouger et al., 2014). Thus, the 
composition of the cuticle surface coat seems to have a limited spectrum of potential 
diversification due to the balance of beneficial and detrimental interactions with 
microorganisms. 

Upon M. nematophilum infection, the swelling response is driven by the activation of a 
canonical MPK-1/ERK MAPK pathway in the rectal epithelial cells by the Ras protein LET-60, 
identical to the cascade used for vulval development. In the rectum, it cooperates with a 
conserved EGL-30/Gαq - UNC-73/TrioRhoGEF - RHO-1/Rho signalling pathway, triggering 
changes in cell morphology via the RAF-MEK-ERK cassette (Figure 1) (McMullan et al., 2012; 
Nicholas and Hodgkin, 2004). The GPCR PCDR-1 acts upstream of EGL-30/Gα for the clearance 
of the bacteria (Anderson et al., 2019a). 

Monitoring damage and infection of the intestine 

Since it naturally consumes bacteria, it is common for C. elegans to suffer intestinal infections 
in the wild. This makes it straightforward, and unusually simple, to develop C. elegans as a 
model for intestinal bacterial infections. Pioneering work by the Ausubel group was rapidly 
expanded to include many bacterial and fungal species of interest to humans (Aballay and 
Ausubel, 2002; Kim et al., 2002; Labrousse et al., 2000; Mallo et al., 2002; Pukkila-Worley et 
al., 2011). Detailed reviews have been written about many of the pathways involved and their 
conservation in mammals, including the importance of the MAPK pathways during infection 



(Kim and Ewbank, 2018), the roles played by autophagy during immunity (Kuo et al., 2018), 
and GPCR signalling in infection (Gupta and Singh, 2017; Reboul and Ewbank, 2016). Several 
important areas lack recent summaries or have seen considerable recent developments, and 
those will be the focus here. 

Monitoring the Machinery: Proteostasis as a Surveillance Target 

Perhaps the most heavily monitored homeostatic system in C. elegans is the interconnected 
proteostasis network, which spans the cytoplasm and most organelles. This network even 
extends to extracellular spaces, where proteostatic machinery has recently been identified 
and linked to the defence against infections (Gallotta et al., 2020). Proteostasis includes the 
regulation of translation, protein folding and misfolding, protein transport and trafficking, and 
destruction of misfolded proteins by the proteasome or autophagy. Disruptions to these 
processes will result in a variety of problems, ranging from the failure of normal metabolic 
pathways to the exposure of hydrophobic areas of misfolded proteins. Misfolded proteins can 
attract each other, causing aggregation and damage to other proteins and membranes 
(Nillegoda et al., 2018). Interestingly, Matzinger considered hydrophobicity to be one of the 
most likely candidates for general DAMPs (Seong and Matzinger, 2004). As such, it can serve 
as a sentinel cue for pathogen activity. 

The translation of polypeptides is an important step in a wide variety of immune responses, 
as various effectors need to be produced rapidly to clear the infection and to mitigate the 
damage done by the pathogen. This has led to an arms race between host and pathogen, with 
a number of microbes developing proteins that can prevent protein translation, including 
exotoxin A from P. aeruginosa, Shiga toxin from Shigella flexneri, and Diphtheria toxin from 
Corynebacterium diphtheriae, amongst others. Hosts, in turn, have developed mechanisms to 
sense these inhibitory activities. C. elegans utilizes the bZIP transcription factors ZIP-2 and 
CEBP-2/CEBPγ to mediate the response to translational inhibition (Dunbar et al., 2012; 
McEwan et al., 2012; Reddy et al., 2016). More recent research has shown that the response 
also involves NIPI-3/Tribbles-mediated inhibition of CEBP-1/CEBPß in a pathway that may be 
parallel to ZIP-2 and CEBP-2 (McEwan et al., 2016). 

The Heat Shock Response: UPR in the Cytoplasm 

The most commonly studied proteostatic failure occurring upon infection is the accumulation 
of unfolded proteins in the ER, when the secretion system becomes overwhelmed following 
dramatic changes in gene expression. Other defence mechanisms, however, such as ROS 
production to destroy pathogens, can cause proteostatic stress (Ewald, 2018). Changes in 
chaperone expression are another frequent consequence of pathogen infection (Miles et al., 
2019). 

The detection of misfolded proteins in the cytoplasm by protein quality control components, 
activates a stress pathway that includes the DAF-16/FOXO3A and HSF-1/HSF1 transcription 
factors (Jones et al., 2020). This is part of the well-known heat shock response, conserved from 
yeast to vertebrates (Himanen and Sistonen, 2019). A number of proteostatic mechanisms are 
then induced, including upregulation of chaperones to favour folding, and of proteasomal 
subunits to degrade misfolded proteins, increased autophagosomal activity to soak up 
aggregates, and alterations to transcription and translation to slow the flow of de novo protein 



synthesis (Howard et al., 2016; Kumsta et al., 2017; Nillegoda et al., 2018; Vihervaara et al., 
2018). 

DAF-16/FOXO3A has a well-established role in host defence against intestinal bacterial 
pathogens. It acts in parallel with the p38 MAPK pathway to regulate defence gene expression 
(Miyata et al., 2008; Troemel et al., 2006). Recent work has suggested that as p38 MAPK 
activity declines with age, DAF-16 takes on an increasingly important role in host defence 
(McHugh et al., 2020). In addition, HSF-1/HSF1 plays a role in innate immunity in C. elegans, 
as hsf-1 mutants exhibit enhanced sensitivity to P. aeruginosa (Singh and Aballay, 2006) and 
HSF-1 facilitates the expression of genes that promote resistance to enteropathogenic E. coli 
(Anyanful et al., 2009). Interestingly, many unfolded protein responses, such as those 
controlled by HSF-1, alter the expression of a large number of non-coding RNAs, including 
representatives from most known ncRNA classes such as miRNAs, Piwi RNAs, lincRNAs, 
apparent pseudogenes, and even Helitron family transposons (Garrigues et al., 2019; 
Schreiner et al., 2019). The latter class contains over half of the HSF-1 binding sites in the C. 
elegans genome, and is enriched near genes up-regulated during heat shock. It was shown 
that different wild isolates of C. elegans contain strain-specific Helitron insertions, which may 
lead to diversification of HSF-1-dependent responses within natural populations (Garrigues et 
al., 2019). It will be interesting to see whether these translate into differences in the HSF-1-
dependent capacity to cope with periods of high temperature and/or immune response to 
resist better local pathogens. 

UPR in the ER 

One of the earliest demonstrations of a connection between the UPRER and host-pathogen 
interactions came from a genetic screen for mutants involved in the response to pore-forming 
toxins (PFTs). It led to the identification of a mutant that abrogates N-glycosylation in the ER 
(Bischof et al., 2008), which is used as a checkpoint in the maturation of secretory proteins 
(Shenkman and Lederkremer, 2019). It is connected to the UPRER that involves ire-1/IRE1α, 
atf-6/ATF6, and pek-1/PERK. For its role in resistance to PFTs, the UPRER is required specifically 
in intestinal cells. IRE-1 acts through alerting the differential splicing of the mRNA for the 
transcription factor XBP-1 and thereby its activity (Bischof et al., 2008). 

As mentioned above, activation of the PMK-1/p38 MAPK pathway is a common response to 
bacterial and fungal infection in C. elegans (Pujol et al., 2008a; Shivers et al., 2008; Troemel et 
al., 2006), leading to the secretion of innate immune effectors that transit through the ER, like 
lysozymes, lectins, and saposin-like proteins (Hoeckendorf et al., 2012; Kato et al., 2002; Mallo 
et al., 2002). It is not difficult to imagine that increased trafficking of these proteins may stress 
the folding capacity of the ER. Consistent with this model, the Kim lab showed that activation 
of PMK-1 by P. aeruginosa infection during larval development causes a lethal arrest in C. 
elegans xbp-1 mutants, which is fully rescued in a pmk-1 null mutant (Richardson et al., 2010). 
The deleterious effects of producing large quantities of secreted proteins in the absence of 
adequate quality control must outweigh the protection afforded by the p38 MAPK pathway 
(Ewbank and Pujol, 2010). PMK-1/p38 activity is thus controlled during development. NIPI-3, 
a member of the Tribbles pseudokinase family, has been shown to repress CEBP-1/CEBPß and 
to limit PMK-1/p38 MAPK activity during development (Kim et al., 2016b). The caspase CED-3 
can directly target PMK-1 for cleavage, providing another mechanism for control of PMK-1 
activity (Weaver et al., 2020). 



The UPRER can be activated even in the absence of excessive protein production. Amongst its 
other targets, PMK-1/p38 promotes the expression of the miRNA mir-233, which inhibits 
translation of the sarcoplasmic calcium transporter SCA-1 (Dai et al., 2015). Loss of SCA-1 
depletes ER Ca2+stores (Martin and Richmond, 2018), compromising function of ER-resident 
chaperones and triggering the UPRER directly (Melo and Ruvkun, 2012). One report has shown 
that downregulation of sca-1 improves survival during tunicamycin-induced ER stress (Howard 
et al., 2016). But as in the case of PMK-1/p38, SCA-1 has an opposite effect in larvae, as sca-
1(RNAi) impedes their development when exposed to tunicamycin (Hou et al., 2014). C. 
elegans may be negotiating a delicate balance between competing proteostatic maintenance 
programs in different cellular compartments during development. While searching for other 
mutations that could alleviate the developmental arrest of xbp-1(tm2482) mutants cultured 
on P. aeruginosa, Kim and colleagues identified mutations in four transcriptional regulators 
(fkh-9, arid-1, hcf-1, and sin-3). Surprisingly, mutations in fkh-9 or arid-1 caused arrest during 
development on the proteasomal inhibitor bortezomib, suggesting that an upregulation of ER-
associated degradation (ERAD) in these mutants overwhelms the limited capacity of the 
proteasomes for ER-derived materials, leading to the accumulation of unfolded protein 
aggregates in the cytoplasm (Tillman et al., 2018). 

Lipid Activation of the UPRER 

An unexpected recent discovery is that the UPRER can also be activated by perturbations of 
cellular lipid biosynthesis or lipid pools (Hou et al., 2014; Koh et al., 2018). This response has 
been named UPRLBS (for lipid bilayer stress), to differentiate it from the consequences of 
accumulated unfolded proteins (UPRPT for proteotoxicity). The two heat-shock proteins HSP-
3 and HSP-4 show different expression levels after activation of UPRPT and UPRLBS, with the 
latter being more specific for UPRPT (Koh et al., 2018). It is interesting to note that HSP-3 has 
a role in the regulation of nlp-29 after D. coniospora infection that is not shared with HSP-4 
(Couillault et al., 2012), suggesting that the UPRLBS might be activated during fungal infection 
in the epidermis.  

The UPRLBS can be activated by increased membrane disorder during lipid imbalance, which 
facilitates oligomerization of IRE-1 monomers. It can also be activated by ATF-6, which seems 
to detect the presence of dihydrosphingosine or dihydroceramide through its transmembrane 
domain (Fun and Thibault, 2020). Until recently, dihydroceramides and dihydrosphingosines 
were considered relatively inert biological molecules and were thought to merely be a 
transient product of ceramide metabolism (Siddique et al., 2015). Nichols and colleagues have, 
however, determined that phosphorylated dihydroceramides can be produced by a number 
of bacterial species that colonize and infect humans, including Porphyromonas gingivalis, and 
can activate host defence pathways (Nichols et al., 2011). The genes that are differentially 
expressed during UPRLBS only partially overlap with the genes of the UPRPT. They include genes 
encoding innate immune effectors, proteostatic and autophagy machinery, chaperones, and 
genes involved in lipid metabolism (Fun and Thibault, 2020; Hou et al., 2014; Koh et al., 2018; 
Lajoie et al., 2012; Thibault et al., 2012). Disruption of phosphatidylcholine biosynthesis by 
compromising pmt-2/PEMT or the S-adenosyl methionine synthetase sams-1/MAT1A activate 
innate immune responses (Ding et al., 2015; Koh et al., 2018). This response, however, may 
not be protective, as loss of function of sams-1 causes hypersensitivity, rather than resistance 
to P. aeruginosa (Ding et al., 2015). 



Interestingly, spliced XBP-1 promotes the biosynthesis of oleic acid, which has previously been 
shown to reduce UPRLBS (Ben-Dror and Birk, 2019). This may represent a feedback mechanism 
to facilitate UPRLBS suppression, as overactivation of the UPRER is associated with increased 
autophagic activity (Koh et al., 2018) and can be lethal (Cheesman et al., 2016). Oleate has 
been shown to promote longevity in C. elegans (Gillingham et al., 2011; Goudeau et al., 2011; 
Han et al., 2017; Taylor and Dillin, 2013). This effect does not occur if spliced XBP-1 is 
constitutively expressed, suggesting that lifespan extension requires the activation of XBP-1. 
In addition, Oleate is important for the induction of innate immune effectors during bacterial 
infection (Anderson et al., 2019b), suggesting that it might have multiple roles in healthy aging. 
Indeed, lipids metabolism impacts innate immunity in multiple fashions (e.g. (Lee et al., 
2010)), as exemplified by the recent demonstration that cholesterol, acting through the 
nuclear hormone receptor NHR-8, transcriptionally regulates immune genes through a cross-
talk with the p38/PMK-1 MAPK, DAF-2/DAF-16 insulin pathway and the Nrf/SKN-1 pathways 
(Otarigho and Aballay, 2020).  

Mitochondrial Surveillance 

Mitochondria play important roles in a wide variety of biological processes, including oxidative 
phosphorylation, regulation of calcium levels, iron homeostasis, ROS production, and 
apoptosis. Considering these key functions, and the fact that many of them are specifically 
targeted during infection (Kwon et al., 2018; Tiku et al., 2020), it is perhaps unsurprising that 
they are subject to a variety of surveillance regimes. 

Most mitochondrial proteins are encoded in the nucleus and need to be imported with an 
appropriate stoichiometry into the mitochondria (Rolland et al., 2019). Translocation requires 
the presence of specific transporters and chaperones and the establishment of a 
mitochondrial membrane potential (Dudek et al., 2013). The two best-characterized systems 
for monitoring mitochondrial import involve the translocation of a key protein that is 
degraded by mitochondria-resident proteases. The first, the PINK-1/PINK1-PDR-1/Parkin axis, 
uses failed PINK-1 import to target mitochondria for macroautophagy, known as mitophagy. 
This mitochondrial turnover is protective; blocking mitophagy during P. aeruginosa infection 
significantly increases host mortality (Kirienko et al., 2015). 

This pathway is also involved in xenophagy, which is a phenomenon first described in 
mammals and involves a complex series of recognition and ubiquitinylation events that mark 
intracellular pathogens for autophagosomal degradation (McEwan, 2017). Less evidence 
exists for these events in C. elegans. Although involvement of autophagic machinery in host-
pathogen defence has been described (Kuo et al., 2018; Visvikis et al., 2014), genuine 
xenophagic clearance of bacteria has yet to be demonstrated. This may be due to the fact that 
intracellular infections are comparatively rare in C. elegans, see below (Balla and Troemel, 
2013). 

Another import monitoring pathway, the mitochondrial URP (UPRmt), takes advantage of the 
dual nuclear and mitochondrial targeting sequences in the ATFS-1/ATF5 transcription factor. 
Like mitophagy, this pathway has been reviewed in detail elsewhere (Gkikas et al., 2018; 
Melber and Haynes, 2018; Shpilka and Haynes, 2018; Yoo and Jung, 2018). Briefly, under 
normal circumstances ATFS-1/ATF5, which is constitutively expressed, is imported into 
mitochondria and promptly degraded (Naresh and Haynes, 2019). But when import fails, ATFS-



1 is retargeted to the nucleus. Once there, it promotes the transcription of a variety of targets 
that are involved in protein folding, proteolysis, ROS detoxification machinery, iron-sulphur 
complex biogenesis, mitochondrial fission, and glycolysis. A more surprising group that is 
activated by ATFS-1 are genes associated with innate immunity, including abf-1, lys-2, clec-4, 
and zip-2 (Pellegrino et al., 2014; Wang et al., 2018). Disrupting ATFS-1 signalling reduced 
survival after infection with P. aeruginosa, supporting a crucial role for the UPRmt in innate 
immunity. 

Exposure to the bacterial siderophore pyoverdine results in substantial host mitochondrial 
damage and death (Kirienko et al., 2015; Kirienko et al., 2013). This activates surveillance 
pathways, including the ethanol and stress response element (ESRE) network (Kang et al., 
2018; Tjahjono and Kirienko, 2017). The ESRE network is linked to a variety of stress responses 
(Kirienko and Fay, 2010), and appears to respond to reductive stress caused by damage to the 
oxidative phosphorylation system (Tjahjono et al., 2020). ESRE effector genes are regulated 
by several different bZip transcription factors, including CEBP-1, CEBP-2, ZIP-2, and ZIP-4 
(Tjahjono and Kirienko, 2017). Another member of the family, ZIP-3 has been suggested to 
negatively regulates ATFS-1 in the context of phenazine-producing P. aeruginosa infection 
(Deng et al., 2019). 

Several reports have linked UPRmt to lipid homeostasis, through ceramide biosynthesis (Liu et 
al., 2014) or a more complex system called the mitochondria-to-cytosolic stress response 
(MCSR) (Kim et al., 2016a). We expect that these surveillance pathways will be linked to innate 
immunity as well, since they involve cellular mechanisms that can be exploited by pathogens. 

Oxidative Stress in Innate Immunity 

Oxidative stress is widely linked to decreased organismal viability. Healthy aging, in turn, is 
strongly correlated with resistance to infection. The free radical theory of aging postulates 
that reactive oxygen species (ROS) that are produced during oxidative phosphorylation cause 
damage to a wide variety of biomacromolecules, including DNA, lipids, and proteins (Pomatto 
and Davies, 2018). This reduces the ability of the organism to fight infection or manage stress, 
causes mutations and dysfunctions, and increases the rate of ROS production. Others suggest, 
based on studies in C. elegans, that ROS mediate a stress response to age-dependent damage, 
reviewed in (Hekimi et al., 2011). 

In many cases, ROS are more than the accidental by-product of normal metabolic activity. For 
example, they are produced as important signalling molecules to activate defence networks 
(Ewald et al., 2017; Hourihan et al., 2016), as a consequence of proteasomal disruption (Livnat-
Levanon et al., 2014; Martinez et al., 2015; Segref et al., 2014), and contribute to self-defence 
for metazoan hosts infected with fungal or bacterial pathogens (Miranda-Vizuete and Veal, 
2017). The complexity of ROS in C. elegans is illustrated by the multifunctional protein BLI-
3/Duox1. This protein includes an NADPH oxidase that generates superoxide and a peroxidase 
domain that utilizes peroxide for oxidizing various targets, including tyrosine residues in 
collagen to properly crosslink the cuticle (Edens et al., 2001). Although mutation in BLI-3 is 
developmentally lethal, in the adult, it sensitizes C. elegans to several pathogens including the 
Gram-positive bacterium Enterococcus faecalis (Chavez et al., 2009; Jain et al., 2009). ROS 
generated in this way activate SKN-1/Nrf via the PMK-1/p38 MAPK pathway, and SKN-1 
activity promotes resistance to E. faecalis (Hoeven et al., 2011). Later work showed an 



unexpected role in the epidermis for two heme peroxidases, SKPO-1, a C. elegans ortholog of 
human lactoperoxidase, and HPX-2, which is homologous to several human heme-containing 
peroxidases, to protect the host against intestinal E. faecalis infection (Liu et al., 2019; Tiller 
and Garsin, 2014). 

Proline metabolism was shown to be critically required for the production of hydrogen 
peroxide (Tang and Pang, 2016). Preventing ROS formation increases susceptibility to infection 
and reduces SKN-1/Nrf activation. Interestingly, SKN-1 activation in this context is partially 
dependent upon BLI-3/Duox. This, however, may be a risky gambit. A recent report suggests 
that hydrogen peroxide, or bacteria that produce it, can cause widespread damage, and may 
trigger cell cycle checkpoint failures in intestinal cells, which often undergo endoduplication 
events (Kniazeva and Ruvkun, 2019). While ROS can be a useful tool for host defence, they are 
not always a tool that is precise or easily controlled. 

Surveillance of Intracellular ROS 

Given the potential consequences of ROS activity, it is not surprising that organisms have 
developed mechanisms to monitor the levels of intracellular ROS. One involves the 
sulfenylation of a conserved cysteine residue on IRE-1 (Hourihan et al., 2016). This 
modification allows IRE-1 to activate the PMK-1/p38 MAPK cascade, which in turn activates 
SKN-1/Nrf. The latter is a well-known master regulator of detoxification, oxidative stress, 
proteasomal subunit transcription and pathogen responses (Blackwell et al., 2015), but recent 
discoveries have given new insights into its versatility and function. 

C. elegans produces three SKN-1/Nrf isoforms: SKN-1A, SKN-1B, and SKN-1C. All three share 
the same C-terminal region, but exhibit differences in N-termini, splice sites, expression 
patterns, and, intriguingly, patterns of protein sequence editing. SKN-1A is expressed in all 
tissues and contains a unique N-terminal transmembrane domain that targets it to the ER 
(Glover-Cutter et al., 2013; Radhakrishnan et al., 2014; Wang and Chan, 2006). Once there, it 
is N-glycosylated and promptly retrotranslocated back into the cytoplasm by the ERAD system 
and degraded by the proteasome. If SKN-1A is not degraded by the proteasome, it becomes a 
substrate for a peptide:N-glycanase that removes the N-linked glycans and converts the native 
asparagine into aspartate (Lehrbach et al., 2019; Lehrbach and Ruvkun, 2019). This allows it 
to be cleaved by an aspartic protease to yield a processed fragment of SKN-1 that specifically 
upregulates proteasomal subunit transcription (Lehrbach and Ruvkun, 2016). This provides an 
effective method of increasing proteasomal activity. 

SKN-1B is produced in a single pair of sensory neurons, and appears to be involved in food 
sensing (Bishop and Guarente, 2007), but SKN-1C is produced only in the intestine and is 
licensed for transcriptional activity by oxidative stress. The innate immune function of SKN-1 
has been associated with ELT-2 (Olaitan and Aballay, 2018), a GATA-family transcription factor 
that is essential for the development of the endoderm of C. elegans (Block et al., 2015). In the 
adult, the function of ELT-2 shifts to become essential for pathogen responses (Block and 
Shapira, 2015; Block et al., 2015; Head et al., 2017). This function requires physical interaction 
with RPT-6, a subunit of the 19S proteasome (Olaitan and Aballay, 2018). Interestingly, this 
non-canonical function is consistent with other reports of proteasomal recruitment to 
transcriptional start sites (Durairaj and Kaiser, 2014). 



Pore-forming toxins: Detecting a hole 

Pore-forming toxins (PFTs) are the largest class of bacterial toxins and are found in most, if not 
all, bacterial pathogens. They are critical pathogenic determinants across most pathogen 
groups, including the medically relevant genera Bacillus, Staphylococcus, Streptococcus, 
Escherichia, Salmonella, Vibrio, and Mycobacteria (Los et al., 2013). PFTs are generally 
secreted as water-soluble monomers that bind to receptors and recognition factors on the 
surface of cells. This has the effect of substantially increasing their local concentration, which 
facilitates oligomerization and membrane insertion (Dal Peraro and van der Goot, 2016). The 
formation of a pore in this fashion can cause a variety of consequences, ranging from slight 
increases in specific solute permeability to the rapid and complete destruction of cells. Others, 
like the listeriolysin O protein of Listeria monocytogenes, are thought to mediate immune 
evasion and phagocytic escape (Schnupf and Portnoy, 2007). Hosts respond to these insults 
by activating signal transduction pathways, triggering autophagy, and activating 
inflammasomes in more complex eukaryotes (Huffman et al., 2004; Kloft et al., 2010). 

The responses of C. elegans to the crystal (Cry) PFTs from B. thuringiensis are arguably the 
most thoroughly characterized host-PFT interactions in the literature. The Cry proteins are 
produced by B. thuringiensis during sporulation, and have been widely used as insect and 
nematode control mechanisms in agriculture (Jouzani et al., 2017). Transferring the genes 
encoding the toxins to E. coli, or exposing worms to the purified toxins, is sufficient to kill C. 
elegans in 4-5 days. The first pathways identified that contribute to resistance to the Cry toxins 
were the PMK-1/p38 and KGB-1/JNK MAPK cascades (Huffman et al., 2004). The UPRER is 
required for PFT defence, possibly due to the increase in phospholipid biosynthesis, required 
for the extensive membrane remodelling that accompanies pore formation (Bischof et al., 
2008). Vesicular trafficking pathways governed by the small GTPases RAB-5/Rab5 and RAB-
11/Rab11 are indeed required to counteract PFT activity but seem to be involved in two 
competing mechanisms. RAB-5 mediates increased endocytosis, possibly to facilitate 
autophagy, which has been linked with PFT defence (Chen et al., 2017b), or lysosomal 
degradation of the pore-containing vesicles. RAB-11, in contrast, triggers exocytotic events 
that appear to enable shedding of large amounts of apical surface material into the intestinal 
lumen in C. elegans (Los et al., 2011). Importantly, observations from insects and mammals 
have shown extrusion of the apical portion of enterocytes after PFT exposure (Lee et al., 2016), 
suggesting that this may be a conserved mechanism to maintain cell integrity. Recently, the 
endotube, a complex structure of cytoskeletal elements that underlies the brush border 
microvilli in C. elegans and that is conserved in mammals, was shown to protect against PFTs, 
possibly by limiting pathogen access to epithelial cell junctions (Geisler et al., 2019). This is 
consistent with a report demonstrating that B. thuringiensis Cry proteins are necessary, but 
not sufficient, for the disruption of these junctions and that this step is required for bacterial 
propagation in C. elegans (Wan et al., 2019). 

Interestingly, the hypoxia-inducible factor HIF-1/HIF1α plays a protective role against PFTs 
(Bellier et al., 2009). This function appears conserved, as cholera toxin activates HIF1α in 
leukocytes (Royaee et al., 2006), and S. aureus secretes soluble factors that cause HIF1α 
production in airway epithelial cells (Moreilhon et al., 2005). The protective effect of HIF-1 has 
been linked to at least two downstream factors: the transcription factor NHR-57/NR3C1, 
whose known activity is to restrict RAS/MAPK-induced differentiation in vulval precursor cells 
(Maxeiner et al., 2019), and the activation of the UPRER (Bellier et al., 2009). A satisfactory 



explanation for the involvement of HIF-1 in PFT resistance has yet to be suggested, and is 
illustrative of the vast territory remaining to be explored in understanding PFT virulence 
mechanisms and host immune defences. 

Intracellular pathogen response 

Microsporidia 

Microsporidia is an early branching group of the fungi. Most organisms are colonized by 
microsporidians. Nematocida parisii, the most studied microsporidian infecting C. elegans, 
was isolated from compost near Paris (Troemel, 2016) but is found worldwide together with 
Nematocida ausubeli in wild-caught nematodes strains. Except for Pancytospora epiphaga, 
which proliferates mainly in the epidermis of its host, all other species infect intestinal cells 
(Zhang et al., 2016). Once swallowed, microsporidia spores use a specialized infection 
apparatus, the polar tube, which fires to inject the parasite into the host intestinal cell. 
Interestingly, Nematocida displodere with its unusually long polar tubes is able to infect 
distant tissue like muscle, epidermis and neurons (Luallen et al., 2016). 

The parasite replicates intracellularly as a meront (multinucleated cell), which in turn 
differentiates into new spores that can survive outside their host as dormant spores. N. parisii 
can occupy the entire intestine of C. elegans without lysing intestinal cells. Instead, spores are 
contained in a membrane-bound compartment, which fuses with the apical membrane of the 
intestinal cell, leading to a directional exit, release and spread (Balla et al., 2016). This 
phenomenon might be due to a partial loss of cytoskeletal polarity and a redistribution of 
actin, leading to the formation of gaps in the terminal web. The small GTPases involved in 
apical recycling RAB-5, RAB-10 and RAB-11 are important for spore egress in the intestinal 
lumen. More specifically, RAB-11 colocalizes with spores and is required for the fusion of the 
spore-containing compartment with the apical membrane (Szumowski et al., 2014). 
Interestingly, natural genetic variation can change the outcome of an infection by N. parisii, 
as some natural variants of C. elegans can clear Microsporidia infection (Balla et al., 2015). 

Viruses 

Viruses are obligate intracellular parasites and several Nodaviridae have been isolated from 
Caenorhabditis worms. Interestingly, they often appear to be species-specific, the Orsay virus, 
for example, infecting C. elegans but not C. briggsae (Franz et al., 2014). These viruses have 
two RNA fragments: RNA1 encoding an RNA-dependent RNA polymerase and RNA2 encoding 
a capsid and a novel ORF, the δ ORF. They infect intestinal cells and are transmitted via the 
oral-fecal route. Infection does not significantly affect worm longevity but does reduce 
fecundity. The first host antiviral defence to be identified was the RNA interference pathway 
that recognises and degrades viral RNA (reviewed in (Felix and Wang, 2019)). The RIG-I-like 
receptor DRH-1 is suggested to act as a pattern recognition receptor through the recognition 
of viral replication intermediates (Ashe et al., 2013). DRH-1/RIG-I shares a helicase domain 
with Dicer, central to dsRNA binding, and essential to an antiviral defence mechanism 
conserved from invertebrates to mammals (Paro et al., 2015; Sinha et al., 2018). A set of three 
genes, sid-3, viro-2 and nck-1 was found to be required for an early, pre-replication step of the 
Orsay virus’s life cycle (Jiang et al., 2017; Tanguy et al., 2017). Subsequently, their mammalian 



orthologues TNK2, WASL and NCK1, respectively, were shown to regulate the entry of multiple 
picornaviruses through endocytosis and actin remodelling (Jiang et al., 2019). Another screen 
identified DRL-1 as necessary for a pre-replication step of the Orsay virus. DRL-1 is a putative 
serine/threonine kinase, ortholog to MEKK3. It is necessary for a pre-replication step of the 
Orsay virus (Sandoval et al., 2019). If Stat transcription factors are well characterised in 
antiviral response in mammals, only one of the 2 STAT factors in C. elegans  STA-1 appears  to 
be involved but acts as a repressor of the antiviral response (Tanguy et al., 2017).  

Uridylation is another antiviral defence mechanism acting in parallel to the RNAi pathway. It 
involves CDE-1, a 3’ terminal RNA uridyltransferase, orthologous to the mammalian TUT4 and 
TUT7 enzymes (Le Pen et al., 2018). The immune response to the Orsay virus involves other 
unknown pathways, as shown by a meta-analysis of genes differentially expressed upon 
infection (Mishra et al., 2019). An independent pathway has been shown to be involved in an 
antiviral response to genomically encoded dsRNAs. LTR retrotransposons and endogenous 
retroviruses are normally silenced by ADARs (adenosine deaminases acting on dsRNA) editing 
and the ERI-6/7 RNAi pathway. Interestingly, in ADAR- or ERI-6-defective mutants, the 
activation of retrotransposons is associated with a UPR response, reflecting a shared 
proteotoxicity response, activated by excessive protein synthesis (Fischer and Ruvkun, 2020).  

Common responses to microsporidia & viruses 

Interestingly, infections by the Orsay virus and the microsporidian N. parisii induce a common 
set of genes, which is the signature of the intracellular pathogen response (IPR) (Felix and 
Wang, 2019). It protects animals from proteotoxic stresses independently of the pathways 
described above (Reddy et al., 2017). The IPR is regulated by a switch composed of PALS-22 
and PALS-25, which controls the balance between growth and pathogen resistance. PALS-22 
acts as a suppressor, while PALS-25 acts as an activator (Reddy et al., 2019). The IPR promotes 
protein homeostasis via the ubiquitin ligase CUL-6, which functions together with the TRIM 
protein RCS-1 and the Skp-related proteins SKR-3, SKR-4, and SKR-5 (Bakowski et al., 2014; 
Panek et al., 2020). Interestingly, upon viral infection only, DRH-1/RIG-I acts independently of 
known RNAi factors to induce the IPR (Sowa et al., 2020). 

Cell non-autonomous response 

In addition to the cell autonomous mechanisms described above, in many circumstances, 
communication between the nervous system and other tissues is crucial to trigger an 
appropriate immune response. This communication can activate or suppress immune 
pathways to maintain organismal homeostasis. The sensory nervous system also controls 
physical avoidance of the pathogens, therefore reducing exposure and risk of infection. 
Neuro-immune communication involves several neuronal circuits, neurotransmitters and 
neuropeptides, G-protein-coupled receptors (GPCRs) and their ligands, transforming growth 
factor- β ligands, and insulin signalling. These pathways have been extensively reviewed 
(Gupta and Singh, 2017; Reboul and Ewbank, 2016; Singh and Aballay, 2020; Wani et al., 2020). 
Other non-neuronal tissue communication mechanisms involved in maintaining the whole 
organism homeostasis have started to be revealed (Figure 3). 

Neuro-immune communication and regulation of the immune response 



Multiple neurotransmitters, such as serotonin, dopamine and acetylcholine have been 
identified as playing a role in the immune response, as reviewed in (Singh and Aballay, 2020; 
Wani et al., 2020). Recently, Sellegounder et al. showed that the monoamine octopamine acts 
as an endogenous ligand for the GPCR OCTR-1 to regulate the immune response to P. 
aeruginosa infection (Sellegounder et al., 2018). Octopamine is expressed in two RIC 
interneurons to suppress the innate immune response in the presence of non-pathogenic 
bacteria. Upon infection, this immune-inhibitory pathway is down-regulated to allow an 
appropriate immune response. 

Identified as a neurotransmitter involved in behavioural avoidance of M. nematophilum 
(McMullan et al., 2012), acetylcholine can regulate the communication between neurons and 
the intestinal epithelium to induce an innate immune response (Labed et al., 2018). Upon 
infection with S. aureus, acetylcholine is released by the nervous system and activates the 
muscarinic GPCR receptors GAR-2 and GAR-3 in the intestine. This activation induces the 
expression of Wnt ligand (cwn-2) and Wnt Frizzled receptor (mig-1) in the intestine, 
responsible for the induction of downstream host defence genes in a BAR-1 (β-catenin)-
dependent manner. 

As described above, hyper-activation of p38-dependent immune responses in the intestine 
during development is deleterious, and can be efficiently suppressed by mutation in the p38 
pathway or the transcription factor CEBP-1/CEBPβ. Tissue-specific rescue experiments with 
cebp-1 revealed a coordinated tissue communication that keeps the required level of p38 
throughout development (Kim et al., 2016b). More recently, it was shown that chemosensory 
neurons control the intestinal PMK-1/p38 MAPK pathway during development. Foster and 
colleagues isolated a mutant in the gene olrn-1 exhibiting a constitutive activation of the 
intestinal immune response gene irg-4 (Foster et al., 2020). OLRN-1 was known to be involved 
in olfactory learning, through antagonising specific voltage gated calcium channels in the 
chemosensory neuron AWC and thereby the activity of the p38 MAPK cassette (Huang et al., 
2007). It is also OLRN-1 crucial for maintaining low p38 MAPK activity in the intestine during 
development (Foster et al., 2020). 

A diversity of avoidance responses 

Sensory neurons can mediate direct pathogen sensing to shape an appropriate response to 
pathogen exposure. C. elegans avoids the presence of Serratia marcescens through the 
recognition of a variety of strain-specific surfactants, each associated with a different sensory 
pathway. Serrawettin W2 elicits avoidance behaviour via two AWB chemosensory neurons, 
probably through G protein-coupled chemoreceptors (Pradel et al., 2007; Pujol et al., 2001). 
C. elegans avoids the toxin-producing Streptomyces through GPCR-based sensing of 
dodecanoic acid, this time by the receptor SRB-6 expressed in other chemosensory neurons 
(ASH, ADL and ADF) (Tran et al., 2017). Other bacteria, such as Bacillus anthracis, repel C. 
elegans without being a threat, possibly since they are recognised as a not good enough food 
source (Shtonda and Avery, 2006; Turner et al., 2020).  

In addition, C. elegans can recognize nitric oxide (NO) produced by bacteria and uses it to 
detect P. aeruginosa, via the ASJ chemosensory neurons. If it requires the thioredoxin TRX-1, 
the cGMP-gated sensory channel TAX-4/TAX-2 and the receptor guanylate cyclases DAF-11 
and GCY-27, the identity of the putative GPCR sensor is yet unknown (Hao et al., 2018). The 



ASJ neurons are also responsible for the detection of two P. aeruginosa secondary 
metabolites, phenazine-1-carboxamide and pyochelin. These activate a GPCR pathway leading 
to the production of a TGF-β ligand (DAF-7) which then modulates aerotaxis behaviour, 
thereby favouring avoidance of pathogenic P. aeruginosa, as described below. 

Another circuit that controls the response to P. aeruginosa infection involves the GPCR OCTR-
1. In the ASI neurons, it promotes pathogen avoidance, while in ASH neurons it inhibits 
immune pathways including the PMK-1/p38 MAPK, and the XBP-1 branch of the UPR, through 
the neuropeptide NLP-20 (Cao et al., 2017). After infection, OCTR-1 regulates innate immunity 
by modulating protein synthesis and inhibiting the UPR at the protein level (Liu et al., 2016). 
Pathogen avoidance is suggested to be mediated by the selenoprotein SELT-1.1 and the C-
type lectin C54G4.4. Although expressed in neurons, their mechanism of action has not been 
elucidated so far (Pees et al., 2017; Romanelli-Cedrez et al., 2017). 

Tyramine signalling controls the touch response in C. elegans and is required for worms to 
extract themselves successfully from the traps of predacious fungi (Maguire et al., 2011). 
Interestingly, it was recently shown to modulate chemosensory choices. Tyramine produced 
by the gut commensal Providencia can be converted to octopamine by the host tyramine β-
hydroxylase enzyme. The octopamine receptor OCTR-1 is then activated in the ASH 
nociceptive neurons to modulate an aversive olfactory response important for feeding choices 
(O'Donnell et al., 2020).  

O2 / CO2 sensing 

C. elegans is attracted to areas of low oxygen concentration and avoids carbon dioxide in an 
NPR-1-dependent manner (Bretscher et al., 2008). As a consequence, it tends to accumulate 
where there are actively growing bacteria (bordering), unless it encounters any of the 
repulsive signals outlined above, in which case it integrates the different stimuli to determine 
the appropriate behaviour, in a mechanism that depends on TOL-1/TLR expressing neurons 
(Brandt and Ringstad, 2015). In a genetic screen for suppression of this bordering phenotype, 
de Bono and colleagues identified mutants in genes coding orthologues of a cytokine, 
interleukin-17, IL17.1, and its receptor ILCR-1. Activation of the ILCR-1 receptor on the hub 
neuron RMG potentiates its sensory input and mediates a sustained avoidance to high 
concentrations of oxygen. This activation goes through the paracaspase MALT-1 that forms a 
complex with homologs of Act1, IRAK and Ikβ. Mutants in all the components of the complex 
exhibit a higher expression of defence genes and are more resistant to P. aeruginosa infection. 
Thus, IL17 links aversive behaviour to noxious cues and the immune response (Chen et al., 
2017a; Flynn et al., 2020). IL-17 is a well described mammalian pro-inflammatory cytokine, 
induced by infection, damage and stress. Interestingly, its receptor is also expressed in the 
brain and was recently shown to be important in fear aversion in the mouse underlying a 
conserved role in behaviour (Alves de Lima et al., 2020; Rua and Pujol, 2020). 

Role of tissues in pathogen sensing 

It was suggested that the intestine might directly sense the infection and relay a signal to the 
nervous system. Interestingly, avoidance of different bacterial pathogens was enhanced for 
animals with bloated intestinal lumens, suggesting that intestinal distention could be 
perceived as a damage signal (Singh and Aballay, 2019). While it remains a possibility that 



bacterial metabolites contribute to this behaviour, there is an exciting possibility that it 
involves a mechanical sensor, monitoring the tension on the intestine, analogous to the 
putative mechanical sensor at the interface of the cuticle and epidermis (see above). Upon 
bacterial bloating, the aversive behaviour requires DAF-7/TGFβ, the GPCR NPR-1 and its 
neuropeptides ligands FLP-18 and FLP-21. Concomitantly, it activates immune pathways for a 
complete immune response (Kumar et al., 2019; Singh and Aballay, 2019).  

Non-neuronal tissue communication 

While neuronal insulin is known to regulate intestinal immune response (Kawli and Tan, 2008), 
two independent studies revealed an induction of an insulin-like peptide in non-neuronal 
tissue upon infection. The insulin-like peptide INS-11 is upregulated upon P. aeruginosa 
infection and negatively regulates not the avoidance itself, but an aversive learning behaviour 
to P. aeruginosa (Lee and Mylonakis, 2017). The expression of ins-11 in the intestine is 
regulated by the transcription factor HLH-30 and the PMK-1/p38 MAPK pathway. INS-11 
prevents the overexpression of ins-6 in the ASI sensory neurons and of serotonin signalling in 
ADF sensory neurons. These pathways regulate aversive learning upon infection (Chen et al., 
2013). Interestingly, the same insulin peptide INS-11 is strongly induced in the epidermis upon 
D. coniospora infection (Lee et al., 2018). In this tissue, ins-11 expression is similarly regulated 
by the PMK-1/p38 MAPK pathway, but by a different transcription factor, STA-2/STAT. These 
parallel studies showed that infection of different tissues, epidermis or intestine, leads to the 
production of the same insulin peptide from the infected tissue. In Drosophila, induction of an 
insulin-like peptide is used during development to coordinate organ growth (Boulan et al., 
2019). INS-11 might serve as a sentinel during infection, alerting the organism when tissue 
homeostasis is perturbed, thus promoting optimal coordinated responses under stress 
conditions. In addition, other peptides are secreted by the infected tissues and might serve as 
a communication network, like the antimicrobial peptide NLP-29 that impacts neuronal 
survival (E et al., 2018) and sleep (Sinner et al., 2020). 

Stress and proteostasis 

As mentioned previously, the innate immune response and the maintenance of protein 
homeostasis are interconnected at the cell level. The regulation of proteostasis at the 
organismal level includes inter-tissue communication, as recently reviewed (Miles et al., 
2019). It includes the heat-shock response (Prahlad et al., 2008), the UPRER (Taylor and Dillin, 
2013), the UPRmt (Zhang et al., 2018), and transcellular chaperone signalling (O'Brien et al., 
2018; van Oosten-Hawle et al., 2013). Recently, another connection has been made between 
the UPRmt and innate immunity. FSHR-1/GPCR, which had previously been implicated in innate 
immunity via an unknown mechanism (Miller et al., 2015; Powell et al., 2009), acts non-cell 
autonomously in neurons to trigger the sphingosine kinase SPHK-1/SphK, which generates the 
sphingosine-1-phosphate required to induce UPRmt (Kim and Sieburth, 2018, 2020). 
Sphingosine-1-phosphate-mediated signalling was recently shown to increase immunity to P. 
aeruginosa infection in a p38 MAPK dependent manner (Lee et al., 2020). 

Additional stress signalling pathways that regulate the innate immune response in a non-cell 
autonomous manner include the heat shock response (HSR), mediated by HSF-1 (Singh and 
Aballay, 2006), the UPRER, controlled by OCTR-1 in the nervous system (Singh and Aballay, 



2012; Sun et al., 2011), and the UPRmt (Zugasti et al., 2016). For example, in the context of an 
epidermal infection by D. coniospora, an activation of the intestinal UPRmt through abrogation 
by RNAi of a range of mitochondrial genes inhibits antimicrobial peptide expression in the 
epidermis. The effect is cell non-autonomous since provoking the UPRmt only in the gut by 
knocking down spg-7 by RNAi in a tissue-specific manner abrogated epidermal AMP gene 
expression (Zugasti et al., 2016). Although this situation is analogous to other experimental 
paradigms of cross-tissue stress signalling in C. elegans (reviewed in (Ewbank and Pujol, 2016; 
Taylor et al., 2014; van Oosten-Hawle and Morimoto, 2014)), the molecular basis of such 
communication remains to be understood. 

Conclusion 

The past two decades of studying host-pathogen interactions in C. elegans have led to myriad 
discoveries that have helped our understanding of how hosts detect and respond to infection. 
These have narrowed the gap between the traditionally separate fields of innate immunity 
and stress responses. In addition to the examples described above, recent discoveries include 
the establishment of connections between pathogen responses and nucleolar function (Tiku 
et al., 2018), DNA damage (Bianco and Schumacher, 2018), detection of DNA in the cytoplasm 
(Williams et al., 2019) and splicing (Kew et al., 2020). There is every reason to believe that 
important discoveries are waiting to be made regarding other responses and surveillance 
pathways that are currently associated only either with stress or immunity. 

Studies with C. elegans have also highlighted the incredible amount of communication that 
takes place between different tissues during infection, particularly between the nervous 
system and the intestine. It is unlikely that we have yet a measure of the true extent of inter-
tissue communication in C. elegans. The secretion of chaperones in the extracellular spaces 
(pseudocoelom) to prevent aggregation during pathogenic attack is one very recent example 
(Gallotta et al., 2020). It will be necessary to use additional natural pathogens, and examine 
all tissues, such as muscles, to comprehend fully the extent of this crosstalk. It is clear that this 
humble model can continue to teach us much about homeostatic surveillance; after 20 years 
of research, the community has just scratched the surface. 

Figures Legends 

Figure 1. Cell-autonomous responses to infection. Examples of two canonical immune 
responses to infection, in the epidermis following infection by the fungus D. coniospora (Pujol 
et al., 2008a), and in the intestine by the bacterium P. aeruginosa (Troemel et al., 2006). 
Defence gene induction is observed with the transcriptional reporters, nlp-29p::GFP (left, 
epidermis) and irg-5p::GFP (right, intestine), the worms are visualised with an constitutive 
epidermal red fluorescent reporter (left) and in bright field (right). 

Figure 2. Cell-autonomous regulation of innate immunity in C. elegans. Depending on the site 
of infection and on the pathogen, innate immunity is regulated through diverse pathways and 
effectors, see text for details. 

Figure 3. Cross-tissue regulation of innate immunity in C. elegans. Innate immunity is regulated 
cell non-autonomously through direct or indirect communication between tissues. 
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Fig. 1 Cell-autonomous responses to infection. Examples of two canonical immune
responses to infection, in the epidermis following infection by the fungus
D. coniospora (Pujol et al., 2008), and in the intestine by the bacterium P. aeruginosa
(Troemel et al., 2006). Defence gene induction is observed with the transcriptional
reporters, nlp-29p::GFP (top, epidermis) and irg-5p::GFP (bottom, intestine), the worms
are visualized with a constitutive epidermal red fluorescent reporter (top) and in bright
field (bottom).
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Fig. 2 Cell-autonomous regulation of innate immunity in C. elegans. Depending on the
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Fig. 3 Cross-tissue regulation of innate immunity in C. elegans. Innate immunity is regulated
cell non-autonomously through direct or indirect communication between tissues.
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